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Solvate formation is a common occurrence among organic,
organometallic, and inorganic compounds. Its impact on the
stability and bioavailability of pharmaceuticals has led to
considerable investigation of solvated drug substances.[1]

Some compounds display indiscriminate solvate formation,
while others are considerably more selective. Significantly,
the structural features that lead to one behavior or another
have not been identified. Hence, empirical approaches are
required for the discovery of solvates. Two situations can

readily be envisaged that would tend to favor solvate
formation. First, compounds in which potential intermolecu-
lar interactions, such as hydrogen bonding, are not well
satisfied in the unsolvated form generally incorporate solvent
molecules to provide strong intermolecular interactions and
often solvate selectively based on functionality. The other
limiting case is solvent inclusion to decrease void space in the
crystal. Most compounds have contributions from both of
these driving forces, which can be viewed as lowering the
crystal free energy primarily through electrostatic and
van der Waals interactions, respectively.

Readily solvated pharmaceuticals have received attention
in the literature, two prominent examples are sulfathiazole
and gossypol. Sulfathiazole is an antibacterial sulfa-drug
known to crystallize in over 100 solvates/cocrystals and five
solvent-free polymorphs.[2–6] It forms solvates with many
solvents; however, there are some notable exceptions, which
include hydrocarbon and halogenated solvents. Solvated
sulfathiazole forms a diverse set of crystal structures, as well
as several isostructural solvates. In some cases, the role of the
solvent is to fill void space in the lattice (e.g., acetonitrile,
dioxane), while in other crystals the solvent satisfies specific
intermolecular interactions (e.g., N-formyl piperidine). Gos-
sypol is a natural product that has been used as a male
contraceptive and it forms solvates/cocrystals with nearly 100
molecules.[7] Solvates can be generated from nearly every
common organic solvent. It does, however, crystallize in a
solvent-free form from ligroin and mixtures of hexane and
diethyl ether. Like sulfathiazole, gossypol forms isostructural
solvates, in which the solvent fills a cavity in the structure
(e.g., carbon tetrachloride,m-xylene), as well as solvates with
specific hydrogen-bonding interactions between gossypol and
the included solvent (e.g., acetic acid, 2-propanol).

To learn more about the factors that lead to solvate
formation in pharmaceuticals, we investigated the crystalli-
zation of Bz-423, a 1,4-benzodiazepin-2-one. Bz-423 specifi-
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cally attenuates autoimmune dis-
ease in the best animal models of
systemic lupus erythematosus.[8–10]

In the process of selecting a crystal-
line form for ultimate dosage, a
remarkable property of this com-
pound was revealed: all crystals of
Bz-423 obtained from common sol-
vents were solvates. Furthermore,
solvents that did not lead to crystal-
line materials (e.g., acetone, ben-
zene, diethyl ether, 2,2,4,4,6,8,8-
heptamethyl nonane, heptane, hex-
anes, pyridine, triethylamine, 2,2,4-
trimethylpentane, CH2Cl2, THF) yielded amorphous forms,
typically with included solvent as judged by Raman spectros-
copy.

Cocrystals of acetonitrile, acetic acid, dibutyl ether,
ethanol, ethyl acetate, methanol, 1-propanol, 2-propanol,
toluene, and 1,2,4-trichlorobenzene with Bz-423 were readily
formed by evaporation from pure solution. Crystal structures
of the acetonitrile, ethanol, ethyl acetate, 2-propanol, and
acetic acid solvates were determined to ascertain whether
these forms were isomorphous, perhaps with the solvent
occupying channels or other regular vacancies in the lattice.[11]

However, these are structurally distinct with different modes
of interaction between Bz-423 molecules and the solvent
(Figure 1). The acetonitrile solvate, for example, forms
hydrogen bonds with the phenolic hydroxy group of Bz-423,
whereas ethanol and 2-propanol both accept a hydrogen bond
from the hydroxy group and act as a donor with the carbonyl
group of Bz-423. In contrast, ethyl acetate forms no strong
hydrogen bonds with Bz-423. However, not all of the forms
differ substantially in structure, carboxylic acids, including the
Bz-423/acetic acid (1:1), the Bz-423/fumaric acid (2:1), and
Bz-423/succinic acid (2:1) cocrystals, are isostructural with
essentially identical hydrogen-bonding patterns (Figure 2),
and each is nearly isostructural with the Bz-423/acetonitrile
solvate (1:1). The Bz-423/ethanol (1:1) and Bz-423/2-propanol
(1:1) solvates are also nearly isostructural, with both possess-
ing identical hydrogen-bonding patterns.

To test the hypothesis that the particular combination of
functionality found in Bz-423 drives the solvation behavior,
the crystallization of Bz-430, which contains a biphenyl unit in
place of the naphthalene ring, was scrutinized. This com-
pound does not display a propensity toward solvate formation
despite being crystallized from acetonitrile, benzene, ethyl
acetate, methanol, CH2Cl2, and THF (see the Supporting

Information). This finding suggests that functionality-driven
solvation, in which solvent inclusion is favored by enhanced
satisfaction of intermolecular interactions, does not explain
the observed behavior of Bz-423. In addition, Bz-423
cocrystallizes with a wide variety of solvents, with many
different structures being formed, and displays an inability to
form unsolvated crystals from common solvents. These
observations suggest that Bz-423, in contrast to Bz-430, does
not pack efficiently with itself.

One measure of how tightly a molecule packs in a crystal
lattice is packing efficiency, measured by the packing
coefficient Ck.

[12] This quantity reflects the percentage of
void space in molecular crystals. A solvent-free reference
form was required to assess the effect of solvent inclusion on
the packing efficiency of Bz-423. This reference form was
achieved by dissolving the Bz-423/methanol solvate in
polyethylene glycol dimethyl ether (xn= 11) at elevated
temperature overnight to yield solvent-free single crystals.
The packing coefficient of this structure was calculated using
the equation developed by Kitaigorodskii.[13] Because the
packing coefficient relates the volume of the unit cell to the
volume of molecules in the cell, the molecular volume of each
nonequivalent molecule in the crystal must be calculated.[14]

The volume of each isolated species was determined for the
solvates and then added together according to stoichiometry.

Consistent with the notion of inefficient packing in the
unsolvated form, the packing coefficients of the Bz-423
solvate structures, as well as Bz-430, were all higher than that
of the solvent-free form (Figure 3). This observation indicates
that Bz-423 fills space more efficiently with a solvent
molecule present than in pure form. The increased packing
efficiency of solvated Bz-423 offers an attractive explanation
for why the molecule will not crystallize as a solvent-free form
from small-molecule solvents. To explore if this hypothesis

Figure 1. Modes of interaction between Bz-423 and the included a) acetonitrile, b) ethanol, and c) ethyl acetate solvent molecules extracted from
the respective crystal structures.

Figure 2. Isomorphous hydrogen-bonding motif found in the crystal structure of Bz-423 with a) acetic acid,
b) fumaric acid, and c) succinic acid.
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generally holds for other pharmaceuticals prone
to solvate formation, solvent-free and solvated
crystal structures of sulfathiazole and gossypol
culled from the Cambridge Structural Database
(CSD) were analyzed and their packing coef-
ficients were calculated.[15] In both cases, the
presence of polymorphism as well as variation of
the temperature of the data collection compli-
cates the analysis somewhat. In addition,
although there are over 100 solvates/cocrystals
of sulfathiazole, few of the crystal structures are
available in the CSD.[16] The packing coefficients
of the five polymorphs and three solvates were
calculated (Figure 4). These solvates pack with
efficiencies that are intermediate between the
most and least dense solvent-free polymorph of
this pharmaceutical. A similar analysis on
gossypol, which encompasses two solvent-free
polymorphs and 31 solvates, finds that the
packing coefficients for all solvates are inter-

mediate between the more and less dense polymorphs of the
solvent-free compound (Figure 5). The presence of relatively
close-packed polymorphs for both sulfathiazole and gossypol
offers a potential explanation for why, in contrast to Bz-423,
these compounds can readily give rise to unsolvated forms.

It is instructive to contrast the behavior of the pharma-
ceuticals described above with Dianin?s compound, a deriv-
ative of 1,2-benzopyran that has been studied extensively as a
host material.[17–22] This molecule forms isomorphous solvates
with a diverse array of solvents, and in each and every
structure the solvent resides in the same pocket. A solvent-
free crystal form of Dianin?s compound was obtained from
dodecane, a solvent too large to occupy the lattice vacancies.
Packing coefficients were calculated for the structures found
in the CSD, and the solvates were revealed to pack more
efficiently than the solvent-free crystal (Figure 6). Like Bz-
423, Dianin?s compound solvates many different solvents,
thus increasing its packing efficiency, but unlike Bz-423 it
forms isomorphous structures in all structurally characterized

Figure 3. Comparison of the packing coefficients of the Bz-423 sol-
vates, solvent-free Bz-423, and Bz-430.

Figure 4. Comparison of the packing coefficients of the sulfathiazole
solvates and polymorphs taken from the CSD.

Figure 5. Comparison of the packing coefficients of the gossypol solvates and
polymorphs taken from the CSD.

Figure 6. Comparison of the packing coefficients of the Dianin’s
compound solvates and solvent-free form taken from the CSD.
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solvates. This suggests that the inefficiency of crystal packing
for Bz-423 arises from a confluence of multiple small voids
rather than a well-defined cavity or channel structure.
Predicting such behavior in new compounds will require a
comparison to reference packing coefficients derived from
data for structural relatives. This approach will aid in the
evaluation of the tendency of a particular compound to form
solvates.[23]
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