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ABSTRACT

Expressions for the reversible susceptibility
both normal to and parallel with an applied biasing field
are given. The theoretical basis for these expressions is
considered. Experimental data for three different ferrite
specimens are given. Qualitative deviations from the
reversible equations are considered assuming domain wall
motion to be retarded by large potential holes. The

averaging effect of toroidal geometry is considered in
some detail.
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REVERSIBLE SUSCEPTIBILITY IN FERRIMAGNZTIC MATERIAL

1, INTRODUCTION AND DEFINITIONS

The parallel reversible susceptibility in ferromagnetic material has
been the subject of several authors since it was discussed by R, Gansl in 1911.
A récent paper which includes a review of the experimental status is that of
Tebble and Cornerz.

The reversible susceptibility er is customarily defined ass

X rp =A§inl- 0 %‘i}% (1)
where AH has a sense opposite to that of the change in H which brought the spec-
imen to the point (M,H). The differential susceptibility, X a’ differs from the
reversible susceptibility in that AH is taken in the same sense as the change
in H which brought the material to the point (M,H). X 4 is, in general, larger
than er. It is assumed that if a vanishingly small ac field is applied such
that AH is alternately parallel and antiparallel with the aforedescribed direct-
jon of H the resulting susceptibility will be the parallel reversible suscepti-
bility.

The transverse reversible susceptibility, Xrt’ is hereby defined ass

Xet “aii -0 (28) (2)
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where AH is perpendicular to the direction in which H was changed to bring the
specimen to the point (M,H) and thus also perpendicular to the direction AH used
to measure the parallel reversible susceptibility.,

The initial susceptibility X o is defined ass

- Lim
Xo=y -0 Xp (3)
2o THEORETICAL DEVELOPHMENT
2.1 The Initial Susceptibility
Since the magnetic moment per unit volume is given by
M= T g ok (L)
1 U'B g B ’

all atoms

evidently changes in M occur by means of changes in the net spin S aligned in the
direction of the field., Three possible mechanisms of change are illustrated in
Figs. la, 1b, and lc.

In Fig. la, before the application of an external field a domain wall
is located at the position x. When the field is applied the wall moves to a
position x + Ax. All atoms between x and x + Ax must undergo a 180° reversal
in direction of their magnetic moment., In Fig. 1lb the solid arrow may rotate to
the position shown by the dashed arrow. For the same AM as in la, a much larger
number of atoms must rotate through a small angle ©. Fig. lc shows still another

possibility,

#* pﬁ is the Bohr magneton, g is the Lande g factor, S is the net ionic spin
ih units of h, H is the applied magnetic field,
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POSSIBLE MECHANISMS OF MAGNETIZATION CHANGES
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The question of whether the low frequency initial permeability in
ferrites arises from wall movement (Fig. la) or rotation (Figs. lb, lc) was rather
convincingly answered by'Rado3, et al, They measured the spectrum of permeabil-
ity versus frequency for a ferrite, then ground it to single-domain-size particles
and remeasured. They concluded that the low frequency iniﬁial permeability is
primarily due to wall movement as shown in Fig. la.

The variation with the position of a domain wall in the energy of a
ferromagnetic body appears similar to Fig. 2. We now wish to determine the rela-

tionship between the shape of the potential curve and the initial susceptibility,

SPECIMEN
ENERGY V

|
RS

SPACIAL CO-ORDINATE NORMAL TO WALL
FIG 2. SPECIMEN ENERGY VS WALL SPACIAL CO-ORDINATE

In the absence of an external field, the wall will come to rest at a
minimum energy position such as Xy e If the energy function is assumed to be a

continuous function of position it can be expanded into a Taylor seriess

V(x) = V(xy) + szr (x-x7)2 (5)

where is the radius of curvature of V(x) at the point x = x. . When a rever-
Pr X

sible field is applied, the potential V*(x) is given bys

V(x) = V(x) - v Mx dH (6)

for a wall of unit area., ¢y is a constant depending upon the type of wall

considered.
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Combine Egs. 5 and 6 and differentiate to obtaing

*
d ZX(X) - ;];r (x-x) = v Mg dH (7)

The minimum energy condition is thens

X-X1=Pr‘YMSdH (8)

The magnetization and susceptibility associated with this initial rever-

sible field for a wall of unit area is then:

dMp

B} 2 2
Y MS (X-Xl) pI’ Y MS dH

Xo = Pptt (9)

The problem of evaluating X o thus becomes one of determining p, and
the wall area located at each potential minimum,
Becker and Doringhassumed a system of cubical domains, 90° walls, and

a sinusoidal variation in internal stresses and obtained?

L

T — 10
Bﬂ)\SO‘i (10)

Xo

where )\S is the saturation magnetostriction and o3 is some average value of
internal stresses. This is found to agree quite well with experiment both in
parameter dependence and in magnitude., However, this does not substantiate an
assumption that X o Must have its origin at least predominately in wall movement

for Kersten obtained a result?
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g, - 2 (11)
© 9 \s0oi
assuniing only rotational processes.
2,2 The Parallel Reversible Susceptibility
Gans first suggested the parametric equations
M X
—=£(n) 3 —-?-EX = 3£1(n) (12)
Mg o
where £(n) = L(n), the Langevin functioni
1
L(m) = (ctnh n - ;]-) (13)

e d
The prime indicates ane

Tt was found that this equation fit quite well the data for iron and
nickel., This was first put on a semitheoretical basis by Brown6 in 1938, To do
this Brown assumed ferromagnetic material to consist of N domains per unit

volume all of fixed and equal volume, These domains were considered to be sub=-
jected to random but rixed forces in such a manner that the ordinary technicues
of statistical mechanics could be applied.

His development of Eqe. 12 is given in the appendix. He later7 atterpt-
ed to derive these equations with a model allowing variation in domain size.
However a large number of assumptions were necessary. oome are so stringent as

to question whether the work is really an extension of his original papers.
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2.3 The Transverse Reversible Susceptibility

If the parallel reversible susceptibility is given by Eq. 12 where

f(n) is any arbitrary continuous function of m, Xrt/ X o can be developed as

8.

follows o
dM

Het M

FIG 3. RELATIONSHIP FOR DETERMINING
TRANSVERSE REVERSIBLE SUSCEPTIBILITY

In a multicrystalline specimen when Hr is rotated through a small

angle, (l@d-ﬁ) remains parallel to Er + d—ﬁrtﬁ Thus, see Fige. 3, (Hr is defined

in the appendix).

dM M
X =l = (1)
Tt dipg  Hp
Now
1 di, d ( M )
Xpp @ X ot
where the first equality is the definition of er, and the second follows from
Eq. 1k, Substituting for er, M, from Eq. 12, and using dM = Mg £'(m) dn,

1.4 (M)
3Xe MY Xpg
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or, upon integrating

Lt - 3 X0 (15)

since Xrt = er = X, when M = 0,
Brown obtains Eq. 12, from which Eq. 15 follows, for spherical and
cubic symmetries, The form F(n) varies with the exact anisotropy.

Table I shows the result for two such assumptions (see appendix for derivation).

TABLE I

£(n) FOR ISOTROPIC AND [111] ORTENTED MATERIAL

Anisotropy £(n)
isotropic L(mn) = ctnh _%
V3
[lll] E(m) = -3-7?/2—-3_ fp tanh pdu
)

The functions L(n) and E(n), for small values of 7, can be expanded as follows:

= - 3 2 - 1 7 X EEXEREX]
L(m) =3 %fé Fm "t

s 1
E =ﬂ - % - 17 7 XX XXX ‘
M =3-Frar - wm"

These expressions are identical up to 'q7. Fig. b shows two plots of
the parametric Eq. 12 where in the upper curve f(m) = L(n), and in the lower

f(n) = E(m). Fig. 5 shows Eq. 15, once again in the upper curve f(n) = L(n), in
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TABLE II
M/Ms and X r/ X, Vs M for f(n) = L(n) and £(n) = E(n)
n L(m)  3L'm) 3 P-ﬁ{ll E()  3E'(m) 3 @-ﬁ-]ﬂl
0 0 1,000 1,000 0 1.000 1.000
450 <148 .960 . 987 +148 «960 .987
650 211 .920 97k 211 .920 97k
.820 262 .878 .959 .262 .878 .959
.960 .302 .8L0 ol .302 .8L0 .Ll
1.09 .338 801 .530 .338 .801 .930
1,22 .371 .761 912 371 .761 .912
1.35 103 .719 .896 103 .719 896
1.47 L3l 680 .880 L3l 680 .880
1.60 160 6L0 .363 460 640 .863
1.73 187 600 .8L5 187 600 .8L5
1.86 .512 .561 .826 511 537 .824L
2.C1 539 .519 .80k .538 516 .803
2.15 562 L8l .78L 560 180 .781
2.31 .586 Ll .761 .585 L35 760
2.L49 612 400 .737 610 + 390 <735
2,68 636 360 .712 £3L .35L .710
2,90 661 .329 .68 658 309 681
3,15 686 .280 653 82 267 650
3.l 711 .20 620 .706 2225 616
3,82 #739 200 .580 .731 177 57k
L.32 .769 .160 53k .757 135 526
.98 .799 .120 Li81 .782 096 L7l
5035 0813 0105 .h56 0793 0078 .m.lS
6,10 .336 .081 L1l .809 .05k .398
7.10 859 .059 $363 82L .036 .348
8.10 877 0Lé «325 .833 .C2l 309
9,20 891 .C35 251 8Ll .015 27k
11.00 .909 .025 .2L8 848 .C09 231
13,00 .923 .018 .213 .853 .C06 197
15,00 .933 013 .187 857 .003 171
20,00 «950 007 C WJ1h3 861 .CO1 129
30,00 967 .C03 .097 86l .C00 .086
75.00 .987 001 .0l0 .866 .C00 .035
® 1,000 0 0 .867 0 0
11
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the lower £(n) = E(m). It is evident that both equations give identical results
for the two functions at low values of magnetization,

Since E(n) is obtained for the function f(m) in Egs. 12 and 15 under
the assumption that the magnetization vectors can lie only in [111] directions,
we expect the true behaviour to approximate this case only at low fields. At
higher fields domains will begin to leave [111] directions so as to more nearly
align with the field, and we expect the behaviour to approach that of the iso-
tropic case., Therefore, since there is little difference between the two cases
at low fields where the anisotropy is important, we expect that f(n) = L(n)
should be a good approximation throughout. Numerical values are given in
Table II.

3. EXPERIMENTAL METHOD

3.1 Specimen Shape

In their commonest applications ferrites are generally used in the
form of toroidal cores. The advantage of this shape is that closed flux paths
around the ring eliminate surface poles and macroscopic demagnetizing fields.
However the magnetic properties of such a core still contain certain shape-
dependent factors superimposed upon the properties of the core material itself,
for which it is not always possible to correct in an unambiguous way., For this
reason most studies in which the properties of materials are to be measured
have used other special shapes adapted to the particular experiment, For in-
stance the parallel susceptibility is often measured on very long, thin,
cylindrical specimens,

The shape best suited to one particular measurement may be highly im-
practical for another, as is the case for the "parallel" and "transverse" re-

versible susceptibilities, Yet it is desirable that both these measurements be

12
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done on the same specimen if a comparison is to be significant, because it is
very difficult to obtain reproducibility with ferrites between even supposedly
identical specimens. Specimens of different shapes, even if made from the same
batch and treated identically as far as possible, might have quite different
properties,

The toroidal shape eliminates the demagnetizing effects for fields
directed around the ring, while at the same time the lateral extent of the
Specimen is confined so that uniform perpendicular fields may be more readily
applied, For this reason we elected to perform all of the present measurements
on toroidal cores. The special difficulties which the shape introduces are taken
up as they arise in the following discussion,

3.2 General Procedures

The specimens are cycled manually around their major hysteresis loops
by a battery-powered de field, hereinafter called the "bias" field. Magneti-
zation as a function of this field is deduced from flux changes measured with a
General Electric fluxmeter., The whole B-H loop is read point by point by in-
creasing the bias field quickly from zero to the desired H, reading the flux
changes, then continuing up to saturation and on around the major loop back to
zero, This entire cycle is repeated for each point, so that cumulative errors
in the fluxmeter readings are avoided. An array of fixed resistors and copper
knife switches is used to control the bias field in order to provide quick
positive changes in the driving current and maximum reproducibility.

While the bias field is held steady at each point, a 5 Kc/sec alter=-
nating field of amplitude of order 103 ocersted is applied to measure the rever-
sible susceptibility. A signal generator output passes in series through a high

impedance, a non-inductive decade resistance box, and the core winding. A VIVM

13
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is provided to measure voltage across either the decade box or the winding. The
first serves to measure the current, proportional to the applied field, while the
second measures the vector sum of the small IR drop in the winding and the in-
duced voltage, proportional to the ac flux in the core, It is assumed that the
induced flux is in phase with the current since other studies in this laboratory
and elsewhere show that losses in ferrites are negligible at 5 Kc/sec.

The measured permeability is deduced from the ratio of these two volt-
ages, although in practice the decade box is always adjusted to make the ratio
unity to remove the dependence of the result on voltmeter calibration, The high
impedance in series serves to make the current independent of the VIVM connections
and of the value of the decade resistor., The signal generator is operated at low
output level to assure a pure waveform., Further decrease of the signal voltage
is found not to effect the value of the result, assuring that the signal is small
enough to read the true limiting incremental permeability for zero applied field.

In these experiments the incremental field for measuring susceptibility
is in all cases applied along the toroid by a toroidal winding. For the parallel
case the bias field is applied in the same direction by means of another toroidal
Wwinding, while for the transverse case it is applied parallel to the toroid axis
by means of an electromagnet.,

When measuring the parallel susceptibility it is necessary to maintain
an effective infinite impedance in the primary circuit to the measuring signal.
This was accomplished by placing an iron core choke in series with the primary
windings,

3.3 Parallel Case

3.3.1 Susceptibility. Discussion, The essential difficulties with this

case arise from the fact that the magnetic field produced at a point within a

1k
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toroidal winding varies inversely with radius of the point from the toroid axis.

So the magnetization and susceptibility vary with radius at given applied fields,
and the observed values of these quantities are averages over the cross sectional
area, Given the experimental values of the averages, it is not in general possible
to solve explicitly for the unaveraged quantities to be compared with theory. In-
stead we must calculate geometrical averages of the theoretical curves, which can
then be directly compared with the experimental data. However, we need to know
how the magnetization varies with position in the sample to compute these averages,
The only quantity whose geometrical dependence is known is the applied field H.

We must make an additional assumption about the relation of M to H before the cal-
culation can be done,

Thus we cannot make an ideal check of Egs. 12 and 13 independent of any
additional assumptions with data obtained from toroidal cores., However, it is
found that average X vs. M curves computed under several rather different simple
assumptions for the dependence of M on H are similar in general features. In the
following discussion, a compromise curve is arrived at which is believed to have
qualitative validity.

Averaging Equations. In measuring magnetization, we measure a total

flux @ = j.BdA = AB, where .deA is the arithmetic mean of B, So if one

B =
=1 1 = =
defines H = [HdA and ¥ = = (B - H), then

= 1 1
M=KfMdA=m fMdI‘ (17)

T

is the simple arithmetic mean of M over the cross section,

15
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The averaging of susceptibility involves a weight factor. Experimentally
we observe a ratio of two voltages. One is proportional to the average incremental
ac induction amplitude AB, the other is proportional to the average incremental
ac field amplitude AH. The observed average incremental permeability is thus not
the average of the ratio AB/ AH, but is the ratio of the averages “AB and AH.

Sos

~ _ BB _ _/aBar _ fEAHdA=f%dr

== (18)
A fAHdA [ AHGA fldr
r
since AH is proportional to 1/r. Then trivially, the susceptibility
B 1 (p-1
A S raal R W __f__?.ir-l =§i[....£..d.f
r~Ln s L j'l dr -[ 1 dr
r r
So
1
— 1 X
X =—g [=dy (19)
fn = y
a
a
T

where qa = ==
ra>

Theoretical Average Curves. Two extremely idealized assumptions for the

dependence of M on H, which we believe bracket all our actual cases, are:l

(A) Let the M-H loop be a parallelogram

'3'2

N (%;:1) for - 1< < +1

S S

where Mg is the saturation magnetization, H, the coercive force, and B is the ratio

of the remanent magnetization to Mg,

16
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(B) Let the M-H loop be a pair of laterally displaced Langevin functions

M H +
-—=L K-—_l
Len [ 2
where K is a constant,

Each assumption contains one parameter, which must be assigned some de-
finite value in the calculations, and which is to be chosen to fit the ideal loop

to some feature of actual ones, The ideal loops were fitted to the criterion that

the remanent magnetization is Mp ¥ 0.2 M.

oy
]

% in (&)

=
[

= 0,615 in (B)

Another parameter occurring in the calculations is the ratio a = rl/rz.
We take a = 1/2 for definiteness, which is the nominal ratio for all of our cores.
Fig, 6 shows the averaged magnetization W/Mg vs, TI'/Hc for these two
assumptions (solid lines). The approach to saturation of these two curves clearly
represents opposite extremes to the general features of observed curves, For (A)
the ideal relation itself (not averaged) is shown, where the averaged curve differs
from it, by the dashed line, For (B) this difference is everywhere too small for
the separate curves to be distinguished on this scale. The given curve is the
averaged one, and the curve A represents tﬁe difference ﬁ/MS - M/MS on an expanded
scale,
For each of these two assumptions we have calculated the integral ;X/)(o,
Eq. 19 for several values of ﬁ/Hc, using Egs. 12 and 13, The results are plotted

against H/Mg, taken from Fig, 6, together with the ideal relation itself, in

17
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Fige Te It is seen that the averaged curves each differ from the ideal curve in
essentially similar respects.

The labor of preparing such a theoretical curve from an M vs. H curve
especially fitted to each experimental case is felt to be excessive, since the
integrals yield only to numerical methods. Since the results of these two extreme
assumptions are so similar, it is felt that a "compromise" curve based on them
has enough qualitative validity to suffice. Fig. 8 shows such a curve, and this
ié the "theoretical" curve presented for comparison with experimental data in all
the graphs of Section L.l.

3e3+2 Magnetization. The magnetization was measured in accordance with

the description of Section 3.2. A special difficulty arises only for the measure-
ment of the saturation magnetization. The measurement of the saturation magneti-
zation is inherently difficult. It must be known for to compare the susceptibil-
ity curves with the theory it is necessary to normalize the magnetizations,

Our method of measuring Mg was to trace out the B-H loop to as high an
applied field as could easily be applied around the toroid. This was about 225 oe,
The data were corrected for the finite wire size of the B winding, then Mg was
plotted against H. A Langevin function was fitted to the two highest points, and
from this a value for Mg was calculated, This value is quoted in Section L.1l.

3.1 Transverse Case

3.h.,1 Susceptibility. There is no a priori distortion of the suscepti-

bility measurements in this case, even though they are made in the same direction
and with the same toroidal windings as before, For now the bias field, which is
applied parallel to the toroid axis by an electromagnet, is nominally uniform,
The resulting magnetization is assumed to be essentially homogeneous so that the

resulting susceptibility has a constant value throughout the sample, Therefore,

21
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even though the incremental field AH still varies with radius the resulting in-
cremental induction AB is everywhere proportional to it, and the ratio of their
averages is the same as the ratio of their values at any point, Note that Eq. 19

reduces properly in agreement with thisg

_ JEe x[ia

[t [Fe

Accordingly, the theoretical curve appearing on all experimental plots for the

(20)

transverse case is just that given by Eqs. 13 and 15,

3.4.2 Magnetization, Demagnetizing Factor, The essential difficulty of

the transverse case is the measurement of the magnetization when a non-zero de-
magnetizing factor is present.
The true internal field H is the sum of the applied field Ha and the de-

magnetizing field NM, i.e., H = H; - NM, As always, 4yM = B-H = (p-1)H, Thus?

1 . 1 N
i = Hoa—2t  [n Ly (21)
N a N [ a ]
1+ (D) (2-5) b
and
LM = (u=1)H = (u-1) Ha (22)

1+ {f—" (u-1)

and for the apparent magnetization M,, defined by LmM, = (B = Hy) one obtainss

My = (1'%) M (23)

22
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When the "demagnetizing factor® %F approaches unity, as for a thin disk

magnetized normal to its area, and if p is fairly large, then?

(a) From Eq. 21, H, = %‘E wH = %f—,; B. To produce a given field H in the sample

will require an applied field many times larger, in fact of the same order of
magnitude as B, Further, the true field may be essentially unknown experi-
mentally because it is given as a small difference of large terms.

(b) Although Eq. 22 shows that the sample can still be magnetized by a suffi-
ciently large applied field, the experimental apparent magnetization will
approach zero according to Eq. 23.

For magnetization parallel to the axis our toroids appear as disks with
a length/diameter ratio of 1/L or less, for which the demagnetizing factor is
approximately 0.8, However, if the field on the core is applied by an electro-
magnet whose pole faces are close to the core surface the effective demagnetizing
factor becomes smaller and should ideally become zero if the pole faces make per-
fect magnetic contact with the core surface,

We have measured the apparent saturation magnetization of a core as a
function of the electromagnet gap and found that it increased sharply as the gap
approached zero, The curve became so steep that its limiting value at the ideal
zero was rather indeterminate, Therefore this method is not suitable for the
determination of saturation magnetization.

However, one sees from Eq. 23 that the ratio of the apparent magnetiza-

tion Ma to the true magnetization M is given by (1 - §5 ) which is assumed to be

constant independent of field strength for a fixed geometry, Thus for a given

M M
point ﬁé = ﬁéé where the subscript s denotes the saturation value, So, if the core
s

is subjected to a given applied field one can determine the value of %}-correctly
]
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even though he has no idea what the true magnetization and true net field might

be, I1f then one measured-J&- simultaneously, the plot of these pairs of value
o)

contains no dependence on the demagnetizing factor.

This simplification is, of course, subject to the assumption that N is
actually constant so one should choose the geometry to keep N as small and the
applied field as homogeneous as possible,

Measurement of Magnetization. The magnet used in these measurements

was built with accurately parallel plane pole faces about ;0% larger than.the test
cores and a continuously adjustable gape The core windings are made flat and uni-
form, and the magnet gap is closed down so as to clamp the core in place, The
windings on a test core are shown in Fig. 9.

The cores are provided with a girdle winding embracing the core cross
section only, designated the "B" winding., A second flat winding on a teflon plug
£its into the hole in its center and is called the H winding. The flux measured
by the H winding, divided by its area and number of turns, is the measure of the
applied field Hy» The B winding, although of No, 3 wire, actually embraces an
area several percent larger than the core cross section, This area carries a flux
density equal to H,, and since H, is of the same order as B this extra flux must
be subtracted from the total measured by the B winding.

The driving current of the magnet is cycled about a given set of values,

as described in section 3.2, while the flux changes in the B and H windings are

separately measured by the fluxmeter, Then Lmd = (B - Hj),

The magnet is itself an iron system having some hysteresis and remanence
so both the applied field Hp and the flux density B in the core will have certain
remanent values -7 and =B respectively as the driving current passes through zero

hile increasing, The flwameter gives the relative values (Hg+n) and (B+B) for
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each point of the loop, so the apparent M then also contains an additive constant

14

(B+B) = (Hy +mp) =Lm (M, + v);3 my =8 - mng

A typical core reaches saturation at several times smaller a field than
does the magnet, so that the cycle of current values used is only a minor loop for
the magnet itself, There is no assurance that this minor loop is symmetrical about
the origin sé the constants m and B are essentially not known without some abso-
lute field measure, Any sort of probe to make such a measure would interfere with
optimum geometrical arrangements. One can in principle evaluate v by plotting a
loop of My vs. magnet current extending to saturation in both directions and
choosing the zero of Ma halfway between the two saturation values. However, it

is more convenient in these experiments to evaluate it in the following way.

A plot of incremental permeability vs. magnetization gives in general
a different curve, as M increases from zero to saturation along the major loop,
from the curve obtained as M decreases from saturation to zero. These two curves
necessarily meet and cross at M = O for the whole graph must by symmetrical in the
two opposite directions of M. Thus the place where the "ascending" and "descend-
ing" experimental curves of W, Cross each other identifies the zero of M.

The experimental procedure goes as follows, The magnet current is taken
repeatedly around a fixed cycle of values, starting always at zero and using al-
ways the same peak values but stopping in between at successive intermediate
values, Flux readings relative to the starting point are read from both the B and
H windings for each of these intermediates with the fluxmeter, and )(r is read at
each point from the toroidal winding as in Section 3.2, The corrected difference

of the B and H readings is hn(Ma + v ), obtained as a function of magnet current I.
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The data for X, is plotted vs. I to determine the current I; at which the two
branches cross. The two values of (Ma + v ) for this current (one with ascending
current, other with descending current) must then be equal but opposite in sign,
which gives an equation for v. One then determines from the data the value I, of
current at which Ma is zero on the ascending curve., The value of :Xr on the

ascending curve at the current I, is IXO. M.. is determined from the experimental

M X
value of (Ma + V)S. The data are renormalized to give 7é— and ——E, each vs, I.
M
sa 0

sa

Finally these values are plotted against one other to give the result. Fig. 10
summarizes this procedure graphically, Note that points are obtained for only one
sign of the applied field, We have measured points on the other side in a core

or two as a check, and have found that the method of determining v is wvalid,

lis  EXPERIMENTAL RESULTS

;.1 General Properties.

Data were taken on three different ferrite specimens that were purchased
from the General Ceramics and Steatite Corporation, Keasby, New Jersey, and repre-
sent their types E, G, and I, Room temperature data only are given on cores G=5
and I-8, data at about room temperature and at 25° intervals to 100° C on core

-3,

A summary of the measured values is given in Table IIT,

Hc is the coercive force in oersteds, H{ is that applied field at which
the parallel susceptibility attains its maximum value, Hé is always of the same
sign as, but is always less than H,., Values of Hg, Hé and remanance Mr/Ms are giv-
bn for measurements around the toroid, It would have been desirable to know Hé for
the transverse susceptibility but unfortunately our data does not yield this

information,
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TABLE ITI

MAGNETIC PARAMETERS OF E-3, G-5, and I=8

Parallel Transverse
Sample T t H ORI JY X, X a X X
ample emperature c c ﬁ; IS o max Mg o max
o¢ oe ce cgs cgs
1-8 25 Jd15 ,081 .371 216 89,8 9L 177 8hL.L 86.L
_ G=5 25 260 422 .383 270 30,5 31.0 21, 29,1 30,2
=3 25 595 .38 A3l  29L 37.0  39.3 296 37.1 37.5
50 590 L8 .377 261 L0.S  L1.9 263 39.4 LOLO
75 L2 .30 W3h2 232 Lo.7  L3.2 236 Ll.h 42,0
100 L6730 .325 207 L1.7 0 Lb.2 206 L2y L3.0

1.2 Susceptibility versus Magnetization,

A sample curve showing Lw(M, + v) versus current applied to the electro- -
magnet is shown in Fig. 11 for the transverse field measurements. The value of
Mg, is obvious from the figure,

The experimental curves showing the variation of the reversible suscep-
tibility with magnetization for both parallel and transverse fields are shown in
Figs, 12 thru 18, Fig. 18 is a replot of Fig, 12 and the )Crp vs. H curve from
which Fig, 12 was plotted. The solid lines represent the experimental data, the
dashed lines the theoretical curves,

It is to be noted from Figs. 12 thru 17 that the maximum value of both
susceptibilities occurs for decreasing |M| before M reaches zero. Except for the
region of the maximum the experimental curve is lower than the theoretical curve,

Fig. 18 is plotted to emphasize that the parallel susceptibility always
has a larger value for decreasing than for increasing IM|, On the contrary there
is a crossover in the transverse susceptibility loop, the curve for decreasinglM|

being higher at low fields and lower at high fields,
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Fig. 19 shows the variation of the maximum value of er/ Xy vs. M/Mg
with the peak value of M reached during the cycling process. Similar curves are
available for both I-8 and G-5. The peak value of susceptibility increases and
shifts toward zero M as the peak M is diminished.

i3 Errors

The accuracy of our susceptibility measurements was limited by the
noise reading on our instrument for measuring the voltage drop across the toroid,
(Hewlett Packard L0OC VTVM) and our ability to read the meter. The normalized
data are considered accurate within : 5%, the absolute values accurate within * 8%

With the exception of the parallel field measurement of Mg, our mag-
netization data are limited in accuracy by fluxmeter drift and errors in meter
reading. These are considered to be well within + og,

Tt is difficult to estimate the error in the value gotten for Mg from
fields applied around the toroid. This value must never be less than the value
read from the transverse measurements. Table IIT shows the parallel measurement
to be larger for G=5 and I-8 and the same for E-3 as the apparent value along the

toroidal axis. The curves for X X vs. M/M_ should approach zero atM =M
o S Se

That they do so would indicate our measurement would probably be within 10%.

5. EXTENSION OF THECRY

5.1 General Discussion

For a perfect single crystal with zero demagnetizing factor the appli=-
cation of a small field parallel with an easy direction of magnetization shoulc
result in an infinite susceptibility. That the susceptibility is noninfinite in
polycrystalline material can be considered to be the result of two different types
of forces acting to retard wall movements, These are reversible and irreversible

forces,

39



—  ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN

In polycrystalline material the reversible forces can be considered as
arising from intragranular potential minima and from intergranular demagnetizing
factors. In the discussion of section 2.1 we described the forces as arising
from some potential energy function that was a continuous function of spatial
coordinate,

We now wish to discuss hysteresis and susceptibility using statistical
arguments to describe the trapping of domain walls in potential holes, i.e. in
metastable positions., Each hole is to be characterized by a single number, loose-
1y called its "depth" f, A wall encountering such a hole will be trapped and
assumed to be held rigidly if the total net force of the field plus reversible
forces on the wall is less than f, but will break free if this force exceeds f,
Actually these potential minima must surely, for finite wall areas, have a finite
radius of curvature. However, for purposes of this discussion we consider them
to be infinitely sharp i.e. the walls held rigidly when under the influence of a
potential hole. A wall thus rigidly held in an infinitely narrow hole would con-
tribute nothing to the susceptibility. The behaviour of a ferromagnet must lie
somewhere between this model and the model assuming only reversible behaviour.

The magnitude and direction of the reversible forces arising from loc-

alized demagnetizing factors on a particular grain will depend upon the size,
shape and neighbors of that grain. This will be rather independent of the magne=-
tization of the material and must surely be distributed in some random fashion,
Although the exact nature of this force distribution is not known its resulting
variations in energy magnitude with direction must be nearly the same as for other
reversible cases so the resulting distribution of magnetic moments throughout the
materiél must approximate that given by an extremum of Eq. Al. This equation is

very stable with respect to different force distributions as can be seen by

10
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observing that in the neighborhood of the extremum value given by & &n W/0 N# =0
higher derivations of én W with respect to NY form a polynomial in negative powers
of NY'

An illustration of the stability of this equation would be to apply the
equations for isotropic material to [111] material as discussed in section A.3.
The equality to high values of m can be directly attributed to the slowly varying
character of Eq. Al.
| We therefore consider the distribution of magnetic moments in a ferro-
magnetic material when only reversible forces are applied to be described by
BEg. A6. The resulting magnetic disorder could be considered as analogous to a
magnetic entropy, and should be considered when dealing with magnetic energy
problems,

5,2 The Irreversible Magnetization

In the appendix a quantity nY was defined as the number of domains of
fixed and equal volume whose moments are oriented in the y direction. Since we
are now speaking of domain wall movement, this definition is no longer applicable,
In this section ny will be the fraction of the total number of atoms whose per-
manent dipole moments are oriented in the direction of the unit vector $j'

If no potential holes or "snags" were present, then under an applied

field H according to the reversible equations?

e\
AMo(Heys
e S( ‘YJ)

= — (2k)
nj Z eAMS(H.‘Qi)
i

In terms of wall positions, this must also be equal to (See Fig. 20)
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on

AN

i‘ .o . v

Xo(Po!) x[af (8 - pl)] x2(0,0)
FIG 20

SPATIAL CO-ORDINATE OF A DOMAIN WALL

. =__—]-'-——- g o 2
ng Z Yiz + % ; afy x (25)
i

ags is the area of a particular wall separating domains oriented in the directions
$i and $j respectively, x% is the spatial coordinate of the wall relative to a
position at which the total net magnetization is zero and Eq. Al is an extremun
and g; is a sum over all walls of type ij in unit volume,

If there were no snags, x would be a function only of the pressure which

the applied field exerts on the walls, This pressure is given by

pd =g [He(y - ¥y (26)

A given wall would find an equilibrium position for which the reversible forces
just balanced this pressure.
When snags are present walls may become caught in them, and x is no

longer a simple function of pressure. We can express the average x for a large

L2
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number of walls in terms of the distribution of these snags by arguments of the
nature of a "mean free path" discussion,

Let the number of snags per unit volume whose depth, in the sense of
section 5.1, lies between f and f + df be given by {(f). The total number of

snags per unit volume is then

@

z = [ &()af
o

Suppose that initially there is a field _H.o present, and that all the
walls occupy positions x, determined only by the reversible forces and the field.
That is, none of the walls are held in metastable positions. We will focus atten-
tion only on those walls of a particular class iJ with area ags lying in a parti-
cular range between a and a + da. When the field is changed to-ﬁé, each wall will
tend to move to a definite new equilibrium position x5, As it moves toward xp,
there is at each intermediate position x a net force f(x) of the field plus re-
versible forces, this force diminishing to zero when Xy is reached.

According to the assumed model, if at x a wall encounters a snag bigger
than f(x) it will be held there, If there are Nérwalls in the group considered,
which we imagine to start moving together over the interval x, to x,, the number
N9 (x) still free to move at a position x in the interval will be diminished by

the number so far caught. Thus we can write

an % (x) = -N7 (x) ai"j dx 7 £(£) af
f£(x)

L3
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Upon integratings

No(x) = NOG exp[ i fdx fg(f df}
X f(x)

The fraction of the original group of walls which become snagged in

the interval between x and x + dx is given by:

o (e0)]
V) dx = M = {exp < fdx f& df)(]-lj f&(f) df]dx
No Xo  fx) f(x)

The average position.§°- at which the group of walls considered will

become snagged when the field is changed to ﬁz is then.

X

27 = [ x ¥ ax (27)

%o

This average value of x is the quantity to be substituted into equation (25) when
snags are present,
Eq. 2L is used to predict the magnetic properties of our experimental
system, If we define a vector H' for which there is an equation analogous to
2l but which corresponds to a system described by x of Eq. 27 substituted into
Eqs 25 , it is apparent that H' must have properties different from that of H,
The product-ﬁ°¢j determines the fraction of the atoms with their moments oriented

in the YJ direction., Using Eq. 27 a different fraction of the atoms will have

their moments oriented in the YJ direction because of the dependence of \V (x)

'
i

on direction. Therefore if H' is to be considered as a vector it must be consi=-

dered as a special type of vector whose magnitude will be given by lHl g(j) where

g(3j) is some function of the angle the field makes with the atoms in question.

Ll
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It would be possible to describe this same phenomenon in terms of a
different distribution function rather than a variable H, Either of these methods
would be quite involved. A third alternative is to describe this redistribution
in terms of a different anisotropy type. This is done in the next two sections,

5.3 Modifications of the Reversible Model

5.3.1 Contribution of Metastable Volume., It was seen in section 5.1
that the reversible susceptibility of a ferroﬁagnetic material is decreased by
the presence of intragrain potential holes which are occupied by domain walls. In
general these holes would have a finite radius of curvature. The greater the
depth of a minimum the smaller is this radius, and therefore the less a wall
occupying it will contribute to the susceptibility. This would always act to de-
crease the susceptibility from the value given by the reversible equations. This
decrease from maximum should increase as the peak M reached during a cycle in=-
creases causing walls to cross potential barriers capable of retaining them in
deep metastable states when the applied field is decreased. In general it would
not be the same holes that would decrease the two different susceptibilities.

5.3.2 High V/Mg, decreasing M| . When [M| /Mg =1 all the material

is necessarily aligned with the applied field., As IMl is decreased from Mg

the metastable volume will be predominately oriented in the direction of the
macroscopic magnetization, the remainder we take to be oriented in accordance
with the reversible equations, Thus at a specified value of m the number of
atoms with their magnetic moments parallel with the biasing field will be increas-
ed by the action of the potential holes. Therefore for a specified value of M
there will be more atoms aligned parallel than would otherwise be the case., This
necessarily means the component antiparallel with the field is correspondingly

increased, Since the number of atoms is fixed this must also mean that there

L5
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will be fewer atoms with their moments aligned normal to the field than would be

the case with only reversible forces.

To find qualitatively how this affects the susceptibilities consider the

extreme case of all magnetic moments oriented either parallel or antiparallel with
the field. Eq. A7 then becomes?
M eAMsHI‘ _eAMSHr

R L e
M g ST 4 ST

s
where, as usual,n=AMgHn.
This leads to?
X X tanh %
ID - sech? uH rt - N (28)
X, X, 7

Values of Xpo/Xq and Xpy/Xg vs. M/¥g are given in Table IV. The
result is that both curves are higher than the corresponding curve for isotropic

material, but are of the same order and of the same general form,

TABLE IV
M/Mg and X,/ X, vs n for £(n) = tanh 7

n tanh 1 = 1/ sech? 1= Xpp/ Xo 7 tanh = Xpy/ Xo
0 0 1 1
o3 «291 .91L 971
5 «537 711 <895
o8 66l 559 830
1.0 762 120 762
1.h 885 .216 532
2.0 «96L 071 82
5.0 <9999 000 200
o 1.000 0 0

The integration constant in Xrt/ Xo must be zero for symmetry to exist about
1 = O,

L6
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5¢3.3 High M/Ms, increasing IM! , In a randomally oriented state none

of the volume is in a metastable condition. After the application of an external
field a finite fraction of the material will be maintained in metastable positions|
Since domain walls would move the farthest when located between atoms with mo-
ments parallel and antiparallel with respect to the field a larger fraction of the
material oriented antiparallel will be held in metastable states than in any other
direction, This fraction decreases to zero for parallel alignment. As the mag-
netization increases the amount of material available to be held in these meta-
stable states is smallest for antiparallel and increases to maximum at parallel
alignment, As a result one would, for high values of M/MS, expect the total num-
ber of atoms whose magnetic moments are held in metastable conditions to go
through a maximum at some angle between O and w radians. Thus for a specified 7
the normal component of magnetization will be increased., It then follows that
for a specified M the total magnetic moment both parallel and antiparallel with
the field must be decreased but the difference remains the same, so the fraction
of the atoms antiparallel must decrease.

The extreme condition of this model would be for this fraction to be
zero, il.e, no atoms possess magnetic moments which make angles of greater than
n/2 with the applied field. For this case the magnetization would be given bys?
(See section A,2)

1
M ofvdvemf

T
Mg f dyel
o}

where$
cos @

=
1

AM_H

3
i
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This leads tos

For small fields,

M =l+l+ escovcocee
2

Mg 12

The resulting susceptibilities are given by$

X/rp = 12 [ }._. - __..el_.}
7? (eN-1)?
a7

Xo M el n

xrt 12[ el l}

X o is the value of the parallel reversible susceptibility when m = O,
Using this model Xrt # er when n = 0, Values of m, M/Mg, er/ Xo and
Xt/ Xo are given in Table V.

Obviously Xpt/ X o 1s much greater using this model than using the

isotropic model,

% To evaluate the integration constant note that X_, must become infinite at
some value of M/Mg., It will be positive above thg% value and negative below,
The only point where such a discontinuity can exist is for m = O, Thus the
integration constant must be zero.

L8
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TABLE V
M/Ms and XI‘/ XO vs M for £(n) = [ ——--...1 -3 ]
1l-e™N n
n M/Mg X/ Xo Xet/ X g
0 500 1,000 =
1 .582 o943 6.98
2 656 .328 3494
3 .720 B71 2.88
5 .806 « 397 1.93
7 .857 .23h 1.46
10 .900 012 1,08
15 .933 0 N nn
20 .950 0 576
50 .980 0 +2L0
® 1,000 0 0

6, COMPARISON WITH EXPERIMENT

6.1 The Parallel Case. From Figs., 12 thru 18, as described in sec-

tion 4.2, one sees that for decreasing IM| the experimental curves start, at
high IM| , below the theoretical curve, The experimental curve becomes larger
than the theoretical curve, passes through a maximum before ﬂM] = 0 is reached,
then remains less than the theoretical curve for increasing IMl , Fig. 19 illus-
trates the variation of the curves for small |[M| /Ms as the peak value of M
reached during the cycle is altered. In Fig. 19 the ordinates have been normalized
to the highest value of susceptibility measured,

These differences can be correlated with the modifications of section
5.3.1. Consider in the region of small decreasing }IMI a fraction D of the mater-
ial to be held in metastable positions that contribute nothing to the susceptib-
ility. The maximum value of X will occur when the total M of the remaining mater-
jial (1-D) is zero., There will still be a net magnetization in the direction of
the last previous peak value contributed by D, and as seen before D is expected to

increase with the magnitude of IM| at that peak,
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Thus the value of M/Ms for which X is a maximum will increase with in-
creasing peak M during the cycling. The value of ><max should also decrease pro-
portional to (1-D). This can be seen experimentally in Fig. 19. Thus Figs. 12
thru 17 should actually be normalized to the value of susceptibility occuring when
the material is carefully demagnetized and H=M=O, This value can never be
exceeded,

The corrections of section 5.3.2, Table IV, are small for the parallel
case, so will have little effect.

The hysteresis loop of )(rp/ Xg, see Fig, 18, is traced in the opposite
direction when plotted against M than when plotted against H. This arises for=-
mally because Hc' as defined in section L is less than Hc' All measurements we
have made has given H,' of the same sign as Hc' Qualitatively, the arguments of
section 5.3 for constant m instead of constant M would give the proper hysteresis
loop for er vs. He
This variation of :er with M and with history is in qualitative agree-

2

ment with the results of Tebble and Corner<,

6,2 The Transverse Case, There are two opposing effects which deter-

mine the hysteresis loop for this case, Firstly, for the same reasons as the
parallel susceptibility, the transverse susceptibility will go through a maximum
before reaching M = 0 for decreasing IMlI . Secondly, upon comparing the suscep=
tibility curves for the isotropic distribution of magnetic moments and for the
distribution of the model used in section 5.3.3, Table V, it is seen that the
latter yields considerably higher values of :Xrt‘

This would produce a larger Jxrt for increasing fields than for de-
creasing fields. The first effect would predominate at low fields, the second at

high fields. The result is an intersection of the susceptibility curves as can
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be seen on Figs, 12 thru 17 and is plotted to be especially evident in Fig, 18,
The value of M/Ms at which the intersection occurs should then decrease with de-
creasing peak M reached during the cycle, Unfortunately we were unable to obtain

experimental data for minor loops using a transverse field,
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APPENDIX

Derivation of the relationship between )(rp and M. (after Brown)

A.]1 General Formulation

Consider a ferromagnet to be composed of N domains per unit volume, each
of fixed and equal volume, These domains are acted upon by internal forces of a
reversible nature probably arising from microscopic demagnetizing factors or from
walls held in potential holes with a finite radius of curvature, If these were
negligible and if the entropy were negligible the system would occupy the mini-
mum energy condition determined by the interaction of the remaining surface and
volume energies., Certainly the entropy of the system is negligible. However, a

pseudoentropy whose disordering arises not from thermal agitation but localized

randomally oriented stresses is not negligible, as is obvious from Egs. 10 and 11.
Brown states that the detailed mechanism of the microscopic forces are

unimportant, but their energy magnitudes are important. Therefore one does not

need to know the exact distribution of these localized stresses for similar re-

sults should be obtained from any of a large number of possible distributions.

One such possible distribution could be gotten by considering the number of

macroscopically indistinguishable ways N domains of fixed and equal volume could

be microscopically arranged. This is given bys

W = N!
T (NYl)
"
where v is a possible direction for orientation of the domain moment. Using

Stirling's approximation:
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mWEN¢énN-3 NY én N, (A1)
Y

The potential of the material can be written as

V= N (VY + S A2

SN (WD) (a2)
Y

where V; involves an energy proportional to the number of domains involved, V$

depends upon the surface energy. The system is also subject to the constraint

on the total number of domains$

N= ) N (43)
"

If the system is considered to occupy a most probable position then
2n W should be stable with respect to variations in NY’ The similarity between
this distribution and that due to the conventional entropy is obvious.

VX is just the customary equation for the magnetostatic energy of a

dipole in an applied fields

VX = -H, M_ cos @ (AL)

© is the angle between Hr and the direction of orientation of the domain. The
term V$ involves the surface energy., This will depend upon the particular geo-
metry involved and must be considered constant,

Taking variations of Egs. Al, A2, A3 with respect to NY and introducing

Lagrange multipliers, one obtains?

[-8n N, + AT + V) + B] =0 (£5)
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N

N, = exp [B+a(v‘.;+v$)]

N
If o, = EI; thens

- eAVIY{ _ exp (AHpMgcos ©) (46)
T ATy T exp (AHpgcos ©)
Y e

By

The resulting magnetization must then be given bye

M % cos © exp(AHplMgcos 8)
— = (A7)

Mg gexp (AH M cos Q)

This formulation considers only magnetization by reversible processes,
Therefore Hp is not the actual applied field, but is that value of field which

would be necessary to bring the material to a magnetization M if no irreversible

processes were involved, i.e.
; dM
r éf Xz (48)

A,2 Isotropic Material

For the case of isotropic material Eq. A7 becomess

2u T

["d¢ [sin ede cos o &*ise0s ©

0
of234> ofgin odo eltHplgcos @

M

gl |5l-

5k
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If cos & = y and AHpMg = M,

1 1
d
M Loy e F [ [ oy e"Y]

1
M [dy e
-1

-

s

fdy N7
-1

1l
fhy el (eNoe = 2 sinh 7
-1 n n

Thereforeg

1 1 _.
M = coshm - = sinh n
— =1 n = (ctohn -3 ) = L(n) (A9)
Mg sinhn

The parallel reversible susceptibility is given by?

-y 4L() 3 o2
X rn Mg S S M2 L' (n) (A10)

where the prime indicates %ﬁ'
The initial susceptibility is defined by Eq. 3. Using Eq. 16 for small
values of m one sees that?
AM2
Xy = —= (A11)
3

Combining Eqs., Al0 and All,

Xrp . 3 L'(n) (a12)
Xo
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A3 [111 ] Anisotropy

Here each domain must be located in such a manner that its direction
of magnetization is in the [111] direction of the crystal, If a; is the di-
rection cosine between Mg and the axis Oxj, then a4 = % pj where py = 1 for
each value of i,

If &5 is the direction cosine between the applied field and the cry-

stalline axis Ox;, then$

cos @ = -j-g Z P;éy (413)
i

After combining Eqs., A7 and Al3, for a single crystals

L Ul
" A yremlmT mal -
.
Mg g exp[ J‘j? pisi]

To evaluate these sums, first consider the denominator of Eq. Alk. The outside
sum over p is over the eight possible combinations of (pl, Po, p3) = (1,1,1);

(1,1,=1); e°*ese; (~1,-1,-1). Upon simplifying this is seen to be?

% exp[ -%% piei] =8 I cosh [-lek] (A15)

From Eq. A15 one obtains$
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3
%) JZ £y 3tney) % exp (“}; %Piﬂi)

= % % pyty exp (—j]/-g % ps2; ) (A16)
=8 ) 2 sinh ( -3_-3—8:)) Il-cI' cosh (—%zk)

where the prime denotes k # j. The first expression on the right side is exactly

the numerator of Eq. All. By substituting the second expression for the numera=-

tor, and Eq., Al5 for the denominator in Eq. AlL, one obtainsg

M

1
= ¥ &5 tanh — £, (A17)
Mg 3 !

for a single crystal.

To obtain the value of M/MS for polycrystalline material it is nec-

essary to integrate over all possible values of Zj;

M 1 dw
M o, L 90 p . tanh —L ¢ (A18)
%f llﬂ J ~/§ j

=
0
S

where dw is the differential solid angle.

Each of the three &j must be equivalent sos
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2n n
M3 o, .3 - il
— = dw ¢ tanh ¢ = d de sin © cos @ tanh os ©
Mg '[ V3 L { ¢ { <@ © )
Letu=—n—cosO sos
,\/3 L
/3
M .3v3 futanhudu=E(n) (A19)
Ms n2 o
= dM = dE( a = 2
Xrp T Mg “&'ﬁm 'a‘g AMS E'(n) (A20)
From Eq. 17, as for the isotropic case:
2
X, = s (A21)
3
Therefore, for [111] anisotropy,
X
—*B = 38'(n) (h22)

X

0o
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