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Abstract 
Current digital keyboards, even weighted keyboards, have a different touch response 
(feel) than acoustic pianos, which affects a pianist’s ability to learn and perform. 
Keyboardists rely on the touch and haptic response from the keys as feedback. We have 
designed and fabricated a device that measures the touch response of a grand piano key, 
by taking force, position, velocity, and acceleration measurements.  Our device, while 
measuring response, will impose force/motion inputs on a key that mimic key strikes by a 
human.  In the future, this data could be used to create a digital keyboard with a touch 
response that more closely approximates that of the acoustic grand piano.  Our device 
will be a research tool to help bridge the gap between digital and acoustic keyboards.  
 
Introduction 
Nearly all professional piano players prefer the feel of an acoustic grand piano to the feel 
of a synthesizer keyboard.  While this is known widely among pianists, no one has 
objectively tried to quantify the difference in the feel between standard and synthesizer 
keyboards [3]. Digidesign, a company specializing in music mixing and most recently 
keyboard design, would like us to build a device that can systematically measure the 
difference in feel among various types of pianos and keyboards.  The purpose of this 
device would be to obtain quantitative data about the feel of grand and upright pianos that 
could then be used to reproduce a more accurate feel on synthesizer keyboards.   
 
Information Search 
Professor Brent Gillespie has conducted much of the research on the topic of haptic 
interface devices and was able to provide us with a number of useful articles and websites 
to gather background information.  Prof. Gillespie also supplied us with several papers he 
had written on the subject including his thesis.  These articles gave us a better 
understanding of the studies that had already been conducted along with how our device 
would be used. 
 
We also conducted our own information search from which we learn some of our 
engineering specifications and other essential background information. In a document by 
Anders Askenfelt and Erik Jansson, measured ranges of velocity and position of the piano 
key where found while it was being played. (Figure 1 pg. 3)  This data was important so 
we could determine the precision and range required by the instruments.  These results 
were reproduced and verified in a thesis by Werner Goebl. 
 
We joined another team in their interview with Professor Grijalva, a teacher in the music 
school, and discovered how pianos work and are maintained.  He took us to his lab where 
he demonstrated the piano action and how keys are balanced by placing weights near the 
end of the key.  This also led to defining a standard on where the finger strikes the key: 
approximately 13 mm from the end of the key.  He also discussed the importance of the 
whole keystroke, which involves the pressing of the key and also the motion of the key 
returning to the original position.  Overall the whole interaction gave us a great base on 
which we might want our project to head and also just great background information [5]. 
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Linearity and Non-Linearity  
We conducted an Internet search to better define linearity and non-linearity so that we 
could improve our understanding of the affects of the piano stoke being non-linear. 
 
A function is only linear when it is both additive (superposition properties hold) and 
homogenous.  In order for a function to be additive the output of a function with input 
one added to the output of a function with input two must be equal to the output of the 
function input one plus input two. Algebraically, f(x1)+f(x2)=f(x1+x2).  A function is 
homogenous if the same output occurs for an input multiplied by a constant, whether it is 
multiplied before or after the function is carried out.  Or algebraically f(k·x)=k·f(x) 
[6],[7]. 
 
Nonlinear systems are simply those that do not follow the rules described above for 
linearity. They are very difficult to treat analytically because their outputs do not vary 
proportionally with their inputs (i.e. they cannot be scaled) making their behavior 
unpredictable [8]. 
 
Linearity is important because if a system is linear it can be analyzed by linear algebra 
and outputs can be easily determined.  Non-linear functions are much more difficult if not 
impossible to analyze mathematically and often require experimental testing which 
allows for modeling from empirical data. 
 
Mechanical Impedance 
Mechanical impedance (Z) is the relationship between the force applied to an object (F), 
and the resulting velocity (V), given by the following expression: 
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The value for the impedance of an object is dependant on various parameters of the 
interaction between the force and the object including stiffness (k), damping (b) and mass 
(m).  The mechanical impedance is a function based on the frequency of the applied 
force, with the lowest impedance value occurring at the resonance frequency of the 
object.[11]  This value of impedance changes for the human finger depending on the type 
of strike applied to the piano. 
 
Customer Requirements 
Digidesign has asked us to design a device that will mimic the human input to a piano 
and measure the feel of the key accurately.  The device would have to be able to be used 
on all types of pianos and synthesizers, and be able to test both the white and black keys 
of the piano.  The device must be easy to setup, operate, and be easy to use for recording 
the data.  The device should also be robust for many measurements while not damaging 
any of the pianos or synthesizers in the process of testing. 
 
Engineering Specifications 
We have determined that the best way to systematically test the touch response of piano 
keys would be to use computer controlled input of a linear electrical motor.  The motor 
must be mounted on a stable mount as to minimize the noise in measurement from 
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environmental or motor induced vibrations so measurements are more accurate.  The 
computer interface will deliver an input signal to an amplifier that will drive the motor 
for a desired key stroke, and then the computer will record various data including key 
position, velocity, acceleration, and force response.  The ranges and general precision 
requirements of the sensors are as follows and listed in Table 1.  As Figure 1 shows the 
position sensor will have to measure a range of 0 – 10 mm and the velocity sensor will 
have to measure over a range of 0 – 7.5 m/s [1], [4].  The acceleration will have to 
measure over a range of 0 – 300 m/s2 [4].  The range of forces the human finger in 
common piano strikes range from 2-50 N.  

 Figure 1: Velocity and position graphs for both staccato and legato keystrokes [1] 

 
 
   
     Table 1:  Sensors required to accurately test piano touch response. 

Device Measuring Range General Precision Need 
Position Sensor 0-10 mm Very high 
Velocity Sensor 0-75 cm/s High 
Accelerometer 0-300m/s2 High 
Force Transducer/Strain Gauge 0-50N High 

 
To synthesize the behavior of the human finger, the mechanical impedance of fingers will 
have to be researched.  This impedance can be reproduced with our input signal by using 
real-time feedback control loops; implementing virtual springs and dampers. 
 
Non-Linearity of a Piano Key Stroke 
To consider the piano as a non-linear system, we simplified the system to mimic a simple 
linear mechanical system with mass, damper and spring, to look at the motion of the key, 
which in the end we assume to be related to the force at the key.  The governing equation 
is then: 

)(tFkxxBxm
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=++ &&&  
This equation is simple enough to solve making two assumptions, first that the force 
input is a simple function.  This assumption cannot be made because the player provides 
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the input force.  Human actions are hardly uniform or repeatable.  The following figure 
(Figure 2), from Hirschkorn’s thesis, shows the force for five different key strikes.  With 
an input force that is so variable, it would be impossible for the resulting motion of the 
key with respect to time to be linear. 
 
 Figure 2: Measured  Force Profiles by an Amateur Pianist 
 

 
 
 
Secondly when traditionally solving the differential equation it is assumed that the 
constants (m, B, k) are in fact constant.  For the piano, these parameters are inherent in 
the construction, they are however not constant during the keystroke.  Without testing, we 
predict that these parameters are functions of both time and position.  Consider the mass 
of the key at the beginning of the stroke; it is considerably larger than the mass of the key 
at the middle of the stroke when the hammer has been released.  The damping and 
stiffness are affected by the contacts of the moving parts, which are changing throughout 
the keystroke.   The variable input and the changing system parameters, result in a system 
that is highly nonlinear, which motivates the collection of experimental data, from which 
a model can be based. 
 
Parts and their Planned Interaction 
Motor – Piano Intermediary 
After receiving our linear motor, force transducer, position sensor, accelerometer, and 
necessary amplifiers to run our devices, we looked up the specification sheets on all of 
the products.  We decided we would need to mount all the devices on the linear motor by 
attaching a small lightweight plate to the end of the actuator on the motor.  This would 
give us more surface area to attach the accelerometer and force transducer.  Also we 
decided to use a lightweight material, so that the inertia change on the motor would 
hopefully be small.  The small motor momentum is desired because we do not wish the 
motor’s mass to be the main application of force on the keys, but rather just the motion.  
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The difference might be compared to smashing an elbow on a key versus a double forte 
strike by a pinky finger. 
 
We decided we would need a device that would attach to our motor and that we could 
attach mount our various sensors too. The device would also need to create an acceptable 
surface to strike a piano key.  It is desired that the fixture be lightweight to reduce the 
amount of force needed from the motor.  With that in mind we have decided that the best 
material to use is aluminum because of its light weight, low cost, and ease of 
manufacturability.  We decided the design shown below in Figure 3 would be the best 
design allowing us to attach our sensors while minimizing our total mass. 
      
 Figure 3:  Design for motor fixture (left) and striking tip (right). 
 

 
 
 
The design shown in Figure 3 was then fabricated in the machine shop, and the sensors 
attached to it.  With all of the sensors attached to the motor now, the sensors can be 
calibrated and the programming of the software to control the motor in the testing can be 
finalized and key testing can begin. 
 
We also attached a backup linear encoder on the motor in case of failure in the first 
position sensor.  The backup was positioned on the armature of the motor and used 
Plexiglas to attach it. This second encoder is more carefully aligned, however its signal 
seems very similar to that of the first.  If used, the position signal must be adjusted by a 
gain of -1 because it is reading in the opposite direction than the first encoder. 
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The striking tip shown in Figure 3 was eventually replaced because the original force 
transducer broke.  A compression force transducer was ordered and attached to the motor 
fixture using ‘L’ brackets to the end of the motor fixture.  The tip of the force sensor was 
too short to depress a key without interfering with the other keys because of the width of 
the force sensor, and thus the button sensor for the compression sensor had to be 
extended.  Because the button wasn’t threaded, and the original striking tip was too 
bulky, it had to be replaced with a smaller extension.  A small piece of metal was 
attached to the button using epoxy, allowing us to read the depression of one key, while 
minimizing extra mass on the system. The set-up is shown in the photo below (the back-
up encoder is not shown). 
 

Figure 4:  Locations of sensors on mounting tip 

 
Ground – Motor Mount 
Initially we thought it would be desirable to make a motor mount that was capable of 
both horizontal and vertical adjustments.  Designs were considered using various slotted 
adjustable parts, as well as one design that featured a rotating crane-like arm.  A concern 
arose as to whether the adjustability of the motor mount would compromise the stability 
of the motor during testing.  We noted that if the mount were prone to vibration, the 
various readings from the keystroke could be compromised.  Since precision is of great 
importance to us, we decided to go with a design that has limited mobility, while still 
allowing the desired range of movement 
 
We narrowed the structure down to a motor mount similar to the one shown in Figure 
5(a) below.  This design is desirable for its stability gained from the lack of adjustable 
mechanisms for vertical and horizontal displacement, as well as cross-bracing to prevent 
torsion between supports.  This device was further revised to the one shown in Figure 
5(b).  The mount in Figure 5(b) is desired because it offers an easy way to adjust the 
vertical operation of the motor.  While this does introduce the potential for potential slop 
in the device, we feel that the 4 bolts securing the mount arm plate to the extrusion will 
be secure enough to allow very little motion of the motor with respect to ground and 
maintain the same accurate measurements of a solid mount.  The mount can be adjusted 
vertically to conform to pianos of differing heights, and the entire mount can be 
repositioned to hit both the white and black keys of the keyboard. 
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Figure 5:  (a) Proposed design sketch for mounting the motor to a stationary 
ground.  (b) Finalized motor mount design with vertical adjustment. 
 

 
      (a)       (b) 
 
Motor Mount Manufacturing 
The design features a piece of extrusion provided by Prof. Gillespie’s lab, two sheets of 
aluminum of ½” thickness, as well as brackets and bolts necessary for assembly.  The 
base plate was attached to the extrusion brackets with nuts and bolts.  This was done 
because threading the base plate and directly screwing into it could cause a lot of strain 
on the threads.  The supplied bolts that were designed for use in the extrusion were used 
for mounting the extrusion brackets and the arm plate to the extrusion.    
 
Securing the motor to the mount proved to be a more difficult process than expected.  We 
discovered that in addition to the tap size being of an undetermined (possibly metric) 
dimension, the top hole contained a threading tap that had broken off in a previous 
manufacturing endeavor.  This meant that we could only insert bolts from one side of the 
motor.  We were able to find a 3/4” bolt of undetermined thread size that fit into the top 
threaded hole (which contained the broken tap in the opposite side), however the bottom 
hole that was drilled all the way through was threaded in a way that it was difficult to 
insert any bolt.  The solution to this was to redrill the hole to make it designed for bolt 
clearance.  The intended clearance was for a 10-24 bolt, however the hardware store at 
which the bolt (6” in length) that was bought supplied a slightly different size so there is 
a small difference in diameter.  As such, we were unable to immediately obtain a washer 
and nut to fit on the opposite side. 
 
The motor was secured to the table using four 3/16” x 6” nut/bolt washer combinations.  
A location was found on the edge of a standard small, adjustable-height banquet table 
where the bolts would not interfere greatly on the underside, and corresponding clearance 
holes were drilled through both the mount base and the table.  The electronic portion of 
the project built by the ME 552 team was placed in the remaining space.  This did not 
include space for the associated computer, which was placed on a separate table or cart 
depending on available resources. 
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Determination of Input Curves  
In order to accomplish our goal of measuring the feel of a piano key, we need to 
accurately simulate the impedance of a human finger based on the type of strike applied 
to the keyboard.  Part of this is designing the input curves for the device considering the 
values of the effective mass, damping and spring constants.  These values are extracted 
from the study conducted by Hajian and the values can be seen in Table 2 below.  [10] 
 
Table 2:  Subjects’ mean and standard deviation (std) values of the parameters 
m,b,k, and ξ for three of six finger tip force levels in extension from Hajian’s 
thesis.[10] 

 
 
 
 
The damping and spring constants can be simulated virtually using PD controller.  The 
device has its own mass and damping constant and these must be offset so that the finger 
is simulated.  The spring constant and damping factor were determined from the motors 
frequency curve and by weighing the motors arm.  By doing this you can calculate the 
spring constant and damping factor. Two input curves were developed for testing, 
however when it was time to test the device a simple pulse input  was used, in order to 
verify the accuracy of the device.  The mechanical device was simulated using Simulink.  
The figure below shows the basic schematic of the mechanical model. 
The device model is connected to a model of the key developed by using mass, spring 

and damping constants estimated from the Hirshkorn papers (m=0.12008 kg, b=3.75 Ns
m

, 

k=257 N
m

). [9]  The key model has two discontinuities that simulate the limits of the key 

motion.  This is done by introducing a very stiff virtual spring when the signal reaches 
the limit of the key stroke (approx. 10 mm), and a lighter spring when the key reaches its 
original equilibrium position (denoted x=0, key position at rest).  This discontinuity 
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causes the non-linearity observed in the position and force measurements, from previous 
work and piano key model seen in Figure 7.  A spring-mass-damper model of the finger 
can be seen below in Figure 6. 
 
Figure 6: Spring-mass-damper model of the human finger. 

 
After accurately modeling the system, the input curves can be designed by trial and error, 
in order to match the position curves in the Hirschkorn paper.  After the position results 
of the simulation are matched to the known curves, the force measurements can be 
simulated.  It is assumed that if the impedance and motion of the device is matched to 
that of that of the finger, the force measurements taken during experimentation will 
match those felt by the finger.  Mathematical spring-mass-damper systems of the piano 
key and combination of the key-finger system can be seen in Figure 7 below and Figure 
8. 
 
Figure 7: Spring-mass-damper model of the piano key. 

 
 
 
Figure 8:  Spring-mass-damper model of the combined piano key and finger system. 
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After running simulations involving these models we realized that we had neglected one 
important force: that of gravity.  Because this force is constant it merely offsets the 
results of our simulation, and can be added in the control model of this system.   
 
Figure 9:  Control Model used with Linear Motor. 

 
The only aspect of this control model that was not implemented is the mass gain.  The 
mass of the motor needs to be corrected so that it matches the effective mass of the 
finger. 
 
Results 
The first obstacle in testing the device that our team faced was calibrating the force 
transducer.  First the reading was zeroed.  Next a scale was placed so that it was 
supporting the full weight of the armature.  In this manner we were able to measure the 
total mass of the armature including sensors.  This value corresponded to a certain 
voltage reading from the force transducer.  Once this value was determined a linear   
scale was fit in order to make sense of the force readings.    The spring gain and damping 
gains were adjusted in order to develop desired forces.  We did not end up using the gains 
described in the Haijin papers because the force produced was not high enough.   
 
To test the functionality of the device, the two M-Audio keyboards were used in addition 
to a keyboard action model. Two different strikes were created using LabView.  The first 
was a strike peaking at approximately 30 N lasting about 3.5 seconds.  The second strike 
was one peaking at about 20 N lasting for approximately 0.5 seconds.  The position and 
force graphs are shown below for each case and each instrument. 
 
Figure 8: Key position (top) and key force response (bottom) for two different 
inputs.  Legato (left):  A high force long duration key strike.  Staccato (right): A 
medium force short duration key strike. 
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The position graphs still have quite a bit of oscillation in them, which needs to be reduced 
by adjusting the gains.  The blue line represents the piano action model, the green and red 
datum the keyboards respectively.  The force signals were not filtered.  The concern was 
that if the signal was filtered the large spike at the beginning might be missed.  The most 
significant results of these tests are that the position and force profiles for each of the 
devices are similar.  The force response of the two keyboards is quite similar particularly 
for the longer strike.  This demonstrates the ability of the device to reproduce results, 
delivering a constant strike each time.  Once the range of gains for the system is adjusted 
to a satisfactory range, the device will be an accurate method for obtaining force curves.  
Of course, extensive further testing must be completed in order to characterize the 
differences between instruments.   
 
 
Conclusions and Recommendations 
The device works properly.  All of the sensors function, and are integrated into the 
feedback control loop designed in LabView.  Although the input curves we designed 
were not used, the program is set-up to read a text file.  The motor is mounted 
successfully, although a more finely tuned high adjustable table might be advantageous.  
The output of the tests can be seen on the various graphs created in LabView, as well as 
stored as a text delimited file in the CRio.  This device is very powerful because it is set-
up to be able to quickly change the spring and damping gains, as well as the input files in 
order to test a large range of “piano strikes.” 
 
After our testing there are a few more improvements that could be made.  Due to a slight 
movement in the armature, it might be helpful to change the aluminum plate that holds 
the motor above the piano to a box-shape instead of just a plate.  This will aid in keeping 
the mount rigid.  Also another way we can minimize the movement between the piano 
and the table is attach some type of clamping device to the piano so that the measuring 
device and piano move as one, if there is any movement.  It is also unclear at this time 
whether or not the force transducer will provide accurate enough readings; whether or not 
a filter can be implemented which will not discard valuable data, in order for the noise to 
be reduced.  
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Appendix – Gantt Chart 
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Simulink Schematic  
 
 
 
 

 


