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INTRODUCTION

Osteosarcoma is the most common bone tumor and the

most common extracranial solid tumor in teenagers [1–3].

As the use of adjuvant and neoadjuvant chemotherapy has

come into wide-spread acceptance over 20 years ago, the

5-year survival for this illness has risen to about 60–70%

overall [1,4]. However, this plateau has not changed in more

than 15 years [5]. For patients with metastatic disease, the

outcomes are much worse, with less than 30% survival at

5 years [1–3,6]. Recurrent disease also has a poor outcome,

with less than 20% overall survival at 5 years [7].

Chemotherapy protocols of increasing intensity have led to

marginal improvements at best [8,9]. For this reason, there has

been a great interest in identifying markers of therapeutic and

prognostic significance.

Many markers have been discussed as having potential

prognostic significance for osteosarcoma [10] including

cytochrome P-450 CYP 3A4 [11], multidrug resistance

protein [12,13], P53 [14–16], and Fas [16]. More recently,

members of the erbB (HUGO nomenclature: ERBB) family

of receptors—EGFR (ERBB1), Her-2 (ERBB2), Her-3

(ERBB3), and Her-4 (ERBB4)—have gained attention as

possible prognostic and therapeutic targets in osteosarcoma

[17–22]. Of these type I receptor tyrosine kinases, Her-2 has

received the most attention. Increased expression of Her-2 in

carcinomas, particularly breast cancer, is associated with a

worse prognosis [23]. For this reason, expression of Her-2

has been examined in osteosarcoma. Five studies found an

association between Her-2 expression in archival specimens

of osteosarcoma and a lower overall survival [17–19,21,22],

while other studies failed to confirm this observation [24–

28]. One potential reason for this discrepancy was the marked

difference of Her-2 expression in immunohistochemical

analysis of osteosarcoma compared to epithelial malignan-

cies. In Her-2 overexpressing breast cancer, Her-2 immunor-

eactivity is restricted to the edges of the cells [23], a pattern

pathologists interpret as ‘‘membranous staining.’’ In osteo-

sarcoma, by contrast, Her-2 expression is fainter and

diffusely present throughout the entire cytoplasmic area of

the cell [18,19]. In breast cancer samples, cytoplasmic

expression is currently regarded as an immunohistochemical

artifact. We recently have shown that such ‘‘cytoplasmic’’

expression for Her-2 in primary osteosarcoma cells is

associated with cell surface localization of the protein

[29]. In the same study we showed that two other erbB

family members—epidermal growth factor receptor (EGFR)
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and Her-4—are also widely expressed in osteosarcoma

samples.

The expression of erbB family members in osteosarcoma

allows the possibility that these markers can be therapeutic

targets. Multiple drugs recently have been developed that act

on one or more members of the erbB family. Two available

monoclonal antibodies, Trastuzumab [30] and Cetuximab

[31,32], which recognize Her-2 and EGFR respectively, have

a beneficial therapeutic effect against erbB overexpressing

carcinomas. In addition, several small molecule inhibitors

have been developed to block signaling by these receptors

[33–40]. Some of these agents are now FDA-approved while

others are in late clinical trials. If an essential role for these

receptors can be shown in osteosarcoma, then patients may

benefit from therapy targeting these receptors.

ErbB family member signaling has been studied in some

detail in epithelial malignancies. Within the cytoplasmic

domain of EGFR, phosphorylation of particular cytosolic

tyrosine residues provides docking sites for, and activation

of, particular second messengers. These include tyrosine 845

for src [41], tyrosine 992 for phospholipase Cg [42], and

tyrosine 1068 for Grb-2 [43,44]. In addition, phosphorylation

of tyrosine residue 974 has been shown to induce trafficking

of activated EGFR receptors into clathrin-encoded pits [45],

from which the activated receptor continues to signal for up

to an hour. Phosphorylation of tyrosine residue 1045 leads to

binding of Cbl, which causes receptor ubiquination and

degradation [45]. The particular second messengers trig-

gered by erbB activation depend in part upon the density of

those second messengers in a given cell. Similar residues

have been identified for src (tyrosine 877) [46] and Grb-2

(tyrosine 1248) [47] within Her-2’s cytoplasmic domain.

Her-4 signaling is less well characterized.

Here, we sought to determine if these critical tyrosine

residues of the erbB family were phosphorylated within early

passage osteosarcoma cell lines, and if this phosphorylation

were important to the biology of osteosarcoma. To assist in

this analysis, we utilized CI-1033, a small molecule inhibitor

specific for all members of the erbB family which has been

shown to cause loss of erbB phosphorylation in carcinomas

[48]. This compound inhibits erbB molecules in the low

nanomolar range in cell-free systems and retains specificity

through at least 20 mM concentration in whole cell/culture

systems [49]. No other targets for CI-1033 have been

described [49]. We reasoned that CI-1033-mediated depho-

sphorylation of erbB family members would facilitate

identification of constitutive phosphorylation in cultured

cells, especially in lines where the receptors are present in

low abundance. The same panel of early passage osteosar-

coma cell line described in our previous work was examined

for phosphorylation of specific tyrosine residues in the

presence or absence of CI-1033 using cell based ELISA and

flow cytometry. We also examined two dimensional (2D)

gel electropheresis to see if an alteration of isoelectric

point (pI, the mobility in a pH gradient) would indicate

the phosphorylation state of erbB receptors. Finally, we as-

sessed the impact of erbB receptor blockade with the

small molecule inhibitor CI-1033 on osteosarcoma cell

growth in vitro and assessed whether this blockade would

induce apoptosis using flow cytometry for annexin-V and

7 aminoactinomycin-D (7-AAD) staining. Collectively these

studies demonstrate the extent of tyrosine phosphorylation in

early passage osteosarcoma cell lines cultured invitro and the

impact of receptor blockade on erbB phosphorylation for

osteosarcoma cells and cell growth.

METHODS

Cell Lines

All human tumor cell lines were obtained/derived with the

approval of the Institutional Review Board of the University

of Michigan Medical Center and have been described

previously [29]. Cells were cultured in DMEM supplemented

with 10% fetal calf serum, penicillin (100 U/ml), strepto-

mycin (100 mcg/ml), and L-glutamine (292 mcg/ml, Gibco/

Invitrogen, Grand Island, NY) and 1% insulin/transferrin/

selenium (Gibco). Primary osteosarcoma cell lines WOL and

COL were derived from patients treated at the University of

Michigan and were analyzed at fewer than 20 passages. Line

OS-187 was the kind gift of Dr. Richard Gorlick, Memorial

Sloan Kettering Cancer Center, New York. The stable cell

lines Saos-2 [50] and SJSA [51] are available from ATCC as

are control lines SKOV-3 [52]and MCF-7 [53].

Immunohistochemistry

Five micron sections of paraffin-embedded archival tumor

specimens were assessed for expression of erbB family

members as described previously [29]. The following

antibodies were used: anti-EGFR (clone H11, Dako,

1:100), anti-Her-2 (Rabbit polyclonal antibody, cat# A0485

DAKO, 1:200), or anti-Her-4 (clone HFR-1, Neomarkers,

Fremont, CA, 1:200). Digital photomicrographs were

obtained at 400� magnification.

Cell-Based ELISA

Cell-based ELISA assessment of protein expression and

phosphorylation was performed as described [54]. Briefly,

primary osteosarcoma cell lines were seeded in 96 tissue

culture plates at a density of 2� 104 cells/well and cultured

overnight. The following day CI-1033 was added to give the

desired final concentrations. Controls included cells cultured

without CI-1033 and carcinoma lines known to respond to

CI-1033. After 14 hr of drug exposure the cells were washed

with PBS, fixed with 4% formaldehyde in PBS and

permeablyzed with 0.1% Triton-X-100 in PBS. After

blocking with 10% BSA, the antigens were detected with

primary rabbit antisera and a secondary goat anti-rabbit
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antibody conjugated to horseradish peroxidase. All anti-

bodies were obtained from Cell Signaling Technologies

(Beverly, MA). Detection was performed with ABTS

solution (Roche). Antigen presence was quantitated by

optical density measurements taken at a wavelength of

405 l less the signal measured from cells stained with the

secondary antibody only. Significance was determined by

Student’s t test using the GBStat data analysis software

(Dynamic Microsystems, Inc., Silver Spring, MD).

Flow Cytometry

Primary osteosarcoma cells were grown to approximately

75% confluence and then exposed to CI-1033. After 4 hr of

drug exposure, cells were mobilized from the dishes using a

non-enzymatic cell dissociation buffer (Invitrogen). To

directly assess EGFR phosphorylation, cells were fixed with

4% paraformaldehyde, then permeablyzed with 0.1% Triton-

X-100 in PBS. The cells were stained with a primary rabbit

Ab specific for EGFR phosphorylated at tyrosine residue

1068 (Rabbit polyclonal # 2234, Cell Signaling) and a

phycoerytherin-conjugated secondary goat-anti-rabbit Ab,

and analyzed on an EPICS flow cytometer using XL System

II software (Beckman-Coulter). Because commercially

available receptor-specific antiphosphotyrosine antibodies

do not routinely work in flow cytometry, only selected

phosphotyrosine residues were assessed using this technique.

For direct assessment of EGFR density at the plasma

membrane, unfixed osteosarcoma cells were stained with an

anti-EGFR antibody directly coupled to PE (clone EGFR-1,

Becton Dickinson, San Jose, CA). Immunoconjugated beads

(Quantum Simply Cellular, Bangs Laboratories, Fishers,

Indiana) were stained in parallel to allow quantitation of cell

surface EGR expression using methods that we described

previously [29].

To measure apoptosis by flow cytometry, cells were

treated with CI-1033 for 4 hr, then single-cell suspensions

were made as described above. Cells were stained with

Annexin-V conjugated to FITC (BD-Pharmingen), and with

7-amino-actinomycin D (7-AAD) (BD-Pharmingen) accord-

ing to the manufacturer’s directions. All analysis was

performed using an EPICS flow cytometer.

2D Gel Electrophoresis

Primary osteosarcoma cells were grown in 150 mm plates

to �75% confluence prior to the addition of CI-1033. Fresh

media was added with either 5mM CI-1033 or no drug and the

cells cultured overnight (�15 hr). The following morning,

whole cell lysates were prepared by standard techniques [55].

Lysates were separated first by isoelectric focusing on a pH

gradient from 4 to 10 and then by SDS–PAGE using a 4 to

20% acrylamide gel, and the proteins transferred to PVDF

membranes. The membranes were probed for Her-4 (rabbit

polyclonal sc-283, Santa Cruz, 1:500) and antigen was

detected by chemiluminescence according to the manufac-

turer’s directions (Amersham Biosciences, Piscataway, NJ).

Growth Inhibition Assay

Primary osteosarcoma cells were seeded in 6 well plates at

a density of 10,000 cells per well and grown in the presence of

defined concentrations of CI-1033 (1, 2, 3, 5, 7.5, or 10 mM)

or no drug. Parallel wells were seeded to allow triplicate

samples to be counted each day, and media and drug were

refreshed daily. Cell growth was quantified using a Coulter

Counter as described [56]. Statistical analysis was performed

using Student’s independent t-test comparing cell yield for

each drug concentration to that of the untreated cells, using

Statistica Software (StatSoft, Inc., Tulsa, OK).

RESULTS

EGFR, Her-2, and Her-4 Expression in Osteosarcoma

The immunoreactivity observed for the erbB family in

immunohistochemical analysis of osteosarcoma has been a

source of debate and confusion. To demonstrate the

expression of erbB family members in osteosarcoma,

archival osteosarcoma specimens were sectioned and stained

with standard immunohistochemistry techniques for EGFR,

Her-2, and Her-4 expression. Characteristic staining, per-

formed on a pretreatment archival biopsy specimen, is shown

for illustrative purposes (Fig. 1). EGFR showed diffuse

antigen reactivity throughout each cell. Focal cells demon-

strated Her-2 staining diffusely present throughout the cell

with no evidence of membranous immunoreactivity for

either EGFR or Her-2. Her-4 expression was seen in two

patterns: cells that have diffuse cytoplasmic immunoreactiv-

ity, and cells in which the immunoreactivity was localized

predominantly within the nucleus. This staining is similar to

that found by others [17,18] and to that described in our

previous report [29].

Constitutive erbB Phosphorylation
Elimination by CI-1033

Cell-based ELISA. Our previous studies have shown

that the antigen reactivity such as that seen in Figure 1 is due

to the cell surface expression and internal expression of full

length EGFR and Her-2 by primary osteosarcoma lines and

by expression of an 80 kDa fragment of Her-4 in primary

osteosarcoma cell lines [29]. It is vital to know if these

receptors are present in osteosarcoma in a phosphorylated

state, and thereby associated with activation of second

messenger signaling. The erbB receptor density is much

lower in primary osteosarcoma cell lines than that seen in

epithelial malignancies, making traditional techniques for

assessing protein phosphorylation, such as Western blot,

more difficult.
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To assess erbB phosphorylation in osteosarcoma we

utilized a more sensitive technique [54]—a cell based ELISA

(Fig. 2). To provide further information about the phosphor-

ylation state of the receptors we also used a small molecule

inhibitor of erbB family signaling: CI-1033. This compound

binds irreversibly to the kinase domain of all erbB family

members. Once CI-1033 is bound to the receptor it is no

longer able to participate in kinase reactions and becomes

dephosphorylated. To assess for erbB phosphorylation,

osteosarcoma cell lines were cultured and analyzed without

the addition of exogenous ligand, though some EGF or other

erbB ligands may be present in the fetal calf serum used in

there experiments. Overnight treatment with CI-1033 caused

only a small change to EGFR or Her-2 expression in primary

osteosarcoma cells. At CI-1033 concentrations of 5 mM or

higher, cell death, decreasing the number of cells stained and

therefore the total amount of EGFR and Her-2 per well,

accounts for a loss in measurable EGFR and Her-2 protein.

However, all concentrations of CI-1033 induced a significant

decrease in measurable phosphorylation at tyrosine residues

845 and 1068 of EGFR, responsible for Src [57] and Ras/

MAPK [43] signaling respectively. The corresponding

residues of Her-2, tyrosines 877 and 1248 [47] were

significantly dephosphorylated by CI-1033 at a concentration

of 3 mM or higher. Similar results to those shown in Figure 2

for OS 187 were obtained from cell lines COL, WOL, SJSA,

and Saos-2.

Flow cytometry. To visualize the presence of phos-

phorylated tyrosine residues within the erbB receptors

expressed in osteosarcoma cells, we utilized flow cytometry

(Fig. 3). In this experiment, osteosarcoma cells are fixed with

formaldehyde and the plasma membrane permeablized with

detergent to allow staining of the cytoplasmic tail of EGFR.

There was a shift to the right seen for florescence intensity of

cells grown under normal conditions and stained for EGFR

phosphorylated at residue 1068 compared to cells stained

with the second layer only. Exposure to CI-1033 completely

eliminated this increase, indicating receptor dephosphoryla-

tion by the drug.

EGFR internalization is blocked by CI-1033. Pre-

vious studies have shown that phosphorylation at tyrosine

residue 974 of EGFR is responsible for binding of AP-2 [58]

which then leads to internalization of activated EGFR

receptors within clathrin-coated pits [45]. We reasoned that,

if EGFR tyrosine residue 974 were constitutively phos-

phorylated in osteosarcoma cells grown in tissue culture, then

much of the total cellular EGFR would be internalized and

not amenable to staining for flow cytometry without

permablizing the plasma membrane. To assess the phosphor-

ylation state of EGFR tyrosine residue 974 we chose to

Fig. 1. erbB family member expression in archival osteosarcoma biopsy specimen. Formalin-fixed, paraffin-embedded, pre-treatment biopsy

specimen of osteosarcoma was assessed for expression of EGFR, Her-2, and Her-4 by immunohistochemistry, visualized by DAB (brown).

Photomicrographs were obtained at 400� magnification. Figure demonstrates the characteristic staining pattern for the three antigens.

Fig. 2. Cell-based ELISA assessment of phosphorylation of EGFR

and Her-2 inhibited by CI-1033. OS 187 cells were seeded in triplicate

in 96 well plates, cultured for 24 hr, then treated with 1, 2, 3, or 5 mM

CI-1033 or no drug overnight, then assessed for total EGFR or Her-2 or

for phosphorylation of these receptors at specific tyrosine residues.

Black bars represent total receptor protein (EGFR in the upper panel and

Her-2 in the lower panel). Light gray bars represent phosphorylation of

the src binding site for each receptor, and dark gray bars represent

phosphorylation of the Grb-2 binding site. Graphs depict change in

optical density with drug treatment compared to untreated cells (100%).

Comparisons were made between each drug dose and untreated cells,

and significance assessed with Student’s t test. A single asterisk

indicates P¼ 0.05, and a double asterisk indicates P¼ 0.01. A

representative experiment of four is shown. Similar results were

obtained with osteosarcoma cell lines COL, WOL, SJSA, and Saos-2.
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examine by flow cytometry total cell surface EGFR

expression on osteosarcoma cells that were grown in the

absence or presence of CI-1033 (Fig. 4). As with our previous

reports, OS-187 expressed about 25,000 cell surface EGFR

receptors under normal conditions. After exposure to CI-

1033 for 4 hr cell surface EGFR receptor expression

increased to about 85,000 receptors. Similar findings were

made using osteosarcoma lines COL and WOL. This increase

in receptor density is not observed when EGFR is present in

the dephosphorylated state: the epitheloid carcinoma line A-

431, where the bulk of the EGFR receptors are known to be in

the dephosphorylated state [59], does not show an upregula-

tion upon exposure to CI-1033 (Fig. 4).

Two-dimensional gel electrophoresis of Her-4.
Because commercial antibodies that recognize specific

phosphorylation sites within Her-4 cytoplasmic domain are

not available, the techniques used in Figures 2 and 3 could not

be used to assess the phosphorylation state of Her-4 in

osteosarcoma cells. The phosphorylation state of Her-4 was

assessed using 2D-gel electrophoresis (Fig. 5). Lysates from

early passage osteosarcoma cell lines COL and WOL treated

with no drug showed a range of pI consistent with varied

phosphorylation of the multiple potential phosphorylation

sites within the cytoplasmic domain of the receptor. Only the

p80 isoform of Her-4 is seen in great density with this

technique. Upon exposure to CI-1033 a Her-4 species with a

much higher pI is observed. The development of this spot is

consistent with the dephosphorylation of the 80 kDa isoform

of Her-4. We also see the development of a 60 kDa fragment

that also stains for Her-4. The etiology of this fragment is not

known.

Effect of erbB Dephosphorylation by CI-1033
on Osteosarcoma Growth and Survival

Growth inhibition assay. To determine if dephosphor-

ylation of erbB receptors in osteosarcoma impacts cell

growth, early passage osteosarcoma cell lines were grown in

the presence of defined concentrations of CI-1033 for a period

of up to 4 days, and the cell yield from individual wells was

quantified daily. The average yield from triplicate wells was

compared to the growth of cells exposed to no drug (Table I).

Both media and drug were changed daily. We saw a

significant decrease in the rate of tumor cell growth with

1 mM CI-1033, with an estimated IC50 for CI-1033 of slightly

higher than 1 mM for both OS 187 and COL. Three mM or

greater concentration of drug led to complete growth

inhibition. Treatment with CI-1033 at concentrations of 7.5

or higher led to rapid cell loss from the culture, with few cells

recovered after a single day (data not shown). The inhibition

of cell growth was not dependent on Her-2 expression since

similar amounts of growth inhibition were observed in

the Her-2 expressing OS-187 cell line and in the Her-2

negative COL line. Similar results were obtained with early

passage osteosarcoma lines WOL, JOL, KOL, and MAOS,

the established cell line Saos-2 and the control ovarian cancer

cell line SKOV-3 (data not shown).

Fig. 3. Flow cytometry assessment of CI-1033 impact upon EGFR

tyrosine residue 1068 phosphorylation. Single cell suspensions of OS

187 cells that had been treated for 4 hr with 5 mM CI-1033 or no drug

were fixed, permeablized, and stained with a monoclonal antibody

specific for the cytoplasmic domain of EGFR phosphorylated at tyrosine

residue 1068. Single color overlay histograms compare EGFR-Y-1068

expression detected with anti-Ig conjugated to PE to the signal from

cells stained with the secondary antibody alone. Similar results were

obtained with osteosarcoma cell lines COL, WOL, and Saos-2.

Fig. 4. Flow cytometry assessment of CI-1033 impact upon cell-

surface expression of EGFR. Single cell suspensions of cultured OS 187

cells or A431 control cells that had been treated for 4 hr with 5 mM

CI-1033 or no drug were analyzed with anti-EGFR MAb directly

conjugated to PE or with isotype controls. Single color overlay

histograms are shown. EGFR expression quantified by comparison to

standardized immunoconjugated beads is displayed in thousands of

molecules per cell for untreated and CI-1033-treated osteosarcoma

cells. Similar results were obtained with osteosarcoma cell lines WOL

and COL.
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Apoptosis assay. We next determined if growth inhibi-

tion observed in cells cultured with CI-1033 was due to the

induction of apoptosis. To address this question early passage

osteosarcoma cell lines were treated for 4 hr with defined

concentrations of CI-1033 or no drug, then assessed for

apoptosis by flow cytometry for annexin V and 7-AAD

(Fig. 6). Controls for apoptosis were obtained by exposing

cells to etoposide (not shown). Exposure to CI-1033

increased the rate of apoptosis in primary osteosarcoma

cells in a titratable fashion. At baseline OS-187 had

approximately 20% of cells undergoing apoptosis. By

contrast after exposure to 1 mM CI-1033, 50% of the

recoverable cells are undergoing apoptosis, and 80% with

5 mM CI-1033. COL was more resistant to programmed

cell death in a 4 hr assay, with 18% of cells undergoing

apoptosis at baseline, increasing to 21% with 1 mM CI-1033

and 69% with 5 mM CI-1033.

DISCUSSION

Investigations of the erbB family in osteosarcoma in

recent years have focused exclusively on one family

member—Her-2. The debate over the role of Her-2 in

osteosarcoma pathogenesis has involved great controversy,

with groups arguing for and against the hypothesis that Her-2

expression confers a worse prognosis [17–19,24–28]. The

resolution of this controversy requires four points: first, the

expression of Her-2 and the other erbB family members

needs to be delineated. Second, there must be an assessment

of the activation state of the erbB family of receptors. Third, it

is important to measure the impact of erbB signaling upon

cell growth. Finally correlations must be made between

receptor expression, receptor activation status and disease

outcome.

For Her-2 expression, this process began with the final

step. Five different groups found that Her-2 expression did, in

fact, correlate with a worse outcome [17–19,21,22]. The

typical pattern for Her-2 in osteosarcoma is that seen in

Figure 1: diffuse antigen reactivity throughout the cytoplasm

of positive cells. Our previous work helped define the

receptor expression for the erbB family in osteosarcoma [29].

In that study, we showed that both EGFR and Her-2 localize,

at least in part, to the cell surface in primary osteosarcoma

cells. We also showed that Her-4 was present in predomi-

nantly the 80 kDa form. This isoform of Her-4 is generated

through cleavage of the full-length molecule by ADAM-17

(also called TACE) and g-secretase [60–62], a process that is

Fig. 5. 2D Western analysis of CI-1033 impact upon Her-4

phosphorylation. Whole cell lysates of WOL and COL cells treated

overnight with 5 mM CI-1033 or no drug were separated by isoelectric

focusing on a pH gradient (pI), then by size via SDS–PAGE, and

proteins transferred to PVDF membranes. Her-4 protein was identified

with monoclonal antibodies specific for the cytoplasmic domain of the

protein. A circle identifies the 80 and 60 kDa species of higher pI that

arise with exposure to CI-1033.

TABLE I. Inhibition of Osteosarcoma Cell Growth by CI-1033

Day 1 Day 2 Day 3 Day 4

Cell # SD P Cell # SD P Cell # SD P Cell # SD P

OS187

Control 21,700 936 57,300 1,032 151,000 13,264 309,900 23,853

1 mM 16,600 977 0.0028 41,600 6,323 1.0132 81,800 3,193 0.0009 169,900 19,184 0.0013
3 mM 11,500 64 <0.0001 19,600 4,019 <0.0001 16,900 2,532 <0.0001 15,700 2,239 <0.0001
5 mM 5,100 980 <0.0001 9,900 1,306 <0.0001 10,300 405 <0.0001 7,200 605 <0.0001

COL

Control 5,200 1,721 13,200 1,551 25,700 1,942 78,800 6,281

1 mM 7,000 906 0.1732 10,800 4,746 0.4483 13,600 5,832 0.0274 58,432 5,285 0.0126
3 mM 2,600 688 0.0758 2,200 392 0.0003 4,200 324 <0.0001 3,900 1,104 <0.0001
5 mM 2,600 545 0.0694 1,300 382 0.0002 1,400 271 <0.0001 1,091 64 <0.0001

Early passage osteosarcoma cell lines (OS 187 and COL) were grown in the presence of defined concentrations of CI-1033 or no drug for four days.

The average cell yields and standard deviations are presented. Comparisons between each drug treatment and the control (no drug) cells from the

same day with aP value<0.05 are identified with bold, underlined text. Results of representative experiments from two cell lines are shown. Similar

results were obtained from early passage lines WOL, JOL, KOL, and MAOS, from the established osteosarcoma line Saos2, and from the control cell

line SKOV-3.
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believed to require prior activation of the receptor. In the

present work, we show the activation state of erbB receptors

in osteosarcoma and the impact of erbB phosphorylation on

osteosarcoma growth.

Immunoprecipitation of erbB family members is difficult

in cells that do not overexpress the proteins, i.e., in cells

having less than 1 to 2 million molecules per cell. For this

reason, our group used more sensitive but less familiar

methods such as cell based ELISA, direct flow cytometric

assessment, and 2D gel electrophoresis. These techniques

provided evidence for the phosphorylation of EGFR, Her-2,

and Her-4 in early passage osteosarcoma cell lines grown in

10% fetal calf serum without exposure to additional

exogenous ligand. By contrast, the typical overexpressing

EGFR line, A431, must have exposure to EGF or another

EGFR ligand for the receptor to be phosphorylated [59].

The assessment of phosphorylation for EGFR, Her-2, and

Her-4 was facilitated by the loss of this phosphorylation in

cells treated with the pan erbB inhibitor CI-1033. In all of the

techniques utilized—cell ELISA, flow cytometry, and 2D gel

electrophoresis—CI-1033 induced the loss of phosphoryla-

tion at specific phosphotyrosine residues or in total receptors

compared to the expression seen in primary osteosarcoma

cells grown in media alone.

Flow cytometric analysis of cells exposed to CI-1033 also

confirmed an important aspect of receptor trafficking for

EGFR. In our previous report, we suggested that much of the

EGFR in primary osteosarcoma cells appeared to be

localized to an internal or non-cell surface location [29].

This receptor internalization is not surprising, since previous

studies have shown that EGFR phosphorylated at tyrosine

residue 974 is rapidly internalized—occasionally as quickly

as 5 min [45]. It has also been shown that after internalization

EGFR can continue to transmit second messenger signals for

as much as an hour prior to being brought into lysosomes and

degraded [45]. Further, Her-2 is the preferred dimerization

partner for both EGFR and Her-4 [63,64], and when Her-2

and EGFR are expressed in a cell at roughly equal densities,

phosphorylation of EGFR results in the trafficking of Her-2

into a cytosolic location: clathrin coated vesicles [65]. Thus a

cytoplasmic location of either EGFR or Her-2, as seen in

archival tumor samples such as that shown in Figure 1 and in

our previous report [29], could be interpreted as a sign of

receptor activation.

The data presented here confirm that EGFR in osteosar-

coma cells grown in serum-containing media is not only

constitutively phosphorylated, but localized predominantly

to an intracellular compartment. Since the control treated

osteosarcoma cells express about 25,000 EGFR receptors on

their cell surface and CI-1033 treated cells express more than

three times that number at the cell surface, this dramatic

upregulation of receptor expression is evidence of the

activated state of EGFR in osteosarcoma. Specifically, this

upregulation after CI-1033 treatment is evidence, in cells

grown in these conditions, of constitutive phosphorylation at

tyrosine residue 974, since it is this residue that provides the

docking site for AP-2, which mediates trafficking to coated

pits [45].

It is not clear how the erbB family members in

osteosarcoma become constitutively phosphorylated. While

fetal calf serum may be providing erbB family ligands in our

experiments, the immunoreactivity of erbB antigens in

archival osteosarcoma samples is also consistent with

receptor phosphorylation and active signaling [29]. One

suggested mechanism for erbB activation has been the

secretion of EGF or other ligands by osteosarcoma cells,

leading to phosphorylation and stimulation in an autocrine or

paracrine fashion [14]. Another mechanism could be

phosphorylation of erbB receptors without ligand by

activated Src molecules. Further, it is possible that other

receptor tyrosine kinases such as platelet derived growth

factor receptor a or b or c-kit might in turn activate the erbB

receptors in some cell lines. Finally it is possible for

mutations of the erbB receptors themselves to lead to

constitutive activation. This mechanism has been shown for

EGFR in glioblastoma multiforme where the expression of a

truncated, constitutively active isoform—EGFRvIII—is

associated with a worse outcome and unregulated activation

of erbB signaling pathways [66–69].

What may be more important for osteosarcoma biology

than the mechanism of erbB activation is the result of that

phosphorylation: that when erbB signaling is impeded by a

small molecule, osteosarcoma cells enter growth arrest and

undergo apoptosis. Multiple mechanisms of erbB activation

may be used by different tumors types or by similar tumors in

different individual patients. It is possible, or indeed likely,

Fig. 6. Induction of osteosarcoma apoptosis by CI-1033. Single cell

suspensions of OS 187 and COL cells that had been treated for 4 hr with

0, 1, 3, or 5 mM CI-1033 in DMSO were stained with annexin V and 7-

AAD and assessed by flow cytometry. Cells that stained for neither

marker were living, viable cells. Cells that were positive for 7-AAD only

had disrupted cellular membranes without loss of membrane polarity

and were either necrotic or were damaged in mobilization from the

tissue culture dish. Cells that were positive for annexin V were in early

apoptosis, and cells positive for both reagents were in late apoptosis.

Thus the percentage of cells undergoing apoptosis is the sum of the right

upper and right lower quadrants. The percentage of cells in each

quadrant is shown for each histogram.
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that a common second messenger pathway, induced by

unregulated signaling from the erbB family, promotes the

malignant phenotype in osteosarcoma. The signaling of the

erbB family is complex with no fewer than six different

second messenger systems being involved in regulation and

signal transduction. It is unclear at present which of these

pathways is most important for promoting the malignant

phenotype in primary osteosarcoma. This subject merits

further investigation.

ErbB signaling in osteosarcoma may provide an important

therapeutic target. Several drugs have recently been licensed

for clinical use that specifically target one or more members

of this family. These include monoclonal antibodies such as

Trastuzumab [30] and Cetuximab [31,32], which target Her-

2 and EGFR respectively, and the small molecule inhibitor

Gefitinib [36,70,71]. CI-1033, the pan-erbB inhibitor used in

our studies, is in phase II clinical trials. The invitro data about

the impact of erbB inhibition on osteosarcoma growth shown

here are encouraging. It may be that treatment with drugs that

target the erbB family, particularly small molecules that are

not affected by receptor internalization, will provide a new

therapeutic option for this disease that has shown no

significant improvement in nearly twenty years.

The data presented here also provide new insights into

how erbB receptor expression can affect disease severity. The

reigning paradigm, dominant in the breast cancer literature

and influencing the interpretation of many other studies,

suggests that overexpression of one or more erbB family

members is the primary mechanism by which these mole-

cules promote a worse disease phenotype. Perhaps over-

expression in and of itself is less important than the activation

state of the receptors. Here we provide evidence that at least

one of the erbB receptors seems to drive the growth of early

passage osteosarcoma cell lines in vitro, such that inhibition

of this signaling causes apoptosis. This demonstrates that one

does not need overexpression of these receptors for their

presence to affect cell growth, at least in vitro. The several

reports showing an association between erbB expression in

archival osteosarcoma specimens and reduced survival [17–

20] also suggest that overexpression is not required for erbB

signaling to impact the natural history of the disease in

patients, either. We would suggest that overexpression is just

one of several mechanisms that can induce the condition that

does promote the more severe phenotype, which is uncon-

trolled erbB signaling. Important questions remain regarding

the role of erbB expression in osteosarcoma. A key question

is, which signaling pathways are of greatest importance in

osteosarcoma, and how do these second messenger signals

promote the malignant phenotype? The answers to these

questions will help to provide insights that will guide future

treatment.
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