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ABSTRACT

Curves are given which relate the electric field strength
at a receiver to the altitude of the receiver for radiation
from a short vertical antenna located fifteen feet above a
plane earth having a conductivity of 6 x 107 emu and a di-
electric constant of 13. The curves are for transmitter-to
receiver distances of 500 feet, 2000 feet, 1 mile, and % miles,
and for frequencies of 100, 200, and 300 mc. The pertinent
calculations and the IBM 650 computer program which was used
to obtain the results are also included.

A review of recent papers pertaining to the effect of
irregular terrain on received field strength is presented.
Papers are reviewed which report the observed effect on
transmission loss of specific terrain features such as hills,
wooded areas, and soil moisture. One reviewed paper gives
graphical means for determining the (theoretical) amount of
diffraction loss due to hills. Also summarized is a paper by
John J. Egli in which the mean and standard deviation of &
large number of field strength measurements are related to
the frequency, range, and receiving antenna height. A summary
of his results which pertain to the variation with altitude
of the vertical component of the electric field due to radiation
from a vertical dipole antenna is presented. This summary is
in the form of curves, from which the radiated power necessary
to insure a given field strength at some desired percentage
of all the receiving sites located at & fixed range and
altitude can be determined. The curves given are for ranges
of one and three miles, receiving antenna heights between
10 and 100 feet, and for two values of frequency (100 mc
and 500 mc).



ELECTRONIC FIELD-ALTITUDE VARIATIONS IN VHF PROPAGATION,
AND A SURVEY OF THE EFFECTS OF IRREGULAR TERRAIN

1. INTRODUCTION

In certain propagation problems one is primarily concerned
with obtaining an estimate of the field strength, due to a radiating
antenna, in a region relatively close to the earth. Such problems
may be contrasted with those in which a knowledge of the nature of the
field throughout a much larger region is necessary in order to properly
predict the operation of certain equipment. In the latter instances,
information concerning field strength is usually given in the form of
antenna radiation patterns (such as the three-dimensional pattern of
a radar antenna), but this method becomes inaccurate for calculations
near the surface of the earth.

The problem that motivated this study requires an estimate
of the field strength, due to a transmitting antenna located near the
ground, in a region from ten feet to 3000 feet above the earth and for
transmitter-to-receiver distances between 500 feet and five miles. Two
types of information relating to this problem have been collected in
this memorandum. An analytical solution is presented which consists
of calculations of the field above a theoretical plane earth; a more
realistic solution for the region near the earth is then presented

which is based on results of various field-strength surveys.



2. VARIATION OF ELECTRIC FIELD STRENGTH WITH
ALTITUDE ABOVE A PLANE EARTH

In the frejuency range of interest, 100 mc to 300 mc, the com-
ponent of the energy radiated from a transmitting antenna which is repre-
sented by the surface wave is so rapidly attenuated that its contribution
to the total field is usually negligible. Generally, then, it is necessary
to consider only the direct and the ground-reflected transmission com-
ponents. The direct wave, in the absence of any intervening obstructions,
varies inversely with the distance from the transmitter, and is often
referred to as the "free-space” field. The intensity of the ground-re-
flected wave, and thus the total field, will vary with the angle of
incidence, the freguency, and the conductivity and dielectric constant
of the earth.

Specifically, if the transmitting antenna is a short vertical
doublet the magnitude of the vertical component of the space wave (i.e.,
the vector sum of the direct wave and the ground-reflected wave) at any
point above the line of sight with respect to the transmitting antenna
is given by the following relation:l

E cos%2 2 COSBW

2
E | = 2 c053¢ 1+ R + 2 2 R cos (p-8)| , (2-1)
M d 1 cosaw cos5W

1 1

where: EO is the field strength at unit distance in the eguatorial plane
of the transmitting antenna;

R and p are the magnitude and phase angle, respectively, of the
reflection coefficient of the earth, as given below;

Wl and ¢2 are as shown in Fig. 1;

d is the horizontal distance between antennas; and

1 The derivation of Eq. (2-1) is given in Appendix I. See also: Ref. 12, p. 691.
2



8 is the phase ditterence vetween the direct wave and the
ground-reflected wave.

RECEIVING
ANTENNA
K 3
TRANSMITTING Ly
ANT A
N EQ!N h2
*
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| Ve
d
Fig. 1 The geometry involved in Eq. (1)
*1’ WE’ and 6 are given by the following relations:
h, - h
LT 2
tan ¥y = g (2-2)
h, +h
1 2
tan ¥, = —5—, (2-3)
L -L
9 = 211: ~2—T}-, (2-4)

where: hl and h2 are the distances of the transmitting and receiving

antennas, respectively, above ground;

A = wave length;

L, =\/<12 + (b - r12)2 (2-5)

path length of the direct wave;
2 2 (2-6)

path-length of the ground-reflected wave.

=
1t



It Ll and I? are expressed in feet and A in meters, then

L, -L
6 = 1.915 =1L - L. (2-7)

For the short, vertical, doublet transmitting antenna the
free-space field at one kilometer from the transmitter is EO = lSO-Jﬁ-mv/m
(Ref. 12, p. 676), where P is the radiated power in kilowatts. With

P = 40O watts, E = 31.126 x lOlA

mv/m at one foot. (Although in the
derivations of Eg. (2-1) and the value of EO the transmitting antenna
is assumed to be a short vertical doublet, a negligible error is intro-
duced if the transmitter is, instead, a half-wave dipole.)

For vertically-polarized plane waves the reflection coeffi-

cient of the earth is given by (Ref. 12, p. 699)

€' sin Wz - \/2' - 0082 We
R/op = , (2-8)

€' sin WQ +\/2’ - cos2 Wg

where:
¥, = angle of incidence (Fig. 1);
€' =€e-j6an (10)12;
€ = dielectric constant of the earth;
0 = conductivity of the earth (emu);
A = wave length (meters);
g o= 1.

The calculations were carried out for a transmitting antenna
located fifteen feet above the ground and radiating a power of 400 watts.
The dielectric constant and conductivity of the earth along the path of
propagation were assumed to have the following values: ¢ = 13,

-14
) Pemi. These values are typical of average soil (Ref. 12, p. T09).

k4

g = 6(10



An IBM 630 was used to calculate the field strength given by
Eq. (2-1) at a sufficient number of points to enable smooth curves to
be drawn showing the relation between field strength at the receiver
and altitude of the receiver up to 3000 feet. This was done for each
of three frequencies at four different values of range: 500 feet,
2000 feet, 1 mile, and 3 miles.

In order to write a program for finding the reflection co-
efficient, R/ p, separate expressions must be given for R and p.

These are as follows:l

RS M} (2-9)

R = C2 N D2 ? and
o = tan'l(%) + tan-l(lﬁ); (2-10)

where:

A =esiny, - Vcosq ; (2-11)
B=8siny, - Vsinng ; (2-12)
C=esiny, + V cos 7 ; (2-13)
D =g siny, +Vsinn ; (2-14)
B = 60h(10)*; (2-15)
V= [(e - cosexy,a)2 + 52]% ; and (2-16)
N o= % tan'l<-————ii7§——) . (2-17)

€ - COs wz

-14
With € = 1% and o = 6(10) . emu, Egs. (2-15), (2-16), and (2-17) become

B = 0.36M, (2-18)

1 See Appendix III tor the derivation of Eq. (2-9) and (2-10).

5



Y
)2 + 0.1296 AZ ¥

<3
i

[(13 - cosy,

R

2 % ,
(13 - cos™y,)? (2-19)
for the range of freyuencies of interest,

and
1 0.36 A

5 (2-20)
13-cos Wz

n =% tan

The complete program for performing the computations on the
IBM 650 computer is given in Appendix III. It is written in the GAT language,
which is used by the University of Michigan Statistical Computing Labora-
tory and by the Willow Run lLaboratories Computing Center. Altitude of
the receiving antenna and wave length are written as subscripted vari-
ables, and the data must be arranged so that the program repeats for every
desired value of range. The results are given in graphical form in
Figs. 2 through 9. For values of radiated power other than 400 watts

the values of field strength obtained from the curves must be multiplied

by”{gs , Wwhere P is the radiated power in watts.

3. THE EFFECT OF IRREGULAR TERRAIN AND VEGETATION ON RECEIVED FIELD STRENGTH

3.1 Diffraction Loss Due to Hills

The direct wave is affected most seriously by the shadowing
effect of hills or other obstructions in the line of sight between the
transmitter and receiver. The loss in signal strength due to an obstruct-
ing hill or ridge can be approximated by diffraction theory. The
Fresnel-Kirchoff method for calculating the diffraction by a straight-

edge yields formulas for the diffracted field; and these results can be

6
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used to obtain an approximationl for the field in the shadow zone of

a ridge. According to Burrows and Attwood (Ref. 1) the conditions
which must be fulfilled in order to obtain reliable results are:

(1) the distances from transmitter and receiver to the ridge must be
large compared to the height of the ridge above a straight line connect-
ing the transmitting and receiving antennas; (2) this height must be
large compared to the wave-length; and (3) the horizontal extension

of the ridge must be large compared to the height. If these conditions
are satisfied the ratio of the field strength at the receiver in the
presence of the ridge to that which would occur in the absence of the

ridge is given approximately by the following relation (Ref. 1, p. 463):

v v
E _ 1+Jjr 1l 2 .1 \ x 2
& = 5 { 5+ [ cos (2 u”) du - J [ 5+ [ sin (2 u®) d@]}(5 1)
o] 0 0
where: 7
v o= ch%(% +§); (3-2)
1 2
h = i T (3-3)
= - - ) o=
fo} dl+d2
dl = distance from transmitter to obstacle;
d2 = distance from receiver to obstacle;
hl = height of transmitting antenna above a given reference level;
h2 = height of receiving antenna above the same reference level;

1 According to at least one source the error involved in the approximation
may be quite large, as will be mentioned later.

15



h = height of the obstacle above the reference level.
The sign of hO will be negative, and the negative sign should also be
chosen for v.

If the profile of the ridge is very broad compared to its
height, or if it contains more than one peak, the value of h should be

the effective height as illustrated in Fig. 10.

emee—

Fig. 10. Effective Height of a Broad Ridge.

Burrows and Attwood make the following statement (Ref. 1, p. L466):

Experience shows that so long as the profile of
the ridge is reasonably compact and its surface
reasonably rough, the diffraction formula will
give the magnitude of the field behind the ridge
to within a few decibels.

On page 46T of Ref. 1 the ratio |§El is plotted in decibels as
o

h
a function of the quantity‘~——£1, assuming that the ground between the
vl >
transmitter and receiver is sufficiently rough so that all ground re-

flection may be neglected. Figures 1l and 12 show how the ratio iﬁg

varies as a function of distance from transmitter to receiver for the

following conditions:

Fig. 11 Fig. 12
Height of ridge (feet) 45 100
Height of transmitting antenna (feet) 15 20

16



Fig. 11 Fig. 12

Height of receiving antenna (feet) 6 20
Frequency (mc) 300 300
da a
a—-];ora?— 0.1, 1 0.1, 1
2 1

When the ground near the transmitter or receiver is so smooth
that the reflected wave cannot be neglected, the diffraction problem
becomes more complicated. It can be solved by the method of images,
i.e., by assuming that the reflected wave on the transmitter side of
the obstacle issues from an image transmitter and that the reflected
wave on the receiver side is incident upon an image receiver. The
total field at the receiver may be written

E = El + E2 + E3 + EM’

where each term on the right-hand side is given by an equation having

the form of Eq. (3-1). E, corresponds to the radiation in the absence

1

of reflection, E, to the radiation from the image transmitter to the

2

receiver, E_, to the radiation from the transmitter to the image receiver,

b
and Eh to the radiation from one image to the other. These four terms
differ in the value of v assigned to each of them, the effective height,
ho’ computed by Eq. (3-3) and the path lengths being different in each
case. The reflection coefficient of the earth must also be considered

in computing EE’ E_, and Eu.

3
A simplified method for computing diffraction loss in the

shadow region is presented in Refs. 2 and 3. This method can be

applied to the cases of reflection on either or both sides of the obstacle

or of reflections on neither side. The obstacle can be at any location

along the path. It is claimed that when the diffraction parameter, v, is

greater than 1, the accuracy [with respect to results obtained from using

L7
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Eq. (3-=1)] is within two decibels.

An experimental investigation of the diffraction of radio waves
by a dominating ridge, conducted by the Radio Physics Ilaboratory of
Ottawa (Ref. 4), indicates that the diffraction loss due to such a ridge
may be considerably greater than the value predicted by the Fresnell-
Kirchoff knife-edge theory, the discrepancies increasing with increasing
frequency. The distance between the transmitter and receiver in this
experiment was 17.5 miles, the ridge being about six miles from the
receiver. The top of the ridge was 600 feet above a line joining the
transmitter and receiver. On one side of the ridge was gently-rolling
farm land, on the other side the terrain was rugged and heavily wooded.
The experimental and theoretical values of the diffraction loss obtained

are given in Table I.

TABIE I
DIFFRACTION LOSS DUE TO A DOMINATING RIDGE
Diffraction Loss (db)
Experimental
Fr?igincy Theoretical
Horiz. Pol.|Vert. Pol.
1
173 27-31 (31-36) 21
k93 39-45 41-47 25

The ranges of experimental values shown are the minimum and maximum
values obtained for the range of receiver-antenna heights investigated
(5 feet to 110 feet). There did not appear to be a strong dependence
of diffraction loss on the transmitting-antenna height, which was about
T2 feet. Seasonal variations in the terrain and foliage also appeared

to have only & small effect.

1l It was noted by the authors that the significance of these values is
"conjectural” due to the substantial lateral-multipath transmission
present in this case.

20



3.2 Loss Due to Trees and Other Vegetation

Trees also form very effective obstacles for high-freguency
radio waves. A single tree may cause a drop in signal strength of several
decibelsl; however, the attenuation is less for horizontal polarization
than for vertical polarization at frequencies below about 500 mc. At
higher freguencies the polarization is not an important factor. It has
been reported by the M.I.T. Radiation Iaboratory (Ref. 8) that 150 feet
of typical New England woods with medium-size trees and summer foliage
caused a decrease in the received signal of 6 db for a horizontally
polarized, and 21 db for a vertically polarized, 200-mc signal. With
vertical polarization there were large variations of field intensity
within a small area, due to reflections from nearby trees. Moving a
receiver from a line-of-sight position on one side of a wooded hill to
the side away from the transmitter produced 45 db and 60 db drops in
signal for horizontal and vertical polarization, respectively. The
horizontal distance between the two points was 2400 feet, and the height
of the hill was 200 feet.

Jansky and Bailey2 report that transmission at 116 mc through
a large and rather dense forest (Croatan National Forest near New Bern,
North Carolina) on level ground showed no adverse effect for horizontally-
polarized signals, but for vertical polarization the signal level was
about 18 db below that obtained over open ground. Measurements were
made at ranges of 1, 2%, and 6 miles with both antennas located 19 feet

above the ground.

1 Ref. 1l: p. 480.

2 Ref. 5: Part 2, pp. 7, 8 and Figs. 26, 27.
21



In an experiment conducted by RCA (Ref.‘6) measurements of the
attenuation of field strength through 500 feet of woods on level ground
were made at a frequency of 500 mec. The transmitting and receiving
antennas were six feet and seven feet, respectively, above the ground.
Results indicated a loss of 17 to 19 db in the summer as compared with
transmission over open ground. There was no appreciable difference be-
tween vertical and horizontal polarization. In the winter the attenuation
was 15 db with vertical polarization and 12 db with horizontal polarization.
at 250 mc the attenuation through the same section of woods in winter was
14 db with vertical and 10 db with horizontal polarization. Transmission
of 500-mc signals over low scrub-pines, as compared with that over sandy
ground, showed a reduction in signal of 6 to 8 db due to vegetation.

The antennas were 8% feet above ground, and the height of the undergrowth
was 5 to 6 feet. "This indicates that vegetation causes the ground-re-
flected ray to be reflected from a level considerably above that of the
ground rather than being absorbed by the vegetation" (Ref. 6, p. 100).

The Department of Electrical Engineering at the University of
Tennessee (Ref. 7) measured the field strength of a 410-mc signalyafter
passing through several types of brush. Measurements were made wi;h
horizontal, vertical, and circular polarization. The average attenuation
caused by 130 feet of brush and undergrowth with autumn foliage was
4.2 @b with respect to transmission over open ground. Values obtained
over a different path -- 120 feet of smasll trees and rather dense
undergrowth with summer foliage -- gave 6.2 db as the average attenuation.
The effect of polarization was not considered to be significant. The
height of the transmitting and receiving antennas in both cases was
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about five feet.

3.3 Effect of Ground Moisture

Investigations conducted by the Research Institute for National
Defense in Stockholm, Sweden (Ref. ) indicate that vhf ground-wave propa-
gation at low heights and short distances is influenced considerably by
ground moisture. Field strength recordings of vertically-polarized
vhf waves over smooth ground showed variations up to 14 db over the same
paths at different seasons. The measured field strengths correspond to
values of the earth's dielectric constant from about three to thirty.
Investigations have shown that the value of the
effective dielectric constant (e) is determined
mainly by the water content of the ground and
is relatively independent of the type of ground.
Very dry earth has effective € - values between
2.5 and 3, and for wet earth € is approximately
proportional to the percentage water content,
w per cent. Therefore, in vhf field strength
calculations the empirical relation
€ =0.78w + 2.5
may be used (Ref. 9, p. 1T71).
Propagation measurements at 50 mc showed that a covering of

snow or ice can cause & considerable decrease in the dielectric constant,

the amount of change depending on the original value of €.

3.4  Summary

In many cases, such as with mobile communications,
countermeasure systems, and other systems involving movable equipment,
one may not know in advance the nature of the terrain over which trans-

mission will be required. In such situations information concerning the
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propagation loss associated with a particular hill or grove of trees

is of little value in determining the amount of attenuation which should
be assumed in the design of the system. One approach to this type of
problem would be to analyze a large number of measurements involving
propagation over a great variety of terrain in order to determine the
mean and standard deviation of the distribution of the losses which

are attributable to terrain and other obstructions. This would allow

one to predict the probability that various amounts of attenuation

would be encountered. Such information has been provided by Egli (Ref. 10)
of the Army Signal Engineering lLaboratories, Fort Monmouth, New Jersey.

A large amount of data, collected by both the F. C. C. and commercial
organizations, whcih characterized transmission over various types of
terrain, was analyzed statistically to provide a basis for estimating

the transmission loss which should be assumed to provide the desired
coverage at a given frequency. In the vhf region of 50 to 250 mc approxi-
mately 1400 measurements were included in the data, and in the uhf region
of 288 to 910 mc transmission over a total of 804 miles was represented.
The results are expressed in terms of the percentage of locations .at
a‘specified distance from the transmitter, at which the field strength
can be expected to equal or exceed a specified value. For example,‘if

a five-mile circle with the transmitter at the center is divided into

100 equal parts, with each division represented by a point (location),
and this configuration is superimposed on the statistically-derived
landscape represented by the data, 75 per cent coverage would mean that
at T5 of the locations the median value of the field strength in the
immediate vicinity would beequal to or greater than the specified value.
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Egli's results are expressed in terms of the theoretical plane-
earth field strength which, for small antenna heights, is given approxi-

mately by the relation

B o= 25 A, (3-4)
92d
where:

E = field intensity in microvolts/meter;

ht = transmitting antenna height in feet;

hr = receiving antenna height in feet;

f = transmission frequency in megacycles;

d = distance from transmitter in miles;

Pt = effective radiated power in watts.

This equation is limited to transmission over water and flat, barren

land. The measured field-strength data over irregular terrain were

compared with the values given by this plane-earth equation, and the

median field-strength at a given frequency was described by the median
deviation from the theoretical plane-earth field-strength. This median
deviation from the theoretical plane-earth field-strength, called

"terrain factor" by Egli, is shown in Fig. 13. The straight line indi-
cates an inverse frequency relationship with respect to 40 mc, the point

of intersection with the theoretical plane-earth field-strength. It is
interesting to note that the terrain factor was also found to be essentially

independent of the distance from transmitter to receiver.l

1 This statement was confirmed during a private conversation with Mr.
Egli.
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On the assumption that the terrain factor is independent of

distance, Eq. (3-4) can be modified to give an empirical relation for

the median field at the 50 percentile locations, E5O:l
40 h h
E5O = -—————-95(12 \/i (hr > 30 ft.) . (3-5)

The theoretical received power for transmission using half-

wave dipoles over plane earth is given approximately by the relation

h,h \ 2 1
P, = 0.345 2 P, (10)7, (3-6)

which is independent of frequency. Applying the inverse frequency
variation of the median deviation from the theoretical plane-earth

field gives an empirical relation for the median received power

1 This equation must be modified if h_ is less than 30 feet, as will
be mentioned later. T
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(above 40 mc) over irregular terrain:

h h 2
_ s 50\ 2 -1k
P5O = 0.345 .gﬁ—. <-7F> Pt x 10—, (3-7)

From the nombgraph in Fig. 14 one can obtain the 50 percentile median

field strength, statistically derived, and the plane-earth received

power, theoretically derived, both of which are independent of frejuency.
Fig. 15 gives the correction factor (in db) which must be added

to the value of E5O when the received field strength to other than the

50 percentile locations is desired; the correction factor to the theoretical

plane-earth received power imposed by irregular terrain is obtained fram
Fig. 16. The terrain factor for the 50 percentile locations (received
pover) varies inversely as the frequency squared, as given by Eq. (3-7).
If at any time the calculated field strength, as obtained from Figs. 1k,
15, or 16, exceeds the free-space field (Fig. 17) the free-space value
should be used.
As an example, consider the following problem (from Egli):
Transmission frequency--150 mc;
Half-wave dipole antennas;
Transmitting antenna height--100 ft;
Receiving antenna height--10 ft;
Range--10 miles;
Coverage--90 per cent of locations at 10 miles;
.Required--transmitter power output.
The theoretical received power in db below one watt is found
from Fig. 14 to be 119 dbw. The field strength at 50 per cent of the

a7
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locations, also from Fig. 14, will be 17.5 db above one microvolt per
meter, one watt radiated. Since the terrain correction-factor for the

90 percentile locations (Fig. 15) is ~11.5 db, the median received field
strength at the 90 percentile locations is 6 db above one microvolt per
meter, one watt radiated. This value does not exceed the free-space

field strength at 10 miles of 53 db above one microvolt per meter obtained
from Fig. 17.

The terrain correction-factor for the received power at the
90 percentile locations is -23 db, thus the received power will be -142 dbw.
The half-wave dipole to half-wave dipole path attenuation for this degree
of coverage is therefore 142 db. The free-space received power is
-95.4 dbw, from Fig. 17, which exceeds that for the 90 percentile
locations.

The results of the experiments described in Refs. 1 to 8 are
compared in Teble II with values obtained by Egli's method for the same
conditions of antenna height and distance. Ep is the theoretical plane-~
earth field strength as given by Eq. (3-4) (in db above one microvolt
per meter), and Ea is the field strength corresponding to the attenuation,

o, reported by the various authors (Ea = EP - Q). E5O and E9O are the

50 and 90 percentile field strengths, obtained from Figs. 14 and 15.
In two of the cases involving an obstructing ridge, the theoretical
value of the diffracted field (Ed)’ obtained by use of the Fresnell-
Kirchoff diffraction formulas, is also given. All of the values of
field strength are expressed in db above one microvolt per meter,
normalized to a radiated power level of one watt. Values shown in

parentheses were assumed in order to obtain results for comparison.
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It can be seen that in most of the cases the values of Ea fall between
ESO and E9O' Where this is not true, the terrain features seem to be
either more or less severe than would be expected in the average case.
It appears, therefore, that the results of Egli are not inconsistent
with the experimental results reported by other authors.

Egli ealso analyzed the aforementioned data in an attempt to
relate field strength at the receiver to receiving-antenna height, which
was defined as the height above local terrain. The data suggested an
approximately linear relationship between field strength and receiving-
antenna height for antennas above the surrounding terrain features. For
receiving antennas which did not clear the surrounding terrain features
(vetween six and thirty feet), the field strength appeared to be more
nearly proportional to the square root of receiving-antenna height.

Figures 18 and 19 show the variation of the 10, 50, and 90
percentile field strengths with receiving-antenna height at frejuencies
of 100 and 500 mc for a transmitting-antenna height of 20 feet.l The
curves in Fig. 18 are for a transmitter-to-receiver distance of one mile,
while those in Fig. 19 are for a distance of three miles. When the
values of field strength in these figures are multiplied by, / P, , where

t
Pt is the effective radiated power, these curves indicate the approxi-
mate percentage of cases in which the field strength at a certain dis-
tance sbove the ground can be expected to equal or exceed a specified

value. From Fig. 19, for example, it is seen that at a distance of

three miles and a frequency of 100 mc the field strength at a point ten

1 The data plotted in Figs. 18 and 19 were obtained from Figs. 14 and 15.

2 According to Egli the results of his work should be reliable for
ranges as low as one mile, especially for percentiles greater than
about 50.
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feet above the earth can be expected to egual or exceed 50~/§; uv/m only
10 per cent of the time, while it can be expected to ejual or exceed
15~/§; uv/m 50 per cent of the time.

Egli found that the values of received field-strength repre-
sented by the original data, when plotted in terms of the deviation from
the theoretical plane-earth field intensity, were 1og-normallyl distri-
buted with a standard deviation of 8.3 db in the vhf region (taken about
a center freguency of 127.5 mc) and a standard deviation of 11.6 db in
the uhf region (center freguency of 510 mc). This is reflected in
Figs. 18 and 19, although it could be more clearly illustrated in a
three-dimensional plot.

It should be pointed out that Eg. (3-4), on which Egli's re-
sults are based, is a simplified form of the general eguation for
radiation over a plane-earth, Eq. (2-1), and that this simplification
is made possible by assuming that the angle of incidence of the ground-
reflected wave is nearly 900 (glancing incidence). Therefore, in order
for (3-4) to be a reasonably accurate expression for the plane-earth
field strength, the following conditions must be fulfilled:

A

2 hlh2

> 1 (4, h,, h. in feet; A in meters), (3-8)

1”72

d < 20 miles . (3-9)
Terman (Ref. 12, pp. 692-693) lists other conditions which are necessary
for Eq. (3-4) to be valid, but they depend on the conductivity and di-

electric constant of the earth and are less easily evaluated than (3-8).

1 A random variable, x, is said to have a log-normal distribution if
log (x-a) is normally distributed. Therefore, the values of terrain
factor, plotted in db, will have a normel distribution.
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Por a particular set of parameters which were investigated (f = 300 mc,
€ =15, and ¢ = 3(1.0)«11‘L emu) these other conditions reduced to the

following limitations:
4 __ > gy, (3-10)

For other values of earth constants and frequency, the constant in (3-10)

may be considerably greater.

L. CONCLUSIONS

Propagation experiments such as those discussed in sections
3.1, 3.2, and 3.3 give some idea of the effect of specific terrain
features on the received field strength. The statistical approach
of Egli is well suited to the problem of estimating the attenuation
caused by irregular terrain when the system is to operate in an unknown
or variable environment. If any information concerning the region in
which the system is to operate is available, this should, of course,
be considered in predicting path attenuation. Otherwise, Egli's
method might, in many cases, lead to unduly pessimistic results. 1In
fact, one sourcélhas indicated that a considerable amount of the
data analyzed by Egli was obtained in rather mountainous regions.

Por large values of antenna height more reliance can be placed
on theoretical curves, such as those of section 2, since the effect of
terrain features becomes less pronounced as the antenna height is

increased.

1 W. S. Bennett and L. R. Alldredge: "Vehicle-to-Vehicle Ground-Wave
Propagation Characteristics", SIGNAL (Official Journal of the Armed
Forces Communications and Electronics Assn.), October, 1959.
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APPENDIX I

DERIVATION OF EQ. (2-1)

If a vertical doublet is radiating in free space, the field

-
intensity, El’ at a distance Li is proportional to the cosine of the
angle of elevation, vl:

- EO
B, = EI cos ¥, ej(wt-yLl) ,
where
2
7='%,

and EO is the magnitude of the field intensity at unit distance in the
e 2

equatorial plane of the doublet. The vertical component of El is

EO o
E = =— COS wl eJ(wt-yLl)

¥l Ll
E
3

- -
= —cos” ¥, Jlwt-yL ),

where d = the horizontel distance to the doublet.
If the radiating doublet is above a plane earth, Eyl is the
vertical component of the field due to the direct wave. The ground-

reflected wave is modified by the reflection coefficient:

E

B, = 3 cosd yy(Red®) jltorLy),
where Rer = the reflection coefficient of the earth and

\ve = the angle of incidence.

Since the surface wave can be neglected at the frequencies of

interest, the field at any point in space above the line of sight is
38



the vector sum of the direct and ground-reflected components. Therefore,
the vertical component of the total field is

E =E . +E
y yl ye

3

E cos™V, C -

= —% cos3 wlej(wt'7Ll) [:l + ———§—g-Rere 37(12 Ll{]
cos Wl

Dropping the propagation factor, eJ(wt-7Ll), this becomes

y d 3

3
E cos~y ;
E = — cos3q;l {:l b —_— ReJ(p“ei] ,
cos Wl

_ . exn -
where g = 7(L2 - Ll) = X (L2 Ll)'

To obtain the magnitude of Ey let

=

cos3\]r2
K = 3 R
cos *1
and. (D = p -9.
Since 1+ ke - 1 +Kcos o + JKsin o
2
and 1 + Kejm| = [(1 + K cos @)2 + (K sin o) ]%
i
= [1+ K + 2K cos o2
1
0083¢2 2 cos%«y2 2
= 1+ — R + 2 3 R cos (p - @) ,
cos Wl COS‘Wl
then
E 2 cosswa 2 cos3\|f2
E | = =2 cos’y [:l R + 2 Rcos (p - 8)
y d 1 3 3
cos vl cos wl
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APPENDIX II
DERIVATION OF SEPARATE EXPRESSIONS FOR R AND p

On page 4 the reflection coefficient was given as:

€' sin WE ~-Af €' - cosgxy2

R/l = \//__________
2
1 o4 LI
€' sin WQ +Ve cos wg
where €' = ¢ - j6c>\.(10)12.
Ietting €' = € - jB and expanding, this becomes

1
Cue
™
—

(e - jB) sin wa - [(e - coszwg)

. . 2 .
(e - 38) sin v, + [(e - cos™¥y) - 3817
. o s . _ -Jn
) € sin We JB sin we Ve
: _ s ad =Jn
€ sin WQ JjB sin We + Ve
€ sin Wz -V cos - J(B sin ¥, - V sin 1)

€ sin y, + Vcos n - j(B sin Vo + V sin ) ’

where v = [(e - cosgx}re)2 + 62]%
and n = %tan'1<—————J%§—->.
€ - CO8 we
Iet A = € sin we -Vecosnq,
B = B sin vg -Vsinnq,
C = € sin Wz + V cos 7,

anda D

11

B sin We + V sin n ;



2

then R = | 222
C +D

-1 ,-B

and p = tan (—K
-1 ,D

= tan (5)

since C > 0 and D > 0.
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IBM 650

Storage assignment:

X0 = B

X1 = Wl

X2 = We

X3 = Ll

X4 = 1@

Ci = h,1=1, ,n
DJ = hj, =1, s
I0 = i

JO = J

I1 = n

Jl = m

APPENDIX TIII

PROGRAM FOR EVALUTATION OF EQ. (2-1)

YO

Y1l

Y2

Y3

Yh

Y5

Y6

D5

L1}

it

42

(13 - cos“y,)

E

Z0

Z1l

72

/5]

Zk

Z5

z6

7
z8

fl

it

cos wl
cos we
sin we
sin 7

cos 1



Program:

600 USED IN SUBROUTINES
10 IS HIGHEST STATEMENT NUMBER
DIMENSION C(150) D(5) I(5) N

J(5) x(5) ¥(10) z(10)

1 READ

2 6,30,J1,1,J2,
X0=.%6%DJO

3 6,10,I1, 1, I2,

X1=ARTAN. ((15.-CIO0)/D5)
X2=ARTAN. ((15.+CI0),/D5)
X3=(D5P2+(15.-CIO)P2)P.5
Xb=(D5P2+(15.4CI0)P2)P.5
Z0=C0S. (X1)

21=C0S. (X2)

Z2=SIN.(X2)

Y0=13 .~Z1P2

Y2=1.915%(X4-X%)/DJO
Y3=YOP.5
Yh=.5%ARTAN. (X0O/Y0)
2%=SIN. (Y4)

Z4=C0S. (Y4)



25=13.%Z2-Y3*Zk

Z6=X0*Z2-Y3*Z3

ZT=1% . ¥Z2+Y3*ZL

ZB=XO¥Z2+Y3*Z%
Y5=((25P2+26P2)/ (ZTP2+Z8P2)) N
P.5

Y6=ARTAN. (Z8/ZT)+ARTAN. (-26/ N
25)

GO TO 5 IF 25 W O

Y6=Y6+%.1416
Y1=31.126EL4/D5*20P3% (1+((21/ N
Z0)P3*Y5)P2+2%(Z1/Z0)P3¥Y5* N
cos.(Y6-Y2))P.5

TDJO TD5 TCIO TYL TZ2

GO TO 1

END

Ly
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