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Abstract

We establish a connection between the semantic theories of concurrency
and communication in the works of de Bakker and Zucker, who develop a
denotational semantics of concurrency using metric spaces instead of complete
partial orders, and Milner, who develops an algebraic semantics of communication
based upon observational equivalence between processes. We .endow his rigid

synchronization trees (RSTs) with a simple pseudometric distance induced by

Milner's weak equivalence relation and show the quotient space to be complete.

We establish an isometry between our space and the solution to a domain
equation of de Bakker and Zucker, presenting the solution in a conceptually
simpler framework. Under an additional assumption, we establish the
equivalence of the weak equivalence relation over RSTs and fhe elementary
equivalence relation induced by the sentences of a modal logic due to Hennessy

and Milner.



0. Introduction

In this paner we establish a fundamental connection bétween the semantic
theories of concurrency and communication in the works of de Bakker and Zucker
[BaZ] and Milner [Mil]. 1In [BaZ] de Bakker and Zucker develop.a denotational
sémantics of concurrency using metric spaces (see for example [Niv] or [ArN])
instead of complete partial orders as the underlying mathematical structures.

They solve several reflexive domain equations, and the solutioﬁs of two eqﬁations
in particular, involving nondeterministic processés; entail the abstract completion
of a metric space recursivély constructed from metric spaces which utilize a
Hausdorff distance between closed sets. Milner develops an algebraic semantics

of communication based upon behavioral or observational equivalence between

processes. We take his rigid synchronization trees (RSTs), with countable

branching and arc labels from an arbitrary alphabet, and endow them with a simple

pseudometric distance induced by Milner's weak observational equivalence relation

“to cdnstruct a concrete representation of the solution to the first domain

equation‘above. We prove that our quotient space is complete under the corres-

ponding metric distance, and show that it is isometric to the de Bakker-Zucker

completion by identifying an aﬁpropriate dense subset. As a result, one does

not necessarily have to use the complicated notions of Hausdorff distance and

the attendant machinery of metric space completions; one can work directly with

trees as graphs and use a simple metric defined directly on the graph structure.
The structure of our metric space has additional properties of interest.

For example, unlike Milner we cannot restrict ourselves to finitely branching

trees, since infinitely branching trees are necessary for the completion of the

metric space. This need for unbounded branching arises quite naturally, a

development which we are pleased to see. In another vein, while the construction



in this paper allows the alphabgt L to be infiﬁite, we can prove that our metric
space is compacﬁ if and only if £ is finite. In this case it turns out that the
weak observational equiValence relation is exactly the elementary equivalence
relation induced by the'sentences of a simple modal logic due to Hennessy and
Milner [Hel]. The statement that our space is compact is exactiy the assertion
of the Combactness Theorem for the Hennessy-Milner logic (HML). Since the HML
compactness theorem follows from a direct translation into first order logic,
this gives us an elegant but nonconstructive proof of completeness for the case
when I is.finite. On the other hand, since our proof of the metric space
compactness is constructive, the HML compactness theorem is true without the
axiom of éhdice.

The rest of the paper is organized as follows. Section 1 is preliminary,
defining the domain of trees and establishing some necessary properties.A Section
2 presents the rigid synchronization trees of Milner and definés weak equivalence.
The third section constructs the metric space and provés its completeness. The
fourth section recalls the necessary definitions and results from [BaZ] and
establishes the isometry between the metric spaces of this paper and [BaZ].

Finally section 5 establishes the connections between HML and our metric space.



1. Preliminaries

We regard a tree as a directed, unordered graph on a countable set of nodes
with arcs labeled from an alphabet . The graph must have the obvious tree
shape and two arcs leaving the same node may have the same label. More formally

we define the set of trees, T, as follows:

Definition: S is a tree (SeT) iff S is a 4-tuple S=(V,E,K,v0)
where V is a set of vertices or nodes;
vOeV'is the root;

E€VxV is the edge.relation, antisymetric and irreflexive;
£L:E>Z assigns a label to each edge.
In addition the following properties are satisfied:
(1) all nodes are reachéble from the root:
Vvev-{vo} <v0,v>eE+ where E* is the transitive closure of E;
(2) each node has oﬁly one ancestor:
Yu,v,weV, <u,w>eE_and <v,w>eE implies u=v.

We say two trees are isomorphic if both can be transformed into the other

preserving structure and lébeiing:

Definition: S=(V,E,£,v0) and S'=(V',E',£',v0') are isomorphic iff there is a
bijection f:V»>V' such that

(1) f(v0)=v0‘ (identification of roots);

(2) <v,w>eE <=> <f(v),f(w)>eE' (identification of edges);

(3) V<v,w>eE, £(<v,w>)=L"'"(<f(v),f(w)>) (identified edges have same label).

Vo Vs’
a a
For example, Y, and YV’ 15 are isomorphic under the correspondence
b .
N Va
v0+v0', v1+v3', v2+v1', v3+v2'. When S and S' are isomorphic, we shall write S=S'.



The notions of path, path length, and finite and infinite paths are the
usual ones. We say a tree is bounded if there is a finite bound on all path

lengths. A node is finitely branching if it has a finite number of direct

descendants. A tree is finitely branching if all its nodes are. We allow

countable branching at any node.

The E;D-cross section'S(k) of a tree S is just S restricted so that no

path has a length exceeding k:

Definition: For SeT, let the kzh-cross section of S=(V,E,£,vo) be:
(0) _ -0-
S _({VO}’Q)’Q’VO)’ ‘k_O:
(k) _ . .
S —(Vk,Ek,Kk,VO), k>1;

where Ek={<v,w>eE|the path VoW has length at most k};

Vk=Vl Es
L =L|E,.
Examples:
1) S(O) is just the root, which we call nil.
GA b a/\4
2) If S= then S(O)=ni1, S(l)=a b , S(Z)= , S(k)=S for k>3
¢ |d c|l |d -
e S ' 4

We have the following relationship between a tree and its cross sections:

Lemma 1.1: For any Sel, let {S(k)} be the set of all its cross sections, k>0.

c =
Then (a) Vk>0 Ek"Ek+1 and E dEk
(b) Vk>0 VkE;Vk+1 and V=UVk

(c) Vk>0 £k§;£k+l and £=Uﬂk(v1ew1ng Zk as a set of ordered pa;rs

<e,,a> from E. and %)

k

Proof: We prove (a). Ekg;Ek+l directly from the definition. Now clearly EkQ;E

for all k so UEkCZE.



Let <v,w>cE. Then there is a path <v_ ,w> and therefore <v,w>eE for any k

0 k

not less than the path length of <v_,w>. Therefore <v,w>cUE , whereby ESEUEk.

0’ k’

This lemma suggests that any tree can be represented as a union of its cross

sections, leading to the following definitions:

Definition: Let {Sk} €T, {Sk} is a cross sectional séquence (Wr_ittén <Sk> a XSS)
iff (1) each Sk is bounded, say with maximum path length of b(k);
) wvmk s P02 DU (uriting s gor 5P,
The last condition insures that the b(k)-th cross sections of Sk’Sk+1"' are all

equal, i.e. only the leaves of S, with path length b(k) can be extended to form

k

Sk+1' For convenience, in any sequence <S, >, we shall take S, to be the nil tree

0
and b(0)=0.

Definition: Let <Sk> be a XSS. The union tree of <Sk> is

USk=(UVk,UEk,U£k,V0).

We collect some facts about XSS which will be useful later:

Lemma 1.2: Let <S,> be a XSS.

k

(a) k<n implies b(k)<b(n)

) 5.-5,°®)

(¢) ¥mok ¥j<b (k) sm(j)=sk(j)

(d) Us, is a tree and (USk)b(k)=Sk

Proof: omitted..

We wish to define two additional operators .on trees, prefixing and joining,

enabling us to create complex trees from simpler ones.

Notation: S[v/w] means the tree S with the node w replaced by v.



>finition: For S=(V,E,£,v0) and aeg

let aS={VU{v_},EU{<v_,v >}, LU{<<v a>},v }
a a’’ o0 a

a’v0>’

where v ¢V.
a

ictorially we have !& . We call aS a prefixed (sub)tree.
2finition: We say {Sk} are disjoint if {Vk} are pairwise disjoint.

afinition: Let {Sk}ET, Skz(vk’Ek’Zk’VQ 1K) {Sk} disjoint. The join of {Sk} is
@ S = USy [vy/vy o

o S®T becomes the tree <€;7”:::;7 . We view the expression S®S to be well

efined, representing the joining of two disjoint isomorphic copies of S. We

epresent by s™ the joining of n copies of S for I<n<w. 1In a similar spirit,

® T will always be taken to be well defined through an inessential relabeling of

odes if necessary.
emma 1.3: aS and @Sk are trees.

roof: clear.

Finally we establish another-representation of an arbitrary tree:
emma 1.5: For SeT, there is a set {aiSi}ST such that S= @ aiSi

roof: Clearly we can represent S as the join of its prefixed subtrees.




2. Rigid Synchronization Trees and Weak Equivalence

In the spirit of [Mil] we regard a rigid synchronization tree (RST) as the

"unfolding'" of a state transition graph of a nondeterministic machine. For example,
L

. & b . . b/\a
given the graph < ;/———-> @ we associate the RST:
: ' B §

Note that that state names are no loﬁger important; the tree nodes are nameless.
The arc labels are chosen from an event alphabet £, reflecting the‘communication
requirements of the process from its environment. We departAfrom [Mil] and allow
thé nodes to have countable branching. af \Q

Nondeterministic choiceAexists in the tree b ¢ - Given an "a“,.the

machine must choose between two paths, arriving at either .a state where only a
qQ
C

If viewed as acceptors, both of these trees are equivalent, accepting the language

"b" is acceptable br-one in which only a '"c" is. Now consider the tree b

{ab,ac}. But are they equivalent behaviorally? After one'step the second tree is
in a state.where either a "b'" or 'c'" is acceptable, and so it never deadlocks on
input from {ab;ac}. However, the first tree can deadlock on either "ab" or “ac" e
after "a" has been consumed, it will be in a state waiting for a specific event
and will fail if the environment offers an incompatible input. Note that nondeter-
ministic trees do not necessarily 'choose correctly'; they react'only to ;he current
evént, not to future ones. Since the trees behave differently on inputs from {ab,ac},
it is reasonable to maintain that they are not equivalent behaviorally.

Several -different equivaleﬁce relations have been proposed to describe behavioral
or observational. equivalence [Mil]. The relation appropriate for this paper is the

weak equivalence relation and is defined as follows.

a . ..
>T we mean there is some a-transition from the root of

Notation: When we write S

S ieading to T, or that aT is ‘a prefixed subtree of S.



Definitioﬁ: For S,TeT, S is weakly equivalent to T, S,Ew T, iff
Vk S = T, where the equivalences = are defined as:
S EO T for all S,T;

S Zap T <==> Vaeaws'eT, s-Eost =31 72570 and §' = T and

V_anVT'eT,. T-2 5T ==>35'eT S-S and T' = S
We write S = T for S Ew T.
An alternate wéy of presenting k+l-equivalence which we shall find convenient
is the following:
SEk+1T <=> for'every prefixed subtree aS' of S, there is a prefixed subtree

aT' of T such that S'EkT' (and vice versa).

Examples:
a/\a G
(1) Z since they are Z,. To see this note that nodes are =
b e b/ \¢ y 2 1
if the set of events which can occur next are the same. The tree fyA\? is
zl to either |b or c.
a
a .
(2) Let Ak be the tree . ¢ (k times. Let A*=:C)Ak, k>1. So A, has
al a
arbitrarily long finite paths and an infinitely branching root: 2/ /e

(XX )
a qQ
a a

Let Am be the infinite tree |0~ and let A, = A*(D @w. Note that for all

k, Aw(k) = A*(k) as each k—th:cross section contains one path each of lengths

' I,...,k-1 and a countable number of paths of length k. We claim that A, Ek A

*

for all k and thus A_ = A,, as can be seen from the following lemma:

*

k)

Lemma 2.1: If S(- =T(k)

‘then SEkT,

Proof: Induction on k.

For k=0 the result is immediate.

Assume the lemma holds for k.



(k+1)=T(k+1). As the prefixed subtrees of S and T are in 1-1

"Suppose now S
corrcspondence, we can write Sck+1)=(:)a.s.(k)=()zL1\(k)=T(k+1) where Si(k)=T.(k).
171 i1 i

Therefore by the induction hypothesis we have Si Ek Ti' Clearly now we have

S S T.

% but not equal.

. A _
We remark that the converse is false: //\<L =

Finally we collect some easy and useful facts:

Lemma 2.2: (1) S _:.k T implies Vj<k S -__-j T
(2) s ik T implies Vj>k S ij T

(3) s =, s (k) = s(m n>k

Proof: omitted.
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3. The Metric Space of RSTs

In this section the completeness of the metric space on T induced by the
weak equivalence relation is demonstrated. For topological definitions and
related items, the reader is refered to [Dug].

We define the following metric on T:

Definition: For S,TeT, let dw(S,T) = 2—k where k = m?x S Ej T. If‘the maximum
does not exist, we take k to be infinite.

As k—equivélence examines no nodes which are along paths of length greater
thén-k from the root, we see that the larger the value of k above, the more alike

the two trees are, the smaller the value of dw.

: a
Examples: " d ( /\b,la)=1_since S¥1T
aAa
dw(/\b,]a)ﬂz"since S=,T but SZ,T

d,( AR |2y =d (A, ,A)=0

Lemma 3.1: <T,d > is a ultra pseudo metric space.

Proof: (1) dW(S,T)=O <==>Vk SEkT <==> §=T (pseudo)

(2) d,(S,T)=dy(T,s)

(3) d,(S,T)<max(d,(S,U),d (U,T)) (ultra)
Let dW(S,T)=2’k and suppose (wlog) dw(S,U)<2-k. Then S=, ,U. Since
both SEkU and SEkT, we have UEkT. However, U¥k+1T as S¥k+1T.

Therefore dw(U,T)=2-k.

We define the notions of Cauchy sequence and limit:

Definition: <Sn> is a Cauchy sequence (CS) iff

Vk>0 JNVm,n>N, SHESAR
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Definition: S is a limit of a CS <Sn> (written Se lim Sn4)

Ciff  Vk>0 INVn>N, S Ek Sn'

Remarks: (1) The above definitions are equivalent to the more usual presentations,
] >
e.g., ¥e >03NVm,n>N, dw(Sm,Sn)<e. |
(2) We must deal with equivalence classes of CS limits. Recall that

<T,dw> is a pseudometric space, and for'example, if SnszPAj’

Qa a
e.g., S,= Q] , we have that <S > is a CS and sofor all n
a

A, = S, = A_, and therefore {A*,Am}sl}im Sn"

Procéeding to the completeness proof, we will establish that any XSS <Sn>
in <T,dw> is a CS with awell defined constructible limit, fhe union tree,
USnel}im S+ An operator §n trees, C, yielding a fully expanded countably
branching tree in a sense made precise below, will be defined and shown to possess
the following special properties:

(1) weak equivalence is the same is isomorphiSm, i.e.

C(S) = C(T) <==> C(S) = C(T), for bounded S,T;
(2) for any bounded S, S = C(S).
By standard argument, given a CS <Sn>, we can select a subsequence <S'n>

(n)

such that <S'n > has the same limit as <Sn>’ if indeed such a limit exists.

(n)
n

Now since'<C(S' )> is a XSS (implied by (1)) and therefore has a limit

which by (2) is fhe same as <Sn>’ the completeness of <T,dw> will follow directly.

Lemma 3.2: If <Sn> is a XSS, then. it is also a CS in <T,dw>.

k' n

Proof: Recall <Sn> a CS <==> Vk>0 JINVm,n>N, SmE S
We have two cases:

(a) <8 > is bounded (i.e. {b(n)} is bounded). Then after some N

) g (K)
n

0’

¥m,n>N Sm=Sn. Then for any k,bm and so szksn (Lemma 2.1).

-0’
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(b) <Sn> is not bounded. Choose N such that b(N)>k. Then as SN=SNb(N)

(k)

(Lemma 1.2.b) we have ¥m,n>N Sm =Sn(k) (Lemma 1.2.c) and therefore

S Sn (Lemma 2.1).

mk
) <8 > . . .
Theorem 3.3: Let Sn be a XSS. Then ,lim S, 4 €xists and USn e Jdim Sn’

Proof: USn exists by Lemma 1.2.d. The reader may now proceed in a fashion
similar to the proof of Lemma 3.2.

Our C operator is defined as

Definition: For any bounded tree S, let C(S) be:
C(nil)=nil
C(@a.S.)= I1°.
(B a;5)=[®a,l(s,]
To aid the intuition, C(S) can be constructed for any bounded tree S as follows:
(1) mark all leaf nodes as ready;

(2) repeat until the root is marked ready

if all of a node's descendants are ready

then replace each prefixed subtree of the node

by w copies of the subtree and

mark the node ready;

a/ \b
For example, if S = 4 , then C(S) =
C

where A = c c~</... c;'"

Lemma 3.4: For S bounded, C(S) is a tree.

Proof: omitted.
The utility of C-trees becomes evident in the theorem and corollary below, in

which weak equivalence is seen to be the same as isomorphism.
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Theorem 3.5: Let C=C(S) and D=C(T) for some bounded S,T.

Then CEkD<=:T>C (k) =D(k)

Proof: (<==) Lemma 2.1.

(==>) Induction on k:

case k=0£ immediate.

Assume for k.

" case k+1:

Suppose C5k+1D. Partition the prefixed subtrees df both C and D into
k+l-equivalence classes. As CEk+1D, these equivalence classes of C and D are
in 1-1 correspondence. By the induction hypothesis, the representatives of
corresponding classes have isomorphic k+1 cross sections, so the two trees obtained
.by_the joining of the representatives are k+l-isomorphic.

As C and D are C-trees, each equivalence class represents at most w prefixed
subtrees. Now as every prefixed subtree of C or D contributes w copies of itself

to C or D, the number of subtrees represented by any class is w. Therefore we have
C(k+1)=D(k+1).

Corollary: C=D <=> C=D for bounded C,D.

Proof: As C,D bounded, the isomorphisms constructed above will stabilize.
The last result we need prior to priving completeness is the following:

Lemma 3.6: For S bounded, S=C(S).

Proof: We show Vk sz, C(S) by induction on k.

case k=0: 1immediate.

Assume for k.

case k+1:

Let S=@ a.S., C(5)=[® aiccsi)]“’

a

Now Sz, ,C(S) <=> ¥a¥S' S-2>5' implies 3C' C(S)——>C' and $'=,C' and

vice versa.
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If aiSi is a prefixed subtree of S, then aiC(Si) is a prefixed subtree of
C(S). We have SiEkC(Si) by the induction hypothesis and so the required C' exists.
A similar argument for the reverse direction establishes the lemma.

We are now ready to prove
Theorem 3.7: <T, dw> is complete.

Proof: Let <Sn> be any arbitrary CS in <T,dw>,

i.e. ¥Yk>0 IN Vm,n>N Sm:kSn.

k:ksn' Consider
now the sequence <Sk(k)>. Clearly <Sk(k)> is a CS as S (k)EkSn(n)¥nZk.

k
(k)EC(Sk(k)) by Lemma 3.6. Therefore <Sk(k)> has a

By passing to a subsequence if necessary, we can assume yn>k S

Since Sk(k) is bounded, Sk

limit iff <C(Sk(k))> does. But <C(Sk(k))> is a XSS (by Theorem 3.5) and has a
limit (Theorem 3.3).

Finally we observe that by construction <S > has the same limit as <Sk(k)>,

k
completing the proof of the theorem.
At this point we would like to remark that our construction not only incorporates
countably branching trees, but requires them for our space to be complete. That
arbitrary finite branching is not enough can be seen from the following. Recall that
o
: 1 I L : L

/\j is the tree ¢ (j times. Now suppose that SEkAj for j<k. Then both the minimum and
A | v

maximum path lengths in S have size j, so that all the paths in S have length j.

Now suppose SEk+1 A,, where we now write A*=C) aAj for j a natural number.
Then for all j<k there is a prefixed subtree aSj of S such that AjEij. Therefore,
for each j<k, Sj has path lengths of exactly j and Sk has path'lengths of at

lecast k. So we have established that

Lemma 3.8: If SEk+1 A,, then S has at least a k-way branching root.
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Theorem 3.9: <T,dw> is incomplete if trees cannot have countable branching.

Proof: <A1JH»C)A2,...> is a finitely branching CS with limit A_, which by

the lemma is not equivalent to any finitely branching tree.
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4. An Tsometry with a Metric Space of de Bakker and Zucker

En route to their denotational semantics of concurrency, de Bakker and

Zucker [BaZ] wish to find a metric space <P,dB> which solves

P={py}UP (T x P) - (4.1

where PC refers to the set of all subsets closed with respect to dB' Their

solution turns out to be isometric to a quotient space of <T,dw>. In this

section we shall describe their solution <P,dB> and establish the isometry.

Definition: Let <Pn,dn> be a series of metric
PO = {po},
Pre1 = (PoJUPE x P)
and  d;(p,q) =0
0

dn+1(p’q) = 1

max (sup inf d

P'Ep q'eq

where » 0

1
a: . (p'.q") =
n+1 dn(pn’qn)/z

1

Note that dn+l is the Hausdorff metric distance between the subsets of Pn

induced by the metric dﬁ+ on the points of Pn

1

spaces defined by

Py is the nil process,

P is the power set operator,
for all p,qeP_,

for p=q=p

for P=p, OT 9=P,> but not both

1!1+1(p;q')’ s'up i'nf dr'1+1(p"q'))
q'eq pEp

for both p,qg€l x Pn

for p'=q'=p0
for p'=p0 or q'ﬁpo, but not both
for p'=<a,p'>, q'=<b,q'"™ and a=b

above, except a#b.

+1

+1°

Definition: Let <P,dB> be the completion of <UPn,U¢n>.

Theorem 4.1 [BaZ]: <P,dB> satisfies (4.1).
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The quotient space through which the isometry will be established is the

space of reduced trees. We need a preliminary definition:

Definition: For S bounded let 0OS be:

0 (nil)=nil

0® a.S;)= @aiSi where {aiSi} is the maximal collection of pairwise
nonisomorphic prefixed subtrees of S.

We shall write for convenience naisi for u( @aisi).
Examples: (1) S = “/\a‘ , 0s=]a

(2) S = a

(3) s = af\°Q , [Os =5
6] b/\ b

Lemma 4.2: US is a tree.

Proof: We must verify that Os is well defined. If {aiSi} and {a'.l‘S‘.l'} are two
maximal collections of nonisomorphic prefixed trees of S, then the sets must

necessarily be in 1-1 correspondence and so @aiSi = @a'.l'S'i'.

Definition: (reduction operator) For S bounded let R(S) be:
R(nil) = nil
R( ®aisi) =ﬂaiR(Si).
a/\a

- &
Example: For S = , R(S) = (see example 3 above).
b

For convenience, let Rn={R(S) | S bounded by n}.

Lemma 4.3: (1) R(S) is a tree;

(2) Rn is the set of all reduced trees of height Sr;.
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Proof: omitted.

We shall now establish an isometric bijection between <URn,dw> and<UPn,Udn>.

Definition: Let (b:URn--*UPn by ¢(R(nil))=¢(nil)=p0

¢ (R(S))=0 (UaiR(Si))={<ai,¢(R‘(Si) )>}

Theorem 4.3: ¢|R is a bijection between Rn and Pna
n

Proof: Induction on n:

case n=0: immediate.

Assume for n.

case n+1:

‘~¢ is 1-1: Let R(S), R(T) ERn+ and suppose ¢ (R(S))=¢ (R(T)) .

1
Now if ¢(R(S))=¢(R(T))=p0, then by the induction hypothesis, R(T)=R(S)=nil.

Suppose R(S)=UaiR(Si) and R(T)=U bjR(Tj) where R(Si), R(Tj)eRn

(a8 (R(S;))>}=(<b 0 (R(T;))>)

Vi:3j <ai,¢(R(Si))>= <bj,¢(R(Tj))> and vice versa

a;=b; and #(R(S;))=0(R(T,))

.. R(Si)=R(Tj) by the induction hypothesis

. a;R(S;)=bR(T)

) - "_¢ is 1-1
.0 a,R(S;) -UbjR(Tj)

. -1 ] ,
¢ is onto: Let pePn+1. If P=Dg> choose ¢ “(p)=nil. Else p={<ai,pi>}, piePn.
By the induction hypothesis ¢ is onto Pn' Denote by ¢_1(p_) the unique (¢ is 1-1)
i

_ - i i -1
element of R_ such that ¢ (¢ l(pi))=pi. Let ¢ L (p)=0 a0 1(pi). Because ¢ (p;)eR

- -1 -1 = .,P- }=
we have a_¢ l(pi)ERh+1 and therefore ¢~ (p)eR . Furthermore ¢ (6 " (p))=l<a;,p,>1=p

¢ is onto.
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Corollary: ¢ is a bijection between URn and UPn,

The following will be useful in establishing the isometry:

Lemma 4.4: For S,T eURn, S=T <=> S=T, i.e. <URn’dw> is a metric (not pseudometric)

space.

Proof:

(<=) immediate.

(=>) standard induction argument on Ek.

Theorem 4.5: ¢ is an isometry between URn and UPn-

Proof: We shall establish that VS,TeRn, dw(S,T)=dn(¢(S),¢(T)) from which the

conclusion follows.

"Induction on n:

case n=0: dw(S,T)=0 since S=T=nil

and dO (¢(S) ’d)(T)):dO (po :p0)=0 :

Assume for n.

case n+l: we shall establish

VS, TeR dw(s,T)=2‘k <==> d (¢(S),¢(T))=2_k

n+1’ n+l

Induction on k:
case k=0: dw(S,f)=0 <==> S=T (Lemma 4.4)
<==> ¢(S)=¢(T) <==> dn+1(¢(S),¢(T))=0

Assume for k.
-(k+1)

case k+1: We know dw(S,T)=2 <=> §= T and S¥k+2T. We claim that

k+1

SEY+1T <=> dn+1 (¢(S),¢(T))§2'{k+l). If the claim is éstablished, then

the induction and theorem follow as

(k1) Ly - (ke2)

_ -(k+1)
d (s,T)=2 d ,1(9(5),9(T))<2

_ - (k+1)
<=>d__(6(8),6(T)=2

The first inequality above arises from the claim and the fact that

S¥k+2T. It Tremains to establish the claim.
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2-(k+1)

Claim: Sz, | T <=>d__ (¢(5),6(T))<

Proof:

(=>) SEk T <=> VaVs' 253" =>AT' T-—>T' and S'EkT' and vice versa
+ .

'.. dn(¢(S‘),¢(T'))§2—k by the induction hypothesis for n and k

4 (9(as"),¢(aT))<2” K1)

* e n+1
s ' [} "(k"'l)
1?f dn+1(¢(38 ),¢(ajTj))fZ
. _ .. , -(k+1)
Since S‘k+1T’ Vlrl?f d n+1(d>(aiSi), ¢(ajTj))52
. (k+1)

€ A -
. . sypind d_n+1(¢(aisi), ¢(ajTj))§2
A similar argument establishes s?p inf d'n+1(-,-)<2—(k+l)

. - (k+1)
.. dn+1(¢(5),¢(T))§2 .

(<=) Suppose now dn+1¢(5),¢(T))§g'(k+l)

. -(k+1)
Then sup 1?f dﬁ+1(¢(aisi)’ ¢(bjTj))§2

LoV ), 00ags) e T )<

oy _ -k
. Vidj ag=b. and 4 (6(5;),¢(T)))<2
By applying the induction hypothesis for the claim for each prefixed
subtree aS.l there is a corresponding aTj such that SiEkT.
) one half of the definition of k+l-equivalence is satisfied. We
. . . : - (k+1)
obtain the other half from sup inf d' . (e,*) <2 .
j 1 n+l
This completes the proof of the claim and the theoren.
Since URHCZT, the completion <P,dg> of <UPn,Udn> is isometric to a complete
subspace of <T,dw> (modulo =), say <R,dw>. We need to demonstrate that URn
is densc in T, i.e. that [R/Z]=[T/Z], so that <P,dB> will be isometric to <T,dw>/5-

We need a preliminary lemma.

Lemma 4.6: TFor S bounded, S=R(S).
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Proof: Induction on k:

case k=0: immediate.

Assume for k.

case k+l: Let S=®aisi’ R(S)=“aiR(Si)
Suppose aiSiis a prefixed subtree of S. Then aiR(Si) is a prefixed
subtree of R(S) (or there is some aiR' branch of R(S) such that
R'=R(Si)). Then by the induction hypothesis, R(Si)EkSi and we are
done in one direction.

The reverse direction is similar.
Theorem 4.7: For any SeT, there is some TeR such that S=T.

Proof: Recall that S=US(n)-

since ™ bounded, s™zr(s™) by Lemma 4.6.

<R(S(n))> is a CS in <R,dw> and therefore has a limit TeR. Clearly T=S.
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S. A Connection with Programming Logic.

In this section we treat the case when our RST's are labeled from a finite
set Z. We introduce the small modal logic HML (Hennessy-Milner logic). It turns
out that for any trees S,T, that S=T iff for every ¢cHML, S E ¢ <=> T E ¢. We
explbit this fact to show that completeness of the.space <T,dw> is é consequence
of the Compactness Theorem for HML. This theorem in turn follows from the Compact-
ness Theorem for first-order logic, so we have an alternative proof of completeness
in this case. Finally, we observe that if our metric space is compact, then the
HML Compactness Theorem follows as a consequence.v

These results are in a éense already known in model theory. The relatioﬁ =
can be defined on arbitrary first order structures, and the equivalence A=B iff
for all sentences ¢, A E ¢ <=> B E ¢ is part of the Ehrenfeucht-Fraisse” character-
ization of elementary equivalence [Mon, p. 408]. HML can be considered as a
fragment of first-order logic and the general theory applied. However, the proofs

in the HML case are simple and revealing, so we think it worth while to present

them here.

Definition: The set of formulas HML is given by the following inductive clauses:
tt, ffe HML (two Boolean constants)
¢ ,P € HML imply
dAY € HML and ¢ € HML (Boolean operations)
¢ € HML and aeXl imply
a<¢>eHML ('"'possible'" modality)
The formula a<¢> is to be read: "From the initial staté (root) it is possible

to exccute the atomic action a and arrive in a state satisfying ¢'. Note: I is

henceforth finite.
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Definition (scmantics of HML): Let S be an RST over I, and let ¢eHML. We say S
satisfies ¢ (S E ¢) in case we can apply the following inductive clauses:

S kE tt always;

S £ ff never;

S\=¢)\¢)iff SE ¢ and S F P

S E "9 iff not (S E ¢);

Sk a<¢> iff (3S')(S—>S' and S' F ¢).

We proceed to develop some facts about HML and the relation =.

Definition: The depth || of an HML formula is given by:
|tt] =|££] = 0;
loav] = max ([¢],[]);
o] = |4];
la<¢>| =1 + |¢].

Let HML_ = {¢| [¢[<n}.
Lemma 5.1: For all T,U, and n, if.TEnU then for all ¢€HMLn(T Ed <= UE ¢).

Proof: easy induction on n.

The converse of 5.1 requires a little work, and is false unless I is finite.

Definition: Two HML formulas ¢,y are logically equivalent iff for all T, TE ¢

iff T E V.

" Lemma 5.2: For each n, the relation of logical equivalence restricted to HMLn has

only finitely many.equivalence classes.

Proof: Use induction on n; the proof amounts to finding a DNF for the formulas

in HMLn. Here the finiteness of I must be used.
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Lemma 5.3: For any n, and any T,U, if for all ¢€HMLn, TE ¢ <=> UF ¢, then
T= U.
n

Proof: Again, by induction on n. The result is clear when n=0. Assume it for
k, and all T',U', and ¢€HMLk. Suppose T—E;>T'. Let

Fk={@1,...,®p}

be a set of representatives of the equivalence classes of logical equivalence

restricted to HMLk, and suppose 61,...®i are the formulas in F,_ satisfied by T'.

_ k
Then T F a<0 . N .. ANO.A20O. _N... NO >. This is a formula in HML, ., so by

1 i 1+1 P k+1
hypothesis, U satisfies it too. This gives a tree U' with U-2>U' and T' and U’
satisfying exactly the same formulas in Fk. Since Fk is a complete set of
répresentatives for logical equivalence, T' and U' satisfy exactly the same
HMLk formulas. By inductive hypothesis, T'EkU'.

The case U——> U' is of course exactly similar, so the proof of 5.3 is

complecte.

Corollary 5.4: S=T iff V¢eHML, S F ¢ <=> T & ¢.

Corollary 5.5 (''Master formula'" theorem for HML): For each n>0 and each T,
there is a formula ¢(n,T) such that
(1) TE¢(,T);

(ii) For any U, if U ¥ ¢(n,T) then UEnT.

Proof: As in 5.3 let Fn be a representative system for logical equivalence in

HMLn. Given T, let
¢(n,T)=/A\{¢€Fn[T E ¢}.
A /A\?‘¢|¢€Fn and not T E ¢}.
Clearly T E ¢(n,T). Further if U ¢ ¢$(n,T) then U and T agree on all formulas in

Fn and thus on HMLn. The result follows from Lemma 5.3.
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Theorem 5.6 (Compactness theorem for HML): Let '&HML. If for any finite A&T
there is a trce T such that T E ¢ for all ¢eA, then there is a tree U such that

for all ¢el', Uk ¢.

Proof: We translate (the semantics of) HML into first-order logic. For each
ael let g be a binary relation symbol, and let k be a constant symbol. Let L
be the first-order language determined by these symbols.
For each ¢eHML, we define a formula ¢*cL with at most one free variable.
Let tt* be some fixed tautological sentence in L, and let ff*='|(tt*).
Further define
(OANPY* = O*AP*;
(=d)* =-(9*);

(a<p>)* =:3yQ§(x,y)/\¢*(y)), where y is the free variable in ¢* (if one exists)

and x 1s a new free variable.
For any set I' of formulas in HML, let
I*={¢*(k) | ¢eTI'}.
The T* is a set of sentences in L, and it is easy to show that T* has a
model if and only if T has a tree model. Now 5.6 follows immediately from the

Compactness Theorem for first-order logic.

We can now prove that <T,dw> is a complete metric space. Let <Tk> be a

Cauchy sequence of trees. By passing to a subsequence if necessary, we may

assume that for all k, Tk'ka+1'

Now define

r={¢(k,T,) | k>1}

Ko
where the ¢(k,Tk) are given by 5.5. We claim that for any U, if U F ¢(k,Tk)

then for any j<k, U ¥ ¢(j,Tj). The proof is by induction on k, and k=0 is

trivial. Now if U E ¢(k+1,Tk+1) then by 5.5, U= Since T we

k+l Tkel” k+17Kk K’
have U=, T, . But | ¢(k,Tk)[§k, so by Lemma 5.1 U ¥ ¢(k,T,). The claim follows

by induction.
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From the claim, if A is a finite subset of ', then & has a tree model.
By 5.6, T has a trce model T; i.c. Tk ¢(k,Tk) for all k. By 5.5 again, we
have TEka for all k; i.e., dw(T,Tk}+0 as desired.

Finally, we obsefve that from the compactness of <T,dw> we can derive
the Compactness Theorem for HML. Let I' be an arbitrary set of formulas such
that cvery finite subset has a tree model. Enumerate F={¢l,¢2,...}. For each i
let Ai be the set {¢1,..,¢i}. Then each Ai has a tree model T, Since <T,dw>
is compact, the sequence <Ti> has a convergent subsequence, say to some tree T.
[t is casy to see that T is a tree model for I'. (The compactness of <T,dw> can
be proved directly. One need only show completeness as in the previous sections,

and the usec the fact that I is finite to show that for any €, a finite number of

e-spheres cover T.)
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