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Summary:

There is little literature on the truncated SPRT when
observations have distribution parameters that change over time.
We develop a truncated SPRT when the observations come from a
Normal distribution with parameters that linearly increase over
time. The truncation point, specified in advance, gives error
probabilities within desired limits. The method is developed for
two different assumptions about the non-stationary observations:
i) the observations are independent and ii) the differences
between successive observations are independent. The sensitivity

of results to these assumptions is studied.



1. Introduction

Most of the literature on the truncated SPRT deals
with the situation where the random variables Xl, XZ’ ces, are
independent and identically distributed. In many situations,
however (see Golhar (4)), the sequential observations X;, X,,...,
are continuous random variables whose distribution parameters
change with time, and thus form a non-stationmary process. These
time trends should provide additional information for efficient
hypotheses testing.

Anderson (1) and Armitage (2) considered IID Normal random
variables when studying the behavior of the operating character-
istic and ASN functions of the truncated SPRT. Madsen (5) gave
approximate stopping bounds and the truncation point wusing
numerical integration for IID observations. He noted, however,
that solving those equations recursively could be hard and, 1in
practice, it might not be possible to obtain both the stopping
bounds and the truncation point such that the resulting test
would give actual error probabilities less than or equal to the
desired error probabilities. Aroian and Robison (3) shoved that
for a small tfuncation point, for IID Normal random observations,
actual error probabilities can be numerically computed to any
desired degree of accuracy. Their method, however, becomes
tedious for large truncation point values.

There is also some literature available on the untruncated

SPRT for non-stationary processes. Phatarfod (6) considered

Markovian dependence among discrete random variables, assuming



the same transition probability matrix at each sampling stage,
and derived the expressions for the operating characteristic
function and the ASN function. Siegmund (8,9) obtained an
expression for the ASN function when independent random variables
Xl, X9, «.. have means ,“1,/l2, ... and variances 6-12, 032,
Phatarfod (7) also developed relationships for the ASN and
operating characteristic functions for continuous Normal random
variables, with Markovian dependence, when testing the hypotheses
regarding the correlation between successive observations.

Thus, the literature on the truncated SPRT is for IID

random variables and the literature on non-stationary processes

deals only with the untruncated SPRT. Here we consider

truncation for non-stationary processes.

When using a truncated SPRT it is desirable to specify (in
advance) a truncation point such that the resulting test gives
the minimum expected number of observations with a constraint on
desired error probabilities. We find such a truncation point
when the mean and variance of the Normal sequential observations
X;, X9, ... increase linearly over time. This linear trend can
be due to one of two possible underlying behaviors: i) the
sequential observations are independent or ii) the differences
between successive observations are independent. We will find
appropriate truncated tests, and investigate the sensitivity of
the truncated tests, to these assumptions.

Let fi(xi/wj) be the density function of a random

variable X;, at time i, under the hypothesis Wj? for j = 0,1.



Then the log-likelihood ratio at time i 1is

fi(xi/wl)
(1)
If the Xi's are independent then the log-likelihood ratio at time

n is
n
En = :E; Zi
i=1

Let &4 and Fd be the desired error probabilities of type I and
type II respectively. Then, Wald's (10) approximate lower and

upper stopping bounds are:
Bad 1-Pa
a ¥ ln (------ and b= Inf{----- (2)

Wald (10) proposed the following decision rule for the SPRT
truncated at time m:
reject Wo if Z, 2b for m=1,2, ..., m
accept WO if 2, < a for n=1, 2, ..., m
and take one more observation if
a <Z_ <b for n=1,2, ..., m-1.

If the experiment does not stop at or before m then

reject Wy if b>zZ_ >0

=m
and accept W, if a <Z <0 (3)
2. Truncation for the SPRT when observations are independent

Assume that the random variables X; are independent and
normally distributed with unknown mean 5M.and known variance icz.

Thus, xi~'N(%ﬂ’ ;¢2) for all i =1, 2, ... Then, from relation

(1), the log-likelihood ratio Z; at time i is:



(@) 2 i {2 2 i 037
We now assume* that O= (0 = G‘l to get
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Since Zi is a linear function of only Xi’ it is independent of
Zys k=1 and is normally distributed. Taking moments of Xi in (4)

gives

ia? )

Zil ~ N ("_—, id )

. 2

and '2 (5)

-1id 9
Z;o ~N ( -—=, id%)

2

Mo~ H
where d= —-—Zt .
a

Since the Zi's are independent, the log-likelihood ratio at

time n 1is
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*1f GB * 61, the density function of Zi becomes non-Normal and,
although the details of this case can be worked out, the analysis
becomes complicated and does not contribute to the general

conclusions reported here.



In order to find a truncation point that gives actual error
probabilities less than or equal to the desired error
probabilities, we need to calculate the operating characteristic
function L(Wj) when Wj is the true hypothesis. Hence we must
find the probability density of Z given that a <Z, <b for k =
1, 2, ..., n-1. Denote by Pj(z,n) the prob (Zn<z) :;s (a<Zk<b)}

k=1
where pj(z,n) is the derivative of Pj(z,n) with respect to z for

Successive convolutions are required to calculate Pj(z,n) namely

pj(z,l) = fl(z/Wj) for j =0, 1 (6)
b
and pj(z,n) = {: pj(u,n—l) fn(z~u/Wj) du,n >1 and j =0, 1 (7)
where fn(z/Wj) is a Normal density function at time n with mean
2 2 . 2 . .
nd® (-ndl) and variance nd“ when the hypothesis W;(Wj) is
2 2
true.
Using these relationships we can calculate
m-1 a 0
L(Wj, m) = :?; .gf pj(z,n) dz + Jf pj(z,m) dz (8)
n=1 o -a
m-1 a ]'”
E(N/W., m) = > 11{ {p-(z,n) dz + p:(z,n) dz}
J — J J
n=1 “"® b
b
+ m [pj(z,m-l) dz. (9)
a

Let o, Pa, and &g, pd be the actual and desired error
probabilities. Also, let m* be the non-integer truncation point
such that the SPRT truncated at m* gives e(a = oy and /Ba = ﬂd.

The integer truncation point m** will be obtained by rounding m¥



up to the next higher integer.

We can now establish a relationship between m*, the desired
error probabilities, and the discrimination factor d for the
symmetric case (i.e., for &y = le), by means of the following
procedure:

i) Given o T & =/3d, Wald's constant stopping bounds
a and b are computed by means of equation (2).

ii) For a given value of d, using equations (6) through (8),
0(a(m) (=f%(m)) are computed, for different
truncations m, by carrying out the numerical
integration.

iii) The value of m for which &,(m) =oy is found (by
interpolation, if necessary), and is, by
definition, m¥*

Figure 1, shows 1ln(m*) vs. 1n(d). An approximately linear
relationship between ln(m*) and 1n(d) is immediately apparent. A
common slope ( -1.09) for .01 < & < .2 can be obtained by a
linear regression. This suggests that m* and d have the
following relationship:

In(m*) 2 1n[k(x)] - 1.09 1n(d)
where k(xX) is a constant and depends upon the value of . To
obtain k(X), m* was plotted against & for d=1, as shown in figure
2, This curve is well fit by the equation:

k(x) & 11.57 - 13 («)*?
Hence, the relationship between ln(m*) and 1n(d) can be rewritten
as:

In(m*) & 1n(11.57 - 13(«)*2) - 1,09 1n(d) (10)

The smallest integer truncation point m** is now found by
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rounding up the solution to (10). The resulting test will then
give actual error probabilities not greater than the desired
error probabilities, at the expemse of a slight increase in the

maximum, and average, sample size.

3. Truncation for the SPRT when increments are independent:

In this section we assume that the differences (increments)

between successive observations are independent, This underlying
behavior can also lead to a linear time dependence of observation
means and variances. Thus, we assume that the variables Xy,
XZ-XI, cers xi'xi—l’ .ee; are independent and identically
distributed. Let gi(Xlﬁ.”Xi/Wj) denote the joint density
function of observations Xl,..” Xi at time 1 when the

hypothesis Wj is true, for j = 0, 1. Then, the log-likelihood

ratio at time n is
8y (X5 Xps wvvy Xp/W))

gn (Xl, XZ-xl, o0 ey Xn—xn_llwo)

since the Jacobian of the transformation is the determinant of an
upper triangulaf matrix with one's along the diagonal. Defining

the log-likelihood ratios:

and Z: = 1n (-—----=--cmmmmn for all i > 2



n
We get, Z = Z; + 'zz Z;
1=

If we assume that XI‘V'N(/%, ¢2) for j =0, 1 and
X; - X~ NCY., 52) for j = 0,1 and i > 2 then the mean and
variance increase linearly over time with Xj and 52 respectively.

To find m* a numerical integration procedure can be carried
out similar to that outlined in section 2. Instead of d, there
are two parameters d; and d,, dg =fﬂ£zﬂ and dy = {g:_};. We
chose dy = .5dy, d; = d,y and dg = ZdZG;o study the r;%ationship
between m* and d2 (or, as it turns out, between ln(m*) and
1n(d,)). o« was varied between .0l to.2 and d) between .25 to 2.

Note that when d; = d, = d the truncated SPRT for IID
Normal Xi's is a special case of the truncated SPRT for
independent increments. In this case we get the linear
relationship between ln(m*) and 1n(d) shown by Golhar (4):

1n(m*) 2 1n( =79 + 72 («)”+97%) -2.09 1n(d) (11)
Figure 3 and figure 4 show ln(m¥*) vs. ln(dz) when d; = .5d, and
dy = 2d, respectively. It is seen that the relationship between
1n(m*) and 1n(d2) is non-linear. Some reasons for this are explained
by Golhar (4).

Thus, under two different independence assumptions about
the sequence of non-stationary random variables Xl, Xz, ceey WE
have obtained truncation points that give actual error
probabilities not greater than desired error probabilities.

One question that immediately follows is: how sensitive

are these tests, in terms of m** and the resulting da’ Fa, and
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E(N) to the assumptions involved? Since it might be time
consuming and/or expensive to verify which model is actually
governing the observations, there might exist a range of
parameters for which the test derived using the assumptions of
one model might be superior to that of the test derived using the

or E(N) or

other, in the sense that it gives smaller &, = ﬁa

m**, In the next section we examine this possibility.

4, Sensitivity of independence assumptions:

We have seen that when the marginal mean and
variance of a sequence of random variables increases linearly
with time, one of the following two assumptions could describe
the underlying behavior: i) the observations are independent or
ii) increments are independent. The former model we will refer

to as I0, the later as II. Thus, for II

X, ~N(/<J.,a-2) for j = 0, 1

Xi'xi—l *’Nsuj,q‘z) for j 0, 1 and i > 2
and for I0

Xy ~ NCipgs ie?) for j =0, 1.

A) Assume II but in reality IO:

If II is assumed then the log-likelihood ratio is

computed to be:

= 0
= 2 I = ----5-- X, = ===-=--5---- (12)
i=1 T 2 g

Za
and these values of anill be compared to the thresholds a and
b‘

However, if the X;'s are in reality indpendent and normally

distributed with mean 1 ; and variance iq‘z, then, 2, Zogs eeey



Z, will also be independent Normal random variables. Taking
moments of (12) we obtain,

Zgp ~ N(nd?, na?)

n
2

Zo ~ N(—ndz, ndz)
2

Since we assume II, the truncation point m** would be obtained
from relation (11). However, the values of E(N/Wj, m*%*) and

of (m**) = Pa(m**) are obtained using relations (8) and(9).

B. Assume IO but in reality II:

Under assumption IO, the computed log-likelihood
ratio at time i is given by relation (4). However, since in
reality the increments are independent, we have for i > 1,
X; = (X=X, 1) + X;_; for any value of X; ;.
Therefore,
XINN(/(J-,O‘Z) for j =0, 1
and X3 ~ N5 + Xj_p, €8 for § =0, 1 and i > 1.
Taking moments of equation (4) with the X;'s thus distributed we
obtain the conditional distributions of Z; as:
dZ

2
Zi1~ N(‘;' *zjps d )

d2
- 2
and ZiO ~‘N(——- +z; 1, d )
2
Since we assumed IO, the truncation point m** would be obtained

from relationship (10). Thus, the values of E(N/Wj, mn**) and

qa(m**)-'ﬁa(m**) are obtained using relations (8) and (9).

C. Example Results:

To study the effect of wrong assumptions, three values of

10



the discrimination factor d were chosen (d = .75, 1 and 1.5), and
o 4 =Fd) was varies between .01 and .1. For fixed values of d
and o« 4° m** was obtained for each model. This m** was used as
the truncation point for that particular assumed model, no matter
the reality. For m** thus known, and fixed d and °<d’ values of
« o, and E(N) were obtained.

An example of the results is shown in table 1, where d=1
and 0(d=.01. When we assume II holds, and it does in reality,
then m** = 25, '(a = ,0095, and E(N) = 10.31. When we assume II
but in reality I0 holds, we use the same m** = 25 but get
o{a = ,0035 and E(N) = 6.79.

Similarly, when we assume I0 then m** = 7, and if IO
actually holds, then «_, = .006, and E(N) = 4.41. However, if
the same m** = 7 is used because we assume IO, but in reality II
holds, we obtain &, = .0353, and E(N) = 4.2,

It can be seen from table 1 that when II holds in
reality, using the wrong model gives E(N) = 4.2 which is much
less than E(N) = 10.31 obtained by using right model. However,
we 'also obtain X, = .0353 which is much higher than (g = .01, On
the other hand, when the observations are independent in reality, the
use of a wrong model gives o, = .0035 which is much less than .0l
but it gives E(N) = 6.79 compared to 4.41 obtained by using
the right model. Since the verification of independence
assumptions might be expensive and/or time consuming, an
experimenter might prefer such a slight increase in E(N), in the
event of the underlying assumption being wrong, as long as

°(a -<. oy

11
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5. Observations:

For other values of d and o« 4 it has been numerically
confirmed (Golhar (4)) that the independent increments assumption
is marginally superior to that of independent observations, in
the sense that the II model gives only a slightly higher E(N) (in
the event when II assumption is wrong) than that given by the
right model, but still gives <, Sy

This behavior is due to the fact that, for the IO
model, the SPRT is truncated at an early stage assuming that a
lot of information will be available. (Note that for I0, Z_ =

n

;% Zi)‘ But when, in reality, the II assumption is true then
:;i 10 model gives actual error probabilities much greater than
desired error probabilities. On the other hand, the II model
makes use of only the most recent information (En is a function
of X only). Hence the truncation point is set high to get &, <
«{y+ When in reality IO is true (which uses all the available
information) then the independent increments model will give a
slightly higher E(N) than the correct model but still gives

actual error probabilities less than the desired error

probabilities.

12
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