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ABSTRACT

A nponlinear feedback multivariable controller is used to implement multivariable
tracking in a nonlinear system. The tracking error is measured by general function of
system state and the input command. The controller is robust in the sense that the
tracking error is ultimately bounded in the presence of modelling errors. Free parame-
ters, which affect the form of the controller, allow flexibility in determining such factors
as: the size of the ultimate bound, the rate of error decay, excursion of the control, con-
ditions on the class of modelling errors, the level of system gain. Restrictive assumptions
on the structure of model and the modelling errors are required. These assumptions hold
for a robotic manipulator. This application is investigated at more length and it appears
that the resulting control scheme may have advantages over others which have been pro-

posed in the robotics literature.

Robust Tracking 2






RSD-TR-11-84

1. INTRODUCTION

In this paper, we consider the nonlinear system:

2(t) = F(z(t), 1) + Gla(t), Ou(t),  e(t)=E(a(t), t, v (1)) (1.1)

where z(t) € R", u(t)€R™, ys(t) ER', e(t) ER*, R¥2[0,0), F: R* X R¥ > R",
g:R" X R*¥-R™*™ and E:R" X R* X R' = R*. The function y, : R+ — R’
is a desired “output” for the system. Usually, the tracking error e is measured by
E(z, t, y;) = y; - h(z), where y(¢) = h(z(¢)) is the output of the system. But in some
applications (for instance, see [7, 20], E is more generally described as a function of
z, t, ys. Roughly speaking, the problem of tracking is to control the system in (1.1) so
that e is kept within a desirable tolerance. In practice, F, G, E may not be exactly
known. Even when they are known exactly, they may be too complex to deal with
easily. Then, they are replaced by ﬁ', (::, E (which are defined in the same sets as

F, G, E) so that (1.1) is modelled by

2(1) = F(a(t), t) + G(=(t), u(t), &(t) = B(a(t), t, v (2). (1.2)

The objective is to obtain a robust tracking controller, determined from the (simplified)
model (1.2), such that the actual system (1.1) with the controller has acceptable track-

ing performance. Let us be more specific.

It is assumed that the controller has the form

u(t) = K(2(t), ¢, Y' (t)), (1.3)
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where Y7 £ (y;, v, - -, 3), r < n is an appropriate integer, and y,) is the jth

derivative of y,. The resulting closed loop system is

z(t) = F(z(t), t) + G(z(t), t) K(z(t), t, Y (), e(t) = E(z(t), t, ya(t)). (1.4)

The functions y,; belong to Y, the class of r times continuously differentiable functions
from R* into R' satisfying Y'(t) € Q, t € R, where Q is a specified subset of RV,
Normally, K is chosen so that (1.2) with u given by (1.3) gives e(t) = 0 as t = co. The
need for controllers involving the derivatives of y; becomes apparent when examples

are considered. See [7] and Sections 2, 3.

The performance of the closed loop system (1.4) can be measured by a variety of
definitions. The definitions considered here are adaptations, to tracking error, of defin-
itions used in the literature of differential equations (10, 17] and robust regulators [1, 3,
19]. Let the Euclidean norm be denoted by |:|. The tracking error is uniformly ulti-
mately bounded with respect to Y,;, with bound b if for every d, ¢, € R*, there exists
r(d, t,) such that |z(¢,)] < d and y; € Y; imply |e(t)] < b, ¢t > to + 7. If 7is a function
of d only, the bound is said to be uniform with respect to ¢ and Y.

The controller K is to be robust in the following sense. Given suitable conditions

on the modelling errors,

AFEF_F AG2G-G AELE-E, (1.5)

the tracking error e(t) for the closed-loop system (1.4) is to be uniformly ultimately

bounded.
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Robust design problems of a similar nature have been considered recently by
many authors. See, for example, (1, 3, 8, 19]. In these papers, there is no input, output
or error measure for the closed-loop system and the objective is to obtain ultimate
bounds on the system state. Our approach to the tracking problem is to transform it
into a problem where state bounds give tracking error bounds. Then we apply ideas
chosen freely from the existing literature. The results obtained are not the most gen-
eral possible. However, they do give robustness under quite weak hypotheses a.nd avoid
vexcessive complexity. The compromise between generality and complexity permits us

to illuminate the design process and treat general examples in a relatively short space.

We now describe the main idea of the paper in greater detail. It is assumed that
the model (1.2) has special structural characteristics so that it may be linearized by
state feedback, precompensation of the inputs, and a transformation of state variables.
Specifically, there exist functions
@:R" X R*X R4 R™ B:R" X R*X R" -« R™"*™ T:R”" X R* X R" - R"

such that

U= oz, t, Y')+ Bz, t, Y )u, (1.6)

T=T(zt Y (1.7)

allow ¢ in (1.2) to be given by the linear system

Z(t) = AE(t) + BU(t), e(t) = CF(1), (1.8)

where A€ R**" BeR"*™,Ce€R**". This step is used by Gilbert and Ha [7]
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and, philosophically, is motivated by the work of Hunt, Meyer, Su and others, who con-
sider similar transformations of z = f(t) + g(z)u into ¥ = A% + B¥. See [14] and the
references indicated there. Once (1.8) is obtained, a robust saturation controller is
designed using ideas which are similar to those used by Corless and Leitman [3] and
Gutman [8]. Because our problem is more complex than theirs, the details are quite

different.

The paper is organized as follows. Section 2 presents the main result (Theorem
2.1), its proof, and remarks concerning the various conditions and parameters used to
determine K. In Section 3, Theorem 2.1 is applied to the tracking control of a robotic
manipulator, perhaps the most obvious and interesting example of a system where the
special conditions required in Theorem 2.1 are met. The resulting controller which
allows uncerta;nties and simplified modelling of manipulator dynamics, may be viewed
as an improvement of the one presented in [7]. The use of simplified dynamics is
important because it has the potential of significantly reducing computational complex-

ity in the mechanization of the controller. The concluding section mentions further

examples and certain limitations and advantages of our scheme.

2. MAIN RESULT

First, we introduce some general notation: I, € R? *? is the identity matrix; the
minimum and maximum of the real parts of the eigenvalues of A € R?*? are

om(A), oa(A), respectively; the matrix norm of A€ER?PX? 18

||l 2 max {|AZ] : Z€R?,|Z| =1} = (o4 (ATA)2; f: R"'X R"® — R’ is C*
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if it is k times continuously differentiable; the Jacobian matrices of f € C! with respect
to its first and second arguments at (z,,z,)€ R"'X R"? are denoted by

P X ny

D f(z,2) €ER , Dof(z,, 2,) € R’ * "2 respectively.

Next, we state assumptions on the problem data which are required for our main
result. For v £ (9% 9% - -+ ,y")ERIUHY, let

Y7 =0 ..,y )RV Y = (g} ..,y Let ¥ = {Y? : Y™ €0} be the projec-
tion of 2 onto R0, In the assumptions, we can choose QCR'’*) a Cl-matrix func-
tion S:R" X R* X R" = R™*™ and He€ R™*". The choice of S and H is free

except for the constraints: (i) S(z, ¢, Y™)) is nonsingular, z€ R",te€ R, Y e Q™,

and (ii) the matrix Ay 2= A + BH is stable and has simple structure (Ay has linearly

independent eigenvectors).

Assumption A.1. The functions F, F,G, G E E are CL

Assumption A.2.  There exist an integer r > 1, C'-mappings «, 3, T, and

matrices A, B, C (see Section 1) such that

BBz, t, Y™™ = D,T(z, t, V" M)G(z, 1), (2.1)

AT(z,t, Y) + Ba(z, t, ¥ ) = D, T(z, t, Y )F(z, t) +

o S (2.2)

DzT(z, t, Y ) + DsT(z, t, Y )Y B
CT(z, t, Y )=E (z,t, ¥°), (2.3)
B(z, t, Y™) is nonsingular, (2.4)
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hold forall ze R*, t e R, Y €q.

Assumption A.3. Over the class of uncertain AF and AG, there are mappings

AF* :R" X R* X R" - R™ and AG* : R® X Rt X R — R™* ™ satisfying

D.T(z, t, YY) AF(z, t) = BAF*(z,t, Y™, (2.5)

D\T(z, t, Y")AG(z, t) = BAG (3, t, YY) f(z, t, YY), (2.8)

forallze R", teRY Y e

Assumption A.4. Let

oz, t, T) 2 [S(e, 1, THYHAG (2, 1, T HT(, 1, 77 -

a(z, t, Y')) + AF*(z, t, Y™ ™)},

There exists a C°- function ¢:R"™ X R+ x R''+) - R+ such that ¢(z, ¢, Y7 (¢)) is
locally lipschizian in R"™ X R* with respect to z and over the class of uncertain

AF, AG,

|&(z, t, Y")| < #(z, ¢, Y'),z€ R*, teR, Y™ € Q. (2.8)

Assumption A.5. Define AG': R" X R*xXR" —=R™*™ and T:

R™ X R* x R" = R™*™ by

AGHz, t, YY) 2 [S(z, t, T Y AG (2, t, T S(z, ¢, T, (2.9)

Tz, t, V)21, + -;- {AGKz, t, Y )+ [AG(z, t, YT }. (2.10)
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There exists v > 0 satisfying

Min. {0, (C(z, ¢, YY) :2€R*, teR, Y e} > 1. (2.11)

Assumption A.8. There exists §z > 0 such that

|AE(z,t, Y°)| < é5,z€R", tERH, Y’ €Q°. (2.12)

Remark 2.1. As can be seen by substituting (1.6), (1.7) into (1.8), assumption
A.2 is equivalent to the existence of @, 8, T which allows ¢ to be given by (1.8). A limi-
tation of our approach is the need to find such a, §, T. In some cases, an appropriate
choice for the model (1.2) may be necessary. In other cases, like the one of Section 3,

the determination of «, 8, T is evident.

Remark 2.2. The choice of o, 8, T is not unique. For example, let &, §, T, A, B, C
satisfy A.2 and consider the family of «, §, T generated by a=V¥,a+ ¥, T,
B=V,B8 T=W,T, where ¥, € R™ X", U, € R™ ™ ¥, € R"* " are arbitrary, except
for the nonsingularity of ¥, and ¥;. Then, all members of this family allow A.2 to

hold. Moreover, it is easy to verify that the corresponding A, B, C allow A.3 - A.5 to

be satisfied. In fact, if H and S are changed with ¥,, ¥,, ¥, corresponding to the rules

H= (W, H+V¥)¥5!, S=1V,S5, (2.13)

it follows that & and AG,* are invariant with respect to ¥,, ¥,, ¥,. Thus, choosing dif-
ferent members of the family does not add to the flexibility in satisfying A.1 - A.6,

already provided by H and S.

Robust Tracking 9
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Remark 2.3. The conditions in (A.3) impose a structural restriction on the

allowed class of AF, AG. They are similar to the ‘‘matching conditions” in [1, 8, 19].

Remark 2.4. Assumption A.5 may permit a fairly large modelling error AG,
since it only requires I' to be positive definite. If AG* 0 and AG * =0 are included in
the class of modelling errors, T is restricted to [0, 1].  The constraint on AG imposed
by (2.11) is not appreciably weakened by taking v < .1 ; for v > 0.9, the constraint is
quite severe. Usually, v € [.3, .6]. By choosing vz =1-1, it can be seen that (2.11)

can be replaced by the (stronger but simpler) condition:

1AG(z, ¢, YY) <v16<1, z€R™, teRY, Y eq. (2.11)

Remark 2.5. The most natural choice for § is I, . But choice of S 1, allows
different weights on the components of &, AG*. This gives greater flexibility in impos-

ing (2.8), (2.11), and (2.12), and may thus lead to stronger results.

Remark 2.6. By restricting the class of desired ‘“‘output’’ functions Y,;, by mark-

ing Q smaller, the conditions (2.8), (2.11), (2.12) on the modelling errors are made less

critical.

Now, we construct the controller in (1.3). First, define a mapping

K,:R" X R* X R'"t) 4 R™ by

Kz, t, Y') 2 [Az, t, Y)Y YHT(z, t, YY) - afs, t, Y7)}. (2.14)

Because Ay has simple structure, there exists a nonsingular Py € R™ X " [11] such that
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fiH =‘—A-" PH—IAHPH = dzag A (2'15)

where
o [: -:' €R2X2 i=1,..n, (2.16)
N]ERY Y, i=mn,+1,..,n-n,
and ¢ + jw,, t=1, .., n, and \,, i=n,+1, ..., n - n, are, respectively, the complex and
real characteristic roots of Ay. For any such Py, define mappings

W:R"X RtXx R o R™ andy: R™ — R™ by
Wiz, t, Y') 2 7(z, ¢, Y7)[S(z, t, YT BT (PeY)T P T(s, t, YY), (2.17)

€, 14,

S

(2.18)
Then, define a mapping K,: R* X Rt x R o R™ by

Kz, t, Y') = — gz, t, Y")[Blz, t, YU S(z, ¢, YY) q(W(z, ¢, Y7)). (2.19)
Finally, the desired controller is given by

=Kz, t, Y )2 Ky(z,t, Y") + Kz, t, Y"). (2.20)

Remark 2.7. The purpose of K, is to give good error response in the absence of

modelling errors. In particular, letting uw =Kz, ¢, Y") in (1.1) with

Robust Tracking 11
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AF=9, AG=0, AE=0 gives ¢ = CZ where 7= ApZ and Z(t,) = T(z(¢,), t,, YU(¢,)).

Hence ¢(¢) = o exponentially.

Remark 2.8. The controller K, in (2.19) is a kind of saturation function similar
to the one proposed by Corless and Leitmann [3]. Its purpose is to give acceptable per-

formance of (1.4) in the presence of the modelling errors.

Remark 2.9. Consider the family of e, 8, T generated in Remark 2.2 and let
(2.13) hold. Then for every member of the family, it is possible to show Py can be
chosen so that K is unchanged by ¥,, ¥, ¥,. Since both the Assumptions anci K are
unchanged when (2.13) holds, choosing different members of the family adds no gen-
erality to our subsequent results.

Since K is continuous on R" X R* X Q and K(z, ¢, Y"(¢)) is locally lipschizian in
R™ X R* with respect to z, we know from (1.4) and assumption A.l1 that for any

t, ERY, z(t,)ER™, and y; € Y;, the system (1.4) has a solution defined on an open

interval containing ¢, [4, 9]. Since existence of the solution is needed for all ¢t > ¢,, a

final assumption is introduced.

Assumption A.7. For any ¢{, € R*, z(t,)€ER", and y, € Y, , the system (1.4)

has a solution z : [t,, ) = R".

We can now state our main result.

Let

A A
by = -oyl(Ag), €y = ||CPg||, (2.21)

12 Robust Tracking
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Uz, t, ™) £ |Pg'T(s, t, Y7, (2.22)

s = (v e ey, 85, = (vedYVEu(z(t,), t, Y1) (2.23)

Theorem 2.1. Suppose that the assumptions A.1 - A.7 are satisfied. Then, the
system (1.4) with the controller u in (2.20) has the following properties for any ¢, € R ™,
z(t,)ER",and y; € Y, : (i) For all ¢t € [¢,, ),

bg + o, 6, <1,

le(t)] < (2.24)
bp + 6g {1+ (62-1) a0z 5 5

(i) Suppose, in addition, that AF=0, AG=0, and AE=o. Then,

le(t)] < &n via(t,), 6, YY(E) 778 telt,, ). (2.25)

Proof. Consider part (i). Let z:[t,, 00) = R" be the solution of the system

(1.4) with K in (2.20) for any given ¢ € R* z(t,)€ER", and y; € Y;. Let

A

Z(t) = T(z(t), t, Y"}(t)). Then, since T, z, Y™! are all C!, we can take the total time

derivative of Z(t):

Z=D,T(z, t, YY) F(z, t) + Gz, ){Ky(z, t, YT) +

: 2.26
Koz, t, Y' )} + DoT(z, t, Y™™) + DsT(z, ¢, Y)Y (2.26)

Then, substituting (2.5), (2.8), (2.7), (2.9), (2.14) into (2.29) and using the identities in

(2.1), (2.2), we obtain

Robust Tracking 13
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Z=AgZ+BS(zt YY) &z, t, Y')+ 2.2)
B S(z, t, Y'Y, + AGAs, t, Y'Y S(z, t, Y Y8z, t, Y )Ky(z, ¢, YT).

Let

A

o(t) = PF2(t), V(v(1) lo(t)[2. (2.28)

1
2
Taking the time derivative of V(v(t)) and substituting 2, K, Z by (2.27), (2.19), (2.28),
respectively gives

Viv)=vTAgv + vTP7'B S(z, t, YY) &(z, ¢, Y7 ) -

v d(z, t, Y )P v T Pg'B S(z, t, Y Yz, t, Y™ N)S(z, t, Y™ Y|T- (2.29)
BTPH‘Tv/G(IW(z, t, Y'|),

where © : Rt — Rt is defined as ©(a) < i a>1, 6(a) 2 lifa < 1. From (2.15),
(2.16), and py = -oy(Ay)= -oy (/iH ), it can be verified that
ETAgE < -pgle® E€R™. (2.30)

Then, this, (2.17), (2.29) and Assumptions A.4, A.5 imply

V(o) S - plof?+ 7 Wiz, &, Y7 )| =7 Wiz, &, Y7 )HO(W(z, ¢, Y7]).  (2.31)

We conclude

V(o(t) € - 2ug V(o(t)) + 7, t € [t,, ). (2.32)

The following fact is an easy consequence of (2.32).

14 Robust Tracking
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(O < 7wt + (o0t )F -7 6id) e ¢ e, o). (2.33)

By (2.3), (2.12), and (2.28),

lel < NICPyl |v] + g, t€[t,, ), (2.34)

and property (i) follows immediately.
Next consider part (ii). If AF =0 and AG =, (2.5), (2.6), and (2.7) imply

$ = 0. Thus, from (2.29) and (2.30), l‘/(v) < - 2py V(v) and therefore

lo()] < Jo(t,)le ™), tet,, ). (2.35)

The inequality (2.34) with ég = o completes the proof.

If Q is bounded, it follows from part (i) of the theorem that ¢ is uniformly ulti-

mately bounded with respect to Y;. In particular, & need only satisfy

b> 6, 265 + 4. Then,

(2o ) In{(] 7 & P4, & )7 - 1) 64/ [(b - 8¢ )* - 841},
T é if ;(d! ta) > maz'{(7 ﬂ'ﬁl)llzx 5}—11 (b - 6E )}, (2’36)
o, otherwise,

where 7(d, )2 supu(z, t,, Y™) for |of <4 and Y EQ K T(s,t 7Y is

independent of ¢, 7(d, ¢,) = 7{(d) and e is uniformly ultimately bounded with respect to

t and Y;.
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Part (ii) shows that the robust controller acts well when the modelling errors (1.5)
are zero. It gives the same kind of exponential bound available when modelling errors

are neglected in determination of K (see Remark 2.7).

For good tracking performance, §, should be small and pg large. If the pair A, B
is controllable, uy may be chosen arbitrarily by selection of H. Clearly, 5§, cannot be
smaller than ;. Thus, AE must be small for small tracking error. In many applica-
tions, AE = o so that §, = . Although the remaining effects of H, S, and Py are

quite complex, we can make a few general remarks.

Remark 2.10. Suppose that $ is given by § £ ¢S where ¢is a positive constant.
Let &, AG, W, K denote the functions resulting from (2.8), (2.9), (2.17), (2.20) when
¢=1. It follows that ¢ = ¢*$, AG = AG, , y=17%, and W= W. Hence K = K.
Thus, scaling S neither changes the controller K nor affects the statement of Theorem
2.1. But for multivariable systems (m > 2), S can be used to affect changes in the con-

trol law (see (2.19)) and bounds on the modelling error (see Remark 2.5).

Remark 2.11. Let Py satisfy (2.15). It is easy to show that the entire family of Py

satisfying (2.15) is given by

Py = P40, ©= digg 0O, (2.37)

where

6, 8, € R**2 i=1,..,n,,

[l>

(2.38)

9, ER'*Y i=mn,+1,..,n-n,

16 Robust Tracking
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and 4, is an arbitrary nonzero real number, and 6,° is an arbitrary orthogonal matrix.

Since

(PY)T Pi'= (Pg")T M P4, T2 diagII,, (2.39)

where

My, =1 =072 i=1,..,n,,

HT =672 i=n+1.,n-n,. (2.40)
the 6% € R* parameterize, through (2.17) and (2.39), the family of controllers. As the
92 are made smaller, the “controller gain’" increases (comsider K, in (2.19) when
|W| < 1) and the unsaturated region of control (| W] < 1) becomes smaller. At the same
time, 6y given by (2.23) decreases and may be made as small as desired through the use
of sufficiently high gain. It is interesting to note that the ©,’ have no effect on any-
thing; neither K nor the error bounds (2.24) and (2.25) depend on them. This follows
from (2.39), (2.40) and the orthogonality of the 8, which implies v (z, ¢, Y") and ¢y

are independent of the 8/’

Remark 2.12. Excessive decreases in the 42 may lead to practical problems.
Higher order dynamics neglected in the modelling process, together with the high gain
corresponding to the small 42 may lead to instabilities. Even without such modelling
errors, there may be problems. Consider the simple situation where ¢ and S are con-
stant and AF =0, AG=0, AE=0. If Z(¢)= T(z(t), t, Y}{t)) is small so that

n(W) = W, then it can be shown from (2.27) that

Robust Tracking 17
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Z=(Ay -7262BSSTBT(P;)TP#) 2, ¢ = CZ (2.41)

Although the bound (2.25) must still hold, the linear dynamics are no longer deter-
mined by Ay and the error may be highly oscillatory. Because of (2.39), (2.40), the

likelihood of this increases as the 42 decreases.

Remark 2.13. The parameter v appears in the expression for K, (as a coefficient
7% when |W| < 1), Assumption A.5, and 6y ( as a coefficient 7/2). A reasonable

compromise between ‘‘high gain' and the value of é; or the constraints on AG is
achieved by v = .5. See also Remark 2.4.

Remark 2.14. Since H appears almost everywhere, including the parameteriza-
tion of Py, its full effects are difficult to judge. Because of (2.23) - (2.25), large values
for uy are favorable. But large py tends to require ‘‘large’” H. In turn, this tends to
make ¢ large, which again produces high gain.

Remark 2.15. High gain produced by large v'¢ can be mitigated by increasing
the 2. But this affects 65 unfavorably (Remark 2.11).

Remark 2.16. By suitable choice of H, ¢, S and the 62 the form of the con-
troller, and the various bounds on modelling errors. Even more flexibility can be had

~ by generalizing the form of the (Lyapunoff) function V, which appears in the proof of

Theorem 2.1. The usual choice [1, 19] is V = % ZT PZ where P is determined from @

by PAy + AfP = - Q. This complicates considerably the statement of the results and

assumptions and cannot improve the value for py.

18 Robust Tracking



RSD-TR-11-84

Finally, it is worth noting that Theorem 2.1 is still valid if A.1 - A.7 are replaced

by A.1, A2’ , A3 - A.6 where A.2' is a strengthened version of A.2.

Assumption A.2'  Assumption A.2 holds, Q2 is bounded, and T has a continuous

inverse with respect to z. Specifically, there exists a continuous function
T':R® X R* X R" — R™ such that for all (Z,t, Y™') e R" x Rt x Q') the equa-
tion Z = T(z, t, Y') has a unique solution z = T*(Z, t, ¥').

We sketch the proof that A.2' eliminates the need for A.7. By the existence of z
on an interval [¢,,¢) and theorem 2.1, it is easy to verify that
1Z(O)] < 1Pyl v (2(t, Wto, YN, ), tE€[t, t). From A.2', it then follows that there
exists a ¢, > o such that |z(t)] < ¢, t €]t,, ). This, (1.4), and A.l1 then imply
existence of ¢, > o such that |z(t)] < ¢, t € [t,, t;). Using the bounds on z(t) and z(t)

and a continuation argument (see [4], p. 288) proves z is defined on all of [¢,, o).

3. TRACKING CONTROL FOR A ROBOTIC MANIPULATOR

As indicated in {7}, a robotic manipulator may be described by

M(q)g + N(g, ¢) + D(t) = u, e =E,(q, ys). (3.1)

where gER™, M:R™ - R™* ™, N:R™ XR™ -R™, D:Rt—-R™,
E, :R™ X R'" = R™. Here, ¢ is the vector of joint coordinates, M is the generalized
inertia matrix, N is the vector of equivalent forces due to gravitational, centrifugal,

Coriolis, viscous friction and actuator damping effects, and D takes into account exter-

nal disturbances.
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In applications, y; may be a desired path for the joint coordinates ¢ or the posi-

tion and orientation of the end-effector.

Usually, a manipulator is operated with various unknown loads. Thus, there are
uncertainties in M, N. Even when M, N are known exactly, they are very complex [21]
and simplified models may produce significant reductions in the computations required
for mechanization of the controller. Moreover, unmodelled external forces due to fric-
tion, actuator imperfections, etc. can be represented by D(¢). Since E, depends on a

geometric relation between g and y,;, it may be modelled quite precisely. Thus, letting
A:I, N, E‘o = FE, describe our model, we obtain the errors : AM S M- A:!,

ANEN+D- 1(/, and AE, = E, —Easo. The following conditions are imposed on
the problem data. The sets Q and ' are as described in Section 2. In the conditions,
¥:R™ - R™ ™ is a C'- matrix function, arbitrary except that ¥(q) is nonsingular,

qER™.

Condition C.1. M, M, N,N,D€ C!, E,,y; € C%

Condition C.2.  M(q), A:!(q) are nonsingular, ¢ € R™.

Condition C.3. D.E, (g, Y°)is nonsingular, g € R™, Y’ €0Q°.

Condition C.4. There exist C!-functions ¢, : R™ = RY, ¢y :R™ X R™

X Rt = R*such that

¥ ()™ [M(o)]™ AM(a)ll < b la), (3.2)

(¥ (q)]™ [M(q)]* AN(g, ¢, t)] € on (g, g.8), (3.3)
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forall e R™, g€ R™, and t e RT.

Condition C.5. Definel’yy : R™ = R™* ™ by

Cu(@) 2 Ly - 2 (] (MO AM@)¥(0) + (H@ M AM)¥()T ). (3.4)

There exists r, >0 such that
Min. {0, (Tu(q)) : ¢ER™} 2 1,. (3.5)
Remark 3.1. Conditions C.4 and C.5 may be difficult to verify because they
require knowledge of M(g), the inertial matrix for the actual manipulator. Suppose

there exist a constant r, >0 and a C!- function ¢y :R™ X R™ X R*— R™* such

that

¥ ()] [M(g)]* AM(g)¥(g)l] <7, 0 < 7, <05, (3.6)

()™ (M) AN, ¢, )] < dn (2, 4, 1), (3.7)

Then, it can be shown that Conditions C.4 and C.5 are satisfied by

bu(g) = (-7, ) A I onlg, e )=(0-7,)" ‘;SN((I, g, t),

. . 3.8
ro =(1-r, ) (1-2r,). (38)

While (3.8), (3.7) are more restrictive than C.4, C.5, they are tested easily.

By introducing z = (z,, z5) = (g, q), it is possible to reduce the manipulator and

its model to systems of the form (1.1), (1.2).
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For instance,

FA’ t_[%A ) ] , C:'(z,t)=[0A ] 39
@ 8= | Mz o) Bz, 22 (bt(z ] 3.9

E(I, t, yd) = Eo (31, Y4 )

We now show that if ¢ is chosen properly, Conditions C.1 - C.5 imply Assump-

tions A.1 - A.6. Assumption A.l is obvious. Let Y! = (v, a), Y2 2 (4> ¥4, ¥s) and

define the ith component of g(z, Y?) by

A .
g: (=, Yz) = D{E, (21, yo)lzallza] + DoE, (21, ¥4y

’ o (3.10)
+ 2D \D,E, (2}, ya )z2lya] + DFE, (21, va) [vallva] -

Here, the second derivatives D ZE, and D,D,E, are, respectively, quadratic and bil-
inear functions of the increments z, and y; (see [7]). Note that

¢ = D\E,(z,, y4 )22 + 9(z, Y?). It is easily verified that A.2 is satisfied by r = 2 and
ofz, t, Y¥) £ g(z, Y?) - D E, (21, o )[M(z )| N(zy, 7o), (3.11)
Bz, t, YY) = DLE, (z194) [M(z )], (3.12)

Tl(z, t, Yl)
T(z, t, Y1) £ , (3.13)
T.(zt, Y

where
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Eoi(zb yd)
T{ ’ t7 Yl é y ’ i=1: ey m, (3‘14)
(z ) D lEoi (1’1, Yq )32 + D2Eos (z v Y )yd
L diagA,, B2 diagB,, C2 diag C,, (3.15)
01 0
A .
A, = [0 0], B,‘ = []J, C,‘ = [1 0], 1= 1, eeey M. (3'16)

Taking

2

AG'(z,t, Y) £ - D\E, (21, ya) [M(z )] 'AM(2,)[D \E, (21, va ), (3.17)

AF*(z,t, YY) 2 D,E, (z,, yo)[M(z)]*{ - AN(z, 24 ) + (3.18)
AM(z )| M(z )™ N(z1, 22)}

verifies A.3. One choice of H, which satisfies the requirement on Ay, is

H= diag H,, H, 2 [-(e2+w? 20, 0,<0, wi>0, i=1,.,m (3.19)

For such H, let

HlTl(z) tr Yl)

U(zy, 24, Y?) = [D.\E, (21, ya )} . - g(z, Y3). (3.20)

H, T,(z, ¢t YY)

L

Take
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S(z, t, YY) = D\E,(zy, yq4) ¥(z1). (3-21)
Then, since

®(z, t, Y?) = - [W(z)]™ [M(2 )] {AM(z)) U(zy, 2o Y?) + AN(zy, 25 1)}, (3.22)

I(z, t, YY) = Ty(zy), (3.23)

Assumptions A.4 - A.B are satisfied by y=r,, §g = o, and

¢z, t, Y?) = Sun (21, 22, 8, Y2 2 oy (21) |U(24, 20, Y| + on (24, 24, 1) (3.24)

Using the above notation in (2.16) yields the controller :

v = Ky(q, ¢, Y¥()) + Koq, 0, t, Y1), (3.25)

where
K2, 2, Y1) = N, 9) + M(9)U(q, 2, Y¥(t)), (3.26)
Kog, 0,6 YAO) = 1 baan (0, 4, &, YY) M(q) %(g) n(W(a, ¢, t, Y1), (3:27)
W(g, 4, t, Y0) = r. daaw (a, ¢, &, YHONL()T[DAE, (¢, wa)l7 L, ¢, ¢, YY(1)),

(3.28)
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Ll(q; é; tr Yl(t))
2

L(g, ¢, t, Y'(t)

r

ALn (g, 0, ¢, Y(2))
. A . . .
Lz (q, q, t, Yl(t)) = 03‘2(*)1_2 {D lEoi(qy Ya )q + DZEas(q; Yq )yd -0 Eo: (q; Yi )}r 1= 1, ey M.

Here, we have chosen Py according to Remark 2.11 with

— - - 1 0
PH = dz'ag PH;’: PH:' = o -w I’ ‘i=1, ey M. (329)
Finally, because of the block diagonal structure of the various matrices, it is easy to

show the key data in the statement of Theorem 2.1 are given by

py = - max. {o;,i =1, .. m}, &g =max.{|4,],i=1, .., m},
H { | Ay {19, (3:30)

y=r,,0g =o.

The only thing lacking for Theorem 2.1 to hold is Assumption A.7. For E, = y; - ¢
and Q bounded, A.2' is satisfied. Thus, A.7 is true automatically. For most manipula-
tors, the situation E, ¥ y; - ¢ leads to a more serious technical difficulty. Condition
C.3 holds only for ¢ € @, where @ is an open subset of R™. For example, when
E, = y; - h(q) and h(qg) is the end effector position, it is known [21] that there are
degenerate points where the Jacobians of A fails to exist. In such situations, we must
interpret our results as being of a local character. If y, is chosen appropriately, the
local region may be quite large and the results predicted by the  Theorem will hold

practically.
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Remark 3.2. Because of the block diagonal structure of C! and Py, (2.34) in the
proof of Theorem 2.1 may be replaced by |e,| < ||C; Py |||v], i =1, ..., m. This leads to

bounds of the type (2.24) and (2.25) on each of the components of ¢. For instance,

given any b, >0u = (v #3)"2|0,], there exists a 7, > o such that ¢t > ¢, + 1, implies
le; (t)] < b;. Thus, by the choice of the 42, the ultimate size of each component of the

tracking error can be adjusted separately.

Remark 3.3. The choice of H and S has been specialized to simplify various expres-
sions. For example, H; in (3.19) assigns only complex roots to Ay and the specified
form for S, (3.21), simplifies the inequalities in C.4 and C.4' . Other specializations and

generalizations are treated easily.

Remark 3.4. The obvious choice for ¥ is I, , but ¥(g) 3£/, may allow larger uncer-
tainty in M (compare Remark 2.5). More importantly, ¥ may be selected to influence
the maximum excursions of u produced by K, and hence give attention to actuator
constraints. For example, suppose ¢pn (g, 7t Y?) is a constant and ¥(q) is chosen so

that M(q) ¥(¢) = @, a constant real matrix. Then by (2.18) and (3.27),

K2(Q» é: t) Y2) € {u U =7, ¢MN Qwr IW‘ S 1} (3'31)

and the limits on K, are determined simply by Q. For instance, @ = diag Q, gives
|K2 | < 7, dun|@Qi|. Of course, there is an interaction between r,, ¢y, and the choice
of Q. Using the same kind of reasoning that led to Remark 2.10, it is seen that there is
no loss of generality if @ is restricted so that ||@|| = 1. It is also worth noting that the

choice ¥(g) = [M(q)]‘1 Q simplifies the verifications of (3.8), (3.7).
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While the expressions and conditions of this section appear somewhat complicated,
their special structure (compare with Section 2) gives considerable insight into the
parameterization of the robust controller. This is especially true when joint coordinates
are controlled and E, = y; - ¢. Many of the functions are then simplified greatly

D,E = -1,, the components of T, are y; - z,, and Yo — 2o, U = -HT, +y,
L, = 672w (e —o0,¢). I in addition, M(q) and ¥(g) are diagonal, K, becomes quite
simple. Moreover, the issues raised in Remarks 2.12 - 2.15 are easily quantified and

made specific.

4. CONCLUSION

An approach to robust tracking in nonlinear systems has been presented. Several
assumptions are needed, the most demanding being A.2 and A.3. Assumption A.2
requires the equivalence of (1.2) and (1.8) under the transformation (1.6), (1.7). The
general circumstances under which the equivalence holds have not been pursued here,
but for specialized models and applications the equivalence is evident. Assumption A.3
requires that model uncertainties have special structure, similar to the matching condi-
tions which appear in the theory of robust regulators [1, 8, 19]. While this structure
appears in some applications, it may be more troublesome to satisfy than A.2, which
can be influenced by the choice of the model (1.2). Prior literature on robust regulators
[1] suggests that it is possible to relax A.3 by modifying K, and introducing additional,

rather complex, assumptions.
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The robotic manipulator, (3.1) is an interesting application where A.2 and A.3 are
satisfied naturally. The resulting controller can be viewed as an extension of the
proportional-derivative controller described in [7], which allows substantial model errors
and simplifications in complexity of the controller. Although it has not been pursued
in Section 3, more complex manipulator problems cna be treated. For example, certain
types of actuator dynamics can be incorporated, and it is possible to obtain a robust

version of the proportional-integral-derivative controller in [7].

There have been a number of approaches to robust nonlinear tracking. Among
them are [2, 13, 25|. Unfortunately, they limit severely the class of inputs and/or
involve assumptions which are difficult to verify. Methods for attacking ‘‘robust”
manipulator problem include adaptive control [5, 8, 12, 15, 18, 27}, sliding and suction
control [23, 24], and high gain nonlinear feedback [22]. The adaptive control methods
lack a complete theory and do not attempt to account fully for nonlinear effects. In
[22], a ponlinear feedback based on a singular perturbation techniques [26] is used to
obtain a controller of the form (3.25) when E, = y, - ¢. The function K, is different
than ours. In order to assure ultimate boundedness of the tracking error, the gain of K,
is required to be ‘‘sufficiently large”. There is little flexibility in meeting this require-
ment. There is no saturation function or way of interchanging accuracy for gain in the
manner we have described. Thus, the method is more apt to lead to stability problems
because of neglected actuator dynamics. In general form, our control law is most simi-
lar to the ones proposed in [23, 24]. However, the model assumptions in [23, 24] are
more restrictive than ours and the supporting theory is not complete. The saturation

function in [23, 24] is an each component of K, This may have practical advantages
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and is probably associated with the more restrictive assumptions about model struc-

ture.
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