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ABSTRACT

In a piezoelectric crystal acoustic waves of certain modes and propaga-
tion directions are accompanied by electric fields. If the crystal also con-
tains free electrons, and if there is a sink (for example, the lattice) to
which they may dump their energy, then the electric fields will do work on the
electrons, thereby dissipating the energy of the wave. As the wave surrenders
its energy to the electrons, so must it alsc give up its momentum to the same
absorber. The result is the production of a direct current along the wave
propagation vector. This acoustoelectric current is a primary source of in-
formation on local electronic conditions encountered by the wave. For example,
conservation of momentum for the interaction requires that the current be pro-
portional to the rate of dissipation of energy from the wave (the Weinreich
relation), so the acoustoelectric current pulse produced as a short acoustic
wave packet traverses the crystal gives directly the acoustic dissipation rate
at each instant of time during the trip, a result not obtainable by observa-
tion of the transmitted sound alone.

This thesis reports a study of the acoustoelectric self-interaction of a
30 Mc ultrasonic wave packet propagating in a cadmium sulfide single crystal.
This self-interaction results from the fact that the acoustic attenuation rate
may be modified by imparting a drift velocity to the electrons, and such a
drift velocity is in turn produced by the acoustoelectric current resulting
from acoustic attenuation. The effect of the self-interaction may be computed
by substituting the acoustoelectric current for the drift current in the
small-signal theory. We have done this in order to compute the influence of
the self-interaction on the detailed shape of the acoustoelectric current
pulses generated as short acoustic wave packets traverse the crystal. These
predicted pulses have been compared directly with experimental results. Upon
comparison it is seen that the observed effect of the self-interaction is
larger than the computed effect, and the predictions are more accurate at
high crystal resistivity than at low. This is in part explained as a failure
of the calculation to account for the influence of the second harmonic com-
ponent of the acoustoelectric current on the local attenuation rate.

viii



INTRODUCTION

The acoustoelectric effect is a wave-particle drag phenomenon and refers
specifically to the appearance of a direct current along the direction of pro-
pagation of a decaying acoustic wave in a medium containing mobile charge carriers.
The effect occurs whenever there is a possibility of energy and momentum exchange
between the wave and the charges, providing there exists a sink (such as the
crystal lattice) to which the charges may dump their energy. The interaction
causes the charges to drain energy and momentum from the wave, and the absorbed
momentum propels them in the direction of the wave propagation vector. The re-
sult is attenuation of the wave accompanied by a direct current along its direc-
tion of propagation.

In 1956 Weinreichl published a definitive theoretical treatment of the
acoustoelectric effect in a semiconductor in which both holes and electrons are
simultaneously involved. About a year later Weinreich and White2 detected a
weak acoustoelectric effect in n-type germanium, and in 1959 Weinreich, Sanders,
and White5 reported they had used the acoustoelectric effect to measure the
intervalley scattering rate of electrons in arsenic-doped germanium.

In 1960 cadmium sulfide was discovered to be more strongly piezoelectric
then quartz.u This property, in combination with the crystal's easily-controlled
and wide-ranging photoconductivity, made it an ideal material for the further
investigation of electronically induced acoustic attenuation, and a thorough

theoretical treatment of this possibility was published in 1962 by Hutson and



White.5 This theory is based on a small-signal analysis of the electron-wave
interaction derived from the piezoelectric equations of state for a conducting
medium.

Weinreich had proven in 1956 that, by application of a dc electric field
along the direction of propagation, it should be possible to use the acousto-
electric interaction to achieve traveling wave amplification of sound.l In 1961
this was attempted in CdS by Hutson, McFee, and White.6 They succeeded in

-9

demonstrating acoustic amplification, and this phenomenon and the related

effect of current saturationl -2 have received the lion's share of attention
on the subject ever since. Reference 9 contains an extensive bibliography of
recent work on these effects.

The study of the less glamorous basic acoustoelectric effect in CdS in
the absence of an applied electric field has consequently been neglected, even
though it offers much in the way of experimental simplification. Nonamplifying
experiments do not require the fast rise time, high voltage apparatus needed

6,12

for amplification work, and they avoid the instabilities and current satura-

6,10-1
’ 2 which have come to be associated with CdS under amplifying

tion effects
conditions. That there is a wealth of information to be had from nonamplifying

. . 13 .
experiments was demonstrated by Henrich, when he analyzed acoustoelectric cur-
rent pulse shapes to verify the attenuation predictions of the small-signal
theory of Hutson and White and also to compute electron trapping parameters in
several CdS samples.

The work presented here is also based on an experimental study of cadmium

sulfide under nonamplifying conditions. It is primarily concerned with large-



signal acoustoelectric effects in CdS, the analysis of which falls outside the
immediate province of the small-signal theory of Hutson and White, but which
nonetheless may be treated by perturbation calculations on that theory. By this
approach we shall show that under large-signal conditions the propagating acoustic
wave interacts with itself, and that it is possible to meke computer-calculated
predictions of the acoustoelectric currents generated by acoustic waves of large

(but not too large) amplitude.



CHAPTER I

ACOUSTOELECTRIC CURRENT WAVEFORMS

We shall begin this chapter by presenting the basic experimental evidence
for the acoustoelectric effect in cadmium sulfide, placing particular emphasis
on the shape of the observed acoustoelectric current waveforms. We shall then
introduce the Weinreich relation,lu the fundamental energy-momentum conservation
relation which underlies all acoustoelectric phenomena, and use this relation
to explain and predict the detailed shape of the current waveforms. This approach
is possible because much of what we observe in CdS is true of any acoustoelectric
interaction and is unaffected by details of the electron-wave coupling for a

particular material or a special experimental situation.

1.1 THE OBSERVED ACOUSTOELECTRIC EFFECT

Consider the experimental arrangement pictured in Figs. 1 and 2. A
cadmium sulfide crystal, cut as a cube 7 mm on a side, is clamped between two
pieces of fused silica. These fused silica pieces are called "buffers" (their
function will be explained in Chapter IV), and each is a cylinder 1/2 in. in
diameter and 1 in. long. Quartz transducers, cut for half-wave resonance at
30 Mc, are attached to the outside circular faces of these buffers, and all
of these elements are solidly cemented together to form an acoustic assembly.
If we electrically excite one of these transducers with a brief burst of 30
Mc rf, the acoustic wave generated will propagate through the assembly and be
detected at the opposite transducer. Shear waves for example will traverse

this system in about 17 usec.



Fig. 1. Photograph of the acoustic assembly in the sample holder.

_— input transducer
WYV

. buffer

CdS crystal —> wire leads
—

I~ buffer

MW w
\— output transducer

Fig. 2. Diagram of the acoustic assembly.



We said in the introduction that cadmium sulfide is both piezoelectric
and photoconductive. The acoustoelectric effect in CdS is a consequence of
the interaction between the piezoelectric fields accompanying a propagating
acoustic wave and the photoconduction electrons in the crystal. We therefore
choose a crystal orientation in the acoustic assembly which causes the acoustic
wave to be accompanied by strong piezoelectric fields. In Chapter II we shall
show that it is impossible to have strong transverse piezoelectric fields
accompany a propagating acoustic plane wave. We are therefore limited to crystal
orientations aﬁd acoustic modes which together generate strong longitudinal
piezoelectric fields.

In the system thus far described an acoustic wave packet will propagate
through all elements of the assembly, suffering some attenuation or reflection
at the bonded interfaces between components of the system, but experiencing
negligible losses in either the buffers or the CdS crystal—providing the crystal
is kept in the dark. But if we now illuminate the crystal, we will discover
that it is possible to cause the propagating acoustic wave to be strongly
attenuated, the severity of the attenuation being a function of the light
intensity and varying from a maximum greater than 4O db for a certain optimum
brightness to near zero in the dark.

There is a simple explanation for this phenomenon. We know the pro-
pagating wave packet 1is accompanied by piezoelectric fields, and we also know
that the CdS crystal is an insulator in the dark but becomes a conductor when

illuminated. It therefore is reasonable that the piezoelectric fields of the



traveling wave do work on the free electrons produced by the illumination, and
that the energy thus dissipated by the piezoelectric fields must be drawn from
the propagating acoustic wave, thus producing attenuation.

If this explanation is correct, then we may further expect to find a crystal
conductivity for which the E*J dissipation of the photoconduction electrons is
a maximum. The argument goes as follows: It is obvious that E-J losses must
vanish in the dark when the crystal is an insulator, i.e., when J = 0. At the
opposite extreme of very intense illumination we might look for a diminished
rate of dissipation as the electric field goes to zero, short-circuited by the
very high photoconductivity. In between these two extremes there must be a
maximum. This prediction would be borne out by experimentation on the system
we have described. We would observe a maximum acoustic attenuation in excess
of 4O db at a crystal resistivity of about 6500 ohm-cm.

Let us now consider an extension of the experiment. Imagine the end
faces of the CdS crystal (the faces in contact with the buffers) to be coated
with a metal film to allow broad, ohmic contact to the crystal, and let these
contacts be made externally accessible through wire leads (see Fig. 2). These
leads might have been used to measure the crystal's photoconductivity in the
preceding experiment, but they will also serve to show us another interesting
Phenomenon.

Suppose these wire leads are joined through a small resistor, and an
oscilloscope is connected across the resistor to monitor any current which may

flow in this circuit (see Fig. 3). If the CAdS crystal is now illuminated and



repeated bursts of electrical excitation are supplied to the input transducer,
then an oscilloscope trace of the type shown in Fig. 4 will be observed each

time an acoustic wave packet traverses the crystal.

(o)

Fig. 3. Basic experimental arrangement.

This phenomenon of direct current production ("direct current"” in the sense
that it is slowly varying compared to the 30 Mc frequency of the acoustic wave )

ig called the acoustoelectric effect, and the current thus generated is called

the acoustoelectric current.

Let us examine the oscilloscope trace in detail. The acoustic wave packet
used was that of Fig. 5. The acoustoelectric current (Fig. L4) begins to rise
just as the wave packet enters the crystal; it reaches a maximum just after the
peak enters and then dies away. The oscillations which appear on the rising
portion of the trace are generated as the traveling wave crosses the input face

of the crystal. They will be discussed in Section 1.3.



Fig. 4. Representative acoustoelectric current trace produced by the
input wave of Fig. 5. The current was measured in terms of the volt-
age drop across an external 2000 ohm resistor. Crystal resistivity =
3.7 x 10* ohm-cm. Vertical scale = .00l V/cm. Time base = .5 psec/cm.

Fig. 5. 30 Mc excitation applied to the input transducer to produce
the acoustoelectric current trace of Fig. L. Time base = .5 psec/cm.
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Let us concentrate our attention upon the falling portion of the trace.
The input acoustic wave had a length of 2.5 psec, and the transit time through
the 7 mm crystal is 4.0 pusec. Thus that portion of the current trace re-
corded between 2.5 and 4.0 psec occurred while the wave packet was entirely

within the crystal.

This portion of the trace is a falling exponential. Were we to change the
amplitude of the input wave (by use of a precision attenuator so as not to change
the envelope shape), we would observe the height of the current trace (but not
the shape) to change in direct proportion to the square of the input acoustic
amplitude, i.e., to vary as the input acoustic energy. The effect is illustrated
in Fig. 6.

Study of oscilloscope traces recorded during experimentation at other
photoresistivities (see Fig. T7) would further reveal that the time coénstant T
describing the exponentially falling tail of the current trace is in each case
the same time constant that would be needed to predict the attenuation suffered
by the acoustic wave packet in traversing the crystal; i.e., if the decaying

tail of the current trace is described by

I = I /e (1.1)

and if the attenuation experienced %y ~he acoustic wave packet is given by

Wout = Win © ’ (1.2)
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(a) Acoustoelectric current traces produced by varying the input
attenuator in 1 db steps. Vertical scale = .1 v/cm.

(b) Acoustoelectric current traces produced for two settings of the
attenuator with compensating changes in the oscilloscope vertical
sensitivity switch. The traces overlap exactly.

Attenuator Vertical Scale
-10 db .1 v/em
-20 db .01 v/em

Fig. 6. TIllustration of the linear relationship between the acoustoelectric
current and the input acoustic power (at small signal levels). Input acoustic
power was adjusted with a precision attenuator controlling excitation of the

input transducer. Crystal resisitivity = 1.57 x 10* ohm-cm.

Time base =
5 usec/cm.



where Eq. (1.2) may be considered the defining equation for the attenuation

coefficient ¢, then

re = avg (1.3)
where
W = energy density of the acoustic wave packet
L = crystal length
vy = propagation velocity of the acoustic wave.

Fig. 7. Acoustcelectric current traces produced for constant input power
and changing crystal resistivity. Input attenuator set at -10 db. Time

base = .5 usec/cm. Listed according to peak height, the traces are:
Crystal Acoustic
Trace Resistivity Attenuation Rate
Top 9.5 x 10° onm-cm 60 db/cm
Center 5.5 x 10* ohm-cm 2% ib/cm
Bottom 1.1 x 10° onhm-cm 8 db/cm
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The implication of these observations is that the instantaneous value of
the observed acoustoelectric current is directly proportional to the energy of
the acoustic wave packet which decays exponentially as it traverses the crystal.
That this is indeed the case (at least for the idealized experiment we have been

describing) will be shown in the section which follows.

1.2 THE WEINREICH RELATION

We have not yet studied in detail the interaction between the piezoelectric
fields of the propagating acoustic wave and the photoconduction electrons in the
crystal, but such information is not necessary to an understanding of the rela-
tionship between acoustic attenuation and the acoustoelectric current. This
was shown by WeinreichlLL in 1957 when he proved that the energy and momentum
surrendered by the decaying acoustic wave are given over entirely to driving a
direct current down the crystal, with the result that the ratio of the attenua-
tion coefficient to the current is determined entirely by wave dynamics and is
independent of the detailed mechanism of the acoustoelectric interaction. (The
application at that time was to the prediction of the weak acoustoelectric cur-
rents produced in multi-valley semiconductors as a consequence of the drag
exerted on a traveling wave by free carriers.) The derivation goes as follows:

(1) Momentum relation for the electrons: The force on the free electrons

is given by
dpe/dt = -ngE (1.k4)

where



1k

n = density of electrons

P = momentum density carried by the electrons

g = absolute magnitude of the electronic charge

E = an effective acoustoelectric field acting on the

electron to produce the acoustoelectric current
(E is defined to be positive when it points along
the propagation vector of the wave) .

(2) Energy-momentum relation for waves:

where
W = energy density carried by the wave
pg = momentum density carried by the wave.
Therefore

d a
dw ps ps

ax Vg = = EE_ . (1.6)

(3) Conservation of momentum for the interaction requires that

d d
ps pe

& Tw 0 e

Substitution of Egs. (1.4) and (1.6) into Eg. (1.7) gives the Weinreich

relation:

aw
ngE = T (1.8)

If the acoustic attenuation is describable by an attenuation coefficient,

that is, if
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- aw/dx = oW ,
then the Weinreich relation becomes
E = - 1/nq oW . (1.9)

We would like an expression involving the acoustoelectric current density

This must be given by j = oE or
j = -.oW (1.10)

where y = electron mobility in the crystal

The Weinreich relation can serve as a powerful tool for the study of
acoustic attenuation in CdS. Equation (1.1:) tells us that the local rate of
acoustoelectric current generation is directly proportional to local acoustic
energy density. If the traveling acoustic wave is well localized (T << Tes
where T is the length of the wave packet, and -, is defined by Eq. (1.3)),
then Eq. (1.10) allows us to measure the energy of the wave packet at any point
along its traverse of the crystal, assuming both u and o are known.

For a wave packet which is not w:ll localized the relationship is more
comp:icated. In Chapter IIT we shal. prove that th current flowing in the

external circuit is given by

= jlx,t) dx , (1.11)
O

J(t) =

==

where L is the length of the crystal, and j(x,t) is the rate of acoustoelectric

current generation at each point on the wave. Equation (1.11) may also be
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developed from a simple equivalent-circuit model of the crystal. Let us con-
ceptually divide the crystal into N segments, each segment being of length
®x = = . Within each segment let us represent the local rate of acoustoelectric

current generation by an ideal current generator

33 (8) = -k (%) (1.12)

working across the local crystal resistance R = rdx as in Fig. 8.

334(%) 34 () 3441<H)
(), ), QD
J(t) r6x 16X T6X J(t)
e = VA A ==-

Fig. 8. Elementary equivalent circuit model of the crystal.

We should pause here to clarify our sign convention. All flow quantities
(currents and velocities) are taken as positive when they point in the direction
of the acoustic propagation vector. We have just shown that for acoustic attenua-

tion produced by mobile charge carriers, the recoil of the absorber must cause



a net drift of the carriers in the direction cf the wave. For negative carriers
(as in CdS) conv-ntional current flow is opposite in direction to the carrier
drift, so j(t) becomes a negative number as in Eq. (10). Because of our sign
convention, equivalent circult representations like that of Fig. & show generating
elements which appear to produce a conventional current in the direction of the
wave, but we must remember that it is the carrier velocity which is always with
the wave, and the sign of the current carriers determines the sign of j(t).
Flowing through all N crystal segments and in the external circuit is the

circulating current J(t). The voltage drop across the ith segment is

v, = R(J - ji) . (1.13)

If we require as a boundary condition that the ends of the cry:ztal be short-

circuited, then we must have

M=

N
i.o= R(NT - 2 §.) = 0. 1k
1514 ( & 3y (1-14)

The solution for the circulating current is therefore

. N
J(t) = T izl ji(t) X . (1.15)

In the limit of N becoming infinite, this passes to the integral form

J(t) =

=i

P at) ax (1.16)

which is the same as Eq. (11).
Because the integration need not be carricd past the leading edge of the

propagating wave packet, the upper limit may be changed to x = vst (for
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vt < L). If we substitute Eq. (1.10) for j(x,t), then Eg. (1.16) becomes

3(t) = - = Vs

T W(x,t) dx . (1.17)

Within the crystal W(x,t) may be expressed in terms of the acoustic energy
density at the input face. For the case of uniform acoustic attenuation we

have
-0x X
W(x,t) = e w(o, t - vs) s (1.18)
so that

_ 1 vt -ox ad
J(t) = -uo T é s’ e Ww(o, t - Vs) dx . (1.19)

Using Eq. (1.19) we may explicitly display the exponentially decaying
character of the acoustoelectric current when the acoustic wave packet is entirely

within the crystal. Let us first introduce a change of integration variables

£ = - (1.20)
v
s
with the result that
1 -av.t &t avgt”
3(t) = -wovg T e s [0 es" w(o,t") at" . (1.21)
This may be rewritten as
1 t t t"
— () Vs® = B FsY (0,4 at”
avg Lo

If we now differentiate both sides with respect to t and then divide throughout

avat
e 'S

by , we obtain
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1 aJ U
— — + J(t = - =WO,%t . 1.2
TR TR 2 41(0, ) (1.22)

Now the usual specification for the input energy density will be of the form

1l

w(0,t) AS(t) , t<T

where T 1s the length of the acoustic wave packet whose amplitude is A(t).
For t > T (the wave packet entirely within the crystal) the right side of Eq.

(1.22) vanishes, and the remaining homogeneous equation has the solution

) e-avs(t-T)

J(t) = J(T , (1.25)

which is the exponentially decaying result that we sought. Equation (1.2L4)

may be compared with Egs. (1.1) and (1.3).

1.3 CURRENT RIPPLE DUE TO THE BOUNDARY CONDITION

The small oscillations superposed upon the larger acoustoelectric current
trace (Figs. 4-T7) are generated as the acoustic wave train crosses the input
face of the crystal. Their frequency is the same as that of the traveling wave,
and their envelope closely resembles the envelope of the traveling wave before
it enters the crystal. They are not the result of capacitive feed-through of
the excitation voltage applied to the input transducer; the 6.4 usec transit
time of the first buffer assures us of that. What they are may be understood
as follows:

While inside the CdS crystal the traveling acoustic wave generates

longitudinal piezoelectric fields. Local intensity of the resultant electric
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fields is approximately proportional to local mechanical strain (the exact
relationship will be derived in Chapter II). The net voltage available to drive
a current around the external circuit may be computed by integrating this electric
field over the crystal length. This voltage divided by the total circuit regictance
is then the circulating current.

The input face of the crystal is one of the limits of the integration. The
integral may therefore contain a fraction of a cycle at the input face plus a
number of whole cycles already in the crystal. To the extent that the traveling
wave 1s symmetric about zero we may expect the average contribution of whole
cycles already inside the crystal to be small, whereas the cycle crossing the

input face contributes an amount

Vi(t) = [Eg(x-vgt) dx , (1.29)

where t is the time since the leading edge (i.e., zero) of this cycle crossed

the input face. Equation (1.25) may be rewritten as

x=0 . A
Vi(t) = Ei(t)f sin k(x-vst) dx = — E;(t) (1 - cos wt) ,
x=vgt 2

(1.26)
where E,(t) represents the envelope of the piezoelectric field generated by

the traveling wave as it crosses the input face. The current ripple is there-

fore given by

I,(t) = g; Elét> (1 - cos wt) , (1.27)
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where R is the total circuit resistance (crystal resistance plus the external
resistor).

The observed amplitude of the current ripple is smaller than that predicted
by Eq. (1.27). A possible explanation is that I;(t) is reduced because the
acoustic wavefront does not arrive exactly parall=l to the input face of the
crystal. The probability of this occuring may be estimated by noting that for
an acoustic wavelength A = .06 mm (30 Mc shear waves in CdS) and a crystal 7 mm
wide, a deviation of 0.5° could cause complete cancellation of the 30 Mc com-
ponent of the circulating current. Such small deviations are unavoidable in the
assembly of the acoustic system; e.g., the ~nd faces of the buffers are only
guaranteed parallel within .25°, and there is no way of measuring to such close
tolerances the thickness uniformity of the bonds in the asscmbled acoustic
system.

Thus there appears little hope for quantitative use of the 30 Mc cumponent.
For this reason no attempt was made to extend the bandwidth of the measuring

equipment (described in Scction L.2) to accurately reproduce it.

1.4 THE SHAPE OF THE ACCUSTOELECTRIC CURRENT TRACE
W= are now ready toc predict and explain ti« detalled shape of the acousto-
electric current trace. We shall do this with the aid of Eq. (1.22), which

may write as
= . ‘Iw(o,t) 5 (1.28)

where
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-

T = . (1.29)

The behavior of J(t) in Eq. (1.28) is most easily vicualized with the help
of the mathematically equivalent circuit of Fig. 9(a). I. this representation

the forcing function - W(0,t) appears as an ideal curr-it generator w.rking

=iz

across a parallel RC circuit, J(t) i the current flowing in the resistive
branch of the load, and Re and Ca m=zy take any value, pr_viding they tog-ther

satisfy
RCy = 1. = — . 1.30)

Re and C, form a low pass filte=r at the cu*put of t': ideal curre t generatcr,
thereby restricting the speed with which the observed « .rrent J(t) is ‘Dble to
follow changes in the generator current. The problem ~f predicting th- detailed
shupe of the acoustoelectric current trace (produced by a uniformly attenuated
acoustic wave) has therefcre been reduced to the problem of analyzing the respons-
of a simple low pass filter to the input wave - % W(o,t).

Let us first examine the eftfect of the filter for the extreme cases of
elther very large or very small values of the attenuation coefficient. When o
is very large (Te << T), the influence of the filter is negligible. "Resistor"

R, effectively swamps "capacitor” C,, and the observed current is a faithful

e

record of the acoustic energy density at the input face of the crystal:
vl
J(t) = - L W(o,t) . (1.31)

The peak of the observed current therefore coincides with the peak of the input

wave and is independent of o. Physically this is the case where the acoustic
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J(t)

- % w(o,t)

(a) Equivalent circuit representation of Eq. (1.28) showing how
the acoustoelectric current trace produced by a uniformly atten-
uated acoustic wave may be synthesized by a constant current gen-
erator working into a low pass filter.

J(t)

- % w(o,t)

E ; —
p— R
Ca Ro e

(b) Equivalent circuit representation of Eq. (1.%5) showing the in-
fluence of nonelectronic losses.

Fig. 9. Equivalent circuit for synthesizing acoustoelectric waveforms gen-
erated by a uniformly attenuated acoustic wave.
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attenuation is so rapid that only that part of the wave which has just crossed
the input face has enough energy to contribute significantly to the circulating
current J(t), i.e., the crystal has an acoustic skin depth of 1/a.

When o is very small (7. >> T), the response of the filter is sluggish

e
compared to the duration of the wave, and the output of the current generator

goes wholly into charging Ca' Ca integrates the generator output, and the

"leakage current" through R, is

t

J(t) = %fo [-% w(o,t")] at", t<T. (1.%2)

The observed current therefore rises for as long as the wave crosses the input
face of the crystal. Thus we see that J(t) maximum occurs at t = T and is pro-
portional to . Physically this is the case where the attenuation is so slow
that all portions of the wave inside the crystal are essentially undiminished
and contribute accordingly to the circulating current. We therefore expect to
see the observed current rise for as long as we inject acoustic energy into the
system.

Before discussing intermediate cases we wish to add one more obswrvation.
From the representation of Fig. 9(a), it appears that the erntire output of the
ideal current generator must eventually flow through Re’ i.e., for a given input
wave the integrated area under all possible acoustoelectric current traces must

be the same, regardless of the filter time constant:

T

[Ta(e) av = [7[- £ W(0,t)] at (1.33)

=i
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This useful identity helps us maintain some perspective on the relative heights
of the acoustoelectric current traces generated for different values of the
attenuation coefficient. Of course the left-hand integration (over the time to
infinity) can have no physical meaning for a real crystal, since the circuilt
representation of Fig. 9(a) ceases to be valid as soon as the wave reaches the
-pposite crystal face (see Eq. (1.17)), where it either propagates out of the
crystal, suffers reflection, or experiences some combinztion of these effects.
But this deficiency in no way impairs the utility of Eq. (1.52) in comparing
diff-rent acoustoelectric current traces. Although the tails oi r--zl traces
will depart from the ideal decaying exponential form after + - %T. thst portion
o1 the traces recorded up to this time is correctly given by Ey. (..22) and
therefore by the circuit of Fig. 9(a).

What may we now say about the intermediate case? Of course we aireaiy
have the exact solution through Eq. (1.21). The question we wich ans« r :
here is: What will the comparison be between twc acoustoelectric currert tra:-s
generated by the same input wave but for different values of the att: nuation
coefficient?

Based on our study of the low pass filter response, we conclude the foi-
lowing: For a very large value of ¢ we know that the observed current is a
faithful record of the input wave (Eq. (1.31)), and that the peak of the cur-
rent coincides with the peak of the wave and is independrnt of . By compari-

son with this case, diminshing values of the attenuation coeificient will

cause the peak of the observed current to be reduced in smplitude and delayed

in time, and will slow the decay of the current rcllowing the peak. These




26

phenomena are all clearly illustrated in the experimental record of Fig. 7.
We emphasize these relationships because they will be useful to us in Chapter
V when we study the way acoustic attenuation rates can change under large-

signal conditions.

1.5 REPRESENTATION OF NONELECTRONIC LOSSES

We have not yet mentioned that there may be acoustic attenuation for
reasons other than the absorption of the wave momentum by the free electrons.
These nonelectronic losses may be grouped under the general heading of "trans-
fer of momentum to the lattice" and are independent of the concentration of free
carriers in the crystal. We may account for them by observing that the o of
the Weinreich relation (Eq. (1.10)) is due to the electronic losses alone,

whereas Eq. (1.18) for the acoustic attenuation should be written
- o+
Wot) = e O o L Xy (1.34)

where a, is an attenuation coefficient representing the nonelectronic losses.
Equation (1.22) therefore becomes

a

ONLS g% P ) Is) = - Buoe) . (1.35)

A modified equivalent circuit representation which includes these nonelectronic
losses is that shown in Fig. 9(b), where C, is arbitrarily chosen, and R

and R, must then satisfy

o= = = —2 (1.36)

M
Q
3
Q
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e) 1
R = — = ——— (1.37)
¢} Ca ocovSCa

When the wave packet is entirely inside the crystal, the homogeneous Eq. (1.35)

has the solution

J(t) = J(T) o (at00) vs (£-T) , (1.38)

or, in terms of the decay time constants,

- (¥e5) (6-1)

J(t) = J(T (1.39)

In Section 1.1 we argued that the acoustoelectric attenuation rate should
go to zero in low light as the CdS crystal approaches an insulating condition.
Because the nonelectronic losses are independent of the density of free carri-
ers, any remaining slope to the tail of the acoustoel:ctric current trace as
the crystal conductivity iz reduced to zerc must be due entirely to *,. This
gives us an easy experimental check on “he nonelectronic losses in the crystal.
We need only see whether an experimental plot of attenuation vs conductivity
tends to some value o rather than zerc ir the high r:sistivity limit (w1 »> ).
Such a plot will be presented at the beginning of Chapter V. For the moment
we shall merely say that the nonelectrcnic losses in the crystal are small enough
(less than 1 db/cm) that they are not a cause for worry, and they will be dis-

regarded in the theoretical dev-lopment of the next two chapters.



CHAPTER II

THE SMALL-SIGNAL THEORY

In this chapter we shall investigate the mechanism of the acoustoelectric
interaction between the electrons and a propagating wave in a piezoelectric
crystal. Our goal is to develop a small-signal theory for the prediction of
acoustic attenuation and acoustoelectric current generation. The work presented
here is a rederivation of the original small-signal theory of Hutson and White5
and its later extension by White7 to cover the case of acoustic gain. We have
chosen a somewhat different approach to the problem with a consequent change
in emphasis of some of the results.

The theory will be developed as follows: In Section 2.1 we shall use the
piezoelectric equations of state to demonstrate the Weinreich relation for the
acoustoelectric interaction in a conducting piezoelectric crystal, indicating
the phase relationships between electrical and mechanical components of the
wave necessary to the production of acoustic attenuation and acoustoelectric
current.. In Section 2.2 we shall introduce a simple equivalent circuit mcdel
of the interaction and show how it gives directly these relationships along
with the dissipation rate. Sections 2.3 and 2.4 will be devoted to the develcp-
ment of formulae for acoustic attenuation and acoustoelectric current production.
In Section 2.5 we shall discuss modifications of the theory needed to account
for the effect of diffusion of the electrons. Finally, in Section 2.6 we shall

list some of the prcblems assoclated with the experimental study of acoustic

gain.

28
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The acoustoelectric effect in CdS follows from the strong piezoelectric
coupling which may exist between a propagating sound wave and the free elesc-
trons. To study this interaction for all interesting directions of polarization
and propagation of the acoustic wave would appear to require that we undertake
a three-dimensional analysis of the system. In fact it is a problem in only
one dimension, that being along the propagation vector of the wave.

Consider an acoustic plane wave of either longitudinal or shear mode pro-
pagating in an insulating piezoelectric crystal. On the basis of our under-
standing of the static case it would seem that the sound wave could be accom-
panied by longitudinal and transverse electric fields, with the strength of a
particular electric field component essentially unchanged from that produced

1
by an eguivalent static strain. In 1949 Kyame 2 showed that such a descrip-

tion is correct for the longitudinal electric field, which is essentially

electrostatic in nature, but that the transverse electric field (and consequent
magnetic field) behaves like an electromagnetic wave constrained to move at the
velocity of sound and is therefore reduced in amplitude compared to the expected
electrostatic value by a factor (v/c)g, where v is the velocity of sound and c

the velocity of light in the crystal. In 1954 Kyamel6 expanded his theory to
include conductive crystals, but there was no change in his earlier result about
the magnitudes of the electric fields accompanying the wave (our Appendix con-
tains a partial rederivation of this result for conductive piezoelectric crystals).
Because of their extremely small amplitude the transverse electric fields are

of no consequence to us in our study of the acoustoelectric effect in CdS, and

our analysis does become a one-dimensional problem along the propagation vector

of the wave.
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We may effect a further simplification by restricting the directions of
propagation and displacement of the acoustic wave to lie along the crystallo-
graphic axes, thereby avoiding the task of recomputing the crystal's anisotropic
properties in a rotated coordinate frame. Cadmium sulfide is a hexagonal crystal
belonging to crystal class C6v. The existence of a sixfold symmetry axis imposes
a high degree of degeneracy upon the crystal's anisotropic physical properties.

The nonzero elements of the dielectric constant are

and those of the piezoelectric coefficient are

e e k) €. ) e € )
311 322 333 113 22%

where the 3-axis is the axis of hexagonal symmetry.
As a consequence of this degeneracy only certain electric field polariza-
tions may be associated with a given acoustic plane wave. For acoustic propaga-

tion along the hexagonal axis longitudinal waves (e___) are accompanied only

535

by longitudinal electric fields, but shear waves (e115 = e225) have only trans-

verse field components. For propagation at right angles to the hexagonal axis,

shear waves with displacement along the hexagonal axis (e115 = e225) are accompanied

only by longitudinal electric fields, but those with displacement at right angles
to the hexagonal axis see no plezoelectric effect. Longitudinal waves propagat-
ing at right angles to the hexagonal axis (eEll = e322) are accompanied only by

transverse electric fields.
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Therefore, the only acoustic propagation modes of interest to us are (1)
the shear mode with propagation vector at right angles to the hexagonal axis and
displacement alcng the hexagonal axis (e115 = 6225), and (2) the longitudinal

mode with prcpagation along the hexagonal axis (e___).

335

2.1 WEINREICH RELATION IN A PIEZOELECTRIC PHOTOCONDUCTING CRYSTAL
Consider an acoustic wave propagating in the x-direction in a piezo-
electric photoconducting medium and define a strain S, a stress T, and a dis-

placement u such that

and o = m éfE
ax ote ’

¥

where m is the mass density. Further, assume that the medium is characterized
by a piezoelectric coefficient e such that S produces an electric field in the

x-direction. Under adiabatic conditions the piezoelectric equations of state

corresponding to the one-dimensional problem are

T = cS - ek (2.1)
D = eS + ¢k, (2.2)
where
T = stress
S = sgtrain
E = electric field

D = electric displacement
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8T>
¢ 7 ¥ . adiabatic short-circuit elastic constant
ODN . . . .
€ = 85) = adiabatic clamped dielectric constant
S
oD T s . . . ..
e = Sg = = SE = adiabatic piezoelectric coupling coefficient.
E S

In the abgence of the piezoelectric coupling we recognize these equations as
being simply:

(1) Heocke's Law

(2) The usual relation for D and E.

The piezoelectric equations of state tell us that, in the presence of
piezoelectric coupling, the propagating pattern of mechanical stresses and
strains which characterize the traveling acoustic wave will be accompanied
by proportional E and D fields. The fact that the piezoelectric coefficients
e in the two equations of state are identical may be proven by a thermodynamic
argument that the electric enthalpy of the system must be a total differential.l8

A propagating wave packet may be mathematically represented as the product
of an envelope function and an oscillating function. 1In particular, for a

dispersionless medium we may represent the strain associated with an acoustic

plane wave of frequency w by:

ei(kx-wt)]

S(x,t) = Re[S1(fg - t) : (2.3)

where
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and vS is the propagation velocity. The envelope function Sl(x—vst) then repre-
sents the local amplitude of the propagating wave and can be said to modulate
the oscillatory component. But how can such a description have any application
to a medium where there is attenuation and dispersion?

In the preceding chapter we stated that the maximum acoustic attenuation
we shall encounter with our particular experimental sample is about 65 db/cm.
Although this would seem to be a very large rate of attenuation, it is still
small compared to a wavelength of sound; e.g., for a 30 Mc wave the attenuaticn
is less than 0.1 db/radian. Therefore, although the attenuation should be

explicitly displayed in a complex propagation constant as

@D .
k = —+ 1
Vs

s (2.5)

IR

our approach will be to treat the attenuation over one wavelength of the sound
as being so small that for the purpose of computing local relationships among
the components T, S, D, and E of the traveling wave we are justified in taking
the propagation vector k as being entirely real. To this approximation, the

strain associated with the traveling acoustic wave may be represented by
X
X i(v— - ©
S(x,t) = Re[S1(5— - t) e’ (Vs )] . (2.6)
s

If we assume similar representations for T, E, and D and substitute these
expressions into the piezoelectric equations of state, then the oscillatory

components will cancel, leaving the following relationships among the amplitudes:

Tl = cSl - eEl (2'7)
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Dl = eSl + GEJ_ . (2-8)

These amplitudes may be complex in order that they properly represent possible
differences in phase between the components of the traveling wave. However,
the physical constants ¢, e, and € will all be real, because the ultrasonic
frequency (%0 Mc) is small compared to a typical lattice vibration frequency
(~ lO12 sec—l).

If the acoustic wave igs attenuated in its passage through the crystal,

then the local rate of acoustic energy dissipation is

dw 1l .2=n as
-— = - T — d¢ .
at or b Tt ’ (2.9)
where the phase
X
¢ = — -1 . .10
w(Z= - t) (2.10)

If we assume the envelope of the wave is slowly varying compared to the

frequency w, then we may replace the derivative by

as

prili -inS |, (2.11)
so that Eq. (2.9) becomes
aw 1 21
— = = T (-iwS) 4¢ .
it o b (-ias) (2.12)
1 s .
= 7 Re[Ty"(-iaS1)] , (2.13)

where the asterisk indicates complex conjugation. Thus the acoustic energy

dissipation is given by
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aw

- ® *
% < 3 Im[T,"S,] . (2.14)

The local rate of acoustic energy dissipation is therefore different from
zero only when there is a phase difference between the amplitudes T, and S;.
This we expect, since the condition that the stress and strain of a propagating
wave be in phase requires that they be linked only by an effective elastic con-
stant which is entirely real and therefore dissipationless. From Eq. (2.7) we
see that any phase difference between T; and S; must come from E; being out of
phase with S;. By substituting Eq. (2.7) into Eq. (2.1k), we may display directly
this relationship between the acoustic dissipation rate and the relative phase

of the electric field and the strain. We obtain:

an

. ® *
"% - 2 Im[-eE; %3, ] . (2.15)

We normally think of the piezoelectric effect as describing a linear
dependence of electric field upon mechanical strain. On this basis we should
expect the electric field to be exactly proportional to the strain everywhere
on the traveling wave, thus making E; in phase with S;. But it is apparent
from Eq. (2.15) that there must be a phase difference between these quantities
for acoustic dissipation. The second equation of state (Eq. (2.8)) reveals
that this phase difference is directly traceable to D;. This is where the
photoconduction electrons enter the picture.

It is instructive first to study the case of the insulating crystal. In
the absence of illumination the crystal is an insulator, a condition of charge
neutrality exists throughout, and %g is therefore everywhere zero. Thus we

must have D; = O, and Eq. (2.8) becomes:
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By = - S8, (2.16)

giving E1 in phase with S;. If we substitute this expression into Eq. (2.7),

we get

e
Ty = ¢S + ¢ 8 (2.17)
R-
= 1+—) S . .18
c(1 +22) S (2.18)
We may define a new elastic constant
oT e® .
= —— = l + — @
CD BS C( €C) k) (2 19)
D
so that
T1 = c 81 - (2.20)

We shall later have use for the electromechanical coupling coefficient

KE, which is usually defined by

Equations (2.18) and (2.20) may therefore be written as

c
T, = T. Sy, . (2.22)

Thus, in an insulating crystal, the effect of the piezoelectric coupling is to

stiffen the elagtic constant. Typically K2 has a value of about .0%6 in CdSS,

so the effect is small.



Let us now return to the general case of the pilezoelectric crystal with
free conduction electrons. In the quiescent crystal there will be a condition
of charge neutrality with gg = 0 and therefore D; = 0. But in the presence of
the wave we may expect the plegoelectric field accompanying the wave to upset
local charge equilibrium conditons. In particular, since the piezoelectric
field reverses sign every half wavelength along the wave, we may expect periodic
bunching of the electrons by the wave.

If we let ng represent the local density of electrons in excess of that
required for charge neutrality, then D must reflect the bunching through Gauss'

law

ap

dx = -qns J (2°25)

where q is the absolute magnitude of the electronic charge. The amplitude of
D is assumed to be slowly varying compared to the frequency of the wave, so we

may write Eq. (2.2%) as
7D = -an, . (2.2k)

The charge bunching g has the periodicity of the wave and may also be represented

as the product of an amplitude and an oscillatory component:

ns(x,t) = Re[nl(ji -t) e. 1, (2.25)

Vs

so that Eq. (2.24) may be written in terms of the amplitudes alone:
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In discussing Eq. (2.15) we observed that there can be attenuation only
if there is a relative phase difference between E; and S; and that this phase
difference is directly traceable to D;. This dependence of the acoustic dissipa-
tion on Dy may be explicitly shown by using Eq. (2.8) to eliminate E; in Eq.

(2.15), with the result that

aw  w e %
-E‘E—EIm[-EDlsl]

Im [D2%(- T 81)] - (2.27)

nIE

e
We recognize - © S1 as Just the piezoelectric field which would accompany
the acoustic wave in the absence of the conduction electrons (see Eq. (2.16)).

Let us replace this quantity by an equivalent piezoelectromotive field% given

by

(S
&(X}t) = - g S(X:t) H (2~28)
or, in terms of the amplitudes
< (X - £ X
-ﬁ(vs -t) = - osaE - b)) (2.29)

This is tantamount to writing the second piezoelectric equation of state

(Eq. (2.8)) as

1
By = £ +TD . (2.30)

If we substitute Eq. (2.29) into Eq. (2.27), the expression for the rate of

acoustic energy dissipation becomes
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o _ e o
- = S Imd* . . (2.31)

But we know D; in terms of the charge bunching amplitude n;. We therefore

substitute Eq. (2.26) into Eq. (2.31) and obtain after some manipulation

aw v ‘
- 7 5 Rel(-am)*1] . (2.32)

We shall later wish to compute ar. attenuation coefficient. For this we need

aw aw
- a; rather than - —. The relation between the two is simply

dt
T oax T vgat $33)
so that
aw 1 )
"% _ 2 Ref(-gny)™* 1] . (2.34)

Thus we see, as we expected, that the energy of the acoustic wave is
dissipated through work done on the conduction electrons by the piezoelectric

field which accompanies the wave. What perhaps was not intuitively apparent

was that the piezoelectric field would cause periodic bunching of the electrons,

and that the attenuatiocn suffered by the wave would be strongly dependent on

the relative phase between the charge bunching and the piezoelectric field.

Had we been looking for the charge bunching, we might have expected the distribu-

tion of electric fields and conduction electrons illustrated in Fig. 10(a); i.e.,

we might have looked for symmetric bunching around electric field minima. But

this symmetric condition unfortunately gives
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Re[(-qn1)"¢:1 = ©

and therefore no attenuation. We shall later show that this condition aiso
delivers no net direct current down the crystal. It is the relative phase lag
of the charge bunching which produces acoustic attenuation and acoustoeli=ctric
current generation.

We may guess that a phase lag ovcurs because the electrons' finite mobility
makes them sluggish in response to the rapidly oscillating local piezo=lectric
field induced by the passing wave. If this is the case, then we see th«t there
are two ways we might expect to influence the rate of ac.ustic attenuation:

(1) By adjustment of the illumination we may change the rate of generaticn
of free <lectrons, thus regulating the density ol carriers available r'or b.nch-
ing by the acoustic wave. This technique is effective, as will be shown in
Section 2.3.

(2) A more interesting possibility is that by application of an external
de fi-1d E, to the crystal we may be able to adjust the relative phase by which
the ei--ctron bunching lags the acoustic wave. An external de field would impart
an average drifv velocity Vq T -pE, to the free =lectrons, and that particular
value of E, which gives vy = vg should produce no phase lag and therefcre no
attenuvation. The logical extensicn of this speculation is that the application
of even larger driit fields may cause the electron bunching to lead in phas- .
thereby reversing the direction of momer.tum exchange between the electrons -nd
the wave, i.e., we should be able to acheive acoustic gain. This point will
be congidered further in Secti.n 2.3, and some of *he problems asscciated with

the experimental study of acoustic gain will be discussed in Secticn 2.6.
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To finish our proof of the Weinreich relation in a piezoelectric crystal
we need an expression for the acoustoelectric current to compare with Eq. (2.2L)
for the acoustic attenuation. If there is a net flow of direct current (i.e.,

current slowly varying compared to the ultrasonic frequency of the acoustic

wave) down the crystal, then the local production of the current must be

given by
. 1 2 l
i = 57 [ (an)(uE)ae (2.29)
1 % R
= 37 Re[(any)* uE,] . (2.26)

To eliminate E; from Eq. (2.36) we first combine Eq. (2.30) with Eq. (2.2F),

obtaining
v
s
Ey = % + Tp 9m - (2.77)

This expression may then be substituted into Eq. (2.36), with the result

N

j = w3 Re [(gni)*£1]. (2.38)

Our proof is finished. Upon comparing Eq. (2.38) with Eq. (2.24) we see that
we have indeed demonstrated the Weinreich relation for a piezoelectric conduct-

ing crystal:

1, aw i
S d = . (2.29)
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2.2 EQUIVALENT CIRCUIT MODEL OF THE INTERACTION

Working from the piezoelesctric equations of state and Gauss' law we have
succeeded in demonstrating the Weinreich relation in a piezoelectric photo-
conducting crystal, and we have also obtained some insight into the conditiocons
necessary to the production of acoustic attenuation. So far we have not in-
dependently predicted either the attenuation or the acoustoelectric current;
we have only proven that each could be computed in terms of the other through
the Weinreich relation.

To be able to predict the attenuation and acoustoelectric current at a
given crystal conductivity for a particular input acoustic wave packet, we must
first understand the mechanism which causes the charge bunching to lag in phase
behind the zeros of the piezoelectric field. We begin by writing the expres-
sion for the electron current in the crystal.

Under illumination cadmium sulfide behaves like a n-type extrinsic semi-
conductor. At the maximum available light intensity our experimental sample
has a photoconductivity of ].O—5 (Ohm—cm)_l. For an electron mobility of 315

1
EEZEEE, we may compute the maximum density of free electrons at 2 x 10 5/Cm5'

V/em
At such low concentrations the electrons may be regarded as classical part-

icles whoge behavior is described by Maxwell-Boltzman statistics. For a short
mean free path the electron current may be written as the sum of drift and
diffusion currents:
drift diffusion
dng

J = agnepE + pkT = (2.40)

where n. = density of electrons in the conduction band. The coefficient of
the diffusion term follows from the Einstein relation.

In most circumstances the contribution of the diffusion term is small,
and presentation of the theory is clearer if this term is omitted. In the
theoretical development which follows we shall first derive results without
this tzrm; then in Section 2.5 we shall show how the theoretical results

must be modified to include the influence of diffusion.
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Continuing with our small-signal approach to the problem, let us separate
the variables on the right hand side of Eq. (2.40) into their dc and first order

oscillatory components:

n, = ng * ng (2.h1)
E = E  +Eg . (2.42)
where
n, = steady-state (quiescent) density of electrons in the conduction
band. The crystal's dc photoconductivity is given by ¢ = n_qu.
. X
. io( - t) . .
ng = Re [n; e s ] represents the acoustic charge bunching.
E, = any externally appiied dc drift field.
io(7= - t)
Eq = Re [E; e Vs ] is the oscillatory component of the local

electric field.

After this separation (and dropping the diffusion term) Eq. (2.40) becomes
J = aqnuEo * qnguEg + qnuEy + qngpEg . (2.43)
We may effect a similar separation of J into dc and first order parts:
J = J gt dg . (2.Lk)
If we then collect first order (oscillatory) terms only, we will have

Jg = vEg + qngu¥, . (2.145)
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We recognize that the intermodulation term anguEs in Eq. (2.43) has dc

and second order oscillatory components only. Hence it will contribute to Jg

but not to JS.

In terms of amplitudes Egq. (2.45) is

J1 = oE; + qmuE, (2.L6)

We may use the continuity equation
ddJ d .
dx - dt (qnc) (2')47)

to eliminate n; from Eq. (2.46). If we make our usual assumption about ampli-

tudes varying slowly compared to the frequency of the wave, then ‘the continuity

equation may be written as

Y .
iy Jg = -iw ang (2.48)
or, in terms of the amplitudes
1
am = - oo Ji . (2.49)
Substitution of Eq. (2.49) into Eq. (2.45) then gives
qu
1+-—)J1 = oE (2.50)
s
or
Ei = yrda ’ (2.51)

1
where r = 5, and



b

uE

© =
yo= 1 . (2.52)

The externally applied drift field imparts a drift velocity

Va = '“Eo

to the conduction electrons. Thus the factor vy may also be written

V43
y = 1 -—= . (2.93)

Vs

We demonstrated <arlier (Eq. (2.3%2)) that the traveling acoustic wave gives
up its energy by doing work on the conduction electrons. Thus the rate of dis-

sipation of energy frcm the wave must be given by

aw _ 1 * -
"% 3> Re [Ey" J11 (2.54)

(this expression may also be derived by manipulation of Eq. (2.3%2)). From

Eq. (2.51) we see that the product E;"J; is entirely real and is positive for

y positive (vd < vg), negative for y negative (vg > vs), and zero when the

drift velocity of the electrons is matched to the propagation velocity of +the

wave. Equation (2.54) clearly shows how the direction of energy transfer be-

tween the wave and the electrons may be reversed to produce acoustic gain.
Kncwing E; in terms of J; is not particularly useful. We would rather

know b:ith E; and Ji in terms of £, to which we have access through Eq. (2.3%7):

v

: S
E = + — . 2.55
1 1 o ani (2.59)

We may combine this with the continuity Eq. (2.49) to obtain
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El = El + Jl . (2-56)

-iwe

If we further substitute Eq. (2.51) to eliminate E;, we have

El = (7I‘ + ) Jl . (2‘57)

-iwe

The relationships among QS, Eg, and Jg may be neatly summarized in an

equivalent circuit diagram (Fig. 11). The corresponding equations for the

20
dependence of the amplitudes E; and J; upon £, are

SIS 1 T (2.58)

7ria

E, = I = T (2.59)

yr o+ + =
Y -1We 7 =17

where T = re is the dielectric relaxation time.

These relationships are also displayed in the phase diagram of Fig. 11(Db).
If we define © as the relative phase angle by which the electron bunching n;
lags the zeros of the piezoelectric field =3 (our time convention makes a phase

lag appear as a counterclockwise rotation), then

6 = arctan 22X - arctan yYWOT
1/we '
The angle 6 may take any value between - </2 and + n/2, with the negative values

(phase lead) representing acoustic gain. Equation (2.51) requires that E;
be colinear with J;, and Eqs. (2.30) and (2.59) are satisfied only if the tip
of E; is constrained to lie on the circle shown in the diagram. The lower semi-

circle is the region of acoustic attenuation, and the upper semi-circle is the
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m

E, r\D Yr 5

O
v [V
SS — ; S; v = 1--4 = 1 4+0
VS \fS
(a) Egquivalent circuit.
n 6 "—1
& = arctan yout I \\

(b) Phase diagram.

Fig. 11. Eqguivalent circuit and phase diagram for the acoustoelectric inter-
action (without diffusion).



region of =zcoustic gain. E; reverses sigh when © goes through zero, so E; and

J, are parallcl in the region of acoustic attenuation and anti-parallel in the

=12

region of acoustic gain. Maximum acoustic g2in .r attenuation occurs at 6 = *
We make the rollowing observations:
(1) The electric field E; vanishes when y = 0, trat is, when the drift
velocity of the el=ctrons is matched to the propagation velocity of the traveling

wave. For this case the wave is s-ationary in a reference frame "fixed" with

respect to the average drift velocity of the electrons. Thus the electrons have
"enough time" to completely neutralize the piezoelectric field of the acoustic
wave.

(2) The cirrent J, and th-refore chargs bunching n; are izrgest at , = O.

" Also notice thrat

This is also ccnsistent with the concept of "enough *ime.
J1 and n; are exactly 90° out of phase with %; at ¥y = G, this buing the phase
condition which we earlier showed could give no attenuation and nc ret dire:ct
current.

(3) The equivalent circuit model cleariy displays the conditions ne-eded
for maximum avtenuation, i.«<., maximum dissipation in yr. Maximum transfer o

power to "load resistor' yr occurs when it is matched to the equivalen® gen=rator

impedance l/-iwe. For a given crystal resistivity this condition occurs wh::.
7= T (£.60)

with the minus sign representing the cond:tion of acoustic gain. Alterna*ively
if v = 1 (no external drift field available) then maximum dissipztion wil. - ccuar

for



r o= — . (2.61)

2.3 THE ATTENUATION COEFFICIENT
We may now compute an attenuation coefficient. From Eq. (2.3L4) the decay

rate of the wave is given by
dw 1
"% _ 2 Re [(-qni )*%,] . (2.62)

To eliminate -qn, from Eq. (2.62), we combine the continuity Eq. (2.49) with

Eq. (2.59)
1 na 1
-qn; = v; Jy = v; E% ——_——37_ (2'65)
y
-1T
and substitute the result into Eq. (2.62), obtaining
dw Y 1 1
-—— = = Re | : .
dx Vs or e 1 (2.68)
vy T T
: -1WT !
I L2 Rey) ,
T Vg or ) 1 lz (2.65)
7 -iwT

(Our re<ason for writing Re[y] instead of just y will become apparent when we
discuss the influence of diffusion in Section 2.5.) Alternatively, Eg. (2.65)
may also be derived directly from the equivalent circuit model. The dissipa-

tion in "resistcr" yr is
Y

aw _ 1 *
- at = 5 Re[El Jl] . (2-66)

We may use Egs. (2.58) and (2.59) to replace E; and J;., obtaining:



aw 2112  Re[y]
TR — . (2.67)
AN —in‘

Multiplication throughout by l/vs will again give Eq. (2.65).

To compute an attenuation coefficient we would like - dW/dx in terms

of

the strain S; rather than the equivalent piezoelectromotive field il. From

Eq. (2.29) we may write

We may combine this with Egs. (2.19) and (2.21), with the result

2

1] 1 _ kK cs:® 0 K21 g 2 (2
or  T1-k2 2 T 2°%%
Thus

aw K2 1 5 Re[y]
" V.2 cDSl ‘ = . (2

ly + =]

-1T

The attenuation coeificient ¢ is defined by
T T '

If we approximate W by the energy d=nsity of a traveling acoustic wave in

insulating crystal

then our final expressicn for the attenuation coefficient is

K= Relvy]
v 1 2
-ﬂDJ

ly +

.68)

.70)

71)

an

.72)

. 73)
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Figure 12 is a plot of o vs. Vqr The plot is antisymmetric about y = O
(Vd = vs), and the peaks of maximum attenuation and meximum gain are displaced

from y = O by an amount

1
y = t5E (2.7k)
a
A
L 1
Hzn wT wT

g
|
i

\

| Vd
| |
y=20
(nE, = -v,)
Fig. 12. Plot of o vs. vy (without diffusion).
These maxima therefore occur at

1 )

yr = * 5e (2.75)

and correspond to values of externally applied drift field and crystal re-
sistance for which the charge bunching n; lags or leads the zeros of “1 by

a relative phase of 45°. These maximum and minimum values of « are



_ LK or
a = = vgT 2
K2 ox
= z; N (2.76)

l:j
For 30 Mc shear waves propagating in CdS the length of a radian is-

A Vs 1.75 x 10° -3
— = — = o c%/sec = .93 x 10 ~ cm
on - 2n x 30 x 10%/sec

In our particular experimental sample the electromechanical ccupling coefficient

has the value15
K2 = .028)4
The maximum value of ¢ is therefore
a = 15.0 em T o= 65.2 db/cm

This is attenuation so large that it nearly deserv-s to be called annihilation.
One might fairly ask whether we have violated our criterion that o/2 be small

corparsd with a/vs (see Eq. (2.5)), but this is not the case, since

aéz (15.0 em (.93 x 1077 em)
VA 5 = .007

If we wish to observe this much attenuation with no externally applied

drift field, then we shall have to set y = 1 and choose the crystal resistivity

Lo satisfy Eq. (2.75). For the shear mode the crystal capacitivity 622 is 19

-1
op = .8 x 10712 farads/cm
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so the required crystal resistivity is

r = 6650 ohm-cm

This is the particular crystal resistivity for which the separation between
peaks of maximum and minimum o (Eq. (2.74)) is given by y = %1, thus centering
the positive peak on the vertical axis. Values of crystal resistivity different
from this amount must therefore produce diminished acoustic attenuation at zero
drift field.
This last statement is illustrat=d in Fig. 13, where we see a plot of o
as a function of crystal resistivity for the case of no applied drift field.
We have taken wt (assuming w constant) rather than the resistivity as the inde-
pendent variable, and we have chosen to make the horizontal axis a logarithmic
scale. When plott-d this way the curve is symmetric about its maximum at wTt = 1.
The simple analytic function describing the shape of the curve may be
derived a: follows: If there is no externally applizd dritt field, then y = 1,

and Eq. (2.73) becomes

a = VT /12 (2.77)
L+ \@7/
which reduces to
K%x
o = T-_gf ) (2.78)
T 5T

Here the symmetry about wt = 1 on a logarithmic scale is clearly apparent.

We may find the exact shape of the curve by defining
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Fig. 13. Plot of o vs. wt for the case of no applied
drift field (without diffusion).
a = log, wr , (2.79)
so that
K25 2
o = (2.80)

N e? + -2

sech a . (2.81)
b

The shape of the curve is therefore simply that of the hyperbolic secant:

2

K .
o = *{E sech(log, wT) . (2.82)

2.4 THE ACOUSTOELECTRIC CURRENT
In the last section we computed an attenuation coefficient by collecting

the first order oscillatory terms from Eq. (2.43) and using these terms to
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calculate the rate of dissipation of energy from the wave. We wish now to com-
pute the acoustoelectric current. If we return to Eg. (2.43) and collect the

dc terms, we will have

1 21
Jo = angkBy * 5 4) qnguEg d¢ (2.8%)
= qgn.pE_ + L Re [(qni)* uE1] (2.8L4)
O]“Lo 2 1 l-ll M M

We identify the acoustoelectric current j as

j = % Re [(qni)* pEy] . (2.89)

The product gnguEg also has an oscillating component whose frequency is
. . 21 . .
2w and whose amplitude is equal to that of the dc term. The relationship be-
tween these intermodulation products and the initial interaction term is simply

that of the trigonometric identity
2 1
cos< ¢ = 3 (1 + cos 20) . (2.86)

We are unable to observe this oscillatory component of the acoustoelectric cur-
rent. There are two reasons: (1) The observed current is physically integrated
over the entire crystal length, so any ripples are '"smoothed out' by the action
of the "low pass filter" discussed in Section 1.k4; (2) The requirement of paral-
lelism between the acoustic wavefront and the crystal end faces is twice as
severe as that for observation of the ripple due to the boundary condition
(Section 1.%3). For these reasons we have made no attempt to extend the band-

width of our measuring equipment to 60 Mc where these oscillations occur.
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Following a procedure similar to that used in developing Eq. (2.73) for
the attenuation coefficient, we use Egqs. (2.59) and (2.6%) to eliminate gn; and

puE, from Eq. (2.85), obtaining

. o 57 Re[y]
J - - VS or 1 > o
|7 + _.j_ayrI

Substitution of Eq. (2.69) and further manipulation then gives

, K= Re|
J = -uW VT é] (2°87)
l?’ + -1@7'

Comparison of Eq. (2.87) with Eq. (2.73) fur the attenuation coefficient again

illustrates the Weinr<ich relation

Jj = -uaW . (2.88)

At the beginning of the introduction we characterized the acoustoelectric
effect as a wave-particle drag phenomenon. We think of the wave and the electrons
as exerting a drag on each other, the drag being the result of a momentum exchange
which attempts to equalize their velocities. 1In the absence of an externally
applied drift field the electrons are initially "at rest" with respect to *he
crystal lattice, and the momentum exchange results in attenuation of the wave
and the production of a net acoustoelectric direct current.

From the Weinreich relation and from the work of this section we know that
the acoustoelectric current is proportional to the acoustic attenuation and
that the current must reverse direction when the attenuation coefficient changes

sigri., An amplifying drift field propels the electrons at a velocity higher
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than that of the acoustic wave, and the retarding drag on these carriers by the
wave causes a reduction of the drift current, the amount of this reduction then

being the reverse acoustoslectric current associated with acoustic gain.

2.5 INCLUSION OF THE DIFFUSICN TERM
Let us now return to Eq. (2.40) and make the corrections needed to account

for the influence of diffusion. The expression for the current was

drift diffusion
dn.
J = anepE + pkT z—

The gradient in n, must be th: result of charge bunching; i.e.,
S 1w
™ - ™ T vy s (2.89)

We see that the diffusion term will contribute only to J; (no dc contribution).

Equation (2.46) for the amplitudes therefor: becomes

ib kT
Jio= Bt (uEo + g 0 Bg) am (2.90)

If we use the conbinuiby Eq. (2.49) to eliminate qn; from Eq. (2.90), we obtain

o) iw , pkT
) J1 = OB (2.91)

(1 + Va + VL2 3

uE
e
or, after m.ltiplying through by r and substituting y = 1 + Vs

B 1o, pkT
(pr + =B 1) = B (2.92)

It w- now introduc.. th¢ diifusicvn frequency wpy
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then Eq. (2.92) may be reduced to
1l w . \
(y +x@3) rlv = E. . (2.94)

By compariscwn with Eq. (2.51) we see that all of the f.rmutae we derived in
Sections 2.2 - 2.4 will be preserved if we everywhere replace y by the new

quantity I, whers
= 9y*+>3a - (2.95)

, o w . .
For 30 Mc shear waves propagating in CdS {at 300°K) &p hzs an approximate numeri:al
value of

1
EE‘: p)

|8

o we see that in the absence of an amplifying drift field (i.e., for y = 1)
the influence of the diffusion term iz indeed small.

Equations (2.58) and (2.%3) now b-coms

¢
Jl = ——;1—— 5 (2196\)
e + —35¢
1
BLo- o 1. (2.97)
: -iwT

We may includ= the influence of the dittusion term in the equivalent

circuit model. The factor -i in the dencminator of Eq. (2.9L4) fixes the phase

o : . . . ; 20
and dictates that proper representzti n must be as a capacitive impedance
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Xp = = Qﬁ%) ro. (2.98)

-1

At the risk of concealing its dependence upon the frequency and the conductivity,
we can make the diffusion term appear like a capacitor. We do this by returning

to Eq. (2.92) and substituting

kT pkT
T nE T ot (2.99)

where LD is the Debye screening length. After some manipulation Eq. (2.92)

becomes

1
(yr + _iweD) Ji = E1 (2.100)

where the effective dielectric permitivity due to diffusion is defined by
n/on)\2
e (ryw) = <}éf—) e, (2.101)
D D

and the equivalent circuit representation of the interaction takes the form
of Fig. 1lk(a).
If we substitute Eq. (2.95) into Egs. (2.96) and (2.97), the expressions

for local current density and electric field intensity become

J = alO2
1 L (]_ L ® ) (2 )
yr _i \@e T @p ¥
1w
y + = =
-1 wD o .
E, = 71 . (2.103)

7P T T o
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o T

(a) Equivalent circuit.

(b) Phase diagram.

Fig. 1L4. Equivalent circuit and phase diagram for the acoustoelectric inter-
action (with diffusion).
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Notice that J; and therefore n; are still a maximum at vy = vg (y = 0), but
that E, no longer vanishes at this point. This is because diffusion prevents
charge bunching from completely ncutralizingéil at vgq = vg-

Figure 14(b) is a phase diagram of the interaction. Here © is the reiabive
phase angle by which the elszctron bunching n; lags the zeros oi the piezoelechric

fiehigl and is given by

—r

-~

¢ = arctan
1,0
®T " op
In this diagram the tip o1 the electric field amplitude E; is constrain-d to
1i~- on the smaller circle, and its position on this circle is determined by
the point of intersection of J; with the larger circle. The diiferenc- in

dismeters between the circles is A%1, where

Ar,w) = L =
r - — = : S —
D TAj2m2 o1 %p
1+ = b -ég—, I *or "

We may now recompute the attenuation coefficient and the expression itor

the acoustoelcectric current. The rew expressions replacing Egs. (2.73) and

(2.87) are
K2 Re[T ,
a = T 7T [ §|L 2 (2,LOM)
S ' .
R
) DG Re[T] .
J = —[_J,\N V.- l B . (20105)
T —in‘

After substitution of Eq. (2.95) these expr: ssi:ns take the form
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-3 = a = . (2.106)

Figure 15 is a plot of o vs. vy from Eq. (2.106). The cross-over voltage
(value of E for vy = 0) is unchanged, but the displacement of the peaks of

maximum and minimum ¢ from this point is increased to
1 w
y = * (ot + ) (2.107)

while the height of these pezks is reduced to

KZx 1
o = T - (2.108)
l+wT<1>_D

If there is no externally applied drift field, then y = 1 and Eq. (2.106) becomes

K= 1 .
o = T 5 — (2.109)
1+ {&r + ap)
o
_ Ex - (2.110)
“ N ()P s 2, L Y
1 @y JoT + 2 o T oT

It is clear from Eq. (2.110) that the influence of diffusion is strongest at,
high resistivity and beccmes negligible in the limif of very low resistivity.

If we further define

1 \
b = — (E.lll)

L+ ()

then BEq. (2.110) may be written as
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Fig. 15. Plot of o vs. Vg including the influence of diffusion.
K=x 2b
o = N wT (2.112)

=
5~ t 2b i% * oT

o is therefore symmetric on a logarithmic scale about wrt = b. If we now let
a = log, T (2.1132a)

a. = log. b , (2.113b)

e

then the analytic form of Eq. (2.112) will be explicitly displayed as
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K35 b
A cosh (a-agy) + b E%

(2.11h)

Figure 16 is a plot of o vs. wr (assuming w constant) as given by Eq. (2.112).

The numerical value taken for a/ab is that given by Hutson and White.) Equation

(2.78) for a vs. wT in the absence of diffusion is also plotted for comparison.

2.6 ACOUSTIC GAIN

The possibility of using the acoustoelectric interaction to acheive travel-
ing wave amplification was proposed by Weinreichl in 1956. He proved that the
application of a longitudinal electric field large enough to cause the electrons
to drift faster than the propagation velocity of the acoustic wave could result
in & negative attenuation coefficient. The experiments of interest at that
time5 were concerned with the acoustoelectric effect in n-type germanium, an
interaction so weak as to make experimental observation of acoustic attenuation
extremely difficult, and studies of acoustic amplification were not attempted.

Experimental observation of acoustic gain in cadmium sulfide was first
reported by Hutson, McFee, and White.é Except for the additional apparatus
required to impress a drift field across the crystal, the experimental arrange-
ment they used was essentially the same as that outlined in Chapter I and discussed
in detail in Chapter IV. These investigators observed maximum acoustic gains
of about 18 db at 15 Mc and 38 db at 45 Mc for shear waves in a 7 mm crystal.
These maxims were not sharply defined and occured at about 1050 v/cm for both
frequencies. The agreement with theory was only qualitatively correct, and the
experimentally determined plots of o vs. E did not have the nice inverse symmetry

about the point y = O predicted by thecry.
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These authors also detected a buildup of noise at the output transducer
each time an amplifying drift field (a drift field large enough for the pro-
duction of acoustic gain) was applied across the crystal in the absence of an
input signal. This buildup occurred over a period equal to several acoustic
transit times within the crystal. They concluded that they were seeing an
ultrasonic flux of amplified background noise. The round trip gain, including
reflection losses, was greater than unity, so this flux buildup was able to
occur over geveral passes as the noise bounced back and forth within the crystal.

. . . , 12 .

Thigs phenomenon was further investigated by McFee, who was pursulng the

noise seen by Hutson, McFee, and White and also seeking an explanation for the

. L 100 v
current saturation reported by Smith. Smith had observed that the crystal
current produced by an amplifying drift field always decayed to a steady-state
saturation value which could be calculated by assuming that the carrier drif%
velocity was the same as the sound velocity in the crystal. McFee's resulfs

11 , , . A

supported the theory of Hufson that the acoustoelectric current generated by
the flux was responsible for the apparent current saturaticn.

At the end of Section 2.4 we gshowed that the acoustoelectric current
generated under amplifying conditions mus®t be experimentally observed as a
reduction in the drift current produced by the applied electric field. This
is what finally limits the growth of ultrasonic flux amplified from the background
noise in the crystal. The reverse acoustoelectric current grows in intensity
with +the ultrasonic flux until the carrier drift velocity matches the propaga-
tion velocity of the wave. This is the saturation value of the crystal current,

and at this point *there is no further amplification of the ultrasonic flux.
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This reverse acoustoelectric current makes accurate experimental study of
acoustic amplification extremely difficult, and it probably contributed to the
asymmetry of the experimental o vs. E plots published by Hutson, McFee, and
White.6 It might seem possible to avoid this complication by transmitting a
relatively weak acoustic wave packet down the crystal during the first few micro-
seconds that the drift field is turned on. This unfortunately does not entirely
solve the problem. Rapid application of the drift field results in the genera-
tion of shock-excited nolse within the crystal, and gradual application leaves
too much time for current saturation to begin.

This 1s not to say that such studies are impossible; they are merely be-
set with vexing experimental problems. It has been the practical experience of
this investigator that the difficulties associated with the experimental study
of the acoustoelectric effect in CdS seem to increase in direct proportion to
the magnitude of the externally applied drift field. Fortunately the acousto-
electric interaction in CAS contains a wealth of experimental information for
the cage of no externally applied drift field. For example, under large input
signal conditions the acoustoelectric current accompanying a propagating wave
may be large enough to effectively modify rates of acoustic attenuation and
acoustoelectric current production. It is this phenomenon which will occupy
our attention in the remaining chapters, where we shall show that it is pos-
sible to predict the results of this interaction of the wave with itself and

to verify these predictions by experiment.



CHAPTER TIII

THE ACOUSTOELECTRIC FEEDBACK EFFECT

We have proven (a) that acoustic attenuation will produce a direct current
in an external wire joining the end faces of the crystal, and (b) that an ex-
ternally avplied drift field will influence acoustic attenuation within the
crystal. We shall now show that these cannot be independent effects.

In Section 1.2 we devised a simple eguivalent circuit model (Fig. 8) which
showed every region of the crystal crossed by the total acoustoelectric current
J(t). According to this model the direct current crossing the ith crystal seg-
ment is carried in part by the local scoustoelectric interaction j;(t), end
the remaining current J(t)—ji(t) is carried by the conduction electrons. The

conduction electrons therefore have a local average drift velocity

(vq)i = -HE;

where Eiﬁx is the potential drop across the ith segment. But this conduction
electron drift is locally indistinguishable from the drift produced by an exter-
nal electric field applied across the crystal to control acoustic attenuation.
The acoustoelectric current must therefore influence acoustic attenuation. We

have an acoustoelectric feedback effect.

The concept of an acoustoelectric feedback effect (although not so named)
9

was first proposed by Carleton, Kroger, and Prohofsky. These authors con-

cluded that the acoustoelectric current would have no observable influence on

T0
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the overall acoustic attenuation, but their calculation was based on an over-
simplified model of the acoustoelectric interaction and also assumed the special
case of a cw (continuous wave) input wave train. In a later paper Prohofsky2
once more mentioned the influence of the acoustoelectric current on the attenua-
tion, this time including dielectric relaxation effects. However, his calcula-
tions were again for the cw case, and he was interested only in using the local
acoustoelectric field as an explanation for nonlinear mixing and the production
of collective waves of second sound.

The drift current density will vary from one region to another in the crystal,
depending upon local rates of acoustoelectric current production. From the conti-
nuity equation we know that linear divergences in the drift current must produce
local accumulations or depletions of the free electrons. This must also affect
acoustic attenuation. Thus there are two ways in which the acoustoelectric cur-
rent may contribute to the acoustoelectric feedback effect; they are (1) through
the local carrier drifts which transport the circulating current, and (2) through
local changes in the conductivity resulting from divergences in these drifts.

These are essentially large-signal effects. The drift currents and divergences
depend upon local current densities which in turn are proportional to power dis-
sipation from the acoustic wave. These electronic effects are therefore uncbserv-
able for acoustic waves of small amplitude.

A complete large-signal theory for the acoustoelectric effect in CdS does
not exist at present. Such a theory was attempted in 1964 by Beale,25 but he

was forced to neglect the very important influence of space charge in order to
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reach a solution, thus rendering his theory useless for application to the work
described here.

Lacking an adequate large-signal theory, it might be hoped that an extension
of the small-signal theory to include the acoustoelectric feedback effect would
be useful for predicting acoustoelectric effects at high acoustic energy densities.
This is the approach we shall take. In this chapter we shall treat the acousto-
electric feedback effect (including both of the electronic effects described
above) as a perturbation upon the small-signal theory of Chapter II, and we shall
use the perturbed theory to compute the acoustoelectric currents generated by
acoustic waves of large amplitude.

We recognize that there eventually comes a limit beyond which it must be
hopeless to expect a small-signal theory to make accurate predictions of large-
signal effects. For example, our physical intuition tells us that at sufficiently
large sound amplitudes all of the conduction electrons must be trapped within
the plezoelectric potential wells of the traveling wave and thus be constrained
to move at the propagation velocity of the wave. To the extent that the total
number of conduction electrons 1s conserved at such amplitudes, there is ®hen

an upper limit to the acoustoelectric current density, this limit being

max
o's

Proper accounting of this effect and the intermediate cases leading to it must
awalt the development of a complete large-signal theory. In the absence of such
a theory we shall show that extension of the small-signal theory to include the
acoustoelectric feedback effect dces yield meaningful predictions which may be

verified by experiment .



3.1 COMPUTER PROGRAM OUTLINE

We shall set as our goal the development of a computer program for the
prediction of the total circulating current J(t) generated by an acoustic wave
of large amplitude as 1t traverses the crystal. With this aim we see cur task
to be the derivation of an iterated series of computational steps which may
eventually be assembled into a complete program for machine calculation of
acoustoelectric current traces for direct comparison with experimental oscillc-
scope photographs. In this section we present an outline of such a program.

We schematically divide the crystal into N segments, each of length ®x. The
transit time across one such segment is &t = SX/VS, We then bring the travel-
ing wave into the crystal, successively advancing it by increments ®x at *ime
intervals ®t. During each time interval 5t we do the following:

a. Using local values of conductivity and electric field, compute an
gttenuation coefficient ¢ in each segment of the crystal where the
wave 1s passing.

b. From the results of (a) compute the rate of acoustoelectric current
generation at each point on the wave.

c. Compute the circulating current J(t). Plot this poin%t on a graph.

d. From the results of (b) and (c) calculate the electric field intensity
and local conductivity in each crystal segmen® for use in the computa-
“ion of step (a) the next time through the prcgram.

e, Advance the wave by an amount dx while attenuating each portion of it

according %o the local attenuation coefficients computed in step (a).



f. Return to step (a) and repeat the cycle.

Certain practical considerations govern the selection of &€t and ©5x. The
experimental crystal is 7 mm long, resulting in a transit time of 4.0 psec for
shear waves. The program makes N pcints available for plotting J(t) before the
wave reaches the end of the crystal, so a choice of N = 80 will give a plot of
80 points at intervals &t = .05 usec. These are certainly enough to accurately
fix the shape of J(t). Although it might seem that greater theoretical accuracy
should result from a choice of even finer sputial division, this is nct the case.
The period of the 30 Mc acoustic wave is .03% psec, and it is this interval which
effectively limits the experimental resolution and makes finer theoretica]
resolution devoid cf physical meaning.

Except for the computations of steps (c) and (d) we already have all of
“he formulae necessary for the writing of this program. For step (a) we shall
use the results of the small-signal theory, and for step (b) we need only ihe
Weinreich relation. Step (c) requires that we derive an expression for %he
circulating current which includes the influence of the acoustoelectric feedback
effect; we shall do this in Secticn 3.2,

Several formulae are needed for step (d). These are most easily developed
with the aid of an equivalent circuit model. In Chapter I we assumed a simple
crystal model of fixed resistors and constant current generators to help us
understand the time-dependent behavior of the circulating current produced by
a uniformly attenuated acoustic wave. This model is not adequate for our pre-

sen' purposes. In Section %.3 we shall use the macroscopic electronic equations
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of the crystal to derive an equivalent circuit model which is more accurabe and
complete, and in Section 3.4 we shall use this model to analyze the time-dependent

behavior of the electric fields and currents in the crystal.

3.2 FINDING THE CIRCULATING CURRENT J(t)
The electric fields and currents within the crystal are locally related by

the following set of four equations

D = «¢E (2.1
oD
> - -9 (ne - np) (2.2
a .C \
—_— = — + z oz
5t (an,) S (37 *3) (5.3)
.C _
j- = oE an.pE (2.4
where
n. = 1instantaneous local density of free electrons
n, = quiescent density of free electrons (for charge neuirality)
J = 1local rate of acoustcelectric current generation
.C T o : . : .
J = local drift (conducticn) current density.

We may ccmbine Egs. (3.1) and (2.2) to eliminate D:

~

\UN
\J
R

OE . .
€% 5 - (

where
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is the local density of electrons in excess of that required for charge

neutrality. Equation (3.3%) is therefore

) 3 . . \
vy (qn') = > ;5 +3) . (3.7)

We may substitute Eq. (3.5) into Eq. (3.7) to eliminate gn':

aZE:a_(
~¢ 3ot ox 'Y

+3) (3.8)

or

3

Sre 2 B(xt) + 5%(68) + a(nt)] = O . (3.9)

Satisfaction of Eq. (3.9) requires that the bracketed quantity be a function of

the time only, that is

e = B(x,t) + 3 (x,t) + 3(x,t) = (&) . (3.10)

3
ot
We identify J(t) as the circulating current.

We may show for a short-circuit boundary condition that Eq. (3%.10) gives
exactly the sams expression for the circulating current as did Eq. (1.16) of
Chapter I. W- prove this by integrating Eq. (3.10) over the length of the
crystal:

L 1 L c. 19 L
1 + — 3 — —
4} j(x,t) dx n L) j(x,t) dx + € T 3% L) E(x,t) dx.

—~~
+
~—
I
il N

(3.,11)

The short-circuit boundary condition requires that
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L o
X, = 5 ° )
ﬁ) E(x,t) dx 0 (2,12

c
so the last term of Eq. (3.11) must vanish. We may show that the term in J

also vanishes. From the constitutive Eq. (3..4) we have
jo = oE = o + un'E . (%.13)

We may substibute Egq. (3.5) into Eq. (3.13), obtaining

= ok - e 3 () (3.1)

so that

L ¢ L 1 \ - e
j-dx = o5 [J Edx - pe 3 [E3(L) - E%(0)] . (%.15)

[
0

The first right-hand term of Eq. (%.15) vanishes because of the short-circuit
boundary condition. The remaining term will also vanish if we require that thre

number of free electrons in the crystal (at a given illumination) be conserved,

i.e., if
1 2 1¢
I [ an, ax = an_ (%.16)
so that
1 L ) .
I ﬁ) gn' dx = O (%.17)

Substitution of Eq. (3.5) into Eq. (3.16) gives

cTe L ax - -Fe(E@) - B0 = 0 . (3.18)
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Thus Eq. (3.15) vanishes, and Eq. (3.11) finally becomes

J(t) = % [ ixt) ax (3.19)

e}

which is identical with Eq. (1.16) of Chapter I. Therefore, to do step (c) of

the computer program outline, we need only apply Eq. (3.19).

3.3 THE EQUIVALENT CIRCUIT MODEL OF THE CRYSTAL

Equation (3.10) has a simple equivalent circuit representation. If we
conceptually divide the crystal into N segments and within each segment repres<nt
the local conductivity, capacitivity, and rate of acoustoelectric current genera-
tion by idealized lumped elements, then the equivalent circuit for the ith seg-

ment is Jjust that of Fig. 17. That this is the correct representation may be

easily shown. At either node we must have

R e T (3.2")

If each segment is of length

, (3.21)

&x o=

=]

then the voltage drop Vi across the ith segment is
v, = E;8x (3.22)
and the capacitance Ci is

C; = B¢ - (3.23)
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Thus the charge Qi stored on capacitance Ci is Jjust
Qi = C3Vy = e B (%.24)
so Eq. (3.20) may be written as

N P (3.25)

€ Ei * Ji 1

which is just the iterated form of Eq. (%.10). The circuit model is indeed a
valid representation of Eq. (3.10). If we use the constitutive Eq. (%.L) to

eliminate the jic, we have finally

€ By * 03By = J - §3 (3.26)
3
—
o4
J 3 J
—— _— —
- — = AAA- ———
Ry
a0,
dt
9y
Ml |
1)
C.
1

Fig. 17. Equivalent circuit model of the ith crystal segment.
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3.4 SOLVING FOR THE ELECTRIC FIELDS AND CONDUCTIVITIES

Having derived the equivalent circuit model and found an expression for
the circulating current J(t), we are in rrinciple now prepared to do step (d)
of the computer program outline. It is now apparent that this computational
step involves finding a solution to the set of simultaneous differential Egs.
(%.26) within each successive interval 3t. Unfortunately the calcu.ation is
more difficult than is perhaps indicated by the deceptively simple appearance
of the circuit model, since the 'resistor” representing the local coniuctivity

o: of Eq. (%3.26) is also a variable. We may display the true complexity of the

i
problem by using Eqs. (%.4), (3.5), and (3.6) to eliminate j© in Eq. (3.10),

cbtaining

— + (oo - ue S;) E = J(t) - j(x,t) . (3.27)

Neither this nonlinear differential equation for the continuous crystal
nor the equivalent set of N simultaneous nonlinear differential equa*tions for
the circult model has an easy solubtion in closed form. But we are unaer no
cbligation to seek a vurely analytic solution. We are attacking the entire
problem of wave propagation and current generation in the crystal by iterative
calculation, and there is no reason why this particular iterative step cannot
be further divided into easily handled computational parts.

Let us do this. W furth r divide time interval &t into subintervals dt.
with dt “aken smail enough that all of the variables of Eq. (%.26) change only

slightly within each sub-interval. This will be the case if dt satisfies
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s;dt <1 . (%3.28)
for all i = 1,...N, where the local dielectric relaxation rate s; is given by

8y = T = & . (3.29)
Within dt let us try changing only one variable at a time while holding all
other variables constant. We may start by holding j; and o; constant and
studying the variation in E;. Working under this assumption, we multiply both

. s;t! Vs . .
sides of Eq. (%.26) by e , where t' is the time measured from the begin-
ning of the subinterval dt. We obtain:

t' 1

S . s:t!
+ SiEi) el = € (7 - Ji) et

(B

The left side of this equation is a total differential, so the expression may

be rewritten as

1 .t
- B.) = T (J - ji) esl ’ <5'BO)

where B; 1s the constant of integration. The solution for Ei(t') is therefore

-s3t' 1 -sit' B . sit"
Ei(t') = B,e o+r et L (- i;) e " at" L (3.31)

B; may be evaluated by noting that at the beginning of the interval we have

t' = 0, and Eq. (3.31) reduces to

E;(0) = B; - (3.32)

We have assumed that all of the ji are constant during sub-interval dt. From
Eq. (3.19) we know that we may also take J(t) as constant. The factor (J - j;)

may therefore be taken outside the integral, and we have
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-sit’

1 Ly 1 - e
+ Z , ) ————

E;(t') = E;(0) e (3.33)

Let us assume that the set E;(0) satisfies the short-circuit boundary condi-
tion. We would like the new set Ei(dt) also to satisfy this condition, but
Eq. (3.%3) offers us no assurance that this will be the case. In general we may

expect that the new set Ei(dt) will not meet the boundary condition, i.e., that
—_ 1 il
E(dt) = 3 i;, E;(at) # 0 . (%.%L)

However, if we have been careful to take dt small enough, then each of the Ei(dt)
will not be greatly different from the E _(0), and as a result E(dt) will be small.
1

We may therefore specify a new set of electric field values
Ej(at) = E;(dt) - B(at) (3.35)

which will satisfy the boundary condition. It is this set that we shall take
as representing the electric field distribution in the crystal at the end of
the interval dt.

Our calculation of the new eiectric field values is therefore a two step
process. We first compute those changes due to local relaxation processes
(fi: st term of Eq. (3.3%)) and due to the charge redistribution caused by
divergences in the current (second term of Eq. (3.%3)); then we adjust the new
values of the field to conform to the short-circuit boundary condition.

We may now compute the lccal conductivity changes caused by the charge

redisbribution. Combining Egs. (3.4), (3.5), and (3.6) we have
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o(x) = og - ue Z (3.%6)

To use Eq. (3.36) we must know how to express the electric field gradient in
terms applicable to the equivalent cir.uit model. One possibility is to write

the symmetric expression

I

- B
OE * -1 i-1

X /., 28x% ?

but tnis approach invites trouble. It divides the crystal into the two sub-
sets of odd and even segments with the sub-sets coupled to each other only
through the expression for the electric fi-1d gradient. The computer is in
effect asked to solve the problem of two coupled large systems, a situation
which of course does not exist in the real crystal. We may avoid this pitfall

by writing the gradient as

OE \ E. - E,
w2 (3.57)
i Bdx ’
The expression for the conductivity therefore becomes
E, - E
i i-1
0i = 0, -uE T . (5.,58)

Notice that Eq. (3.38) may be evaluate using either the set Ei(dt) or the
set E'(dt). The computed values for the local cenductivity are unaffected by
the adjustment of electric iield terms necessitated by the stort-circuit b.oundary

condition.
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3.5 REVISED OUTLINE

We now have all of the formulae needed to do step (d) of the computer
program outline. We must first divide &t into sub-intervals dt small enough to
s+ isfy Eq. (3.28). Let P be the number of these sub-intervals within &t. Then
e:c: time we encounter step (d). «e must per:orm P timss the computational sequence
d- scribed by Egs. (3.33), (3.3L4), (3.3%), and (3.38). where each equation (except
(%.34)) is evaluated for all segments i = 1,...N before going on to the next.

But this program does not really abide by the rules we laid down in develop-
ing th iterated sclution to Eq. (3.26); that within the sub-int-rval dt we
wou.d <eparately ad ust each variable of the equation while holding the remain-
ing variables constant. The rate of acoustocelectric current generation ji(t)
and the circulating curr-nt J ) are also variables of Eq. (%.26) and should
therefore be recomputed as many times as are the electric field and the conductivity.
%W shcould therefore .nc.ude steps (a), (b), and (c) within the loop of comruta-
t1ons repeated P times over each interval &t.

This 1is not the :.ame as incr asing the number of spatial divisions N of
the crystal, an idea we rejected in Section 3.1 because it produced a finer
spatial resclution than was physically meaningfu. for the 30 Mc wave. Instead
we have chosen to su:-divide the transit time &t of the segment dx without suu-
dividing the segmen® itgself, the sub-division of the time being necessitated by
the iterated sclufbicn %z Eq. (3.26).

There is another ve:y practi al reason for sub-dividing only ot and nob

®&x. If P is the number of sub-intervals dt within &%, then we are increasing
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by a factor P the number of computations we must do in a practical computer
program, thereby multiplying by P the running time of such a program. For

N =80 and P = 1 a practical program will take about 10 sec of machine time.
Thus N = 80 and P = 10 gives a running time of about 100 sec. If, however, we
had taken N = 800 (and P = 1), then we would have increased by 102 the number of
calculations, thereby raising the running time to about 1000 sec or 18 min of
computer time for each set of data.

We now present a revised outline for the computer program based on cur new

technique for sub-division of the interval &t.
I. Do parts A through E for p = 1,...P, where P is the number of subintervals
into which ®t is divided.

A. Using local values of conductivity and electric field, compute an
attenuation coefficient o in ~ach segment of the crystal where the
wave is passing.

B. From the results or (A) compute the rate of acoustoelectric current,
generation at each point on the wave.

C. Compute the instantaneous circulating current Jp(t).

D. From the results of (B) and (C) calculate the electric field
intensity and local conductivity in each crystal segment.

E. Locally attenuate each portion of the wave by multiplying by the
factor e_QVSdt where o 1s the local attenuation coefficient

computed in (A).
ITI. Do each of th- following steps in sequence.

F. Compute the average circulating current over the inverval dt.



_ 1 |
J(t) = 3 p%i Jp(t)

P ot the roint J(t).
G. Advance th wave by an amount ox.

H. Increase the tim- by an amount 5t and transfer to I.

2,6 YACHINE COMPUTATI(N

The computer used was an IBM 7090 on The University of Michigan campus.
T e program was present«d to th-. machine in MAD (Michigan Algorithm Decoder),
a compil-r language written at the University.

It is not necessary to sift through all of the step-by-step detai:s <f the
machin calculation in :rder to be able to ev:zluate the computer program in its
final form. It is important, however, that w+ define and explain a few basic
rul s of machine computation.

Th com:uter treats names of variables as iabe.s for locations in its
memcry. sSubscriptei variable. are labels for individual locations within an
arra /s ¢ locations. Thu E?3 1s a label !or a particular location in the memory
and “h- num-rical value of EEB is the number current.y stored in that location.

Tre computer memory is characterized by destructive read-in and nonde-
stru tive read-out. By the .atter we mean that ~e may at any time obtain irom
any memcry location the numbe: contained within, and this "read-out'" operation
dc-s not change tre number store:. or in any way Jeopardize our ability to ob-
~air 1tnat same number again when the occasion demands. By destructive read-in

we —ean that whenever we wish to -nter a new nurber at a given memory location,
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the 'read-in'" operation causes the number previously stored at that memory
location to be erased and therefore no longer accessible; the location is in-
effect "set" to the new number. For example, consider the following machine

instruction:

E s «+ Cq - E4 + 6

Here the machine is instructed to take the number stored in location C4, sub-
tract from it the number stored in E,, add to the difference the number 6, and
finally to store the result of the computation in location E,. If before the
computation E, had contained the number 3, and C4, had contained the number L.
then after the computation E, would contain the number 7, but C, would still
contain the number L.

The computer can perform repeated operations over a running index, i.e.,

it can be instructed to successively do the computations

for all values of i ranging from i = ., 2,...N.

In Section %.7 we show the final form of the program as it is presented
to the computer. In each step the computation to the right of the arrow is
performed using numbers obtained from memory locations labeled by the variable
names shown, and the result of the computation is then stored in the memory
location indicated to the left of the arrow, the new number displacing {(and

therefore erasing) whatever number that location previously contained.
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A succesgsion of steps involving an iterated subscript i1s performed in its
entirety before advancing the running index, for example in part A all steps 1
through 4 are performed first for i = t, then again for i = t-1, etc.

The quantities contained in round brackets are calculated before the pr-gram
is begun, and each round-bracketed quantity is then treated as a single constant
within the program.

For our purpose the conductivity 055 the diele:tric relaxation rate sj.
and tne dielectric relaxation time 7; are merely difrerent ways of writing a

single physical quantity, and it would be redundant to calculate more than ons

of them. We shall therefore compute and use only Sy

3.7 THE COMFUTER FROGRAM

I. Do parts A through E for p = .,...P, where P is the number of sub-intervals
dt into which the interval ot is divided.
L. Do steps 1 through 4 for i = ¢, t-1,...t-T, wrere T is the length of

the wave inside the crystal

co0i Vg i -1 ® Lap, !
2. (Kg) s fe. ]
. o<« -
o i I i S >
s ir., + ——
i l —:]_(D

5oy« o Hly

b, W. < W. e—O[i(EjX/P)
- W i

B. Compute the instantaneous circulating current J_.

_,IH
=

1“1
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C. Do the following computation for all 1 = 1,...N

-g:dt
1 -e %

51

-s.dt 1 .
Ei‘“ Eie 1 +tz [Jp-Ji]

D. Compute the average electric field

=5
N
=2l
M=
=3

i
E. Correct for the short-circuit boundary condition and find the dielectric

relaxa®tion rates by doing the following steps for all i = 1,...N.
1. Ei-(_ Ei - E
2. sy« 5o - (5p) [By - By !

ITI. Do each of the following steps

F. Compute the average circulating current over the interval &t.

P
. 1 )
J(t) <« 3 Zi Jp’ and plot this point on a graph.
p:
G. Advance the wave by doing the following steps

g

1. If the wave 1s not entirely within the crystal, then admit

the next portion of the input wave by setting W, <« A%(1),

where A(t) is the amplitude of the input wave.

2. Do the fcllowing for i = t, t-1,...t-T.

T
Wy W

H. Set t<« £ + 0ot, return to the beginning of the program, and repeat

the entire sequence.



CHAPTER IV

THE EXPERIMENT

The experimental arrangement was similar to that used by Hutson, McFee,
.6 R R : .
and White and alsc by Henricn ~ with whom this author shared equipment,

crystals, and an experimental setup. There was one important difference

which will be discussed in Section L.3.

4,1 THE ACOUSTIC ASSEVBLY

The basic experimental arrangement was outlined in Chapter I. The
acoustic system (see Fig. 2) consisted of (a) a transmitting transducer, (b)
a fused silica buffer, (c) the photoconducting 7dS crystal, (d) another fused
silica buffer, and firally (e) a receiving transducer. The transducers were
5/8 in. diameter quartz platelets y-cut for half-wave resonance at 27.3% Mc.Eh
The fused silica buffers were cylinders 1/2 in. in diameter and 1 in. long.
The CdS crysta125 was a cube 7 mm on a side oriented with the c-axis in the
direction of the polarization vector of the propagating wave.

There are two reasons for using the buffers:

(1) They provide electrical insulation. This is absolutely necessary
for those experiments requiring the application of a large drift field (a-
round 1000 v) across the crystal for the purpose of studying ultrasonic gain.
In other experiments (such as this one) not requiring a drift field it is
still imperative that at least one end of the crystal not be grounded. But

the inboard faces of the transducers must be grounded, thus the need for the

insulating property.

90
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(2) The buffers permit a convenient separation in time between the ex-
citation of the input transducer and the occurrence of acoustoelectric phenom-
ena in the CdS crystal, and again between these phenomena and the appearance
of the acoustic wave at the receiving transducer. Capacitively-coupled elec-
trical feedthrough effects are thus prevented from interfering with observa-
tions, This may be clarified by a study of the times involved. Typically the
input transducer was excited by a 1.5-2.5 usec burst of 30 Mc rf. For shear

waves and a 7 mm CdS crystal the relationships are:

Length Velocity Transit Time
CdSs 7 mm 1.75 x 10° em/sec L.0 jusec
Fused silica 1 in. %.8 x 10° cm/sec 6.41 psec

All four end faces of the buffers were coated with a brushed-on layer of
Hanovia 1liquid bright platinum. Individual wire leads were wrapped tightly
around the ends of the buffers and brought into electrical contact with the
end faces by painting on a slender ring cof silver paste to bridge the space
between them. The two outside faces of the buffers provided electrical con-
tact to the inside (grounded) surfaces of the transmitting and receiving trans-
ducers (the transducers were not plated). The platinum layers on the insi‘e
faces of the buffers enabled electrical contact to the ends of the CdS crystal
which were coated with an evaporated layer of indium. This was necessary in
order that the contacts be ohmic, that is possess a linear volt-ampere char-

1%,26-28

acteristic.



The illumination source was a General Electric H-100-A4T 100 watt mercury
discharge lamp. A Kodak No. 8 Wratten filter was used to pass only the 577-9
and 546 muy lines of Hg. These lines are weakly absorbed in cadmium sulfide,
thus guaranteeing homogeneous generation of photoelectrons throughout the crys-
tal volume.6 Illumination intensity was adjusted by placing Wratten neutral
density gelatin filters in front of the lamp.

All elements of the acoustic system were bonded together with poly-alpha
methyl styrene (Dow resin V-276-9), an extremely viscous liquid (4800 poise
at 25°C) which may be readily softened with a heat gun. This substance was “he
best available bonding material which also afforded relative ease of repeated
disassembly and reassembly of the components of the acoustic system. Unfortu-
nately it provided a poor acoustic impedance match to the elements of the sys-
tem; reflection coefficients were in the neighborhood of .8 at the interfaces
between elements. This condition is illustrated in Fig. 18(a), where we see
an oscilloscope trace recorded at the recelving transducer of the transmitted
sound pulse and its many echoes. Figure 18(b) shows the acoustoelectric cur-
rent produced over an extended period of time (50 usec) by the transmitted
sound and its echoes. The echoes were in themselves no problem, since observa-
tions of the acoustoelectric current were usually confined to that brief time
interval during which the [directly transmitted] sound pulse (but none of its
echoes) traversed the crystal, enough time being allowed between excitations
of the input transducer to permit the echoes to die away.

However, the poor transmission efficiency of the acoustic bonds was a

cause for worry; there were two reasons: (1) The bonds were erratic in the
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(a) Transmitted sound pulse and its echoes as detected at the output
transducer. Time base = 10 usec/cm. The crystal is in the dark.

(b) Acoustoelectric current trace for a crystal resistivity of 1.35
megohm-cm. Time base = 5 psec/cm.

Fig. 18. Illustrations demonstrating the high acoustic reflectivity of the
bonds between elements of the acoustic assembly. In each photograph the
sweep starts as excitation is applied to the input transducer.



ok

sense that there was variation in their transmission efficiency from one as-
sembly of the acoustic system to the next. Furthermore, since the mercury
vapor lamp generated considerable heat, i1t was necessary to keep a stream of
air continuously flowing across the acoustic assembly in order that the trans-
mission efficiency of the bonds be reasonably stable during a single experi-
mental rur.. (2) This poor transmission efficiency at first crippled chances
for the observation of power-dependent acoustoelectric effects, since we were
unable to deliver enough acoustic energy to the crystal to allow these effects
to be seen. The solution to this problem is discussed in Section 4.3.

The acoustic assembly was mounted in a sample holder (see Fig. 1), a
copper box partitioned into three chambers. The CdS crystal occupied the cen-
tral chamber. Electric contacts to the end faces of the crystal were brought
out through ceramic insulators.

The end chambers housed the transducers and the terminating impedances
of the rf feed lines. The outboard faces of the transducers were electrically
driven through spring-loaded polished brass buttons. The grounded partitions
between chambers provided electrical screening and also offered some mechanical
support to the acoustic assembly. The tunable inductors (visible in the end
chambers in Fig. 1) were connected across the transducers to null their capac-
itance. In practice these adjustments had little influence on transducer
conversion efficiency.

A series of lenses and mirrors served to deliver the light to the crystal
through two rectangular openings machined into opposite faces of the sample

holder. Uniformity of the illumination over the two crystal faces receiving
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the light was mapped with a Texas Instruments H-11 photo device. The sensi-
tive surface of this device was approximately 1.5 mm in diameter. By adjust-
ing the lenses, mirrors, and the position of the light source it was possible
to make the illumination uniform to within 5% across each crystal face. The
problems of illumination uniformity and the optical arrangement used in this

experiment are treated extensively in Ref. 13.

4.2 ELECTRONICS

In Fig. 19 there is presented a block diagram of the arrangement of elec-
tronic equipment used in the experiment. An Arenterg PG-650-C pulsed oscil-
lator generated the excitation voltage for the input transducer. Excitation
amplitude was controlled and adjusted by a pair of Hewlett-Pakcard model 355
attenuators inserted into the 30 Mc rf feed 1line. A Tektronix model SL7
oscilloscope was used for display of acoustoelectric current waveforms. The
oscilloscope triggered sweep was internally locked tc the 60 cps power line
frequency, and a gating signal from the oscilloscope was fed through a divider
circuit to trigger the pulsed oscillator. The divider put out one sync pulse
for each two it received, so the pulsed oscillator was triggered only on
alternate sweeps of the electron beam across the oscilloscope face, thus pro-
Yiding a base line for the acoustoelectric current waveforms.

The acoustoelectric current was usually measured in terms of the voltage
drop across a 200 ohm resistor shunting the current output terminals of the
sample holder. This particular resistance represented the best compromise be-

tween the need to approximate a short-circuit boundary condition and the re-
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quirement that there be enough output signal at most crystal resistivities
to permit observation of the acoustoelectric current over a wide range of
input acoustic energy densities.

At very high crystal resistivity (r > 5 x 10* ohm-cm) it was necessary
to substitute a 2000 ohm resistor in order that there be enough voltage drop
for acoustoelectric current measurements in the small-signal region. When
this resistor was first installed, capacitive loading by the oscilloscope and
the connecting cable caused appreciable distortion of the trace. In Section
1.4 we showed that the rate of change of the observed current J(t) was limited

by the "low pass filter" time constant

In our experimental crystal the maximum value of & was 65 db/cm. Thus Te was
never less than .62 usec. Therefore, for accurate reproduction of acousto-
electric current waveforms (we neglect the 30 Mc ripple component), the cur-
rent sampling circuit had to have a time constant short compared to 620 nano-
seconds.

Capacitive loading of the 2000 ohm resistor was limited by placing a -
cathode follower immediately adjacent to the current output terminals of the
sample holder. The cathode follower was a single 6AKS vacuum tube connected
with the screen grid driven by the cathode. This arrangement shunted the
crystal with a measured capacitance less then 7 pf, giving a time constant
smaller than 14 nanoseconds. It is thus apparent that the measuring circuit

should not distort the acoustoelectric current pulse. That it did not was
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experimentally verified by substituting much smaller resistors and carefully
comparing the observed current traces.

All observations of acoustoelectric waveforms were taken directly from
the oscilloscope screen as recorded by a Tektronix C-12 camera with a Polaroid
roll film back. This permitted convenient recording on a single photograph
(with appropriate adjustments of the oscilloscope vertical sensitivity switch)
of acoustoelectric current traces taken at two or more different acoustic in-
put power levels. The usefulness of this technique in displaying and studying
power-dependent effects will be shown in Section 5.1.

There were times during the experiment when it was necessary to view the
transmitted acoustic wave as it appeared at the output transducer. At those
times the output transducer was coupled through a Telonic TG-950 attenuator
to a RHG model E3010 30 Mc broadband tuned amplifier, and the ampl:ified signal

was then available for display on the oscilloscope screen.

4,3 MODIFICATICN FOR HIGH ACOUSTIC POWER

At 30 Mc the Arenberg pulsed oscillator was capable of a maximum ocutput
of about 90 v peak across 50 ohm. Trial experimentation revealed this level
of excitation to be insufficient for observation of power-dependent acoustc-
electric effects. This was in large part due to the poor transmission ef-
ficiency of the poly-alpha methyl styrene acoustic bonds (Section 4.1). Com-
parison of observed acoustoelectric current levels with results generated by
machine computation verified that additiocnal excitation was needed for the

production of power-dependent effects. This was achieved by feeding the
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pulsed oscillator output through a Heathkit HA-10 linear rf power amplifier
(a 1 kw grounded-grid amplifier designed primarily for class-B amplification
of radio amateur single sideband signals) to boost the excitation voltage to
an amplitude of 350 v peak across 50 ochms, a gain of 12 db. Power-dependent
effects were then clearly evident.

The power amplifier did distort the envelope of the rf excitation pulse.
This in no way upset the accuracy of the experiment, as it was only necessary
to record the shape of the excitation envelope as it appeared at the input

transducer in order to properly include it in the computer program.



CHAPTER V

COMPARISON OF RESULTS

As has been mentioned in other chapters, the experimental data were col-
lected on a 7 mm CdS crystal oriented for use with shear waves. The shear
mode was chosen because the relatively longer transit time (4.0 psec vs. 1.63
pusec for the longituainal mode) produces longer acoustoelectric current traces
for study.

Certain physical constants of the crystal are needed as input data for

the computer program. They are

515 cm/sec

T
1l

v/em
K° = .0284
vg = 1.75 x 10° cm/sec
wjwp = .0393

Numerical values for the mobility and the electromechanical coupling coefficient
in this experimental sample are due to Henrich.15 The mobility was deter-

mined from Hall measurements on the crystal, and K was chosen by Henrich

to give the best fit of a theoretical curve (computed from the small-signal
theory of Hutson and White) to an experimental plot of attenuation as a func-
tisn of conductivity. These curves are reproduced in Fig. 20. Incidentally,
the fact that the fitted curve tends to zero in the high resistivity limit
indicates that nonelectronic losses in the crystal (see Section 1.5) are

small enough to be neglected.

100
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Numerical values for vg and ap are those given by Hutson and White. No

s
attempt has been made to adjust wp for the slight differences in mobility
or ambient temperature in our particular experiment, since ‘such corfections
would be too small to influence significantly the final fcrm of the computer-
generated acoustoelectric current traces.

This crystal was one of several reported on by Henrich and was the only
one of that group which had a mobility independent of photoconauctivity and
at the same time did not exhibit a large first-order (linear) conductivity
gradient in the direction of acoustic propagation. Ncne of the crystals exam-
ined by Henrich was homogeneous in its photoconductivity (presumably due
to a nonuniform distribution of impurities), but this one was at least a little
better than the others. As we shall see later in the chapter, the inhomogeneity
ultimately limits our ability to make quantitative comparisons between the

predictions of the acoustoelectric feedback theory and the results of exper-

iment.

5.1 DIRECT COMPARISON OF WAVEFORMS

The most striking verificaﬁion of the acoustoelectric feedback theory
comes from a comparison of oscilloscope traces of the accustoelectric current
with computer-generated predictions of those traces. For this comparison
the experimental data were recorded by a method especially suited to the dis-
play of power-dependent effects. At a given crystal resistivity acousto-
electric current traces produced for several different settings of the input

attenuator were superimposed (by multiple exposure) on a single oscilloscope
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photograph. Each of these traces was normalized with respect to the acoustic
ihput power by compensating every adjustment of the input attenuator with an
opposite adjustment of the cscilloscope vertical sensitivity switch. Had
there been only a simple linear relationship between acoustoelectric current
and input acoustic power (as is predicted by the basic small-signal theory),
then the traces for the different levels of input acoustic energy would have
coincided exactly, as in Fig. 6(b). The fact that they did not is clear
evidence that power-dependent effects were indeed present.

The 30 Mc ripple component (due to the boundary condition; Section 1.3)
permits us to easily distinguish which trace is which on an oscilloscope
photograph. The ripple is proportional to the input acoustic amplitude,
whereas the acoustoelectric current is proportional to the input acoustic en-
ergy. Since all traces on a photograph are normalized with respect to the
acoustic input power, the trace with the smaller ripple is the one produced
by the higher energy input wave. (The amplitude of the ripple component is
also proportional to the crystal conductivity, so traces generated at low
crystal resistivity have a largcr ripple than those generated at high.)

Application of the full amplified rf excitation (described in Section
4.3) to the input transducer produced a maximum mechanical strain amplitude
(at the peak of the wave) of about 6.4 x 107> at the input face of the CdS
crystal. This corresponds to = local acoustic energy density of 150 ergs/cm3
(the measur=ment of which will be discussed in Section 5.2), and all settings
of the input attenuator are referred to this level. These settings serve-as

a convenient way of specifying the acoustic input energy used to produce the

oscilloscope traces.
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(a) Sound in "A" direction.

(b) Sound in "B" direction.

Fig. 21. Power-dependent acoustoelectric waveforms for crystal resistivity
of 1.80 x 10° ohm-cm. Time base = .5 usec/cm. Ext. resistor = 2000 ohm.
Listed according to peak height, the traces on each photograph are:

Trace Attenuator Vertical Scale
Top -10 db .02 v/em
Center -5 db .1 v/em

Bottom 0 db .2 v/em
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yd

F'ig. 22. Computer-generated acoustoelectric waveforms for resistivity of
1.80 x 10° ohm-cm. Time base = ) usec/division. External resistor =
2000 ohm. The traces shown are:

Acoustic
Trace Input Energy Vertical Scale
- - - -10 db .02 v/division

0 db .2 v/division
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(a) Sound in "A" direction

(b) Sound in "B" direction.

Fig. 23. Power-dependent acoustoelectric waveforms for crystal resistivity
of 6.12 x 104 ohm-cm. Time base = .5 psec/ecm. External resistor = 2000
ohm., Listed according to peak height, the traces on each photograph are:

Trace Attenuator Vertical Scale
Top -10 db .05 V/cm
Center - L dp .2 v/em

Bottom 0 db .5 v/cm
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Fig. 24. Computer-generated acoustoelectric waveforms for resistivity of
6.12 x 10* ohm-cm. Time base = .5 usec/division. External resistor = 2000
ohm. The traces shown are:

Acoustic
Trace Input Energy Vertical Scale
- - - -10 db .05 v/division

0 db .5 v/division
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(a) Sound in "A" direction.

(b) Sound in "B" direction

Fig. 25. Power-dependent acoustoelectric waveforms for crystal resistivity
of 1.27 x 10* omm-cm. Time base = .5 psec/cm. Ext. resistor = 200 ohm.
Listed according to peak height, the traces on each photograph are:

Trace Attenuator Vertical Scale
Top -10 db .01 v/cm
Center -5 db .05 v/em

Bottom 0 db .1 v/em
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Computer-generated acoustoelectric waveforms for resistivity of

Fig. 26.
Time base = .5 usec/division. External resistor = 200

1.27 x 10* onm-cm.
ohm. The traces shown are:

Acoustic
Trace Input Energy Vertical Scale
- - - -10 db .01 v/division

0 db .1 v/division
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(a) Sound in "A" direction.

(b) Sound in "B" direction.

Fig. 27. Power-dependent acoustoelectric waveforms for crystal resistivity
of L.46 x 10°® ohm-cm. Time base = .5 psec/cm. Ext. resistor = 200 ohm.
Listed according to peak height, the traces on each photograph are:

Trace Attenuator Vertical Scale

Top -10 db .02 v/em
Bottom 0 db .2 v/em
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Fig. 28. Computer-generated acoustoelectric waveforms for resistivity of
L.46 x 10° ohm-cm. Time base = .5 psec/division. External resistor = 200
ohm. The traces shown are:

Acoustic
Trace Input Energy Vertical Scale
- - - -10 db .02 v/division

0 db .2 v/division
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(a) Sound in "A" direction.

(b) Sound in "B" direction.

Fig. 29. Power-dependent acoustoelectric waveforms for crystal resistivity
of 2.08 x 10° ohm-cm. Time base = .5 usec/cm. Ext. resistor = 200 ohm.
Listed according to peak height, the traces on each photograph are:

Trace Attenuator Vertical Scale

Top -10 db. .01 v/cm
Bottom 0 db .1 v/em
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Fig. 50. Computer-generated acoustoelectric waveforms for resistivity of
2.08 x 10° ohm-cm. Time base = .5 usec/division. External resistor = 200
ohm. The traces shown are:

Acoustic
Trace Input Energy Vertical Scale
- - - -10 db .01 v/division

0 db .1 v/division
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(b) Sound in "B" direction.

Fig. ?1. Power-dependent acoustoelectric waveforms for crystal resistivity
of 1.01 x 10° ohm-cm. Time base = .5 usec/cm. Ext. resistor = 200 ohm.
TListed according to peak height, the traces on each photograph are:

Trace Attenuator Vertical Scale
Top -10 db .01 v/em

Bottom O db .1 v/em
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/

Fig. 32. Computer-generated acoustoelectric waveforms for resistivity of
1.01 x 10° ohm-cm. Time base = .5 psec/division. External resistor = 200
ohm. The traces shown are:

Acoustic
Trace Input Energy Vertical Scale
- - -10 db .01 v/division

0 db .1 v/division
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The computer-generated plots of the acoustoelectric current may be com-
pared directly with the oscilloscope traces (Figs. 21-32). To aid the com-
parison, acoustic input energies for the computed traces are also given in db
referred to 150 ergs/cm3 at the peak of the wave. For the high resistivity
cases (i; < 1) we immediately notice three areas of agreement between theory
and experiment (Figs. 21-26). With increasing acoustic input energy we Ob-
serve (1) a relative decrease in the peak height of the trace, (2) a slight
delay in time of the occurrence of this peak, and (%) a slowed rate of decay
of the current following the peak.

For the low resistivity cases (%; > 1) there is much less high power dis-
tortion of the acoustoelectric current trace (Figs. 27-32), at least with the
acoustic power level achievable in this experiment. This is apparent in both
the experimental and the computer-generated traces (the L.5 x 10° ohm-cm ex-
perimental case of Fig. 27 needs special consideration and will be discussed
later). In comparing other details of this generally diminished power-depen-
dent effect, we see that both theory and experiment show a reduced relative
peak height at high acoustic input power, but there otherwise is not the satis-
fying overall agreement evident in the high resistivity case.

We must ask whether these are the results we expected. We know that the
attenuation coefficient can be modified either through local changes in the
crystal conductivity or by local electric fields. These two influences are
best understood by studying their behavior on a plot of o vs. -uE (Fig. 33).
On such a plot the conductivity determines the displacement of the peaks of

maximum and minimum o from the point y = O:



117

l,es 1. e
w0t o wT
D D
displaced operating | 'i
oint
)‘/ ]
I
| |
l
| -uE¥
|
| |
| |
| |
I
y=20
(a) The high resistivity case (%; <1).
|Lz+2 / | L, |
%‘w l C) -
— = | |
displaced operating | |
point | |
| | —uE
I
|
|

1
(b) The low resistivity case (5; > 1).

Fig. 33. Illustration showing how the local electric field influences the

attenuation coefficient by displacing the operating point.
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whereas the local electric field fixes the position of the operating point

on this curve:

) -
y = 1+E (5.2)
Vs

The influence of the local electric field is relatively easy to predict.
In general, the electric field will be largest in the region of highest
acoustic energy density, and its sign will be positive (see Eq. (3.26)). It
therefore displaces the operating point to the left on a plot of & vs. -upE.

To estimate the influence of local conductivity changes we notice that,
because the electric field is a maximum near the peak of the wave, the average
value of its slope is zero in the immediate neighborhood of this maximum.

From Eg. (3.5) it follows that the average conductivity change near the peak

of the wave should be small, since

qn' = - ¢ —g—g . (5.2)

Therefore, to first approximation any changes in the acoustic attenuation
rate at the peak of the wave may be attributed to the influence of the elec-
tric field alone.

At high crystal resistivity (i; < 1) the peak of maximum & falls to the
right of the vertical axis, and the local electric field produces a reduced
attenuation coefficient in regicn: of high acoustic energy density (Fig.

3%(a)). The effect is to some degree self-sustaining, since the high acoustic
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energy density causes a local reduction in the acoustic attenuation rate which
in turn helps maintain the high acoustic energy density.

In Section 1.4 we developed an equivalent circuit model for predicting
the detailed shape of the acoustoelectric current trace produced by a uni-
formly attenuated wave. According to the model a decrease in the attenuation
rate will cause the peak of the circulating current to be reduced in ampli-
tude and delayed in time and be followed by a more slowly decaying tail. For
the case of high crystal resistivity we have shown that a propagating acoustic
wave of large amplitude encounters a (nonuniformly) reduced attenuation rate.
These generalized predictions for the changed shape of the observed current
trace should therefore be valid. That they do apply is verified both by the
output of the computer program and by the results cf experiment.

At low crystal resistivity (%; > 1) the peak of maximum & falls to the
left of the vertical axis (see Fig. 33(b)). Again the trend is for the local
electric field to move the operating point to the left, but the operating
point is now being pushed toward the peak. If it does not pass the peak
(this is something about which we cannot accurately guess), then large ampli-
tude regions of the wave should see an enhanced acoustic attenuation rate.
According to the model of Section 1.4, this should cause the peak of the ob-
served current to .ccur slightly earlier, be a little higher, and be followed
by a more rapidly decaying tail. However, the increased dissipation will also
more rapidly consume the acoustic energy, thereby diminishing the power-de-
pendent effect and making changes in the acoustoelectric current trace less

pronounced than they were for the high resistivity case.
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The observable effect is much milder, as we have already noted. The com-
puter-generated traces (Figs. 28, 30, and 32) also show a slightly earlier
peak and an almost infinitesimally enhanced decay rate following the peak,
but they predict a reduced rather than an increased peak height. Since our
informal estimate was based on only a perfunctory consideration of electric
field and conductivity behavior which is treated in detail by the computer
program, the computer-generated results must of course take precedence. The
computer program also accounts for the possibility that the peak and the
operating point may cross. The important question is whether or not the com-
puter-generated traces agree with the results of experiment.

There is little agreement where there is a significant power-dependent
effect, as may be seen by comparing the experimental and theoretical results
of Figs. 27-%2. In fact, the experimentally recorded traces for the twc
directions of propagation do not even look alike. These experimental dis-
crepencies are at least partially explained by a peculiarity of our CdS crys-
tal. In Section 2.% we observed that the point of maximum height on a plot
of & vs. wr (Fig. 13) occurs at the conductivity value for which the peak cof
maximum attenuation falls exactly on the vertical axis on a plot of & vs. Eg
(Fig. 12). But the experimental plots of Fig. 20 are split at high con-
ductivity (because of inhomogeneous crystal conductivity, as we shall explain
shortly). It is therefore not surprising that the low resistivity experi-
mental data recorded for the two directions of propagation agree neither with
the theory nor with each other. This explains the serious discrepancy be-

tween theory and experiment for the 4.5 x 10° ohm-cm case (Figs. 27 and 28),
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since this particular value of the conductivity (2.2 x 10™% ohm/em) falls be-

tween the two experimental peaks.

5.2 QUANTITATIVE COMPARISONS

We have not yet said how we experimentally determine the input acoustic
energy so that we may have this data for use in the computer program. Ideally
we should know exactly the acoustic strain amplitude S(O,t) at the input face
of the CdS crystal. The envelope shape of the acoustic wave packet is easily
measured by placing a low-capacitance oscilloscope probe at the input trans-
ducer, but, since the transmission efficiency of the bonds is unknown, this
is of value as a relative measurement only.

For absclute determination of the acoustic input power we must resort to
the following indirect technique: We choose a crystal resistivity for which
there is good agreement between experimental and theoretical values of the
attenuaticn coefficient as determined by the crystal conductivity. For our
particular experimental sample (see Fig. 20) it is clear that this will have
tc be a resistivity for which l/wT < 1. Then, by using the measured shape of
the acoustic wave as input to the computer program and scaling it up and down
over a wide range of closely spaced input power levels, we generate a family
of theoretical acoustoelectric current plots. These may be compared with an
experimentally-generated family of coscilloscope traces produced at the same
crystal resistivity. The computer plots may then be paired with the oscillo-
scope traces by =quating peak heights. The pairing must be done in the small-

signal region where there is a linear relationship between peak current and



acoustic input power. Then, if all goes well, the matching should be con-
sistent into the large-signal region where power-dependent effects occur.

The matching is not exact, as may be seen by careful study of experi-
mental and computer-generated traces for the high-resistivity case (Figs. 21-
26). In general the observed power-dependent effect is stronger than that
predicted by the computer program, that is the difference in peak heights
is greater for the observed than for the computed traces. There is therefore
a discrepancy between the predictions of the acoustoelectric feedback theory
and the results of experiment.

Let us first criticize the theory. Perhaps the most serious deficiency
of the acocustoelectric feedtack theory is a failure to account for the in-
fluence of the second harmonic component of the acoustoelectric current (see
Section 2.4) on the local charge densities and velocities which control
acoustic attenuation. Because of its large amplitude (equal to the local de
value of the acoustoelectric current) this influence must be considerable.
But it wculd have been extremely difficult to include this effect in the
sccustoelectric feedback theory, since it lies outside the scope of the small-
signal theory of Hutson and White on which it is based. The small-signal
theory treats the influence of "dc" electric fields and conductivities on
*he local attenuation experienced by a propagating acoustic wave and in its
present form cannot account for the interaction of the wave with oscillatory
currents of frequency 2w.

We would have been surprised indeed had our perturbation extension of

the small-signal theory been capable of accounting entirely for the changed
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shape of the acoustoelectric current trace generated under large-signal con-
ditions. At the beginning of Chapter III we claimed that, in the absence of
an adequate large- signal theory, the acoustoelectric feedback theory would
make meaningful predictions of large-signal effects. This much we have cer-
tainly done, as is shown by the very gratifying qualitative agreement between
the experimental photographs and the computer-generated traces for the high
resistivity case (the only case where we can also get low power agreement).
But it would be foolish to insist that all large-signal distortions of the
cbserved current trace could be explained in terms of the influence of local
"de" electric fields and charge densities on the small-signal interaction.
What we can claim is that this influence most assuredly contributes heavily
to the changed shape of the observed current trace, as we have demonstrated
by the experimental and theoretical results of Figs. 21-26.

Now let us criticize the experiment. For the low resistivity case we
have seen that the observed current traces recorded for opposite directions
of propagation at a given crystal 1esistivity not only do not match the com-
puter-generated plots; they also do not match each other. For the high re-
sistivity case we already know that there is some disagreement between computed
and measured heights of the trace under large-signz1l conditions. What about
otnier aetails of the changed shape of acoustoelectric current traces gen-
erated by acoustic waves of large zmplitude?

The most meaningful compariscn of shapes is between slopes of that part
of the acoustoelectric current trace produced while the wave is entirely

within the crystal. It is this portion of the trace which should be a perfect
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decaying exponential under the ideal small-signal condition of uniform acoustic
attenuation. The method of comparing these slopes need not be elaborate or
sophisticated, providing we consistently use the same technigue for both the
observed and the computed waveforms, e.g., we can simply measure the height

of each trace at the same two points in time and then compute an "average"

attenuation coefficient from the formula

Qp = —t—— 10 logyo dlt1) (5.1)
(ta-t1)vg j(t2)

The results of such a comparison are piotted in Fig. 34 for two different
crystal resistivities. It is apparent that the expsrimental and theoretical
plots show the proper qualitative behavior, i.e., they all tend toward =z re-
duced acoustic attenuation rate with increasing input acoustic power, but it
is disturbing to observe the poor quantitative agreement. For neither resis-
tivity do the experimental plots (for the two directions of propagation) co-
incide with the theoretical curve or witlh each other. This discrepancy extends
even intc the low acoustic power (small-signal) region where power-dependent
effects must vanish. In fact, the two cases shown were chosen for illustra-
tion tecause their low power agreement was better than that attainable at
other resistivities. This low power disagreement is clear evidence that the
attenuation is not uniform throughout the crystal and is a direct consequence
of inhomogeneity in th-- crystal conductivity.

This inhomogeneity may te "mapped" by studying tre acoustoelectric cur-
rent traces generated 'y short, low energy acoustic wave packets. Figure 35

shows traces generated ty a low power wave packet prcragating in either direc-
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(2) Crystal resistivity = L.4 x 10° ohm-cm.

(b) Crystal resistivity = 1.0 x 10° ohm-cm.

Fig. 35. Acoustoelectric current traces generated by a 1.5 usec input wave.
Traces shown are for both directions of propagation. Vertical scale = .002
v/cm. Time base = .5 psec/cm. Ext. resistor = 2000 ohm. The input atten-
uator was adjusted at each crystal resistivity to keep the traces on scale.



127

= 2.2 x 10° ohm-cm.

Crystal resistivity

(c)

= 7.0 x 10* ohm-cm.

Crystal resistivity

)

d
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tion in the crystal. These rough and irregular traces clearly illustrate
now much our experimental crystal deviates from the ideal homogeneous model
we implicitly assumed while writing the computer program.

Computer-predicted acoustoelectric current traces based on a single ex-
ternal measurement of the crystal resistance cannot hope to agree with this
data. Under small-signal conditions the computer program simulating & homo-
genecus crystal will generate an acoustoelectric current trace identical to
that predicted bty the model of Section 1.4, but traces experimentally re-
corded from an inhomogeneous crystal will differ in both height and shape
from that ideal result. Quantitative comparisons of height and shape for
high acoustic input power therefore become impossibly difficult, particularly
since the calibration of acoustic input pows=r levels by pairing of experi-
mental and theoretical traces at low power levels cannot be trusted. Quanti-
tative comparison of the slopes of the tails of these traces is also hindered,
since it is not possible to judge how much of the slrpe is truly a measure
of the attenuation coefficient and how much merely reflects a conductivity
gradient.

How can we minimize these difficulties? We can ltegin ty selecting an
experimental sample which is as nearly homogeneous as is possible to obtain.
This selection was discussed at the beginning of the chapter. We can also
smooth out the current traces by using longer acoustic wave trains, thereby
physically integrating out some of the roughness due to the irregular con-
ductivity. This has been done for data presented here in support of the

acoustoelectric feedback *th=ory. Such a technique certainly gives better-
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locking experimental results but unfortunately still does not allow quantita-
tive cocmparison between a computer program which assumes homogeneity and a
real crystal which is not so simple.

We may ask whether it is possible to develop a program for treating the
inhomogeneous crystal. One approach would be to enter local conductivity
values point-by-point into our present one-dimensional program, providing it
were possible to collect such information from photographs of the accusto-
electric current traces generated by very short acoustic wave packets. This
scheme would be successful if the conductivity variation occurred only in the
direction of the wave's propagation vector, but the irregularity of the traces
displayed in Fig. 35 leads us to suspect that this is not the case, and we
at present have neither the theory nor the experimental technique to treat
an irregular, three-dimensional conductivity variation. Furthermore, the
fact that the experimental plots of & vs. o in Fig. 20 agree at low conduc-
tivity but split at high conductivity indicates that the crystal's inhomo-
geneity pattern may shift with changing photoconductivity, so that a "map"
made at one conductivity would not be correct for another. In any event,
rather than burden this computer program with the corrections and adjustments
needed to compensate for an unsatisfactory experimental situation, the better
approach would be to seek future improvement in the gquality of experimental

samples available for study.

.5 DISTORTION OF THE WAVE PACKET

All of our discussion so far has been concerned with the detailed shape
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of the observed current trace with little attention being given to the acoustic
wave packet itself. What observable changes take place in the wave packet
as a result of the acoustoelectric feedback effect? Is it possible to make
predictions about these changes which may be verified by experiment?
In Section 5.1 we showed that qualitative interpretation of the altered
shape of the observed current trace was relatively straightforward in the
case of high resistivity, that is, that the local electric field produces a
locally diminished acoustic attenuation coefficient in regions of high acoustic
energy density. Different regions of the wave packet will therefore experience
different acoustic attenuation rates. The sign of the effect is unambiguous
for the high resistivity case; regions of higher acoustic energy density will
suffer less attenuation than those of lower. The observable result will be
distortion of the wave packet envelope, with irregularities in the envelope
shape being emphasized so that a high region becomes relatively higher still.
The effect is dramatically illustrated in the experimental photographs
ot Fig. %6. Here we see signals taken from the output transducer which re-
sulted from input signals of identical shape but differing in amplitude by 20
db. The output signals have been normalized with respect to the input acoustic
amplitudes, and the larger signal is that produced by the high power input
signal. We can clearly see that the irregularities in the wave packet en-
velope have been greatly emphasized for the high power case. For the photo-
graph taken at a crystal resistivity of 6.21 x 10 ohm-cm, that region of the

wave packet which initially had the largest amplitude experiences abcut 6 db
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less total attenuation for the high power case than for the low power case,
whereas a region of initially small amplitude suffers about the same atten-
uation in both cases.

The distortion of the wave packet is correctly predicted by the computer
program, the results «f which are shown in Fig. 37 for a crystal resistivity
of 6.21 x 10%* ohm-cm. The wuve packet unfortunately suffers some distortion
in traversing the acoustic system, even when the crystal is in the dark (con-
dition c<f no acoustoelectric interaction), so accurate gquantitative comparison
of output wave shapes is not possible, but the strong qualitative agreement

gives additional support to the validity of our acoustoelectric feedback theory.

.4 SUMMARY

We have shown that it is pcssible to make meaningful predictions cf
large-signal distortion _.f the acoustoelectric current waveform by extending
the small-signal theory <f Hutson and White to account for the self-interac-
tion of a decaying acoustic wave. This self-interaction occurs because the
local charge vel-cities and changes in charge density brought about by the
acoustoelectric interaction must also influence the attenuation, Jjust as if
these conditions were imposed upon the carriers from outside the crystal.

The extended small-signal theory does not completely describe the inter-
action of a large-amplitude acoustic wave with the electrons (as was discussea
in Section 5.2), so we do not expect that such a theoretical treatment can
complately explain the changed shape <f the acoustoelectric current trace

generated under this condition. Accordingly, we have not attempted a detailed
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(a) Crystal resistivity = 6.21 x 10* ohm-cm.

(b) Crystal resistivity = 1.80 x 10° ohm-cm.

Fig. %6. Comparison of output signals produced for input excitation levels
of 0 and -20 db. In each case the larger amplitude output signal corresponds
to the higher power input wave. On both photographs the output signals have
been normalized with respect to the input wave, that is the vertical scale
for the high power case is 10x that for the low power case.
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quantitative comparison. However, the very satisfying qualitative agreement
obtained at high crystal resistivity (é; < 1) indicates that this self-inter-
action phenomenon must contribute heavily to the changed attenuation, dis-

torted wave packet envelope, and altered acoustoelectric current trace which

are experimentally observed under large-signal conditions.



APPENDIX

REDUCTION TO THE ONE-DIMENSIONAL PROBLEM

We ghall sketch here the derivation of expressions for the electric fields
which may accompany a propagating acoustic plane wave of any mode in a three-
dimensional piezoelectric conducting medium. Our approach is basically that used
by Hutson and White5 when they re-derived with some corrections and simplifying
assumptions the results of Kyame.l5’l6 In his attack upon the problem Kyame
derived thefifthorder secular determinant for the phase velocities of acousto-
electromagnetic waves propagating in a conductive piezoelectric crystal. The
solutions of this determinant correspond to two transverse electromagnetic waves
traveling at nearly the speed of light in the medium and three acoustic waves
traveling at approximately the speed of sound, where, depending upon the direction
of propagation and the piezoelectric tensor, the acoustic waves could be accompa-
nied by longitudinal electric fields which effectively modify the elas*ic con-
stants of the medium. Kyame then showed that to a good approximation the secular
determinant may be separated into a third-order acoustic wave determinant and
a second-order electromagnetic wave determinant, with the two sub-determinants
weakly coupled to each other through matrix elements of order v/c e; where v is
the velocity of sound and c¢ is the velocity of light in the crystal, and e is
the appropriate component of the piezoelectric tensor. He thereby demonstrated
that by ignoring the influence of the electromagnetic waves in his solution of

the acoustic wave determinant, he was neglecting corrections to the acoustic

phase velocity of order v/c e.

135
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Our goal is less ambitious. We wish merely to show that of all possible
polarizations of the electric field which may accompany a propagating acoustic
wave, only the longitudinal component can be large enough to significantly influ-
ence acoustic attenuation. We shall derive this result under the same assump-
tion used for the small-signal theory development of Chapter II, namely that
the attenuation over one wavelength of the sound is so small, that for the pur-
pose of computing local relationships among the components of the traveling wave
we are justified in taking the propagation vector as being entirely real. The
derivation then goes as follows:

Let x1, Xp, and X5 be orthogonal axes arbitrarily oriented with respect to
the crystal axes and consider the propagation of plane waves in the x; direction.
Under adiabatic conditions the piezoelectric equations of state for the medium

are

Ti3 © Cijkmkm ~ ®xisfk (A.1)
= +
D, ee15513 * €ixBi (A.2)
where repeated indicies indicate summation. Here
_ b e . . .
cijkm short-circuit adiabatic elastic tensor
ek" = adiabatic piezoelectric tensor
1J
€ = clamped adiabatic dielectric permitivity tensor
The constitutive equations for the medium are
B. = pu H. (A.3)



127
T = 04 B, (A. L)

The electromagnetic field quantities must also satisfy the Maxwell equations.

The equations of particular interest to this derivation are

aDk
(curl H}Y = v +Jy (A.5)
aBk
(curl E}, = - Fv (A.5)
We shall also define the piezoelectromotive field vector
®kij
Fy = - Sys - (A.7)
€11 J

"\
"k approximates the kth component of the total piezoelectric driving field pro-

duced by all directions and polarizationsg of acoustic plane waves propagating
in the medium (for k = 1 and i or j = 1 the relationship is exact). The second

piezoelectric equation of state (Eq. (A.2)) may therefore be written as

_ & )
D, = =€l * eikEi . (A.8)

If we substitute Egs. (A.4) and (A.8) into Eq. (A.5) we obtain

X

k )
(curl H}), = -€11 > + (Eik v + Uik) E, . (A.9)

We are interested only in the propagation of plane waves sinusocidal in the time.

We may therefore everywhere replace o/dt with -iw, with the result that

{curl H}k = -iw (-e11 i * eikEi) . (A.10)
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where the relaxed dielectric permitivity tensor eik is defined by

J.
, ik
€. = €, N
ik ik -iw

(A.11)

Equation (A.10) may be solved for two cases. For the first case we take k = 1;
we are interested in the component along the propagation vector of the plane wave.

The left side of Eq. (A.10) vanishes, leaving:
1 — ) et
€11E; €11 1 €plEp ’ (A.12)

where p = 2, 3% labels the two transverse modes of the electric field polariza-

tion. If we solve for E;, the result is

€11C1 - €' E
1
E, = - Rz P (A.13)

For the second case we take k = p = 2, 3. The left side of Eq. (A.10)
do=s not vanish. Following the usual program for the treatment of electro-
magnetic plane wave propagation we substitute Eq. (A.%) into Eq. (A.6) and take

the curl:
{curl curl E} = u é—{ule} (A.1L)
D o ot o)
We then substitute Eq. (A.10) into Eq. (A.1k):
curl curl E = w?(-¢ Qi + ¢! E. . A1
{ }p b= (-€11 o ) (A.15)

Now
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{curl curl E}i = (grad(div E)}i - VZEi (A.16)
/OE,  OE \ ¥E, S°E,
- (k) e wan
8xi\\6xj Bxk, g‘axj axk )

For a plane wave propagating in the x; direction, only d/dx; gives a result

different from zero. {curl curl E)p therefore collapses to

(curl curl B} = - £ - 32 B (A.18)

where v 1s the phase velocity of the acoustic wave (in the x; direction). Thus

Eq. (A.15) becomes

E, = novo(-ens€ + el Bi) . (4.29)
This may be rewritten as

E. = (&2 (% +=Lg) , (A.20)

where

S - (A.21)

© VE€11Hg

is the velocity of an electromagnetic wave propagating in the same direction
as the acoustic plane wave.
If the electric fields Ek accompanying the wave are to produce observable

acoustic attenuation, they must be nearly as large as the piezoelectromotive

fields%ik which are generated in the piezoelectrically active modes of propaga-

tion. Although Eq. (A.20) is not truly a solution for E, (it also appears on
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the right as one component of Ei), it is clear that the magnitude of Ep is
down by a factor of (v/c)® from values of the transverse piezoelectromotive
field componentg;p and the longitudinal electric field E;. Thus it is apparent
that the transverse electric fields are far too weak tc produce observable
acoustic attenuation.

By contrast Eq. (A.13) tells us that the longitudinal electric field com-
ponent E; is approximately equal to the longitudinal piezoelectromotive field
componentill. (We shall drop the insignificant transverse fields Ep from Eq.
(A.13)). 1If the direction and mode of acoustic wave propagation are such as

to generate a significant longitudinal piezoelectromotive field, then Eq.

(A.1%) may be written

E, = ——l—l— s (A.22)
1 + T
-1T

where the dielectric relaxation time 7 is defined by

T o= =i (A.23)

Equation (A.22) may be compared with Eq. (2.59) of Chapter II. Thus we see
that the three-dimensional problem is essentially reduced to a problem in

one-dimension, that being along the propagation vector of the acoustic wave.
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