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Abstract

We deal with a canning problem where the amount of an expensive
ingredient put into a can is a random variable whose mean can be
set by the canner. Underfilled (below a specified lower limit)
and overfilled (above a controllable upper 1limit) cans are
emptied and refilled. We assume that the £fill 1is normally
distributed with known variance, and assuming a reasonable cost
structure obtain optimal values for the process mean and the
upper limit. Simple approximate analytical expressions relating
these optimal values to fundamental parameters are also
established. An explicit measure is given for the value of being

able to impose an upper limit on the fill.



INTRODUCTION

There is a vast 1literature on quality control that focuses
on defining economic upper and lower control limits for a
process. A common assumption is that the process is set optimally
and the problem is usually to detect deviation from the "normal"
performance of the process at an early stage [see Montgomery
(1980)1. In this paper we, instead, address the 1issue of finding
the optimal process settings in conjunction with a pre-determined
control limit.

In particular, we consider a canning problem where cans are
filled with an expensive ingredient called "£ill". The amount put
in a can is a random variable, with a mean (the "process mean")
set by the canner. Filled cans are weighed: underfilled cans
(those weighing below a specified limit) are emptied and refilled
at the expense of a reprocessing cost (this might include, among
other costs, the cost of production time 1lost); cans weighing
above the specified 1limit are sold in a regqular market for a
fixed price.

If the process mean is set very high then the probability of
underfilled cans becomes small, and the canner saves reprocessing
cost at the expense of sending out too much ingredient at no
benefit to him. (The cost of the excess £fill is sometimes
referred to as "give-away" cost). On the other hand, 1if the
canner sets the process mean too 1low then he will save on the

give-away cost but the reprocessing cost will increase because



more cans will be underfilled. An immediate problem then 1s to
set the process mean at the most economic level.

In addition, overfllled cans bring a £flxed price 1in a
reqular market. Hence, 1t 13 not profitable to sell cans that are
filled too excessively. The canner may have an option of
reprocessing cans that are filled over a controllable upper
limit, in which case it 1s desirable to know the most economic
upper 1limit. Thus, the canner faces the combined problem of
finding optimal values for both the process mean and an upper
limit.

Bettes (1962) studied the problem of finding optimal values
for both the process mean and the upper 1limit. However, his
procedure is based on trial and error, 1is computationally
tedious, and does not glve accurate values.

Hunter and Kartha (1977) found the optimal process mean
only, with the assumption that underfilled cans can be sold in a
secondary market for a fixed price. Bisgaard, Hunter and Pallesen
(1984) later suggested that this assumption is unrealistic
because it implies that empty cans can be so0ld for as much as
almost acceptably full ones, and instead looked at the situation
where underfilled cans are sold in the secondary market at a
price proportional to the amount of ingredient in a can.

However, 1ln some cases (such as pharmaceuticals) the product
may be sold only in the regular market. The secondary market may
also be so far away that transportation and other related costs

may make is prohibitive to sell a substandard product. In such



cases if a can is underfilled then the only available alternative
is to empty and refill it with an associated reprocessing cost.
Golhar (1986) formulated such a problem and found the optimal
process mean setting. But his assumption that the overfilled
cans, no matter the amount of £i11, be sold for a fixed price is
unrealistic. At times, it may not be profitable to sell
overfilled cans at a fixed price and there can be a controllable
upper limit such that overfilled cans (i.e., weighing above this
limit) can be reprocessed.

Here, we extend Golhar's (1986) model to a process where
both the process mean and the upper limit can be controlled and
show the superiority of such a policy over controlling the

process mean only.

THE PROBLEM

Let g(X;H4,0%) represent a normal density function for the
random £ill X, and £(X) and F(X) be the standard normal density
and distribution functions respectively. L 1is a pre-specified
minimum weight 1limit and U a controllable upper limit. Thus, a
can weighing between L and U is sold in a regular market, at a
price A. If a can weighs below L or above U, it is emptied and
refilled at the (reprocessing) cost R. C denotes the cost of the
contents/unit. The objective of a canner is to find the optimal
process setting M* and the upper limit U* that will maximize the

expected profit'ﬁ per can sold.



THE SOLUTION

Let P(X;H4,U) denote the profit for a can sold with contents
X and'ﬁ(p,U) its expected value. If the amount of £fill X 1is such
that L < x < U then the can is sold for A and the net profit is a
- Cx. On the other hand, if the can weighs below L or above U
then the can is emptied and is refilled at cost R. The refilled
can will then realize the expected profit P(},U). Hence, for a
refilled can the net expected profit is EXu,U) - R. The profit
per can sold 1s therefore:

A - CX for L £ X

IA
c

P(X;H,U) =
E(M,U) - R otherwise

Hence, the expected profit is:

U L

E(u,U) = f(A-Cx) g(x;4,0%) dx + I {E(u,U) - R} g(x;Mu,02)dx
L ® 0

+ I {P(M,U) - R} g(x;M,0™)dx (1)
U

Using the well known result that:
U

I X g(x;H,0%) dx = pF[g;g]- af[g;g]-uF[g;g]+af[&;ﬂ] (2)
L o o o o

and letting t. = U-4 and t= = L-} we get:
o o

R+Col£f(tz)-f(ts)]

P(M,U) = A -CH +R -
F(t=)-F(t=) (3)

4



Note that without an upper control limit, i.e., U = o, equation
(3) becomes:
R+Cof ( tz)

P(M,0) = A -CH +R - (4)
1-F(t=)

which 1is essentially the same relationship obtained by Golhar
(1986). We will show later the degree to which the process with
upper control (gliven by -equation (3)) is more profitable than
without upper control (equation (4)).

In order to find M* and U* (the most economic 1levels of |
and U), we first show that 3(#,0) in equation (3) is a concave
function of M and U. Since the last term of equation (3) has
f(ts) and £(tz) in the numerator, and F(t:) and F(tz) in the
denominator, it 1is difficult to show the desired concavity
analytically. However, the appgndix numerically establishes the
concavity of E(u ,U) over a wide range of values of M and U.
Taking the first derivative of P(M,U) with respect to U, and
equating to zero, gives:

8 P(N,U)
—_— =0 = t;[F(t;)-F(tz)] + £(ta)-£f(t2) - M (5)
S U
where M = R/(Co), a constant for any given process.
Similarly, equating the first derivative of E(p,U) with respect
to 4 to zero, and combining the result with equation (5), we get:

8 P(N,U)

=0 F(tx)-F(tz)‘f(tz)[tz‘tz] (6)

¢ M



Optimal wvalues of t. and t= can be obtained numerically by

solving equations (5) and (6) simultaneously.

RESULTS

Table 1 glves ti* and tz*, the optimal values for t: and t=
solving equations (5) and (6) as a function of M. The optimal
process setting u* is obtained through the relation u* = L - otz*
and the optimal upper 1limit U* 1is obtalned via U* = u* + ot™,.
For M between 0.1 and 2, these optimal values are plotted (in
units of o) in figure 1 .

A convenient way of examining the resulting expected profit
is to look at the excess over what would be obtained if each can
could be filled to exactly L (achlevable only when ¢-—0), 1in
which case the proflt would be A - CL. We canh deflne the minimum

expected excess cost per can as

E =A-CL - P(u*,U*
For different M, values of E are computed (in units of co) and
are given in table 2. For M between 0.1 and 3, Figure 2 shows the
behavior of E.

To see how the parameters affect W*, U* and the resulting
costs, consider the following example: suppose initially C = $0.5
per ounce, R = §0.2, ¢ =.4 ounces, and L = 3 ounces. The
constant M.= 1, and from table 1, t.* = 1.657 and tz* = -.75.
Hence, UW* = L + .75 ¢ = 3.30 ounces and U* = L + 2.425 o = 3.97
ounces. From table 2, this results in a cost per can of E =
(.5)(.4)(1.409) = $0.28 per can. Now, suppose due to process

6



Table 1.
Optimal values of tl and t2 for a given M.

M t.* t2*
0.1 0.478 -0.236
0.2 0.682 -0.334
0.3 0.843 -0.410
0.4 0.983 -0.474
0.5 1.111 -0.530
0.6 1.230 -0.581
0.7 1.342 -0.628
0.8 1.450 -0.671
0.9 1.555 -0.711
1.0 1.657 -0.750
1.1 1.757 -0.786
1.2 1.855 -0.820
1.3 1.952 -0.853
1.4 2.049 -0.884
1.5 2.145 -0.913
l.6 2.240 -0.942
1.7 2.335 -0.969
1.8 2.430 -0.995
1.9 2.524 -1.020
2.0 2.619 -1.044
2.2 2.809 -1.088
2.4 2.998 -1.130
2.6 3.189 -1.168
2.8 3.380 -1.204
3.0 3.572 -1.237
3.2 3.764 -1.268
3.4 3.957 -1.298
3.6 4.151 -1.325
3.8 4.344 -1.351
4.0 4.539 -1.375
4.5 5.026 -1.432
5.0 5.515 -1.482
5.5 6.006 -1.526
6.0 6.498 -1.567
7.0 7.483 -1.639
8.0 8.472 -1.700
9.0 9.462 -1.754
10.0 10.454 -1.801




ptimal parometer volues
(in units of o)

]

)
oo

e —F

~ <l
-
-~ nllll* ll‘llm.n
A B
-~ -~

L LJ L] — L] ¥ ¥ — ¥ T 1 — 1 ] T q L] ¥

0.5 0.9 1.3 1.7
Process constant M

Figure 1: Optimal U and u values as functions of M




innovations the process standard deviation is halved. Therefore,
M = 2 which gives t.:* = 2.619 and tz* = -1.044, with
corresponding U* = 3.10 and U* = 3.36, and E = (.5)(.2)(1.662) =

$0.16 per can, a 43% saving.

PROFITABILITY OF A PROCESS WITH UPPER CONTROL LIMIT

It is of interest to compare the expected profit obtained
above to the case where there is no upper control limit, in which
case the objective is to find the optimal value of tz = (L-U"™) /0o
that will maximize the expected profit given by equation (4).
Golhar (1986) has solved this problem, with results given in
table 2 and plotted 1in figure 3. Notice that having an upper
limit gives a higher expected profit, with the advantage
decreasing as M 1increases. An upper limit allows a tighter
control on the fill, resulting in higher profit.

However, controlling both parameters (M and U) might be
expensive and/or time consuming. These results allow the canner
to determine the value of seeking to control both parameters, as

a function of M.

APPROXIMATIONS TO OBTAIN OPTIMAL VALUES FOR THE PARAMETERS

In this section we develop simple approximate relationship
between t.* and t=* as a function of M, that can be used as an
alternative to table 1 for M < 1.

It 18 reasonable to assume that the process constant M for

real processes would be small. (For values of M greater than



Table 2

Comparative evaluation of the advantage of being able to have
an upper central limit. E = excess cost per can.

No Upper Limit Upper Limit Available

M
t2* E t.* t2* E
(units of co) (units of co)

0.1 0.364 0.858 0.478 -0.236 0.613
0.2 0.059 0.998 0.682 -0.334 0.816
0.3 -0.126 1.091 0.843 -0.410 0.954
0.4 -0.261 1.165 0.983 -0.474 1.058
0.5 -0.366 1.224 1.111 -0.530 1.141
1.0 -0.701 1.433 1.657 -0.750 1.409
1.5 -0.899 1.565 2.145 -0.913 1.559
2.0 -1.040 1.664 2.619 -1.044 1.663
2.5 -1.149 1.742 3.094 -1.149 1.742
3.0 -1.237 1.808 3.572 -1.237 1.808
3.5 -1.311 1.865 4.054 -1.311 1.865
4.0 -1.375 1.914 4.539 -1.375 1.913
5.0 -1.482 1.996 5.515 -1.482 1.998
6.0 -1.567 2.065 6.498 -1.567 2.065
7.0 -1.639 2.121 7.483 -1.639 2.121
8.0 -1.700 2.172 8.472 -1.700 2.172
9.0 -1.754 2.215 9.462 -1.754 2.215




1.8 .
P
1.7 - Iy
-
1.6 e
v 1.5 o P
7] -
5! 1.4 a
Q- , .
mw“m x\hxax
o — -
5 v '3 e
) W 1.2 4 ...‘.s....».a
o = )=
1".“.. ~ ._ .d - ...s..
a
= 1
Ll
0.9 —
0.8
0.7 - \
0.6 . i | I | {
(A 0.5 1 1.5 2 2.5 3

Praocess canstant M

Figure 2: Expected excess cost as a function of M
when upper 1imit is available




st E

255 OO0

-
'r-l‘

Ecpected E

(in units of Co)

ﬂ _—
=
.\...“.l.u.__-tul\l
P |\l1|lll|.ll..1|&
Iullll %nlulu
- Py
~~
|..|..\1... ..\.\\
nll\l.. -~
.ml.l. .....1.\
-\\ ) le.\‘..cl
No upper e *mhm
s s
\\
r
\..\&
y
xf
Upper limit
available
1 1 1
0.5 1 1.5

Process canstant M

Figure 3: Expected excess costs for a process with
and without upper limit




about 2, the optimal process setting 1s more than one standard
deviation above the minimum weight 1limit L, a situation that
would not be readily tolerated in most practical situations). It
can be seen from table 1 that as M approaches 0 the optimal
values of ti and tz also approach 0. Using Taylor series
expansions, the standard normal density and distribution

functions can be approximated for y—-0, as

and Fl(y) = -%- + 137%7%;i£l

Let y» and y= represent the values of t.* and tz* respectively,
obtained using this approximation.

Equation (5) can then be rewritten as :

ﬂlTE) Y, (Y:-Y2) + nlﬁ) et £ ] * M (7)

Solving equation (7) we get:
Yi - Y2 = v(2M") (8)

where M' = y(2r) M
Similarly, equation (6) becomes :

1 1

Y. - ¥:3/6 - Y= + ¥Y=22/6 - 1-Y=2/2](Ys - Y:z)=0,

f(?u) [ ] fi?n:)[ ] (9)
which reduces to :

3 Y. Y22 = 2Y== + Y.= (10)
Simultaneously solving equations (8) and (10) gives:

Y= = -0.746 vM (11)



and

Y: = -2 Y= (12)
For values of M < 2, the values of y. and yz= are plotted against
actual ti* and tz* (obtained from table 1) in figure 4. It is
seen that the approximations fit very well. 1In particular,
approximation (11) gives values of tz* that are within 1% of the

actual, for M < 2.

DISCUSSION

The canning problem is 1n general subject to ever-changing
values of the process constants R, C and o. With changes in
technology the reprocessing cost R and £ill precision o should
change. The cost of ingredients, C, 1is a volatile function of
market forces and should change often. Finally, with aging of the
process itself the precision o will change. Industry should, in
turn, respond by adjusting the optimal process setting u* and the
upper limit U*. Table 1 and relations (11) and (12) should prove
useful for finding these settings without carrying out the
detailed calculations.

However, adjusting these two parameters simultaneously could
prove to be expensive and/or time consuming; 1in which case
industry might want to cost-out the value of having the
capability of controlling the wupper limit. Table 2 can then be
used to determine the cost effectiveness of the upper control

limit.
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Appendix

We show numerically that the function :

R+ Colf(tz)-f(ts)]

P(R,U) = A - CU + Re—FTE v —F(tm (A1)
is concave over parameters U and M, where t; = (U-M)/¢ and
tz = (L-W)/0 .
Hence, we show that the function :
- 2+ E(ta)-£(t)
Si(u,U) = ——BUXWU) ., 5 ypa= B 4 GO
’ Co CS— (o F(t.)-F(tz)
(A2)
is convex over U and M. This is equivalent of showing :
- e . L _ M+ £(t2)-£(t.)
82 = 817 == ~ta + —TE yoF(EL) (A3)

is convex with respect to t. and t=.
To show that equation (A3) is convex with respect to t,, we fix

t= and show that

+ f(tz)'f(t:)

M
Sa(ts) = FIETYFIED

(A4)

is convex over t..

For different t., Sa(t.) was computed for 0 < M < 10 and fixed
-0.1 € ta $ -2.1 ( for a fixed tz - -0.6, sample computations are
given in table Al) . It was seen that Sa(t.) was convex over t;
for a wide range of M and ta values.

To show that equation (A3) is convex with respect to tz, we first

express ti in terms of tz :

= U;L + ta = K + ta (A5)




Hence equation (A3) becomes :

M+ f(ta) - £(tz + K)

Sat(tz) = -t + F(tz +K_):§‘(tz) (A6)

For different t=z, Sz=(tz) values were computed for 0.1 < M < 10
and 0.1 s K £ 3 . ( Table A2 gives a sample of these computations
for a fixed K = 0.5 ). It was seen that equation (A6) was convex

over t= for a wide range of M and K values.



Table Al

Sample computations of 53(t1) for a fixed t, = -0.6

T1 " 0.5 1.0 2.0 3.0 4.0 5.0 7.5 10.0

0 1.92416 4.13949 8.57015 13.0008 17.4315 21.8621 32.9388 44,0154
0.4 1.22003 2.53202 5.15601 7.77999 10.404 13.028 19.5879  26.1479
0.8 1.05787 2.03101 3.97729 5.92358 7.86986 9.81614 14.6818 19.5476
1.2 1.04657 1.86544 3.50317 5.14091 6.77864  8.41637 12.5107 16.605
1.6 1.07662 1.82189 3.3124 4.80296 6.29349 7.78403 11.5104 15.2367

2.0 1.1086 1.81994 3.24261 4.66529 6.08797 7.51065 11,0673 14.624
2.4 1.13008 1.82694 3.22067 4.6144 6.00813 7.40185 10.8862 14.3705
2.8 1.14135 1.83282 3.21575 4.59869 5.98162 | 7.36455 10.8219  14.2792
3.2 1.14599 1.83564 3.21495 4.59426 5.97357 7.35288 10.8012  14.2494
3.6 1.14764 1.83682 3.21518 4.59354 5.9719 7.35026 10.7962 14.2421
4.0 1.14798 1.83697 3.21495 4.59293 5.97091 7.34889 10.7938  14.2388




Table A2

Sample computations of Sz(tz) for a fixed K = 0.5

1 0.5 1.0 2.0 3.0 4.0 5.0 7.5 10.0

-3.5 454,81 909.355 1818.45 2727 .54 3636.63 4545.72 6818.45 9091.17
-3.0 102.368 204.409 408.491 612.572  816.654 1020.74 1530.94 2041.14
-2.5 30.4239  60.5444 120.785 181.026 241.267 301.508 452.111 602.713
-2.0 11.6471 23.0108 45,738 68.4653 91.1926 113.92 170.738  227.55

-1.5 5.71705 11.1577 22.0391 32.9205 43.8019 54,6833 81.8868 109.09

-1.0 3.60284  6.94062 13.6162 20.2918 26.9673 33.6429 50.3318 67.0207
-0.5 2.86618 5.47714 10.6991 15.921 21,1429 26.3649 39.4197 52.4745
0 2.85575 5.46672 10.6887 15.9106 21.1325 26.3544 39.4093 52.4641
0.4 3.35193 6.4672 12.6977 18.9283 25.1588 31.3893 46.9656 62.542

0.8 4.,57205  8.9161 17.6042 26.2923 34.9804 43.6685 65.3887 87.109

1.2 7.31258 14.4048 28.5892 42.7736 56.958 71.1424 106.603 142,064
1.6 13.7642 27.3143 54.4146 81.5148 108.615 135.715 203.466  271.217
2.0 30.317 60.4375 120.678 180.919 241.16 301.401 452.004 602.606
2.4 79.575 158.94 317.67 476.401 635.131 793.861 1190.69  1587.51
2.8 238.244  476.34 952.531 1428.72 1904.91 2381.1 3571.58 4762.06
3.2 1000.73 2000.74  4000.77 6000.8 8000.82 10000.8 15000.9 20001
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