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I. INTRODUCTION

For most flows whose stability has been investigated so far,
instability occurs at rather large Reynolds numbers. The Orr-Sommerfeld
equation(7’9) governing the stability of such flows must therefore be
solved for large values of the Reynolds number, which occurs as a parame-
ter of these equétions. The asymptotic solutions of the Orr-Sommerfeld
equation, appropriate for large Reynolds numbers, have singularities at
the eritical points where the wave velocity of the disturbance is equal
to the velocity of the mean flow. Great care must therefore be exercised
in the evaluation of these solutions as a critical point is crossed.
These singularities of the solﬁtions are, however, not inherent in the
Orr-Sommerfeld equation, and are introduced entirely by the method of
solution. For flows which can be expected to be unstable at low Reynolds
numbers, the appropriate solutions can be expressed in ascending powers
of the Reynolds number or of one of the coordinates. Since asymptotic
solutions are not needed, the afore-mentioned singularities do not occur.
The study of the stability of flows which can be expected to become un-
stable at low Reynolds numbers can therefore be.carried ocut by conven-
tional methods. In view of this, it i1s perhaps somewhat surprising that
until recent years problems of hydrodynamic instability at low Reynolds
numbers have been neglected by research workers. The study of these
problems will lead to an understanding of many fascilnating hydrodynamic
phenomena.

The flow whose stability is studied here is a stratified flow

of two fluids of equal viscosity but different densities. It is entirely
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motivated by gravity and its velocity distribution is antisymmetric, with
the lighter fluid flowing in a direction opposite to that of the heavier
fluid, with a point of inflection of the velocity profile at the inter-
face. Since a point of inflection is known to. have a destabilizing
effect, and since the work of Yih(ll)and of Benjamin(l) has shown that a
free surface also has a destabilizing effect, it can be expected to be
unstable at low Reynolds numbers, especially if the slope of the mean
flow is steep. The Orr-Sommerfeld equation will therefore be solved for
small Reynolds numbers.

The present problem also has some bearing on many phenomena
which occur in nature and in engineering practice. The intrusion of salt
water into river estuaries and tﬁe intrusion of a cold front into warmer
alr are examples of stratified flows whose stability is of interest to
the hydraulic engineer and the meteorologist. If the concept of eddy
viscosity is introduced, the problem also has some bearing on the genera-
tion of waves by a turbulent wind. In chemical engineering, the type of
flow investigated is encountered in extraction columns. The study of
the present problem will provide some understanding of these phenomena

encountered in nature or in industry.



IT. THE PRIMARY FLOW

The present investigation concerns the stability of a steady
laminar stratified flow of an incompressible viscous fluid between two
parallel fixed planes. The spacing of the planes is denoted by 2b. The
origin of the coordinate system is taken half-way between the planes,
with the X axis parallel to the planes. The planes are inclined at an
angle © with the horizontal. (See Figure l.)

The fluid occupying the region 0 <Y < b, with density p1, flows
up the inclined plane in the direction of negative X. The fluid occupy-
ing the region -b <Y < 0, with density po greater than py, flows down
the plane under the action of gravity. The viscosity p of the two fluids
are considered equal. Gravity is the sole motivating force for the flow,
with the heavier fluid displacing the lighter fluid in a reservoir at
X = + o, The volumetric discharge across the channel is zero.

The Navier-Stokes equations which govern the primary flow are

O=-P1’X+plgsin©+uﬁ,l’w, .

0= - Pl,Y - P8 cos o, for 0<Y<b, ’
and

0=- PE,X + pog sin O + “TiQ,YY R (2)

0 =-Poy - pog cos 0, for -b <Y<O,

where ﬁi and ﬁé, the components of velocity of the two fluids in the X
direction, are functions of Y only, and letter subscripts following commas
denote partial differentiation with respect to that quantity. The com-
ponents of veloclty in the Y and Z directions are zero. Continuity is

thus automatically satisfied.
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These equations are easily solved for ﬁi and.ﬁé. It can be

verified that

T=wyl-2+ @7, 0o<t<n, (3)
and _ 2
U2=_UM[+§+(%)],-b§Y§O, ()

where . _ A
Uy = EEEZ——Ell be g sin © . (5)
1l

is four times the maximum velocity. The boundary conditions corresponding
to (3) and (4) are no slip at the fixed boundaries. The condition of

zero volumetric discharge is also satisfied by (3) and (4).



III. FORMULATION OF THE STABILITY PROBLEM

A. Differential Equations

The basic equations to be satisfied are the Navier-Stokes
equations and the continuity equations. As is customary in fluid
stability problems, it 1s assumed that the velocity and pressure fields
upon suffering a small disturbance are expressible in power series
expansions in terms of an amplitude parameter €, assumed small and con-
stant.(6) Upon substituting these expansions into the field equations
and setting coefficients of powers of € to zero, it is noted that the
€® equations are those already described as governing the primary flow.

The el equations are

— — 1

u¥ o+ Tu* _ + .1 opx 4+ B oux 6
vi Tk =i opr e B ax, (7)

u¥ +v¥ =0 (8
i,X l)Y ! /a )

where the disturbance is assumed to be a two-dimensional one. The conven-
tion has been adopted that capital letters refer to the primary flow and
small letters with an asterisk in the upper right hand corner refer to
the first-order disturbance flow. The equations hold in the upper region
when 1 = 1 and in the lower region when i = 2.

A complete treatment of the stability problem requires consid-
eration of higher powers of € than the first, and also establishment of

convergence and Jjustification of the term-by-term differentiation of the
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expansion in €. However, as 1s customary, attention will be confined
solely to the first order equations, with the assumption that for suffi-
clently small disturbances the linearized equations can be used without
appreciable error.

To facilitate the solution of (6), (7), and (8), it is con-
venient to put them in dimensionless form. The following dimensionless

parameters are introduced:

x* *
uf 1 i X Y
ui=———rVi="—v-Pi=_’—‘2:X=g:y=g’
(9)
U Ty b Uy Py P2
Tz't_M’U :—-—];’Ri:—"‘M_':‘L‘,I‘z_.

Formulating (6), (7), and (8) in terms of these parameters, the following

dimensionless equations are obtalned:

1

Ui, rt Uiug,x + Ui,yvi = - Pi,x - EZ v uy (10)
1 2

Vigr ¥ UiVix = - Pi,y TRV Vi (11)

ui,x + vi,y =0 (12)

in which Ry is the Reynolds number based on the half-spacing b and Uy, and
represents the ratio of the inertia forces to the viscous forces. Since
the flow is motivated by gravity, it 1s expected that the Reynolds number
and the Froude number F, which represents the ratio of inertia forces to
gravity forces, are not independent of one another. ©Such is indeed the
case, for if F is def%ned by

F2 = g% s then from the primary flow (5) provides the rela-
tionship that

2 = ¢ (r-1)Ry sin © . (13)



To reduce the number of field equations which are to be solved,
it is convenient to introduce stream functions. To simplify solution of
(10), (11), and (12), the solutions will be assumed to have exponential
time factors. Further, to reduce the partial differential equations to
ordinary differential equations, it is assumed that the disturbance may
be resolved into Fourler components, which are thus periodic in x. A
general disturbance then would consist of either a Fourier series or a
Fourier integral of such components. To determine the stability of the
flow it is sufficient to consider the effect of a single Fourier component
of general period.

Only two-dimensional disturbances are considered, since the
work of Squire(lo), Yih(lg), and others has shown that the stability or
instability of a three-dimensional disturbance can be determined from
that of a two-dimensional disturbance at a higher Reynolds number.

The velocity components and the pressure can thus be assumed to

have the following forms:

£ (y)eia(x—crr) ,

U.l:
v, = _iaf(y)eia(X—CT) , (14)
p, = q (y)elelx-er)

in0<y<1, and

_ h:(y)eia(X-CT) ,

U.2—-
vy = _iah(y)eia(X—CT) , (15)
by = qg(y)eia(x'CT) )

in -1 <y < 0, where primes denote differentiation with respect to y. The

dimensionless wave number @ is related to the wave length A of the disturb-

27b

ance by Q= The real part of c represents the dimensionless
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disturbance celerity, and @ times the imaginary part of c gives the
dimensionless growth rate of the disturbance.
Upon solving (10), (11), (14) and (15) for the pressure terms,

the following are obtained:

1
q = g (€111 - )+ (eU)en + UE
(16)
1
qi = Ianfl (szf" - ah-f) + ae(c_Ul)f )
in 0<y <1, and
-1 (h”' aeh')+( Us)h' + Ulh
do = TR, - e-b2 2t
(17)
1 2 L
1= @°n'' - a'h) + o (e-Up)h
q2 LoRo 2) s
in -1 <y < 0. The pressure terms can now be eliminated to obtain
Frove [-2(12 + iaRl(c-Ul)] f£rvo4 [a)"‘ + iaRlU:'L' +
8
10°R (U1-¢)] £ = 0 (18)
in 0 <y < l,land
h!ll! + [_2@2 4 mE(C—UE)] h" + [ah. + iQ’.REUé' +
(19)

102Rs (Up-c)] h = 0
in -1 <y < 0. These equations are the Orr-Sommerfeld equations. From
(3), (4), and (9) the functions Uy and Up are:

Up = -y + y2 ’

Uy = -y - Y2 .

(20)

B. Boundary Conditions

Since the differential Equations (18) and (19) are two in number
and each is of the fourth order, there must be elght boundary conditions

imposed to specify the mathematical problem completely. Two conditions



are imposed at each of the fixed boundariles, and s total of four are
imposed at the interface.
Since the fluids are considered viscous, there must be no slip
at the fixed boundaries. Hence, in terms of the stream functions,
£f(1) =0, £'(1) = 0, n(-1) =0, n'(-1) =0 . (21)
The interface 1s assumed to be displaced from the x axis by a
small amount which in dimensional form is denoted by bn. This introduces
a further unknown into the problem, which, however, may be readily deter-
mined from the kinematical condition that the component of velocity at
the interface must equal the time derivative of n. In what follows,
quantities evaluated at the interface are expanded in a Taylors series
about y = 0, and n is considered to be of the same order as the velocity
disturbances. In the spirit of the previous linearization, disturbance
terms are neglected if they are of an order greater than one.
At the interface, the velocity components must be continuous,
hence
£(0) = n(0), £'(0) = n'(o) . (22)
The kinematic condition at the interface 1s, in dimensionless terms,

Vo=, (23)

o= _iaf(o)eia(X—CT>
and upon solving for 7n ,
n = % f(O)eia(X'CT) ) (2k)
The shear stress must also be continuous across the interface.
To the first order, the dimensionless shear stress at the interface is
given by

(U' +u' + v+ U q). (25)

A
1l
=+

Xy
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Therefore the boundary condition imposed is, after some simplification,
Lr(0) + ef''(0) - eh't(0) =0 . (26)
The dimensionless normal stress at the interface is

1
Tyy = _.g—aﬁ (P + Bybn + 2uUyv') - D, (27)

where P is the pressure in the primary flow. The condition imposed is that
the difference in normal stresses must be equal to the curvature of the
interface times I', the surface tension. Since P must already be continu-

ous, and since P,y=-g p cos © the boundary condition becomes

1 [(r-l)bg cos © o?

q1(0) - rgp(0) + 3 T +==1¢£(0) =0, (28)

where W is the Weber number, representing the ratio of inertia forces to
surface tension, and is defined by
oyl
W=——,
r

This can be written entirely in terms of the stream functions by using
(16) and (17). The resulting equation is, after further simplification,

c[£r'1(0) - h'''(0)] + (r-1) ioRje [£(0) - c£'(0)] +

ialh cot 0 + oFSIE(0) = 0. (29)

The parameter S 1s defined by

s=-21=1L , (30)
W }J.UM

and represents the ratio of surface tension to viscous forces.



IV. SOLUTION OF THE STABILITY PROBLEM

A. General
For the purpose of solving (18) and (19), much labor can be

saved by employing the following notation:

' {f(Y) in 0<y<1,
A) = n(y) 1in -1<y<o0,
B =o°,
A =ioR; in 0<y<1,
A A> =1i0Ry in -1<y <0,
5 +1 in 0<y<1, (31)
“ -1 in-1Xy<XO0.

Then (18) and (19) can both be solved simultaneously by solving
grivn 4+ [-2B + Alcty - 5y°)] ' + [B° + 248 +
AB (-c-y + 8y°)] =0 . (32)

As discussed in the Introduction, instability can be expected
to occur at low Reynolds numbers when the inclination © approaches 90°.
Two techniques at once are suggested as alternate methods of solution.
The first, expansion of ﬁ in ascending powers of the Reynolds number, is
certainly the more typical of stability problems and is formulated in
the following section. The alternate approach, expansion of ﬁ in powers
of the coordinate y, has, to the best of the author's knowledge, been
employed successfully only by Benjamin(l) in spite of its early recogni-
tion by Kelvin(B) and others. Because of the nature of the problem at
hand, this second method, employed in Section C, seems more useful in the
region of interest, and conclusions are drawn on the basis of these cal-
culations. Of course, the validity of approximations based on either
method can be determined only a posteriori.

-11-



It may be noted that the mathematical problem posed does not
lend itself well to any other of the usual procedures for the calculation
of eigenvalues. The equations are not self-adjoint, so variational
methods, such as those of Rayleigh-Ritz and Galerkin, can not be utilized.
Also the problem is further complicated by the presence of the eigenvalue
¢ in two of the boundary conditions. Therefore series expansions in
terms of one of the parameters seems to be the most promising method of

solution of the problem.

B. Expansion in Powers of the Reynolds Number

Following Yih(ll) assume a solution of (32) of the form
- (n)
n
Bly) = 2 A" 9 (y) . (33)
ne=0
Since the coefficient of the highest derivative of ﬁ is one, and the co-
efficients of the other terms are entire functions of A, B, and y, b must
be an entire function in the A-B plane.
Substituting (33) into (32), and setting coefficients of powers

of A to zero gives

glodrtt og glo)tr | g2 4(o)

0, (34)

p) g g(®) 4 g2 gln) o (328-y-c)

- (p(n-1) g gln-1)y_ ppgln-1) (35)
for n > 1. The solutions of (34) are, since B = o s

plo) = o, glo) o coy, plo) Loy, glo) - ooy (36)
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To solve (35), it is necessary to apply the operator
I = (DP-B) 1(02-B)-! on functions of the form y%i® It can be

verified that

L(y") = e Y

o 171 (2,mt5, + 20y), (37)

in which 1F7 is the confluent hypergeometric function (or the Kummer func-

tion) defined by

[ee]

(m+l )t (n+1)

]_F]_(E,m+5, +20y) = 00 (m+ n + L)

. 2ay)”. (8)

On applying this to the determination of ¢(l)(y), the following is ob-
tained:

pN(a,y) = 7y W 74 7y (2,5, - 2ay),

8V 0 - 8 ()

1l

It

ﬁél)(a;y) [g—,_ asy® F1(2,7, - 20y) -

—;‘{— ¥ 11 (2,6, - 20y) -

L (ca+8)y

I

68 (o) (39)

04
)+ lFl (2)5) - 20fy)] € v b4

1)

f(
04
Further values of ﬂ(n) are obtainable in a similar manner.
The results can be more simply expressed in terms of a finite
number of exponentials.(ll) In any case, when the boundary conditions
are finally applied and a determinant is obtained involving the solutions,

an exact solution for the eigenvalue ¢ is prohibited by the immense

amount of labor involved in the calculations. It then is necessary to
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terminate the solutions after a finite number of terms. The convergence
of such a solution is not as easily recognizable as a solution obtained
by a direct expansion in the coordinate y. A solution by expansion in

powers of y is now presented.

C. Expansion in Powers of the Coordinate y

Following Benjamin(l), a solution of the form
%i
= n Lo
B(y) RO (40)

can be assumed. It is most convenient to expand around the origin since
four of the boundary conditions must be satisfied there. Upon substitut-
ing (40) into (32) and setting coefficients of y™ to zero, the following

recursion relation is obtained:

(n-4)!

n'!

a, =
n

{(n-2)(n-3)(2B-Ac)an-z - (n-k)(n-3)hey 5 +

[A6(n-h)(n-5)-B2-2A6+ABc] an-L + ABan_5 -

ABBe_ ¢f . (41)

The coefficients ag, aj, ap, and az may be chosen arbitrarily. They may

thus be chosen to yield the following four solutions:
2 2 2a_p2
(ABc-B--245) yu + BB 5 (2A2¢5-6ABS+3ABSc-APBe -2B)) e

(y) =1+
Prly ] 5! 6!

N (6A26+5ABE—4A2B62)y7
B
. (-2082- 3% +6AB3c - 1APB2c2 2 0ABPS+18APBeB -240¢28 +ATBe 5 - 1ACE) /8
8!

N (14AB3+50A2B5+9A Be -22A°B2c - 16A7¢D ) 29
9!

ce (L2)
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2AB ¢ . (2AScH-10ABB+3AB%c-A”Bc?-2B0) -
i Tt Y

(ABc-B2-2A%)
5t

¢2(Y) =y +

2 2 £a2
. (8A: 5+8gB -6A°Bc) /8

(-36A2-3B4+6AB3c - 364826+ 3002Beb - 4bACRR 220325 104°B+ATBc D) g
+ 9‘. Yy
(20AB5+122A°B8+12A0Be? - 304°B2c-20A0¢8) 14
+ 1ot y +

(43)

o 2 2.2 20 10AR
Bs(y) =y + i&%T__El y* - STV (68 62?°+2A c?) 46 4 i§§_%Ti9__l o7

. (8A2+16ABS -20A2cH+8B7 - 12AB ¢ +8APBc? -2A0c)) /B
8!

2 212 2
, (564 6-28A39ThuA Be-1840¢°) 49

(10BY -20AB3c+80ABCS +20A2B2 2 - 164A°Bed+6L4AZB+T6A5c "8 - 10A7Be -

10!
b L
56A5c+2A c’) y1o b ()
10!
> (2B-Ac oA B2_3ABc+A2c2+LAD
6y (y) = %;-+( = Ly YO+ (385 T ) 47
2
. (6A7c-84B) yg
8!
+(2uA35-22A2c6+10A2+uB5-6A32c+uAEBc2-A5c5) 49
9!
, (-804%5_20aBP+3047Bc -1247¢7) 410
10!
+(160A2+5Bu-10AB5c+60A325+10A232c2+62AEB-1u2A23c5+A4cL .
11!
5eAdc-5A7BcO+627c78) ;11 (45)

11!
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. (58087¢5-T2A7Be2+90A2B ¢ -B0AD - LOARS 61 APES+20A e 3 ) 12
121

+ ... (L5 cont'd)

The solutions must converge for all finite A, B, C, and y because of the ab-
sence of singularities in the differential equation. An inspection of (42),(43),
(44) and (L45) indicates that for the range of the parameters consldered,
the solutions converge rather rapidly. For convenlence, the values of
¢i and their derivatives are summarized in the Appendix. A further func-
tion P5, defined by
Ps(y) = cBi(y) + Po(v) - 8ds(y), (46)

ia also introduced. It is found convenient in later work to use the set
of four solutions ¢2, bB, ¢4, and ¢5 .

The solutions of (18) and (19) are given by linear combinations
of £i(y) and hy(y), these being the values of f;(y) when A and ® are
assigned the values Ay, 1 and Ay, -1, respectively.

Satisfaction of boundary conditilons (22) and (26) is insured by

writing

H
T~
~
~—

i

apfo(y) + asf3(y) + ayfy(y) + asfs(y) (47)

g
&
]

apho(y) + azhs(y) + aghs(y) + aghg(y) . (48)

To satisfy the remainder of the boundary conditions, it is necessary that

0 = apc(A-As) + ayio(k cot 6 + o°S) - ag ,
0 = apfall) + azfz(1) + apfy(l) + asfs(1),
0 = apfh(1) + agfy(1) + ayff(1) + asfi(1), (49)
0 = aphp(-1) + azhz(-1) + aghs(-1) + aghs(-1),
0 = aphp(-1) + azhy(-1) + aght(-1) + aghg(-1).
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In general, this set of algebralc equations admits only zero values of the

a;. In order that a nontrivial solution exist, the determinant of the co-

efficients must vanish. Therefore for the existence of a nontrivial solu-

tion,
c(A1-Ao) 0 1 ia(k cot © + oFS) -1
(1) f3(1)  f3(1) £5(1) 0
0 = fé(l) fé(l) fﬁ(l) f;(l) 0
hy(-1) hB(-l) 0 h5(-l) hy, (-1)
ny(-1)  ni(-1) 0 ny(-1) ni(-1) | . (50)

This determinant may be expanded into a number of two-by-two determinants
by a method such as Laplace's expansion.(g) This yields the fesult
0 = HiF)y + F1Hy, - IpFg - Folig + HzF5 + F3Hy +
io(k cot 0 + ags)(HéF5 - FpHz)  +
c(Ap-Ap)(FiBs - HiF5) , (51)

where the following notation has been introduced:

S I (G L w1 R
= lga) Hle o e e Rl
ZRY IR PR <t
R P o e
el Bl s -l Ea)
- |0) 20wl Rl e
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To complete the determination of the eigenvalue c¢ it becomes
necessary now to approximate the ﬁ's, as obviously the infinite series
form for the,ﬁ's must be terminated. It was decilded to consider & and
R to be of the same order, and to limit the calculation to fifth powers
of o and R (and combinations of them). The odd power is introduced by
the boundary condition on the normal stresses. No special assumption is
made concerning c, although it is considered to be of the order of one.
Computations based on such an approximation prove straight-forward but
lengthy. To carry out the next-higher approximation (to the sixth power)
would triple or quadruple the amount of work necessary, which is already
considerable.

Treating @ and R to be of the same order gives results which
are valid in a small circle around the origin in the @ - R plane. Cal-
culations based on expansions to the first order in the Reynolds number
as made in Section B would give results valid 1in a narrow strip along the
o axis in the o - R plane. ©Since the results of most stability analyses
(including this one as shali be seen) indicate the onset of instability
with low wave number, it would seem that an approximation valid for a
wider range of R is more desirable. This was the main factor in choosing
an analysis based on expansion in terms of powers of the coordinate y.

It is desirable to state the range of ¢ and R for which the
approximation is valid. Certainly if o and R are both much less than one;
the results are very good. For & and R of the order of one or slightly
larger, it is felt that the conclusions are still qualitively true, since

the denominators of the terms in the series increase in a factorial manner



-19-

while the numerators increase only gradually. However, the prohibitive
amount of calculations necessary make any definite statements on the
range of validity impossible.

Since the calculations are straight-forward, they are not in-
cluded in the main body of the text. Results of the more important
stages are presented in the Appendix. Since in several calculations it
was necessary to take the difference between two small numbers of almost
equal magnitude, it was considered useful to leave the numbers in frac-
tional form. This also facilitated checking of the results.

When all calculations are carried out, an algebraic equation

in integral powers of c 1s obtained. This is

0 = - 320 i cot © + %; (r+1) ioRy - é%Q i cot O + §§ (r-1) a2R1 cot ©

- 80 i07S - i%%g (r2-1) azRi ; f%% (r+1) iaPRy + i%%§§§ (r2+1) 10PRScot 6

8 3R 588 ) _18% . s
oo r i0’R] cot 0 + 5= (r-1) o Ry cot 6 - 105 ia” cot ©

80 . 5 17 A4
- ?; i’S + 5T a"RqS (r-1)

e {-1920 - Q%Q ioR] (r-1) - 1024 of -

+

%g (r+1) ofR, cot ©

1519 (2 ope . 2 2p2. _ 608 (L 1Y inBR. . 2048 i
+ 510 (I‘ +l) (0 Bl 105 (07 er (r ]_) icy 1 -.____7 Qo

_ ;?% (x?-1) 107F cot 0 - -%%%~— (r+1) Ry cot © - i? o'Ry S(r+1)}

+

2{256 (r+1) ioRy - %%? (r2-1) oPRS + l??” 109R] (r+1)

& (+241) 10382 cot 0 + 22 i09R°r cot OF
7 : ICEE

+

S oPRS [(r241) -7; +20r] . (53)
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Of the three roots of this equation, only the one starting in positive
powers of @ and R is considered. The other two roots have lead terms
of the type éﬁ . This does not imply a singularity in the problem. It
is observed that in the differential equation and in the boundary condi-
tion [as written in the determinant GQ)L ¢ always is multiplied by oR and
therefore ¢ does not have a singularity at oR = 0. Neither would oR = O
imply an infinite celerity or growth rate for these disturbances, as
OeT remains finite as OR approaches zero. To the order of approximation
considered these roots cannot be computed accurately. However, prelimi-
nary caleulation of these roots shows a tendency for them to be more stable
than the case considered.

The root of interest can be computed by assuming

c =cp+cqd + coR + 05a2 + ...

and substituting this into (53). After this is done, upon separation into

real and imaginary parts, the result is obtained

e, = CRL-1) {2,385 (0 6L 2g
* 1920 6k,680 ha
122 k6 o
- cot © [21 3 07 ]} s (5k)
___« (r+1)Ry ) oy > -
oy 1920{ 25 (12 - 2/308) - 16675 (5 - o)
I
- cot 0 [64 (5 - &° + %i> - i—%%gigg% (x2+1) GQRE
; 5 5
2:787 2 2
+ ——17,640 rochl] - cote0 [8/3 (r+1) OtERl]} . (55)

The growth rate ¢ is given by

0 =0Cy . (56)
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It can be argued(6) that the most likely wave number to occur is the one
with the highest growth rate. This value of O can be determined by setting

to zero the derivative of ¢ with respect to . The relation obtained by

this is
-0 {8(z1)Ry 5 1 @) - 308 of (10 - %2) - cot 0 [64 (10
1920 7 3
6oty 3,685 0.1y oo L 2,787 2.2
- o + _2_1—> " 291,060 (r+1) o7 + I, 410 o Ry ]
- cot?o [%? (r+1) a?Rl]} . (57)

For the case of vertical inclination, the possible roots of (57) are,

besides o = O,

o =L+ B + (100 - 88 B + 52)1/2] , (58)
cr 6 -
where
_ (r1)R1
6 - 81+ S ® (59)

(In the case of S = 0, the roots reduce to 0, 3.)

For small B, (58) may be expanded using the binomial theorem to obtain

2
Cer

- %? f1+1p+ (- g 00262}, (60)

or, for the root of interest,

o =p{.9+ .15} . (61)
cr



V. DISCUSSION COF RESULTS

A. The Special Case of Infinite Slope

An inspection of (55) and the corresponding Figures 2, 3, k4,
and 5 reveals that for the case of vertical inclination and zero surface
tension, every value of O makes cj zero for zero Reynolds number. Hence
the o axis is the neutral stability curve. (The analysis does not hold
true for large values of Q, however it can be argued on physical grounds
that in the absence of surface tension there is no restoring force when
the slope is infinite.) Surface tension has a stabilizing effect (Figures
2 and 5) and reduces the range of o for which instability occurs at zero
Reynolds number to the point & = 0, hence it can never completely prevent
instability. From a physical point of view, the effect of surface tension
decreases with curvature. TFrom a mathematical point of view, S is always
accompanied by a curvature term.(ag), so for very small wave numbers the
stabilizing force would be small.

The shape of the growth rate curves of Figure 5 is very similar
to the neutral stability curve shown by Yiho(ll> It might be speculated
that the disagreement between Yih's and Benjamin's(l> results could be
due to the difference in the approximations which might yield different
members of the same family of curves. Benjamin's result would be the true
neutral stability curve, while Yih's would be a curve of constant (small)
growth rate. Of course surface tension was not included in the work of
Yih, but similar terms could be Introduced by terminating the approxima-
tion at different places.

It is noted from (9) and (54) that the dimensional celerity of

the disturbance is directly dependent on the difference in densities of

-22 -~
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the two fluids and the velocity of the primary flow. A small Reynolds
number implies either large viscosity or small difference in densities,
hence the speed of propagation of the disturbance is small for the approxi-
mation considered. The celerity is also small for the case of small wave
numbers. The disturbance anticipated by the analysis 1s then in effect
almost a standing wave, in the sense that 1t does not propagate, at least
not very quickly.

It is seen from (54) and Figure 6 that the surface tension could
make the celerity negative, hence disturbances would travel uphill. This
effect is perhaps unexpected, but not unreasonable. Such results have in
fact been noted in experiments conducted by William M. Sangster(8> of the
University of Iowa, for layers of different thicknesses.

If (54) is contrasted with the corresponding results of the
stability analyses of Yih and Benjamin, it 1s seen that the celerities
represented in their analyses have values of the same order as the primary
flow for very small Reynolds and wave numbers while the celerities pre-
sented here are many orders smaller than the velocity of the primary flow.
In this sense, the present problem is more stable than the case of no
counterflow considered by Yih and Benjamin.

The direct dependence of the disturbance celerity on the differ-
ence in densities of the two fluids may seem surprising when compared with
previous results(u) for gravity waves. The reason for this difference is

that the present waves are viscoslty waves rather than gravity waves.
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The fact that the primary flow velocity is zero at the interface
may explain some aspects of the disturbance celerity. Although a free sur-
face is generally regarded as a destabilizing agent, this effect is somewhat
diminished in the present problem due to the counterflow. If the free sur-
face were replaced by a rigid boundary, the problem would b€ the familiar
one of plane Poiseuille flow, for which instability is known to occur for
Reynolds numbers many orders higher than contemplated in the present
analysis.<5) The present problem then in these aspects lies somewhat
between the previously mentioned free surface flows and the Poiseuille flow.

Another interesting feature is that (24) shows that the disturb-
ance amplitude is inversely proportional to c. For small c then, even if
the y veloclity component is small, the amplitude of the disturbance may
be larger. Thils again is brought about by the fact that in the problem
considered, the primary flow velocity at the interface is zero, so that
the convective terms in the time derivative of n do not appear, as they
do in Yih's and BenJjamin's works.

Naturally the onset of instability at such low Reynolds numbers
does not mean the onset of turbulence, but only the onset of waves at the
free surface. The analysis performed here 1is, of course, based on the
assumption that the two flulds do not mix across the interface, which

would not be true in turbulent flow except under very specilal conditions.

B. Other Slopes

The results are not as informative for values of © other than
90°. As the inclination becomes even slightly less steep; the © terms

in ci predominate and exert a strong stabilizing influence. For © more
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than a degree or two away from vertical, the results probably are not
sufficiently accurate to predict instability, and higher order approxima-
tions are necessitated. Neutral stabllity curves are shown in Figure 7
for various values of the parameter S for the case © = 89.5°. The curve
for S = 0 bends towards the (¢ axis and predicts instability again for all
small Reynolds numbers. It is believed however that this is not a re-
liable result, and that if higher order terms were present the curve
would be almost vertlecal for small &, and then would go in the positive

Ry direction, as do the curves for non-zero values of S. This same effect
is shown in Figure 8. The results shown in Figure 9, with a non-zero
value of S5, are more rellable in regard to the shape of the curve, and
show that for inclinations other than the vertical, critical Reynolds
numbers do exist. It seems reasonable that the critical Reynolds number
should occur at a = 0. The greater surface tenslon effect and greater
dissipation of the disturbance energy at higher wave numbers would both
tend to stabilize the flow. Such tendencies were shown for the case of
vertical inclination. A definite mathematical answer to this matter would
require a higher order spproximation.

It is interesting that since historically a point of inflexion
in the velocity of the primary flow was known to be conducive to instability,
the flow envisaged here is "less unstable” than that discussed by Benjamin
and Yih, at least as far as the effect of slope 1s concerned. Benjamin's
results show a lesser effect of terms involving ©. This may perhaps be ex-
plained physically again on the grounds that the velocity is zero at the
interface, hence the energy which the primary flow is able to impart to

the disturbance at this point 1s smaller than elsewhere in the flow.
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VI. CONCLUSIONS

From the results presented, the following conclusions can be

a) For the case of vertical inclination, there are values of
o for which the flow 1s unstable at all values of the
Reynolds number. The celerity of such disturbances is
small, but the effect on the interface can be large.

b) The stabilizing effect of surface tension is shown, al-
though surface tenslon can never induce complete stability,
since it has no effect at zero wave number.

¢) For slopes other than the vertical, a critical Reynolds
number exists. The value of the critical Reynolds
number probably is the value of R which occurs at o = O,
although a more thorough investigation is needed in order
that a definite statement can be made in this regard.

d) The presence of the interface is responsible for instability
at low Reynolds numbers at steep slopes. However, the
counterflow does contribute a stabilizing influence.

e) The critical wave number has been found and is given in

Equation (61).

_06-



VII. GSUGGESTIONS FOR FURTHER WORK

For results valid for higher Reynolds numbers or smaller slopes,
higher approximations by the methods used in the present paper do not
seem promising. The work involved becomes staggering and the approxima-
tions would have to be several orders higher to change the range of
validity appreciably. It is known that for © = O the flow 1is stable.

It would be interesting to expand in negative powers of the Reynolds
number to determine the effects of small slopes. Such a result would be
of interest for flows at large Reynolds numbers.

The solution could be carried out for other discharges and
differing viscosities. This would not greatly change the formulation of
the problem, but would somewhat complicate the algebra involved in the
calculation.

An interesting variation on this problem is the case of a
continuously varying density distribution. In such a problem the boundary
conditions become much simpler, because only the conditions of no slip
need be imposed (at the rigid boundaries). The continuity of velocities
and stresses at the interface which was represented in the boundary con-
ditions in the present problem are now inherent in the stability equation,

which, however, becomes much more complicated thereby.
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APPENDIX A

VALUES OF (3 AND THEIR FIRST THREE
DERIVATIVES EVALUATED AT y = O

60) g™ (0) ¢§n)<0> 8% (o) é“)(o>
1 0 0 0 c
0 1 0 0 ‘l
0 0 2 0 -20
0 0 0 1 0
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APPENDIX B

VALUES OF ¢i AND THEIR FIRST DERIVATIVES EVALUATED AT y
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APPENDIX C

VALUES OF THE DETERMINANTS F; AND Hy
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APPENDIX D

PRODUCTS OF THE Fy AND Hy
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APPENDIX E

SUMS OF THE PRODUCTS OF THE Fi AND Hj
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Figure 1. Diagram of the Primary Flow, Showing the
Coordinate Axes and the Velocity Profile.
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Figure 2. Curves of Neutral Stability for Flow Between

Vertical Walls with Various Values of the Para-
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Figure 3. Curves of Constant ciy for S = O,
@ = 90° r = 1.2.
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Figure L. The Rate of Amplification of Waves of
Various Wave Numbers for the Vertical
Case. r = 1.2, S = 0.
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Figure 5. The Effect of Surface Tension on Growth Rate for
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Figure 8. The Rate of Amplification of Waves of Various
Wave Numbers for the Case © = 89.5°, S = O,
r =1.2.
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Figure 9. The Rate of Amplification of Waves of
Various Wave Numbers for the Case © = 89.5°,
S = 0.05 r = 1.2.
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Figure 10.

The Effect of Surface Tension on the Growth
Rate for the Gase o = 0.1 x 10-3, 6 = 89.5°,
r =1.2.
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