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Abstract

A control problem involving a mechanical system with generahzed coordl-
nates qeiRm is considered. The error in tracking a desired input y¢e€ RF is
e = E(q, yd) € R™ If E satisfies simple conditions, it leads to a nonlinear control
law which assures e(t) » 0 as t » =. The law is robust in that small changes in it
do not produce large steady:state errors or loss of stability. The theory
presents a unified framework for treating a number of problems in the control
of mechanical manipulators. This is illustrated by an example.



1. Introduction

In this paper we consider the control of systems described by dynamic

equations of the form

M(q(t))q(t) + F(q(t), q(t)) = P u(t), (1.1)

y(t) = G(q(t)) . (1.2)
Where: q(t), u(t)eR™; y(t) €R¥, k= m; P, M(q) are nonsingular square matrices.

The most obvious application is in robotics [1]. The rigid body equations of
motion for a mechanical manipulator with dc motor drives can be described by
(1.1) if: m = number of joints in the kinematic chain (usually, m, = 6), q(t) =
vector of generalized coordinates (usually, joint angles and displacements),
M(q) = generalized inertia matrix, F(q, q) = vector of equivalent forces due to
gravitational, centrifugal, Coriolis and back-emf effects, u(t) = vector of con-

trol voltages for the motors.

Through feedback control it is desired to have the output y(t) follow closely
a desired motion yd(t). In the case of a mechanical manipulator y may be speci-
fied in various ways: y =p, where pcR? is the position of the end effector;
y = (p, ®) € R%, where ® € R? is a vector of Euler angles specifying the orienta-
tion of the end effector; y = (p, n, s, a) € R, where n, s, a € R? are unit vectors
specifying the orientation of end effector axes in terms of their direction
cosines. The specific form of G(q) depends on the choice of y and the configura-
tion of the manipulator [1]. The inverse of G is denoted by G', i. e., if y = G(q)
has a solution q it is denoted by G'(y). There may be multiple solutions [1], but

for each of them G' usually exists on an open set in R¥.

In manipulator problems the tracking error may be measured in several

ways. Four examples are:

GH(yd) - q, (1.3)
y¢ - G(q) , (1.4)

Ei(q, y%)

Ee(q, y%)



RSD-TR4-83 2

Es(q. y9) = GYy%) - G(q) . (1.5)
d
o _ P'-P
Egq.y) %(nxnd”xsd”xad) (1.8)

The measure E; describes the most common situation, where servo performance
is measured in terms of the joint angles [1]. E; measures the output error
directly and is appropriate when y =p or y = (p, ®). By choosing G to be the
map which carries (p, n, s, a) into (p, ), E; allows E; to be extended to the case
where y = (p, n, s, a). A problem with E; and Eg is the lack of uniform behavior
with respect to the Euler angles. As the Euler angle singularities are
approached, E; and E; become extremely sensitive to angular errors. The meas-
ure E, applies to y = (p, n, s, &), which is a function of q, and uses vector cross
products to measure angular errors. This avoids the sensitivity problem and
Euler angle singularities associated with E; and E;. The cross product expres-

sion is discussed furtherin [2].

Just as there are different ways of measuring tracking errors, there are dif-
ferent conceptual approaches to feedback system design. The most common
approach for manipulators is to use joint coordinates. Given y%(t), the desired
joint coordinates q¥(t) are computed from G'(y4(t)). Then servos are designed so
that components of q(t) track corresponding components of qi(t). Often the
design is based on single-input, single-output models for each joint, although
corrections for varying inertias and gravitational loads are sometimes intro-
duced [1]. Alternatively, q%(t) may be computed and q(t) controlled through the
use of rate servos. This is called resolved-rate control [3] and has certain advan-
tages in reducing the complexity of path computation and control, though pre-

cise position control is difficult to achieve.

A more sophisticated approach to joint-coordinate control is the "inverse
problem" or "computed torque" technique [4,5,6,7]. In this approach

q¥(t), q¥(t), q¥(t) are computed and the following control law is used

Robot Systems Division
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u(t) = P (M(q(t))(qH(t)-Ke(ad(t)—a(t)) = Kn(gX(t) —q(t))) + F(q(t), @*(t))).  (1.7)

Assuming there are no modelling errors, this gives

e(t) = Kpe(t) + Kpe(t), e(t) = q¥(t) —q(t) = Ey(q(t), y4(t)). (1.8)

By proper choice of the matrices Kp, Kp the solutions of ( 1.8) are asymptotically
stable and the tracking error e(t) tends to zero. More complex variants of this
procedure, which cause y(t) to track yd(t) =pd(t) or yd(t) = (pd(t), nd(t),
sd(t), ad(t)), are described in [2,8]. At present the use of computed-torque
methods has practical limitations because of the complexity of the function
M(q) v + F(q, q). Methods for reducing the computational complexity and the

use of special processors is the subject of research [9-12].

Another concern with computed-torque methods, which has received little
attention, is inaccuracy of the feedback mechanization. In general, the basis for
the control law is an idealized model of the manipulator. When the "idealized"
control law is used with an actual plant the validity of the scheme is subject to
doubt. Thus theoretical results concerning the robustness of computed-torque

methods are of interest.

The purpose of this paper is to examine in a unified framework the
computed-torque method for a variety of error measures. We begin, in Section
R, by stating a general control problem and giving conditions (Theorem 2.1) such
that nonlinear feedback produces an error equation of a form similar to (1.8).
This gets at the main idea of the computed-torque method without using the
complex formulas associated with specific applications. Section 3 treats pertur-
bations in the feedback law. It is shown that the situation is robust: steady-
state errors are small and stability is maintained if errors in the feedbtack law
are sufficiently small. Section 4 applies the preceding theory to the manipula-
tor control problem considered in [2] where E, is the error measure. A different

control law is obtained. While it is more complex than the one obtained in [2], it

Robot Systems Division



RSD-TR4-83 4

has the advantage that error convergence is assured for large errors. Approxi-
mations to the control law are investigated in some detail and it is shown that
the simplest one leads to the control law described in [2]. Section 5 reviews the

general value and applicability of the results.

2. The General Problem

The following notation is used: x € R® is an n-tuple of real numbers which is

usually written as a column vector, x' is the corresponding row vector, linear
operators Q : R® » RP are written x p Qx where Q € RP®is a real p by n matrix,
when Q € R™™ has an inverse it is written Q7!, I, € R™" is the identity matrix,
bilinear operators Q : R®x R™ - RP are written (x,y) » Q[x] [y] and (since the ith
component of Q[x] [y] can be written x' Qy, @ € R™™, i =1, ..., p) is designated
by Q € RP*™m et X C R® be open and assume f: X - RP is C? (twice continu- -
ously differentiable). Then for all x € X, Df(x) C RP*® denotes the first derivative
of f and D?f(x) € RP*™"® denotes the second derivative of f. If X C R®, Y ¢ R™ and
f: X xY > RPis C? similar notations apply. Specifically, D,f(x, y) € RP*® and
Dof(x, y) € RP*™ are respectively the first derivatives of f with respect to the

first and second arguments of f, while the second derivatives are:
D?(x, y) € RP*™1 D2f(x, y) € RPXmXm,
D,D.f(x, y) € RP*™™ D,D,f(x, y) € RP*m*n

and DeDuf(x.y)[a] [8] = DiDaA(x.y)[8] [a].

The general problem consists of the equations of motion ( 1.1) and an error

measure F(q, y9). The error e(t) and its derivatives are given by
e(t) = E(q(t), y4(t)). (2.1)

&(t) = E(q(t), y4(t). (1), y5(1)) .

8(t) = E(q(t), y4(t). q(t). 75(1), 4(1). y4(L)).

] 00
where the functions E and E are defined by

Robot Systems Division
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E(q, y. 4, ¥) = DyE(q, )q + DeE(, y)¥ | (2.2)

00

E(q v, 9.y a4 ¥) = DfE(q, . )[a] [q] +DeDiE(q, Y)[ylla] + (2.3)
DiE(q, y)q +D3E(q. y)[y]ly] +DiDzE(q. y)[q]y] +D:E(a.y) y.

As a first step in the solution of the problem we seek a control law of the form
u(t) = K(q(t), y(t). q(t), y(t), v(t), y4(t)) (2.4)

such that when u is substituted into (1.1)

e(t) = v(t). (2.5)
That is
E(q .4 5. M(Q(PK(q. 7. 4. 7. v, 5) = F(q. Q). §) = v. (2.6)

Having achieved (2.5), various choices for v(t) suggest themselves. For

example, a PID (proportional, integral, derivative) controller has the form

v(t) = KpEp(q(t), y3(t)) + Kpz(t) + KpEp(q(t), y4(t), q(t). y4(t)) . (2.7)
z(t) = Er(q(t), y4(t)) . (2.8)
where Ep=E=E, Ep= E: . (2.9)

Using (2.7). (2.8) together with (2.5) gives a differential equation for the error of

the form
2] [0 I O
w(t) = Aw(t), w(t) = le(t)] ,A=|0 0 In| when K #0, (2.10)
e(t) Ki Kp Kp '
. e(t) 0 Im
= =1 = = .10
w(t) = Aw(t), w(t) o(t) A [KP Kp when K; = 0. ( )
If Kp, K, Kp € R™™ are chosen appropriately A is a stability matrix and

e(t) » 0 .

Conditions for the existence of K are formulated in the simple theorem

which follows. Let £ C R™ x R¥ be open set. In a robotics problem £ would be

Robot Systems Division
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chosen so that (q, y) € £ avoids singularities of E(q, y) having to do with the
geometry and coordinate systems associated with the manipulator. Let @ =

{q:(q, y) € E} | the projection of £ on R™. The assumptions

M:@ » R™™ F:@ x R® > R™ are C!, (A.1)
M(q),q€ @ and P € R™™ are nonsingular ‘ (A.2)
E:E->R™ is C3, (A.3)

D,E(q,y).(q.¥y) € £, is nonsingular, (A.4)
lead to the desired result. ‘
Theorem 2.1. Suppose (A.1)-(A.4) are satisfied. Then K:F£ x
(R™ x R¥)? » R™ given by |
00

K(q, y. 9 y.v.¥) = PY{M(q)(D:E(q y) ' (v - E(q. y. 4. ¥. ¢ ¥) + o1
11

D;E(q, y)q) + F(q. 9))

is C! and causes (2.8) to be satisfied for all (g, y) € E and (q, y), (v, y) € R® x R¥

Proof: verify by substituting (2.11) into (2.6).

For special cases the formula for K becomes less formidable. For example,
consider E = E, where in (1.3) G'is defined on Y and £ = G'(Y) x Y. Then it fol-

lows from (2.11) that

K(q. v, q v, v. y) = PTY(M(a)(~v+D*GH(y)[ylly] + DG'(y)y) + F(q. q)) (2.12)

By setting q% = D®G'(y%) [y4][y%] + DG'(y)y? and using (2.7) with (2.9) and K; = 0
, the system (1.7), (1.8) is obtained. Using E = E; with G defined on @ and
E=QxG (Q) gives

K(a,y.q 5y v.y) = P{(M(Q)(DG(q))™" (-v-D?G(q)[q]lq] + ¥) + F(q. q@)) .  (2.13)

For specific applications in robotics DG(q) and D?*G(q) may become quite com-
plex. See [8] for some details when y = G(q) = p € R®. The case E = E, is con-

sidered in Section 4.

Robot Systems Division
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3. Errors in the Feedback Law

The overall control law of the preceding section is determined by the func-
tions K, Ep, E; , Ep and the matrices Kp, K;, Kp. Different functions, K, Ep, E;, Ep
are used in an actual implementation because of errors due to computations,

approximations and the inaccurate modelling of M, F, P, and E.

In this section the effects of such implementation errors are considered.
To simplify the analysis it is assumed that y4(t) is constant. Effects of imple-
mentation errors on the accuracy of the equilibrium solution and system
dynamics in the neighborhood of the equilibrium solution are studied. The
underlying perturbation theory has been used previously in a similar context
[13].

The differential equations for the perturbed closed-loop system are

obtained by substituting K, Ep, By, Ep for K, Ep, By, Ep in (1.1), (2.4), (2.7), (2.8).

This gives
. x(t)
X(t) = Hx(®). x(t) = Ja(®) . (3.1)
q(t) »
where
bA EI(Q» yd)
t(la]) = [ : (3.2)

q M~Y(q)(Pu-F(q, q))
u=X%q, y4 q.v),

v = KpEp(q, ¥%) + Kz + KpEs(q, 4, @).
Here, and in what follows, the superscript o denotes the substitution which

results from y(t) = y4(t) = 0. For example, K(q y4 ¢ v) = K(q. y% ¢ 0 v,0)
While it is not indicated explicitly in (3.1), f depends on y® and K°, Ep, EjES.
In general, the equilibrium solution of (3.1), x(t) = X will differ from the

ideal : z(t) = q(t) = 0, q(t) = q*, E(q* y?%) = 0. Moreover, the system matrix for

Robot Systems Division
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the linearized equations at %, Df(X), will have characteristic roots which differ
from the ideal characteristic roots A\(A),i=1,...,3m. These deviations are

characterized precisely by the theorem which follows.

First, it is necessary to introduce appropriate measures of functional close-
ness and other notation. For an open set x C R" let y(x, RP) denote the set of all
C! functions from x into RP. Let | . |, and | . |, be norms for R® and RP . These
norms generate norms for AE€RP® and fey(x.RP): ||A||;p= max
ElAxlp:x € R [xla =1 |l g = swp (1], [IDHR s xEX -
Thus functions £, T € 7(x. RP) are close if and only if both the functions and their
derivatives are close. Hereafter, subscripts are omitted from the norms when

the meaning is clear from context.

It is also necessary to restrict attention to neighborhoods of the ideal

equilibrium. Let 7n(e, ¢) = {y € R™: | y—¢ | < ¢} and assume

n(e. q*) xn(e, y9) C E . : (3.3)
Define

7° (&) =7y(nle. q*) x 7 (&, y%), R™), (3.4)
7 (&) = (n(e. q*) xn(s, y) x (n (¢, 0)) \R™),i=1 2. (3.5)
Finally, for A € R™® let \{(A),i =1, ... ,n, be the characteristic roots of A.

Theorem 3.1. Assume: (A.1) - (A.4) are satisfied; (q* yd) € £ and
E(q* y%) = 0; ReA(A) <0 <0,i=1,...,3m, where A is given by (2.10); K°, K° €
¥%(e): Ep Ep Ep, By € 9°(e); E§, Ef € y!(€); K° is determined from (2.11) and
Ep, E;, Ef from (2.9) by appropriately restricting the functional domains. Given
any ¢ > 0 satisfying (3.3), there exist 8, p, 6, 6p > 0 such that || K°-K° || <
Ok | 1Ep=Ep || < &p, ||E~E; || < 6y [|E§-E§ || < 6p imply (3.1) has a unique

equilibrium solution z(t) =% q(t) =g, q (t) = 0 such that |E(g, y¥)| < & and

|Z| < & . Furthermore, it is possible to choose g dp, 0, 0p so that

ReN(Df(X)) < 0, i=1, ..., 3m where X = (Z, q, 0).

Robot Systems Division
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Remark 3.1. The theorem shows that both the accuracy of the equilibrium
solution and the dynamic behavior of the linearized closed-loop system can be
maintained if K - K, Ep — Ep, EI - Ep ED — Ep are sufficiently small in the indi-
cated way. In practice the dg, dp, d;, dp and the norms are difficult to evaluate,

so the theorem should be viewed as a qualitative rather than quantitative result.

Remark 3.2. The choice of the tolerances dg, dp, 6y, 6p depends on y9. Thus,

the tolerances may be smaller for some y¢ than others. The same can be said

for 0 and &. The tolerances are likely to be larger if o - max
i\(A):i=1,...,3m)}, and ¢ are larger.
Remark 3.3. The condition ReA(Df(X)) < ¢<0,i=1,...,3m, implies that

the equilibrium point X, of the nonlinear system (3.1), is isolated and asymptoti-
cally stable (see [14]). The rapidity of approach to the equilibrium point

depends on ¢, which can be influenced by the choice of Kp, Kj, Kp .

Remark 3.4 The theorem could be generalizéd to account for errors in

Kp, Ki. Kp. Usually such errors are insignificant.

Remark 3.5. Note that q depends only on El(q, y%) = 0. The integral control
automatically corrects for errors produced by K, Ep, Ep. Generally this necessi-
tates Z#0. To assure E(g, yd) = 0 it is sufficient to require Ei(q, y¥) = 0 for all

(q, y%) € E such that E(q, y9) =0 .

Remark 3.6. The theorem applies when K; = 0. It is only necessary to define -
A by (2.10.1) and eliminate all reference to z(t), Z, é; and E; .

Remark 3.7. If K; = 0 the conditions for E(g, y¥ = 0 are more severe than in
Remark 3.5. Suitable condition are: K(q. y%0,0,0,0) =K(q, y& 0,0,0,0),Ep
(9 v = Ep(q. y9) . En(q. y% 0,0) = Ep(q, y% 0,0) for all (q, y%) € £ such that
E(q, y9) = 0.

The proof of Theorem 3.1 follows from the following theorem which is a sim-

ple rewording of results found in Chapter 16 of [14].

Robot Systems Division
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Theorem 3.2. Suppose x C R® is an open set and g € ¥(x, R"). For x* €y
assume g(x*) =0 and Dg(x*) is nonsingular. Then for any & >0 satisfying
n(e, x*) C x there exists 6 >0 such that ||g—-g| I'r(n(:. e.Ry < § implies
g(x) = 0 has a unique solution x = X satisfying |X — x*| < ¢ . Furthermore, if
ReA(Dg(x*)) <o,i=1,...,n, it is possible to choose § so that in addition Re)

(DE(X)) <o, i=1,...,n

To apply this theorem the state x in (3.1) is related to w = (z, e, e) by

z Z
w=T(x) =T(lq) = [E(a.y) | . - (38)
ol [DiE(q y9q

For all z, € R™, (q, y¥) € £ it follows from (A.4) that DT(x) is nonsingular. Thus
by the implicit function theorem (3.1) can be written in terms of w by

w(t) = g(w(t)) , (3.7)
where: g: x » R¥™is C!, x ¢ R%™ is open, 0 € x and

g(w) = (DT(T™(w))) (T~ (w)) . (3.8)
Clearly, g depends on K, Ep, E;, Ep . When K # K, Ep # Ep, E; # E;, Ep # Ep we indi-
cate this by writing g = g; when there are no errors it follows from Section 2
that g(w) =Aw. Because A is nonsingular (this follows from
M(A)<0,i=1,...,3m), g(w)=Aw=0 implies w=x*=0. By choosing
Ok, Op, 01, ‘69 appropriately it follows that || g —g | |<6 for any & > 0. Thus
Theorem 3.2 gives the equilibrium results of Theorem 3.1 The characteristilc root

result follows from the fact that Dg(T(X)) and Df(X) are similar matrices.

4. An Example

In this section a mechanical manipulator with error measure E; is con-
sidered. The feedback law given by (2.4), (2.7)-(2.9), (2.11) is determined. The
form of the law is examined and its relationship to the control law obtained in

[2] is discussed. Because of limited space, it is necessary to simplify notation

Robot Systems Division
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and omit details from the following developments.

Let y = (p, m) where 7 = (n, s, a). Then (1.2) can be written as

P = Gp(@) . = Galq),

11

(4.1)

where G,:R® - R% Ggp:R®- R Let w(t), w(t) € R? denote the angular velo-

°o .
city of the sets (n, s, a), (n s4 ad). Then there exist Hy(q), Hu(q). Hy(q q),

0 .
H,(q, q) € Raxg such that

3 g (3 X3 ° . »
P = Hy(q)g, p = Hp(q)q + Hy(q, 9)q,

o = Ho(@d = Hy(a)d + Hylq. 94 .

See, for example, [2].

The error measure is written

Ex(p. p9)

dy = pd
g, (r, )+ Ep(P. P9 = PP,

E(q, y%) =

En(m, md)= —é—(nx nd+sxsi+axad),
Straightforward differentiation shows that

o

E(p.p%p.p) =p'-p,

[+]
E(m, m 0, 0d) = L'(m, m)ed - L(m, e,

°° . . ‘e e Xl X3
E,(p.p p. p%p. P =0 -p,
00

E (m 0 o0 0 0% = L(m mde +
o .o :
L(m, md, o, oMol = L(r, 7)o - L(m, 14, 0, oo

]
Here L(m, ), L(m, 7, , w?) € R®3, the ' denotes matrix transpose and

L= ——é-(NdN + 595 + AdA)

Robot Systems Division
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1
2 . . 0 . . .
where N4, 59, A4, N¢ S9 Ad N, S, A N, S A€R™ are skew symmetric and are

] . . . . . .
L= —= (NN + NIN + 595 + S9S + A%A + A4A) (4.10)

obtained from nd, s4, ad, n?, s¢, a4 n s a, n s a For example,
0 -n3 np n,

N=]ng 0 -n;f, n=ng . (4.11)
-n, n, O nj

The derivative vectors such as n are given in a simple way; for example, if w has
components &,, Wz, &g then n; = wahg — Ny @g, Nz = Wgh; —Ngw;, Ng = @, Np — N,Wy.

Substituting (4.2), (4.3) into (4.5)-(4.8) and omitting the arguments of the
functions gives

—Hq p? - Hyq

;s (4.12
DE= |y E= 12)

00 .
E - DlEq = , o o, o ,
L'wd + L'wd = LH,q - LH,q

When the formulas (4.2) are substituted into (2.9) and (2.11), the expressions for
K, Ep, E;, Ep are obtained. If £ is chosen to avoid "geometric singularities”, it
can be verified that assumptions (A.1)-(A.4) are satisfied. Thus, Theorem 2.1

applies. Moreover, implementation errors can be tolerated in the sense of
]
Theorem 3.1. We now examine further the matrices L and L which appear in the

feedback law.

o
When E, = Eq(m, %) and Aw = & — & are small the formulas for L and L have

simple approximations:

1

L=Ia+ D)

Ep + R(m, %), (4.13)

Robot Systems Division
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[]
L= -é—(odp:,, —E,04 + AD) + R(m, 4, o, od). (4.14)

Here ET, Q4 AQ are skew symmetric matrices corresponding to Ep w9, Aw and
[} o

R R satisfy: || R(m m9) || <n|Ex(m 7#9)|2 |IR(m, nd @, ) || <n|Ep(m, m9)].

(|En(m, m)| + |Aw|), where w4 is bounded and 7 is sufficiently large. Thus good

]
approximations for L and L which are computationally simple, may be obtained

o
by setting R = R = 0 in (4.13) and (4.14).

[+]
Now consider the even simpler approximations L. = I3 and L = 0. Using these

~

substitutions in the formulas for K and Ep gives new functions % and Ep. Note Ep
and Ej remain unchanged and are equal to E. assume yd(t) is constant. Then a
somewhat tedious development shows that the system (2.10) (or (2.10') if K; = 0)
is replaced by
w(t) = Aw(t) + A (w(t))w(t), (4.15)
where: A, :7 - R™¥is C!, n c R®is a neighborhood of the origin, and A;(0) = 0.
Thus the approximate control law AI& Ep, EL ED. maintains the original equili-
brium w = 0 (or z =0, E(q, y%) =0, q = 0). Furthermore, when the system (4.5)
is linearized at w = 0, the system (2.10) is obtained. If A is a stability matrix,
this implies that the equilibrium solution of (4.15) is (locally) asymptotically

stable.

The approximate control law has another interesting feature. When
Ki = 0, Kp = =kplg, Kp = —k;lg it gives the control law of [2]. This places a new
perspective on the control law in [2] and provides a rigorous proof of its local

stability for y4(t) constant.

There may be good reason for using the exact control law K, Ep, E;, Ep. The

number of additional computer operations is not that large compared with the

approximate law K, Ep, Ej, Ep. And, unlike (4.15), the error equation (2.10) is
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linear. Thus error convergence is assured even though the initial error may be

large.

5. Conclusion

We have presented two rather simple results concerning the choice of feed-
back laws for the system (1.1) with error measure e(t) = E(q(t), y3(t)). The first,
Theorem 2.1 concerns the existence and form of the feedback function, K in
(2.4), which gives the error equation (2.5). Once (2.5) has been obtained a
variety -of schemes, of which (2.7), (2.8) is a simple example, can be used to
complete the overall feedback law. The second result, Theorem 3.1, shows that
such designs are robust in the sense that accuracy and stability are not badly
upset if implementation errors are kept sufficiently small. While Theorem 3.1
applies to the feedback law described by (2.4), (2.7)-(2.9), ( 2.11), it is clear from

Theorem 3.2 that similar results can be obtained for more complex situations.

The main contribution of the paper is a systematic approach to feedback
system design which is based on a general error expression. The value of the
systematic approach is confirmed for the error expression E,;, where the result-
ing control law can be viewed as a generalization of the one obtained in [2].

Other error expressions have been treated with similar success by the authors.

The importance of the general solution formulas should not be overlooked.
Since they are not burdened by the complex details of a specific physical prob-
lems, they allow one to focus on conceptual issues apart from the multitudinous
details of implementation. For example, with integral control it is seen that high
accuracy for constant (or near constant) inputs depends only on Ei(q,yq). Thus,
if possible, F; should be determined by direct physical measurement (end-
effector sensors). On the other hand E; and Ep may be determined indirectly

from q and q using formulas based on a reasonably accurate model of the actual
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physical system.
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