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A Hierarchical Model for Serially Correlated Data:
Analysis of Biological Rhythm Data

Abstract

(Cortisol is a hormone secreted by the adrenal gland, and. like other physiological measure-
ents. the concentration of cortisol in the blood over time is periodic with an approximate 24 hour
cvcle. For descriptive purposes. linear regression using a simple sinusoidal curve with a fixed 24
liour period is sometimes an adequate tool for analyzing data from s.uch processess. Inferences
based on regression models under the assumption of independent and identically distributed errors.
liowever. can often mislead seriously. We have previously presented a general class of models for
flitting a single biological rhythm. with use of higher order harmonic terms of one or more unknown
fundamentals and ARMA processes for the errors (Greenhouse, Kass, and Tsay, 1987). Since com-
parative studies of changes in biological rhythms due to a change in disease state often involve
many subjects. it is likely that there exists sufficient inhomogeneity among subjects that a single
model would be inadequate and a model that incorporates variation across subjects is necessary.
We present an application of the use of a two-stage hierarchical model to study differences in the
circadian variation of plasma cortisol concentration between depressed patients and healthy con-
rrols. [n our harmonic regression model the level, amplitudes, and phases are treated as randomly
varving across individuals and the frequency and the ARMA parameters are taken as common to

all subjects.

Key Words: ARMA Process: Depression; Harmonic Regression Model: Parametric Empirical
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1 Introduction

Sequential measurements of physiological processes follow patterns that typically repeat themselves
approximately every 24 hours (Moore-Ede, et al., 1982). Examples in humans include the sleep-
wake cvcle, core body temperature, and neuroendocrine activity, such as the secretion of plasma
cortisol. These patterns of measurements, called biological or circadian rhythms. are endogenous
and have been observed not only in physiological systems but in behavioral activities as well.
(‘ircadian rhythms. according to Moore-Ede, et al. (1982), are the outputs of a biological system
whose main function is to measure time and that the functioning of this svstem has important
tmplications for physiological regulation and for health. These rhythms are suprisingly stable. in
tlie sense of being regular and repeatable, and often pass unnoticed until they becone disturbed as
wight occur due to a change in the environment, such as flying across several time zones resulting in
“jet lag™. or due to a disease state. For example, patients suffering from a major depressive disorder
are cousistently reported to have disturbances in their rest-activity cycle, disturbaunces which are
often characterized by a phase advance of the sleep-wake cycle (Kupfer and Foster. 1972). Just
as jet lag may arise because of an acute disruption of an individual’s circadian rhvthms (that is.
their internal biological clock is “out of sync” with the external clock), it is now widely believed
that patients with major affective disorders have disturbances in the regulation of their biological
rhythms that play an important role in the clinical course and pathophysiology of their disease
(Moore-Ede, et al.. 1983: Sack, et al., 1987).

To better understand the role these disturbances play in the pathology and etiology of de-
pression. psychiatrists and others are attempting to characterize changes in the biological rhythms
of depressed patients. It is hoped that by observing consistent changes in these rhythms. new
strategies for the treatment of affective disorders will be suggested, and new understandings of the
mechanisms by which physiological systems are regulated will be obtained. Fundamental to the
study of biological rhythms is the need to accurately characterize the rhythm so that changes in
a rhythm from a baseline state following an intervention can be made or the assessment of abnor-
malities in a rhythm between a group of patients and controls can be determined. In this paper we
develop statistical models for studying changes in the circadian variation of the hormone cortisol
in a group of depressed patients as compared to a group of healthy control subjects. The data

described here are part of a larger study conducted at the Western Psychiatric Institute and Clinic.



Cuniversity of Pittsburgh. under the direction of Dr. David Jarrett.

(Cortisol is a hormone secreted by the adrenal gland. and, like other physiological and behavioral
measurements. the concentration of cortisol in the blood over time is periodic with an approximate
24 hour cycle. Plasma cortisol concentration reaches a peak at or near the time of waking and then
falls off over the course of the day, reaching the lowest level shortly after sleep onset (see Figure 1).
[n a review of 14 studies of the secretory activity of cortisol, Sack. et al. (1987) found that changes
in the circadian rhythm of plasma cortisol levels in depressed patients have not been conclusively
established. Although most studies report an increase in the mean level of cortisol concentration
i depressed patients. there is disagreement as to whether some features of the cortisol circadian
thwthm are advanced. For example. in six relatively carefully controlled studies. three found a
phase advance in the cortisol rhythm and three did not. These diverse results with respect to
cortisol are typical of problems with studies of biological rhythms in general and are due in part to
poor designs (e.g., many studies only observe subjects for 24 hours or less), to the use of inefficient

statistical methods. and to the problem of substantial variation among subjects.

[n the University of Pittsburgh study, blood samples were obtained from both healthy and
depressed subjects every 20 minutes for approximately 48 hours. The purpose of this paper is
to develop statistical methods for analyzing periodic data such as these that will allow us to
make comparisons between groups of subjects while accounting for intersubject variability. e
will analyze the data collected to investigate the effect of depression on the circadian variation ot
cortisol. In the next section we describe a model for characterizing a single rhythm based on a
harmonic regression model with an ARMA process for the errors. We then generalize that model
to incorporate a two-stage model with hierarchically structured parameters. At the first stage. the
model is assumed to be identical for all individuals and variability among individuals is accounted
for by the distribution of the parameters specified at the second stage. This approach is similar
to the random-effects model for longitudinal data considered in Laird and Ware (1982). The
likelihood function for the parameters is presented in section 2 and issues related to the estimation
of parameters and to computation are discussed in section 3. In section 4, we present the analvsis
of the cortisol data for the depressed patients and controls in the Pittsburgh study. We conclude
in section § with a discussion of the results of the data analysis and of the methodology. We note

that the family of models considered in this article have a wide range of application. such as. to



the investigation of the impact of chlorofluoromethanes on stratospheric ozone (e.g., Reinsel and
Tiao. 1987,) and to the analysis of gait, that is, free-speed walking on a level surface as discussed

in Olshen, Biden, Wyatt and Sutherland (1989).

2 Model Specification and the Exact Likelihood Function

2.1 First-Stage Model

Statistical models for characterizing biological rhythm data, or “cosinor™ analvsis (Tong, 1976:
Minors and Waterhouse. 1988). have generally consisted of a single sinusoidal regression function.
liavine a fired period of 24 hours. together with independent and identically distributed (i.i.d.)
errors.  Greenhouse. Kass and Tsay (GKT) (1987) describe a more general class of models for
flitting biological rhythm data. This class contains models that include higher-order harmonics
ol one or more unknown fundamentals and, in addition, have ARMA processes for the errors.
Specifically, the GKT model for an observation, Y;, at time ¢ of a rhythm for a single individual.
is of the additive form

Y, = f(t) + Z, (1)

where f(t) denotes the deterministic component of the data and Z; the stochastic component.
[n applications to biological rhythm data, trigonometric series are used for f(t). Since the k-th

harmonic term of a fundamental frequency w can be written as
R - cos{2mk(w - ¢)} = A - cos(2rkw) + B - sin(2rkw)
where 4 = R-cos(27ko) and B = R-sin(2rk¢), we may write f(¢) in (1) as

"
fty=p+ Z{Akcos(%kut) + Bksin(27rkwt)}, (2)
k=1

where 4 is an added constant which we call the level of Y;, w is the fundamental frequency, and
kw. (k=1,..., K)are the harmonics of w. Here the unknown parameters are u. w, the A;'s and
Bi's. and in this form the only nonlinear parameter in f(-) is w.
Further, the stochastic component, Z;, in (1) is taken to be an autoregressive moving average.
ARMA(p,q), process. That is, Z, satisfies
P q
Z = Z¢iZt-i - Zejat-j +a; (3)

1=1 =1

()]



where the 0;'s and §;’s are real-valued parameters, and {a,} is a sequence of independent, identically
distributed. Gaussian random variables with mean zero and variance ¢?. Methods for specifying
L. p and ¢ for model (1)-(3) are described in Greenhouse, Kass and Tsay (1987) and illustrated
with an example of the circadian variation of core body temperature in a healthy adult.

Model (1)-(3) is useful as a description of a particular circadian rhythm in a single individual.
(‘omparative studies often involve many subjects, however, and it is likely that there exists sufficient
intersub ject variability that a single model of the form (1)-(3) would be inadequate. In this case. it
I> necessary to introduce a new model that incorporates variation across subjects of the parameters

appearing in model (2).

2.2 Second-Stage Model

[o accomodate the intersubject variability of cortisol secretion we generalize the GKT model by
cousidering two-stage hierarchical or “random-effects” models, in which certain parameters in (2)
are assumed to follow probability distributions. For generality, we allow subjects to belong to one
of g distinct groups, though in the application of section 4 we will have g = 2. We use ) as the index
for group, h = 1,2,....g9. We denote the j-th observation for the ¢-th subject in group ~ by Y, ;.
We let my be the number of subjects in the A-th group and let n;; be the number of observations
on the :-th subject. The first stage of the hierarchical model is:
K
Yih = pin + (A% - cos(2rkwyj) + BY, - sin(2mkwaj)] + Z.ja. (4)
k=1
J=LlL2.... Nih, £ = 1.2.....mp, wh is the frequency for the h-th group, and A% and B, are the
coefficients of the k-th harmonic of wj, for the i-th subject in the A-th group. In (4) we now use the
subscript j in place of t to index the repeated measurements on the i-th subject. When it is clear
from the context that we are referring to the h-th group, we will for simplicity denote the total
number of observations for the i-th subject by n;. For the stochastic component of (4), we assume.
as in GKT. that {Z;4}7, is an ARMA(p,q) process, and that {Zijn};L, are all independent for
v=1.2..... mp and h =1.2,....9.
At the second stage of the hierarchical model, we will assume that the u;’s, A%’s and B¥’s, are
jointly normally distributed, and are distributed independently across subjects. This specification

provides a simple manageable description of the variation among individuals with respect to the



mean level. amplitude and phase of the circadian rhythm for the nonlinear harmonic regression
model in (2). In this paper. the fundamental frequency w; and the ¢’s, 8’s. and o of the stochastic
component will be treated as common to all subjects, or as “fixed” effects.

[t is convenient to write Equation (4) in matrix form.

Yih = XinBip + Zin

where
vih = (Yan Yioh,oo Yinn)T
zin = (Zih Zishs- - Zinh) ¥
Bih = (#{h,A}h,B}h, ..... "1 {)“Bﬁl)T
and i
1 cos(2mwy) sin(2rwp) ... cos(2rKwy)  sin(27hwy)
Xih = | 1 cos(2rwpj) sin(2whj) ... cos(2rKwhj) sin(2rKwj)
1 cos(2rwan;) sin(2rwini) ... cos(2rKwhn;) sin(2rhwhn;)

with X, depending on the frequency wy.
Letting A, be a vector of the fixed effects, we can express the distributional assumptions tor

the two-stage hierarchical model as:

Stage I: Yin | XinsBiny M~ N(XinBin, Ew (8.0.0%))

Stage II. B | M ~  N(Bi,Zs)

where Syy(¢,0,02) denotes the within-subject component of variance expressed as a function ot

the parameters of the stochastic component, and

Bh (ﬁh,AL,B'{,AZ,BZ,...,Af,B;{()T,

B

1

DIAG(d3,03,....0%).



[t will be useful for_future reference to write A, = (A, A;)7, where A; = (81,....0,,01,...6,,0%)7T
are the parameters common to all subjects, and A; = (wh,ﬁh,EB)T are the parameters common

ro all subjects in group hA. Finally, let A = (A, Ag,..., ).

2.3 The Exact Likelihood Function

[ this section we derive the exact likelihood function for A. First, we will obtain the joint distri-

bution of y, and B, given A, which we express for the h-th group as
Mmp
pyaBa L M) = T p(vin | Bins An)P(Bin | An)- (6)
=1

We will then find the marginal distribution of y, given A, by integrating over 3,;, i.e..

-1

L(M) x H/P(Yih | Bins An)P(Bin | An)dBip- (
=1

[n the remainder of this section we consider the details for the derivation of the exact likelihood

function for A. L(A). where L(A) = [T7_, L(As).
J Mmp
Let .V = Z Z .4 be the total number of observations of all the subjects in all ¢ groups. Using
h=11=1
the results in the Appendix for the exact likelihood function of an ARMA(p.q) process. we have

L _ 1
Pzin | Ac) = (2m0?) 702 | WIWi |7V/2 exp{ - Fz%@ﬁmih} 3
where W5 and ¥, ¢ = 1.2...., my, are the corresponding time series matrices given in the Ap-

pendix associated with the n,, observations for the i-th subject in group h. These two matrices
depend only on the time series parameter A, = (¢1,¢2,...,9p,01,...,0,,0°) and n;.

It follows from (3) and from (8) above, that

Yin | Aes Xiny Bin) =

- _ 1
(2ma?)~™n/2 | WEWy, |-1/2 exP{ - m(yih - Xin)Bin) VR in(yin - Xihﬂih)}'

The joint probablity density function of the data y = (Y1T11 . ,yg;ll,yfz, ....... ,yz,lgg)T and 3 =
B ngl,ﬁﬂ ........ ,Bﬁgg)T given A and X, is

ply,B 1 AX) =



3
>

Mh

Lo 1<
| WEWin | ‘/2] exp{ - 503 Z Z yin = XinBin) T UL Uinlyin - th)ﬁih)}

| lm]exp{——zz zh'Bh Zp (ﬂih_ﬁh)}

h=11=1

(‘27r<72) \/2{

=0
—

-

m‘e
=5

X (27(')'"‘/2[

>
1]
—_
]
—_

where m = Z my) X (2K +1). Letting ,Blh = Y,h\Dlh\P,hX,h) L \ \I"lhlpthyﬂl) we have
h=1

(Yin = XnBon) TV Winlyin - XinBiy) =
(yin = XinBin) "R Cin(yin = XinBia) + (Bip = Bin) TXL YR 00 Xin(By - Bin). (10)
Using the following matrix identity (see, e.g., the Appendix of Chapter 7 of Box and Tiao.
19730,
(x-a)lAd(x-a)+(x=b)TB(x-b) =
(x—c)f(4+ B)(x-c)+(a-b)TA(A+ B)"'Bla-b)

where ¢ = (4 + B)~'(4a + Bb). we obtain
. 2 XTOl g, X, . = \Tao =
(Bin - 5ih)T‘—'h—'g2—H(B.’h = Bin) + (Bin - Br) ' (Bin = B) =
(Bin = cin) (A + Bin)(Bin = cin) + (Bin = Br)T Ain(Ain + Bin) ™' Bin(Bin — B1)
(11)

XTULU,X, . =
where 4,4 = -MT—h-—h. Bin = SEI and cip = (Ain + Bin) Y (AinBin + BinBh)-
Putting (10) and (11) into (9), the joint probability density function of y and 3 given A and X can

he written as

g Muh 4 Mmp
Ay.BIAX) = (ra?)" " (2r -'"/2( [T IT 1 wiwa ) ( ITI1ce 1)
h=11=1 h=1:1=1
> "I’ \Plh b
X eXP{ b~ Z Z[ (yin = Xin(wn)Bin)T —LU_'—(.Y:h = Xin(wn)Bin)

h-l 1=1
+(Bin = cin)T(Ain + Bin)(Bin — cin)

+(Bin = Br)T Ain(Ain + Bin) " Bin(Bis - Bh)] }
[ntegrating out 3,, yields the marginal distribution of y given A and X,

ply | A.X) =

-l _ _ 1 g Mmn
(2r0?) V”[ T TR0 WAWa 1791 55 2] A+ By ) ] exp{ -3 2 Y (Sun + S

h=1:=1 h=11=

—



where
Stk = (Yin = Xinlwh )Bih)TE"}%‘(ym = Xin(wn)By4)
and
Sun = (Bin = BT Ain(Ain + Bin) ™" Bin(Bin - Ba).
The loglikelihood function for A is therefore given by

L(/\) =

AY 5. L . .
- log(270°) - - Z Z(log(l WEWin |) +log Sp +log(| Ain + B ) + S1n + bzih)-

(12)

3 Estimation and Computation

3.1 Estimation

We wish to compare depressed and control patients’ rhythms by fitting the data using the two-stage
hierarchical model described in the previous section. Assuming the values of the parameters were
known. the model would enable us to make comparisons in two ways. First. we could judge the
iwagnitude of the discrepancies between the population parameters, Adepressed and A%, . Second.
we could plot the systematic components of (4) for all individuals in the sample. This would help
us understand the variability among subjects, as well as the distinctions between the rhythms in
the two groups.

Since we do not know the values of the parameters in the model, we will estimate them. The
population parameters A will be estimated by X that maxmizes the likelihood function in (12).
Then. the 3;,’s, will be estimated by their conditional posterior means, conditionally on A = A.
These estimates are the usual “parametric empirical Bayes” (PEB) estimates of the quantities 3.
According to standard large-sample theory, the assumption that the number of patients in each
group is becoming infinite provides asymptotic Normality of the MLE’s. with the observed infor-
mation matrix (i.e., the negative Hessian of the loglikelihood, — D?L(})) furnishing the asymptotic
precision matrix. We can then examine the MLE’s of parameters of interest, together with their
standard errors. We will also be able to produce plots of the individual systematic components.

using the PEB estimates of the subject-specific parameters.

10



We note that bath maximum likelihood and parametric empirical Bayes estimation may be jus-
tified as providing approximate fully Bayes estimates. That is, inference regions having confidence
| - o based on the asymptotic Normal distribution of the MLE ) also have posterior probability
| - a based on the limiting Normal posterior distribution of A. Similarly, the parametric empirical
Bayes estimates of 3, differ from fully Bayes posterior expectations by a term that vanishes at a

rate inversely proportional to the number of patients (see Kass and Steffey. 1989).

3.2 Computation

[o use rhe two-stage hierarchical model. we must first identify a common first-stage model that can
adequately represent the rhvthm under study, and then estimate the unknown parameters of the
wodel. GKT describe a procedure for model specification and estimation for the first-stage model.
We apply this procedure to each individual and obtain initial estimates for the second-stage model
nsing steps 1 and 2 below. and then obtain final estimates of all the parameters simultaneously

using step 3.

L. Tentative model selection for the deterministic process:

Obtain initial estimates of the frequency for each subject in group A either from « prior
knowledge or from spectral analysis of Y;;x. An initial estimate of ws, in (4) can be obtained
as the average of the individual frequencies. With this initial estimate of wy, we can then
obtain inital estimates of 3, and o? using maximum likelihood estimation by treating the
stochastic component of (4) as i.i.d. random variables. This step can be done using standard

statistical packages. such as BMDP or ISP.

2. Tentative model selection for the stochastic component:

Using the initial estimates of the deterministic component from step 1. form the estimated

residuals
Zish = Yijn — fn(2)

where f,—h(t) is the deterministic component evaluated at the initial values obtained in step
L. A tentative ARMA model for the stochastic component Z‘,'jh can be specified for each

subject 7 (for details, see GKT) and then an overall ARMA model can be chosen for Z,jh.

11



The maximum. likelihood estimates of the common time series parameters of Z, ;h can then

he obtained.

3. [ull model fitting:

By means of maximum likelihood estimation with the combined, tentative model obtained
i steps 1 and 2. reestimate simultaneously all the parameters in the full model. i.e., both
the deterministic and stochastic components. The likelihood function to be maximized is

specified in section 2.3.

Lo carry out steps 2 and 3. we have written and used two FORTRAN programs. The first
program minimizes the residual sum of squares of the the time series Z,-ih in step 2. This allows us
ro obtain the maximum likelihood estimates of the time series parameters across all of the subjects.
[he second program simultaneously reestimates all of the parameters in the full model in step 3
and obtains standard errors of the parameters based on the inverse of the observed information

matrix (Kass. 1987).

4 Comparative Analysis of the Circadian Variation of Cortisol

As described earlier. we are concerned with studying changes in the circadian variation of the hor-
mone cortisol in a group of depressed patients as compared to a group of healthy control subjects.
The protocol for the University of Pittsburgh study required all subjects to enter the hospital for
a period of 7 days. Following several adaptation days, blood sampling began on day 4 around 6:00
p.ni.. to obtain plasma cortisol measurements. Samples were obtained every 20 minutes thereafter
for the next approximately 48 hours. The samples were labelled with respect to time. stored, and
assayed within 72 hours to obtain the cortisol values. This analysis is based on 14 depressed out-
patients (11 females: median age 30, range: 30-63), and 6 normal controls (1 fexﬁale; median age=
23.5. range: 24-54). All the patients satisfied research diagnostic criteria for a major depression
and the normal controls were volunteers from the community. The large proportion of females in
the depressed group reflects the prevalence of the disease among men and women in the population.

Figure 1 presents the cortisol levels for 4 healthy subjects as an illustration of the pattern of
cortisol concentration in the blood over a 2 day period. We see that the general circadian pattern of

cortisol concentration is similar in these subjects, but we also see a great deal of individual variation.

12



Using the iterative methods for model specification described in steps 1 and 2 in section 3.2, we
determined that a suitable harmonic regression model for stage one of our two-stage hierarchical
model based on these data should consist of, for the deterministic component. the fundamental
and the first harmonic (K=2), and for the stochastic component, an autoregressive process of order
2. \We treat as randomly varying across individuals, i.e., “random effects” in this model. the level.
the amplitudes. and the phases as in (4) of section 2.2. The frequency and the autoregressive
parameters are taken as common to all subjects. i.e., “fixed effects.” Given the sample size. this
wodel with 20 parameters is the most general with respect to the number of parameters that we

could seriously consider.

Tables 1 and 2 give the empirical Bayes or approximate Bayes estimates for 3,,. the parameters
of the first-stage model for each subject in the depressed group and the control group, respectively.
For ease of interpretation. we have transformed the Af»‘ 's and the B¥’s back to amplitudes and phases
(in radians). Table 3 gives the estimates of the second-stage parameters, A;, for both groups. The
estimates of the common AR parameters (standard error in parentheses) are o1 = 0.792 (0.0196)
and oy = —0.140 (0.0194), and o = 2.17. From this table, we see that the differences between the
two groups with respect to the estimates of the second-stage parameters, the level. the amplitudes
{R’s). the phases (¢'s), and the frequency, respectively, are not large compared to their standard

errors.

In Figures 2 and 3 we plot the posterior fit for the deterministic component of the model for
each individual along with the estimate of the overall cortisol rhythm for each group, respectively.
[t can be seen from the figures that the estimates of the two group curves for the cortisol rhythm
are very similar. We also see that subject 1 in the control group seems to have a higher level of
cortisol than the other subjects in that group. We reanalyzed the data without that subject and
again found no substantial differences between the groups with respect to the amplitudes, phases.
and frequency. However, there is an apparent difference between the groups with respect to level.
When subject 1 is excluded, patients have higher average cortisol levels than controls (patients =

7.425. controls= 5.896, se(diff)= .688).

13



5 Discussion.

3.1 Data Analysis

The understanding and analysis of biological rhythms has important implications for health and
disease. In this paper we have been concerned with abnormalities in the circadian rhvthm of
plasma cortisol concentration in depressed patients. We have developed a statistical model for
describing the circadian variation of plasma cortisol using a harmonic regression model to fit the
underlving circadian rhythm and an ARMA process to pick up fluctuations from it. To accomodate
variation across subjects and to compare the cortisol thythm in depressed patients to controls, we
ise a two-stage hierarchical model in which certain parameters in the harmonic regression model
are assumed to follow probability distributions. The analysis of the cortisol data presented here
suggests that differences in the circadian rhythm of plasma cortisol between depressed patients and
healthy controls are probably small. In addition, using the parametric empirical Bayes estimates of
the subject-specific parameters. we have been able to examine the posterior fit for the deterministic
component of the model for each indvidual; this helped us to identify one subject in the control

group who had a higher level of cortisol than the other subjects in the group.

There are three components in the model we have used, the deterministic part of the first stage.
the stochastic part of the first stage, and the second stage. In the deterministic component we
chose to fit a trigonometric series with a fundamental frequency and one higher harmonic. This
harmonic picks up a substantial part of the departure from the model using only the fundamental
frequency. However. our empirical fitting procedure did not include a careful attempt to determine
the precise nature of this departure. Thus, although the extra harmonic might genuinely represent
what is often called an “ultradian rhythm” with a period of about 12 hours, there is nothing in our
analysis that provides real evidence of such a claim. Further effort to establish the existence of a
12-hour rhythm would require additional data so that higher-order harmonics could be considered.
as well. We also emphasize that our approach has been to model the concentration of cortisol in
the blood over time rather than attempting to model the physiological process responsible for the
secretion of the hormone. The latter is an interesting and challenging modeling problem addressing

different substantive questions than are being asked in the Pittsburgh study.

Although some of our preliminary analysis included diagnostic checking of first-stage assump-
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tions..our choices for all three components were based largely on convenience and we did not
perform thorough sensitivity studies. Additional checks designed for two-stage models could be
conducted as in. for example, Waternaux, Laird, and Ware (1989). Also it would be possible to
use a non-Normal second-stage distribution: this would entail a nontrivial computational burden.

though we believe the problem could be solved with current numerical integration techniques.

5.2 Methodology

\Ve have used a general ARMA model for the error structuve in (1) to represent the dependence
among the repeated measurements made for each subject. With sufficiently many subjects it
would be possible to estimate a more general covariance structure. Use of the ARMA model. on
the other hand. reduces the characterization of the within-subject covariance to a small number of
parameters, and is therefore suitable for studies with relatively small numbers of both subjects and
observations per subject.

In a recent article, Chi and Reinsel (1989) consider a linear model with random effects and
AR(1) errors for longitudinal data. They derive a score test to detect serial correlation in the
within-individual errors for random-effects models that are “conditionally independent” in the
sense that conditional on the random effects the observations on a given individual are assumed to
be independent. They further use a scoring method for maximum likelihood estimation. However.
there are several differences between the present article and that of Chi and Reinsel. First. the
model used in this article is non-linear; it estimates the fundamental frequency jointly with all
the other parameters and this frequency is often of major interest. Second, the error terms of the
present article may assume the general ARMA models; an AR(1) model often cannot capture the
periodic pattern showing in the data. Third, this article emphasizes the comparison of a circadian
rhythm between depressed patients and normal healthy controls, not on the detection of serial
correlation. Finally, Chi and Reinsel allowed for irregularly sampled data whereas only equaily
spaced observations were considered in the present article. Of course, a combination of the ideas
given in the two articles could be useful in application.

An alternative method to compute the exact likelihood function of Z; is to use a state-space
formulation and Kalman filter. Nice properties of the Kalman filter approach include the ease

in handling missing observations and the explicit use of a diffuse prior in the case of unit-root
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nonstationarity of Z;. See Jones (1980. 1986), Harvey and Pierce (1984), Ansley and Kohn (1985).
and Kohn and Anslev (1986), among others. We used a regression approach in this article for
various reasons. First. the regression approach provides a quadratic expression that is handy in
the hierachical setting. Second, recent research shows that by treating missing observations as
additive outliers the regression approach can also easily handle the missing value problem (see
Ljung 1989, 1990). Third. by adopting the techniques in Wincek and Reinsel (1986), it is not

difficult to generalize the regression approach to the case of irregularly spaced observations.
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APPENDIX:
Exact likelihood function of an ARMA(p,q) Model

Consider a stationary ARMA(p,q) model

p q
Zi - Z‘szt-j =at—zojat—j (4.1
)=1 )=l
where the ¢;s are independent normal random variates with mean zero and variance o°. Suppose
the data z = (Zy,....Z,)T are available and our goal is to derive the associated exact likelihood
function.

There are two approaches to evaluating the exact likelihood function of a stationary ARMA
process. The first approach uses a state-space model representation and the Kalman filter recursion.
.. Jones (1980). The second approach uses linear regression techniques to obtain estimates of the
starting values of the process so that the exact likelihood function can be expressed as a quadratic
function of the data. e.g. Box and Jenkins (1976), Hillmer and Tiao (1979), and Abraham and
Ledolter (1983). The first approach is useful in computation, especially when missing observations
exist. However, since we are interested in obtaining an exact expression of the likelihood of a
two-stage hierarchical model, the second approach is used in this article.

Rewrite the ARMA(p.q) model (A.1) more compactly as
®(B)Z; = §(B)a;

where o(B) = 1-0yB~---=0p,B?,6(B) = 1-0,B-----0,B7, and B is the usual backshift operator
such that B’Z, = Z;-,. Let 7, be the r-weights of the model, that is, 7; is the coefficient of B' in
7(B)=1-L2, 7B' = o(B)/6(B). Let z* = (zq,...,21-p,d0,.--,a1-4)" be the vector of unknown
starting values of the process Z;. Furthermore, for 1 < k < p, define ¢(x) = (¢k,....95,0,....0) bea
p-dimensional row vector with the last k—1 elements being zero. For k > p, ¢(4) is the p-dimensional
null row vector. Similarly, define the q-dimensional row vector O(k) = (Ory....0,,0,.... 0) for
L <k <q and fk) = O for k > g. Finally, let G(x) = (=¢(x),0x)). Then. simple algebra shows
that
t-1

aQ = Zt—Zﬂ’J'Zg-]'J{-htZ- (4.0

i=1

17



where h; = Gy and other h,’s are defined recursively by

t
Gy + ) bihe; for 2<t<max{p,g}
he=o 1=1 (A.3)
Zejh,_j for t> max{p,q}
=1

with # =01if j > ¢. Putting the equation (A.2) in a matrix form, we have

z’ 0 Iptq
z+ z (A.4)

a L D

where a = (aj..... an)T. Disannx (p + q) matrix with ith row equal to h; defined in (A.3), and
[ is the n x n lower-triangular matrix of r-weights of Z;, with unity on the diagonal and the i-th
row being (=7,-1,--+.7.1,0.---.0). Let %X be the covariance matrix of z*. i.e.. £(z°2*T) = o?¥.
Then one can find a matrix P such that PSPT = [,,.

Pre-multiplying Equation (A.4) by the (n +p+¢) X (n + p+¢) matrix M = diag{P, [»}, where

[, is the n X n identity matrix. we obtain

u® 0 Lpiq
= z+ u* ( 4.5
a L DpP-!
where u™ = Pz". Let
Lp4q 0
W = and L* =
Dp-! L

so that (u*T + aT )T = L*z + Wu*. Now, it is important to note that
(1) E(uuT) = £(Pz*z*T PT) = PE(2*2*T)PT = PEPTo? = [,440?, and that
(2) u” involves only ay_q,....aq,21-p,..., 20, Which is independent of a.

Thus the elements of (u*T.aT)T are independent normal random variables with mean zero and

variance o2. The joint probability density function of (u*T,aT)T is given by

18



p(u'T.aT | \e) = (270?

)j-(mtetal/ exp{— {U'Tu +a’a}}

where A. = (01..... 0p, 1. .. .07,02 )T is the vector of common unknown parameters.

Since the Jacobian of the transformation of (A.5) is unity, we have that

1 ;
plzl wT |\ = (2n0?)(tr+e)/2 exp{—ES(z\c,u )}

where

S(Ae u™) = (L2 + Wu')T(L'z + Wu")

is a sum of squares that depends on, among others, u®, which in turn is a function of the unknown

starting values z*. Now it can be shown that
SAsut) = S(A) + (u* - a7 2T Z(u* - &)
where 0* = —=(WTW)"'WT[*z and
S(A) = S(Ae,0%) = (L*z+ W) (L*z + W)

Lquation (A.6) then becomes

p(z.ut | A) = (270?)-(ntrta)/2 exp{ {5 u - TwWTw(u

the left-hand side of which can be written as
p(z,u” | Ac) = p(z | Ac)p(u™ | z,Ac)

[ntegrating Equation (A.7T) over u®, we obtain

p(z | Ae) = (2na?) M2 | WTw |-1/2 exp{—-S )}

which is the exact likelihood function for an ARMA(p,q) process.

Furthermore, by

L'z + W&

L'z -WWTw)'wTL;
(Ippqan - WWTW)'WT)L"2

19
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and letting

Lypqin = WWTW)tWT = Al

where \ is an (p + ¢ + n) X n matrix, we have that
L'z+Wa" = ALz =¥z

and
. -1
pz | \) = (2xe?) 2 | WTw |-1/2 exp{-é}-_izT\IlT‘Ilz}.

which is the result used in Section 2.
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Table L: Posterior Estimates of the Parameters of the First-Stage Model

for Each Subject in the Depressed Group

- 1 1 2 2
‘ Ha R; Oi R}, %

l 5.73073 | 2.762761 | 2.313958 | 1.526266 | -0.021732

2 15767 | 4.795436 2.135773 1.669860 -0.019927
3 1.60592 4.189216 2.298618 1.715918 -0.019342
4 7.37679 3.847971 2.284967 1.710920 -0.019436

5 6.07798 | 4.633564 | 2.363536 1.703300 | -0.019489

6 v.07930 | 3.961659 | 2.204823 1.619559 | -0.020524

T 9.53174 4.425398 2.285647 1.556337 -0.021368

8 3.68716 | 4.016897 | 2.340257 1.575313 | -0.021084

9 6.79398 | 4.271711 | 2.255000 1.689855 | -0.019683

10 9.65074 | 4.132880 | 2.265791 1.673365 | -0.019837

11 8.6777T | 1.845589 | 2.313336 1.640384 | -0.202470

12 778879 | 4.586333 | 2.320656 1.722901 | -0.019279

13 6.26715 | 4.010485 | 2.162387 | 1.691691 | -0.029659

14 5.52294 | 4.119850 | 2.329102 1.626388 | -0.020408
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Table 2+ Posterior Estimates of the Parameters of the First-Stage Model

for Each Subject in the Control Group

' . 1 1 2 2
l Hi2 R} 0: R 87

1 11.41896 5.085662 | 2.565209 2.577948 -0.016294
2 $+.941418 3.490282 | 2.461203 2.293906 -0.018283
3 3.357593 3.735369 | 2.386339 2.374498 -0.017650
4 7561059 4.597357 | 2.669817 | 2.331090 -0.017967

5) 5.508472 4.388673 2.625529 2.298040 -0.018226

6 6.551861 3.941468 2.467842 2.247713 -0.018660
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Table 3: Estimates of the Parmeters of the Second-Stage Model for Each Group

Patients Controls  Difference  SE(Diff)
i 7425 6.890 0.536 0.865
R 4177 1.186 -0.009 0.489
9! 2.276 2.539 -0.263 0.155
R? 1.652 2.357 -0.705 0.378
§? -0.020 -0.0018 -0.0002 0.284
- 01402 01378 0.0002 0.0003
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Figure Titles

Figure I(a-d). Examples of the circadian pattern of cortisol secretion for an approximate 48 hour
period in four healthy control subjects. The smooth curve is the posterior fit based on the twe-stage
hierarchical model (see text). Measurements are obtained three times an hour. The units of time

are indexed by sequential measurement number.

Figure 2. Posterior fit of the deterministic component of the model for each subject in the de-
pressed group (——) and the estimate of the overall population curve from the second-stage of the

hierarchical model for the depressed group (e—e).
Figure 3. Posterior fit of the deterministic component of the model for each subject in the control

group (—} and the estimate of the overall population curve from the second-stage of the hierar-

chical model for the control group (e—e).
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