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SUMMARY

This research was motivated by a desire to model the progression of a chronic disease through various
disease stages when data are not available to directly estimate all the transition parameters in the model.
This is a common occurrence when time and expense make it infeasible to follow a single cohort to
estimate all the transition parameters.
One di�culty of developing a model of chronic disease progression from such data is that the

available studies often do not include the transitions of interest. For example, in our model of diabetic
nephropathy, many clinical studies did not di�erentiate between patients without nephropathy and those
who had microalbuminuria (a pre-clinical stage of nephropathy). Another di�culty was a lack of data to
directly estimate parameters of interest. We consider models which can accommodate such di�culties.
In this paper we consider the problem of estimating parameters of a discrete-time Markov process when

longitudinal data describing the entire process are not available. First, we present a likelihood approach
to estimate parameters of a discrete-time Markov model. Next, we use simulation to investigate the �nite-
sample behaviour of our approach. Finally, we present two examples: a model of diabetic nephropathy
and a model of cardiovascular disease in diabetes. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This research was motivated by a desire to model the progression of a chronic disease and
of its complications through phases (stages) of severity when data are unavailable to directly
estimate transition parameters between all the stages. In particular, we were interested in
developing a model of diabetes progression which would include diabetic complications such
as nephropathy and cardiovascular disease. Such models are useful in many applications and
can incorporate many facets of clinical interest including rates of progression, relationships
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between diseases and their complications, costs of treatment, quality of life, and bene�ts
of intervention. However, these models may include many parameters, and it is di�cult or
expensive to collect data to estimate all the parameters of the processes.
In our model of diabetes, longitudinal data were not available to estimate the transitions

between stages of progression for all of the complications of diabetes. This is common when
time and expense make it infeasible to follow a cohort through all stages of a disease. Often,
the only available data for disease modelling are provided by small clinical studies which
focus on a single transition in the disease process.
Current approaches to disease models involve either (a) simplifying the model to one whose

parameters can be estimated by a single study [1], (b) making distributional assumptions about
unmeasured transitions of the model [2, 3] or (c) using multiple studies: one for each transition
in the model [4–6].
Compiling estimates from various studies is bene�cial in that it allows a model to be contin-

ually updated as new data become available. However, the studies that provide estimates may
not estimate all the transitions of interest. For example, in our model of diabetic nephropathy,
many clinical studies did not di�erentiate between patients without nephropathy and those
who had microalbuminuria (a pre-clinical stage of nephropathy). Although estimates of these
transitions cannot be used to directly estimate model parameters, these estimates which in-
volve transitions from normal to microalbuminuria and from microalbuminuria to nephropathy
may improve estimates of the parameters of interest when combined with estimates from other
studies.
Another di�culty encountered when using the existing techniques is the amount of data

available. Some transitions have no data available while other transitions are well-studied. It is
occasionally possible to indirectly estimate transitions for which we have no direct estimates.
In this paper we discuss requirements for estimability when direct estimates of transitions are
not available. Conversely, when transitions have several estimates, it can be di�cult to select
a single best estimate to include in the model. Our method is also appropriate for pooling
estimates from multiple studies.
We assume that data are available in the form of cumulative counts of transitions from

some set of paths in the model. Since transition estimates are rarely available as a function of
time, we do not consider these types of transitions. Another characteristic of our data is that it
comes from studies with varying lengths of follow-up. Thus, our approach considers the design
features of each study. These characteristics of the data drive the development of our model.
In this paper, we consider the problem of estimating parameters of a discrete-time Markov

process when longitudinal data that describe the entire process are not available. First, we
present a likelihood-based approach to estimate parameters of a discrete-time Markov model.
Next, we use simulation to investigate the �nite-sample behaviour of our approach. Finally,
we present two examples: a model of diabetic nephropathy and a model of cardiovascular
disease in diabetes.

2. THE MODEL

2.1. De�ning the model

We begin by making the following assumptions:

1. the disease process operates as a �rst-order Markov chain,
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2. the data are independent realizations generated from either the process, one of its sub-
processes, or a grouping of the process,

3. the data collected from published medical studies are unbiased estimates of the parameters
that they measure,

4. the data are homogeneous with respect to risk factors among subjects in a given state,
and

5. the data are informative.

We also de�ne the following nomenclature: let direct data denote data that provide an esti-
mate of a parameter in our model. Transitions in the theoretical model are denoted as primary
transitions and the transition probabilities for these primary transitions are the parameters of
interest. Indirect data are estimates of transitions that are not explicitly stated in the model
(i.e. not primary transitions), such as those that omit stages. Paths for which we have indirect
data estimates will be called augmentary transitions; i.e. these are paths whose cumulative
probabilities of progression are functions of more than one parameter in the model.
Let

(i; j) denote the path from node i to node j,
N denote the number of nodes in the theoretical model,
P denote the transition matrix for the theoretical model with elements {P}ij=�ij,
�lij(tl) denote the cumulative transition probability for the lth study,
tl denote the units of time observed in the lth study, and
xlij denote the number of subjects in the lth study progressing from state i to j by time tl.

Then, from our assumption of independent studies, the likelihood can be expressed as

L∝∏
l

∏
i

∏
j
�lij(tl)xlij (1)

where
∑

j �lij=1.
Then we de�ne Pl such that �lij(t)= {Ptl }ij. Thus Pl generates the cumulative probability

of transitions for the likelihood. Note that Pl depends on both the structure of P and the
design of the clinical study. In general, Pl can be de�ned by rewriting P with appropriate
absorbing states to represent the counting process of the clinical study. These absorbing states
preclude counting subjects who progress along alternative paths (not included in the clinical
study) and generate cumulative probabilities of progression without enumerating all possible
paths beyond the study endpoint. Using this technique, which we call ‘designed absorption’,
and exploiting the structural zeros speci�ed in Pl greatly reduces the computational burden of
evaluating the likelihood.
When the study design generates realizations from a grouped Markov chain (i.e. the study

does not di�erentiate between several states), Pl must re�ect the grouping. To construct Pl
in this setting, we reindex the nodes of the grouped process via an ‘onto’ mapping h(j)= i∗,
i∗ ∈ {0; : : : ; m}, m¡N which takes the jth node of the ungrouped process and maps it to node
i∗ in the grouped process. Then, let Kl(w), a (m×N ) matrix, m¡N , be de�ned as

{Kl}i∗ ; j(w) =
{
wj if h(j)= i∗

0 otherwise

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:1035–1049
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wj =
Mj∑

j�h(j)=i∗ Mj

where Mj is the prevalence at state j. Also let Kl(1) (n×m) be de�ned as Kl(w) where
wj=1 ∀j. Then Ptl =Kl(w)PtKl(1) in the likelihood. As an example, for one grouped node
which, without loss of generality, combines nodes i–j, Kw would be

Kl(w)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 · · · 0 · · · 0

0 1 0 · · · 0 · · · 0 · · · 0

· · · · · · · · ·
0 0 0 · · · wi · · · wj · · · 0

· · · · · · · · ·
0 0 0 · · · 0 · · · 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

P1l =Kl(w)PKl(1)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�11 · · · ∑j
l=i�1l · · · �1n

�21 · · · ∑j
l=i�2l · · · �2n

· · · · · · · · ·∑j
k=iwk�k1 · · · ∑j

l=i

∑j
k=iwk�kl · · · ∑j

k=iwk�kn

· · · · · · · · ·
�n1 · · · ∑j

l=i�nl · · · �nn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.2. Estimability

In general, MLEs for cumulative probabilities (e.g. �lij(tl)) will be estimable when the data
are informative. However, we are interested in the estimability of the annual probabilities,
�ij. When data are not available for some primary transitions, model parameters may or may
not be estimated from a combination of available primary and augmentary data. Thus to
determine estimability of the annual probabilities we show the existence of an identi�able
mapping between the cumulative and annual probabilities.
Let

s denote the number of primary paths in the model,
r denote the number of observations, r¿ s,
e=(e1 : : : es)′ denote the vector of primary edges in the graph indexed by a,
Eij denote the set of edges in all paths connecting nodes i to j,
�=(�1 : : : �s)′ denote a vector of primary transition probabilities corresponding to e,
�=(�1 : : : �s)′ denote a vector of transition times for the edges corresponding to e,
d=(d1 : : : dr)′ denote a (r× 1) vector (r¿ s) of expected transition times for the data indexed

by c,
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Ba denote the set of indices of edges branching from the initial node of edge ea,
W be an (r× s) matrix

wca=

{
1 if a∈Eij
0 otherwise

z=(z1 : : : zs)′ denote the vector of conditional probabilities indexed by a such that za=
�a=(

∑
i∈Ba �i)

2, the conditional probability of traversing edge a from the initial node of
edge ea.

Lemma 1
If the z’s de�ned above are estimable, then � is estimable.

Proof
Partition the z’s into sets, Zq= {zj|j ∈ Bq}. Then, for each partition

∑
z∈Zq

z=
∑
a∈Bq

(
�a

(
∑

i∈Bq �i)
2

)

=
1

(
∑

i∈Bq �i)
2

or (
∑

i∈Ba �i)
2 =1=

∑
z∈Zq z. Substituting this result into the de�nition of za, we get

�a=
za

(
∑

z∈Zq z)

for all �a such that za ∈Zq. Since the choice of partition was arbitrary, all �’s are estimable.

Theorem 2
If rank(W )= s, then the transitions in the model are estimable.

Proof
Under our Markovian assumption, the expected time to transition for a single edge is

E[�a] =
∞∑
k=0
k

(
1− ∑

i∈Ba
�i

)k−1
�a

=−�a
∞∑
k=0

@
@�a

(
1− ∑

i∈Ba
�i

)k

=−�a @
@�a

(
1∑
i∈Ba �i

)

=
�a

(
∑

i∈Ba �i)
2
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Then, the expected time to transition for dc, the cth observation which traverses some path
from i to j, is

dc =
∑
a∈Eij

E[�a]

=
∑
a∈Eij

�a
(
∑

i∈Ba �i)
2

=
∑
a∈Eij

wcaza

Thus, d=Wz, and if rank(W )= s the z’s are estimable. Finally, by Lemma 1, estimable
z’s imply estimable �’s.

This suggests an algorithm for determining estimability: create a matrix, W , of paths tra-
versed by the data; if W has rank s, the model is estimable from the data.

2.3. Extensions for covariates

A common occurrence in disease modelling is to have at least one clinical study which gives
transition estimates based upon some strati�cation of covariates. Manton [2] presents a similar
problem for a single study modelled in continuous time. We adapt his approach for use with
multiple studies and discrete time by rewriting the likelihood from equation (1) as

L∝∏
l

∏
i

∏
j

∏
s
�lijs(tl)xlijs

where s indexes the strata for each transition, and (as before) l; i; j index the studies, starting
points, and ending points, respectively. This notation implies a block-diagonal structure to the
transition matrix, P. The transition matrix can be written as sub-matrices, Ps, for the level of
each covariate s=1; : : : ; z.
In many situations, we will have unstrati�ed data to incorporate into the likelihood in addi-

tion to strati�ed transition data. In these situations, we can view the strata as a grouped node
and use prevalence data to proportionally allocate grouped data into strata. However, unstrat-
i�ed data alone will give no information about the strata-speci�c probabilities. Estimation of
strata-speci�c transition probabilities requires either strati�ed data or additional assumptions.

3. SIMULATIONS

To investigate the �nite-sample properties of our estimators, we performed a number of sim-
ulations. We ran 1000 replications of a 3-node model (illustrated in Figure 1). In this �gure
we represent the primary transitions as solid arrows and the augmentary transitions as dashed
arrows. The simulations vary the number of studies per transition and number of subjects per
study. Each observation was generated by simulating the number of progressions among the
subjects over a 5-year study. Table I displays the results of our �rst set of simulations. The
table reports the number of studies for the paths (0; 1); (1; 2), and (0; 2), respectively, as ratios
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Figure 1. Model and data design for simulations.

Table I. Simulation results with 1000 replications of a 3-node model.

�01 �12 Features Studies Subjects �̂01 (SE) �̂12 (SE)

Varying number of studies
0.1 0.2 No augmentary 1:1:0 500 0.1005 (0.0067) 0.2002 (0.0104)
0.1 0.2 1:1:1 500 0.1000 (0.0058) 0.2001 (0.0100)
0.1 0.2 Unbalanced 1:1:3 500 0.0999 (0.0052) 0.2007 (0.0994)
0.1 0.2 Unbalanced 1:1:9 500 0.0999 (0.0043) 0.2007 (0.0089)
0.1 0.2 No augmentary 3:3:0 500 0.1003 (0.0042) 0.2003 (0.0065)
0.1 0.2 3:3:3 500 0.1000 (0.0035) 0.2001 (0.0057)
0.1 0.2 Unbalanced 3:3:9 500 0.1001 (0.0030) 0.2001 (0.0053)
0.1 0.2 No primary 0 to 1 0:1:1 500 0.1004 (0.0136) 0.2004 (0.0104)
0.1 0.2 No primary 0 to 1 0:1:3 500 0.0996 (0.0082) 0.2011 (0.0100)
0.1 0.2 No primary 0 to 1 0:1:9 500 0.1003 (0.0062) 0.2004 (0.0104)

Varying number of subjects
0.1 0.2 3:3:3 100 0.1001 (0.0076) 0.2007 (0.0124)
0.1 0.2 3:3:3 1000 0.1002 (0.0025) 0.2001 (0.0041)

Varying size of �01
0.2 0.2 No augmentary 3:3:0 500 0.2002 (0.0059) 0.2003 (0.0060)
0.2 0.2 3:3:3 500 0.2001 (0.0054) 0.2002 (0.0061)
0.3 0.2 3:3:3 500 0.3001 (0.0076) 0.2003 (0.0052)
0.5 0.2 3:3:3 500 0.5002 (0.0139) 0.2002 (0.0048)

(e.g. 1:1:0). In all cases, the distribution of the estimates, �̂01 and �̂12 were approximately
normal.
The model (1:1:0) can be �tted by the current techniques for disease modelling. The addition

of a single augmentary study (model 1:1:1) decreases the standard error of �̂01 by a relatively
small amount. However, the use of 9 augmentary studies decreases the standard error by
approximately 65 per cent. Comparing the model �t by existing techniques (model 1:1:0) to
models which allow pooling of data (e.g. model 3:3:0 or 3:3:3), the use of multiple studies
substantially decreases the standard error. In general, the standard error decreases proportional
to the amount of primary data, and decreases more slowly with augmentary data.
Our simulations also demonstrate our technique in scenarios where the existing techniques

cannot be used. When there are no primary data available for a transition, our method can
estimate transition probabilities from augmentary data, at the cost of increasing the standard
error. Comparing models 0:1:1 and 1:1:0 we see that replacing a primary study with an
augmentary study doubles the standard error. However, the parameter is estimable. Note that
it requires about nine augmentary studies to reduce the variance to a level comparable to
using a single primary study.
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Figure 2. Model and data design for simulations.

Table II. Simulation results with 1000 replications of models displayed in Figure 2 with
data from 5-year study periods.

Transition Simulated Asymptotic Studies= Model
From–To Value Estimate SE SE Path Subjects (Figure 2)

0–1 0.1 0.100 0.013 0.012 3:3:3 500 A
1–2 0.2 0.204 0.035 0.036
2–3 0.1 0.100 0.013 0.013

0–1 0.1 0.101 0.012 0.011 3:3:3:1 500 B
1–2 0.2 0.201 0.023 0.020
2–3 0.1 0.100 0.007 0.007

0–1 0.1 0.100 0.019 0.020 1:1:1 200 C
1–2 0.2 0.208 0.049 0.060
2–0 0.1 0.101 0.019 0.015

0–1 0.1 0.101 0.013 0.021 1:1:1 50 D
1–2 0.2 0.202 0.031 0.030

0–1 0.1 0.101 0.021 0.022 2:2:2 20 D
1–2 0.2 0.202 0.036 0.038

0–1 0.1 0.102 0.030 0.024 1:1:1 20 D
1–2 0.2 0.205 0.059 0.063

To investigate our method’s performance in more di�cult scenarios and small sample sizes,
we performed additional simulations. Figure 2 illustrates several simulated models and Table
II provides details about each simulation. For each model we present a variance estimate
based on likelihood theory and a comparable simulated variance based on 1000 replications.
The �rst three simulations have limited data for the primary edges. Models A and B contrast
models with and without a single study measuring a primary edge; model C illustrates the
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estimability of a model where no primary data are available, but augmentary data are collected
as subjects progress two stages in the loop. Finally, we present three simulations with model
D where we decrease the number of observations and subjects to investigate performance with
very small sample sizes.
Similar to the results of the �rst simulations, the results in Table II show agreement between

point estimates and their theoretical values. Also, the simulated variances are close to the
variance estimates derived from likelihood theory. In particular, the last lines of Table II
display results from a model with 3 nodes, 2 parameters, 3 observations and 20 subjects per
observation. Even in this sparse simulation, the di�erence between standard errors from the
simulation and asymptotic results was not more than 0.006.

4. APPLICATIONS

This research was motivated by a model of progression and complication in diabetes mellitus.
Because of the time, expense, and di�culty involved in conducting a longitudinal study of
diabetes progression, data for such disease-progression models typically come from many
small studies, each of which estimates parameters of one or two steps in the process [4, 6].
Since these smaller studies were not designed to investigate our theoretical model, they do
not necessarily provide direct estimates of our disease model. For example, we desired to use
a study of diabetes progression that did not di�erentiate between healthy patients and patients
with microalbuminuria (a pre-clinical stage of proteinuria).
The foundations for the theoretical model were chosen in collaboration with clinical inves-

tigators, and the data were extracted from the medical literature by a clinical researcher after
an extensive literature review. This researcher provided us with the best available literature
providing primary and augmentary estimates for the model and then providing us with the
‘best’ estimate for each of the primary transitions as per the standard approach. In the fol-
lowing sections, we use the available literature to compute estimates of disease progression,
and we compare those results to estimates using the standard approach.

4.1. A discrete-time model of diabetic nephropathy

Our theoretical model for progression of diabetic nephropathy included 6 stages: normal
(no nephropathy), microalbuminuria, proteinuria, end-stage renal disease (ESRD) with dial-
ysis, ESRD with transplant, and death due to ESRD (denoted as states 0–5, respectively).
Figure 3 illustrates the states and transitions. The corresponding transition matrix for proba-
bility of transitions in one year is

P=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− �01 − �02 �01 �02 0 0 0

0 1− �12 �12 0 0 0

0 0 1− �23 �23 0 0

0 0 0 1− �34 − �35 �34 �35

0 0 0 0 1− �45 �45

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Normal

Microalb:

Proteinur:

Dialysis

Transpl:

Death
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Figure 3. A discrete-time model of nephropathy.

Table III. Medical data for a discrete-time model of diabetic nephropathy.

Transition N Incident count Years Annualized Reference

0–1 79 15 6 0.034 Ravid [7]
0–1 90 31 9 0.046 Forsblom [8]
{0; 1}–2 398 69 4 0.046 Klein [9]
0–2 176 36 6 0.037 Gall [10]
1–2 49 26 6 0.118 Tanaka [11]
1–2 45 19 5 0.104 Ravid [12]
2–3 202 16 5 0.016 Humphrey [13]
3–4 1000 40 1 0.04 USRDS [14]
3–5 231 144 3 0.278 Koch [15]
3–5 11 929 5356 5 0.112 Byrne [16]
4–5 23 4 5 0.037 Meigham [17]

Table IV. Comparative solutions for diabetic nephropathy model with and without pooling data.

Single Pooled
Transition State names estimate SE estimate SE

0–1 Normal to microalbuminuria 0.05 0.0088 0.046 0.0067
0–2 Normal to proteinuria 0.03 0.0061 0.026 0.0060
1–2 Microalbuminuria to proteinuria 0.10 0.0228 0.091 0.0105
2–3 Proteinuria to dialysis (ESRD) 0.01 0.0041 0.017 0.0039
3–4 Dialysis to transplant 0.04 0.0062 0.039 0.0061
3–5 Dialysis to death 0.11 0.0015 0.119 0.0030
4–5 Transplant to death 0.04 0.0184 0.045 0.0215

One clinical assumption was to include a transition from no nephropathy to proteinuria
which bypasses microalbuminuria. Our interpretation of this parameter is patients’ progression
from normal through microalbuminuria to proteinuria within a single year. Setting �02¿0
allows us to model these rapid progressions.
Table III displays the data extracted from the medical literature for use in our model

of diabetic nephropathy. Grouped nodes are indicated by braces. The results are shown in
Table IV for both the traditional ‘single estimate’ method and our ‘pooled’ method. Note that
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Table V. Estimated correlation matrix for a model of diabetic nephropathy.

�̂01 1
�̂02 −0.014 1
�̂12 −0.046 −0.444 1
�̂23 0.001 0.0003 −0.002 1
�̂34 0 0 0 0 1
�̂35 0 0 0 0 0.312 1
�̂45 0 0 0 0 0.064 −0.761 1

the standard errors for the pooled estimates are generally on the same order as the single
estimates. This is not surprising given the limited amount of additional or augmentary data.
However, in cases like the estimate between microalbuminuria and proteinuria, the standard
error is reduced 50 per cent as the sample size doubles by adding a second study and aug-
mentary data. In contrast, the standard error for the transition between dialysis to death is
larger for the pooled estimate than for the single estimate. This can be explained by examining
the annualized estimates displayed in Table III. The two studies providing estimates for the
progression between dialysis and death [15, 16] suggest very di�erent estimates. Moreover,
if Koch’s estimate had been selected by our clinical expert as the best single estimate, the
standard error for reference would be 0.02. Because Koch’s sample size is substantially lower
than Byrne’s the pooled point estimate re�ects Byrne’s estimate; however, the variance is
based on the mean square error which is increased due to the large di�erence between the
estimates in the two studies.
Table V displays the correlation matrix for our estimates of transition probabilities. The

block zero pattern in the lower left corner is due to the model design and availability of data.
As Figure 3 illustrates, there are no primary paths which bypass state 3 (ESRD with dialysis)
and there are no augmentary data which include dialysis as an intermediary state. Thus, our
estimates of transitions between states 3, 4, and 5 are independent of transitions between
states 0, 1, 2, and 3. When additional augmentary data are included which has stage 3 as an
intermediary state (e.g. transition from proteinuria to death), this block diagonal pattern is lost.

4.2. A discrete-time model of cardiovascular disease in diabetes

We also applied our method to a model of cardiovascular disease in diabetes. The states were
ordered from 0 to 4, respectively, as normal (no CVD), angina, MI, history of MI, and death
due to CVD. The transition matrix was de�ned as

P=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− �01 − �02 �01 �02 0 0

0 1− �12 − �14 �12 0 �14

0 0 0 �23 1− �23
0 0 �32 1− �32 − �34 �34

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Normal

Angina

MI

History

Death

This model de�nes a myocardial infarction (MI) as an event such that patients pass through
MI and either die or enter a state called ‘History of MI’. Because of our assumption of discrete
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Table VI. Medical data for discrete-time CVD model.

Transition N Incident count Years Annualized Reference

0–2 890 180 7 0.032 Ha�ner [18]
0–3 1138 101 10 0.009 UKPDS 33 [19]
0–4 1138 98 10 0.009 UKPDS 33 [19]
1–2 569 61 2 0.055 Malmberg [20]
1–4 569 53 2 0.048 Malmberg [20]
2–4 475 85 1 0.179 Miettinen [21]
3–2 73 31 5 0.179 Ulvenstam [22]
3–2 169 76 7 0.082 Ha�ner [18]
3–2 78 33 5 0.104 Ravid [12]
3–4 468 137 5 0.067 Lowel [23]

Figure 4. A discrete-time model of cardiovascular disease.

Table VII. Comparative solutions for CVD model with and without pooling data.

State Single Pooled
transition State names estimate SE estimate SE

0–1 Normal to angina 0.007 0.0009
0–2 Normal to MI 0.03 0.0021 0.026 0.0014
1–2 Angina to MI 0.06 0.0067 0.058 0.0071
1–4 Angina to death 0.05 0.0063 0.049 0.0066
2–4 MI to death 0.18 0.0177 0.271 0.0171
3–2 History of MI to MI 0.11 0.0180 0.097 0.0077
3–4 History of MI to death 0.06 0.0061 0.020 0.0046

time, this parameterization means that patients can return to the event MI (reinfarction) but
multiple infarctions in one year are not allowed. Future work to incorporate a continuous-time
model will avoid these simplifying assumptions.
The data extracted from the medical literature are presented in Table VI. Note that there

are no data estimating the transition from normal to angina. This unobserved transition is
estimable from augmentary data measuring transition from normal to history of MI and from
normal to death. Also, in this model we use multiple observations from a single study. For
example, the data from the UKPDS-33 was used to estimate progression from no CVD to
incident MI (Figure 4).
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Table VIII. Estimated correlation matrix for CVD model.

�̂01 1
�̂02 −0.030 1
�̂12 0.015 −0.045 1
�̂14 −0.002 0.007 −0.056 1
�̂24 −0.001 −0.021 0.001 −0.0001 1
�̂32 −0.002 0.045 −0.002 0.0003 −0.235 1
�̂34 −0.009 −0.018 −0.001 −0.0001 −0.383 0.518 1

The results of our method are reported and compared to single estimates in Table VII.
The pooled estimates seem reasonable compared to the initial data. In the case of progression
from history of MI to recurrent MI, the multiple studies available provide a reduction in the
standard error of the estimate. The primary bene�t of our technique, compared to the standard
method of choosing a single best estimate, is our ability to estimate the transition probability
from normal to angina. The correlation matrix for estimators is displayed in Table VIII.

5. DISCUSSION

The method described in this paper provides two advantages over the existing techniques:
the use of multiple studies per transition and the use of augmentary data. By pooling data
from multiple studies, we can reduce the variance of our estimates in the usual fashion.
Using augmentary data provides several bene�ts. First, although there are methods for pooling
estimates for a single transition in situations when all the studies are drawn from the same
study design and the same de�nition of states, some well-designed studies do not de�ne their
population and measurements based on our model of interest. Using augmentary data, many
more studies are available for use in our model. We saw from our simulations that augmentary
data provide less information than primary data, but in some applications more augmentary
data are available than primary data.
The second bene�t of using augmentary data is the ability to estimate transition probabilities

when no primary data are available. Some transitions are not well-measured. This can occur
due to rapid progression through a state or due to the discovery of new states in the clinical
model. Using augmentary data, the transition probabilities are estimable.
Although we have focused our work on Markov models where all parameters are estimable,

our work can be viewed from a variety of other contexts. It is an extension of meta-analysis
applied to multi-state models. Much research has focused on meta-analysis for observation of
a single outcome [24]; however, no known work has considered meta-analysis in the context
of non-iid observations (i.e. observations arising from di�ering study designs and di�erent
initial states). Our work can also be viewed within the framework of a missing information
problem. We assumed that the parameters were estimable from the available data through
direct evaluation of the likelihood. However, it would be possible to relax this assumption
and use a technique such as the EM algorithm [25] to provide estimates of unknown transition
probabilities from augmentary data.
Our method can be further generalized to accommodate a larger family of distributions

(e.g. inhomogeneous processes) and dependent observations; however such generalizations are
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computationally burdensome. Moreover, we rarely have data available to �t such sophisticated
models. In a situation where more data are available, existing techniques would probably be
adequate.
It is well-known that methods which glean data from published results can su�er from pub-

lication bias [26, 27] since signi�cant �ndings are over-represented in the literature. However,
in our application, many of the data are available from sources other than clinical research
trials. For example, it is often possible to �nd data in a published registry or from large
demographic studies such as the Framingham study or the UKPDS. Moreover, in the cases
where we extract data from a clinical research trial, the data are generally extracted from the
control arm of the trial. Thus, the e�ect of publication bias would tend to yield conservative
estimates in our model.
There are several directions for future research in this area. First is the extension of our

methods to continuous-time models. In our application of CVD, it was necessary to assume
not more than one MI in a �xed time period (one year) due to the discrete-time constraint.
A continuous-time model would allow us to posit multiple events in unit of time. Another
direction for future research is �nding a parsimonious expression for covariates. In the current
expression, use of covariates is greatly limited by computational feasibility. Further research
to �nd a parsimonious expression for covariates that is computationally simple (similar to
our use of designed absorption to simplify the likelihood) would be useful. Finally, a random
e�ects model to accommodate the extra variability between studies would be a contribution
to this research. Again, this extension is limited by availability of data and computational
feasibility.
In conclusion, we have introduced a theoretical framework for discrete-time models of dis-

ease progression and extensions of our work for covariates. We also presented designed ab-
sorption as a method for reducing the computational burden of evaluating the likelihood. Using
this framework we presented simulations which suggested that our method was well-behaved
in most settings. Finally, we presented two applications of our approach for discrete-time
models which incorporated unobserved transitions and grouped nodes. Thus, in the context of
chronic disease progression, our technique has been shown to be �exible and well-behaved,
giving us a new approach to modelling discrete-time discrete-state processes.
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