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INTRODUCTION

This report gives the resiults of a study of an electronic analog
computer as a leboratory research tool. The study was undertaken not for
a particular problem but rather to investigate the applicability of the
computer to applied research. While the treatment is by no means exhaustive,
it is hoped that enough dataere given on methods of setting up problems
and introducing end conditions, accuracy, stability, time required for solu-
tions and other adventages and limitations of this type computer, to enable
an experimenter faced with a particular problem to make & critical comparison
of this method with others which are availaeble. The approach is that of s
text book.rether than a hand book end it is believed that the report will
not only give an understanding of the principles of an electric analog
computer, but also enable an engineer to design and put into operation
a computer with the minimum number of pitfalls.

The amplifier, which is the basic element of all the operationms,
is one described by Ragazzini, Randall and Russell.l Some improvements in
emplifiers have been made since then such as automatic zero edjust, reduced
phase shift at high frequencies, lower grid current in the input stage, etc.,
however, these are only important when it is desired to push the accuracy to
its extreme limit.

. We wish to thank Professor Ragezzini for several valuable suggestions
received by correspondence.

The report may be divided roughly in to four divisions as follows:

Division I. Introduction and Components of Computer.
Chapters 1 and 2

Division II. Differential Equations with Constent Coefficients.
Chapter 3, 4 and S

Division III. Differential Equations with Variable Coefficients.
Chapter 6, 7, 8, and 9

Division IV, Study of a Servomechanism.
Chapter 10, 11 and 12

It should be pointed out that a large number of the problems treated
here are used as illustrations and ordinarily would not be solved with an
snalog computer., In some cases, the computer circuit used is not the simplest
possible but rather one which shows the general method of proceeding.

No work was done with multiplying circuits (other then functions of
time), hence the computer will handle only linear equations., Another useful
addition to the computer would be circuits for introduction of backlash,
coulomb friction, dead space, and other non linear properties of mechanical
gystems.

iv
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CHAPTER 1

OPERATIONAL AMPLIFIERS AND THEIR USE IN ANALOG COMPUTERS

1.1 DC Feedback Amplifier

In an ordinary vacuum tube amplifier the gain (defined as the ratio
of the output voltage to the input voltage) is a function of the circuit
‘elements, including the characteristics of the vacuum tubes. In order to
minimize the change in gain of an amplifier caused by chenging characteristics
of its components, particularly those over which limited control can be exer-
cised, such as the variations in the behavior of vacuum tubes with age and
changing voltages, degenerative feedback may be used. For example, in Fig. 1-1
VA is a high gain direct-current amplifier which with a voltege e' applied to
its input terminals produces an output voltage of -eg, 80 that the voltage gain
A may be expressed as

e
= -2
A = (1-1)

- | ]

Figure 1-1 Basic dc amplifier with feedback.

1
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Degenerative feedback is obtained by connecting the feedback impedance Zp
from the output of the amplifier VA to the input. The voltage e; to be

emplified by the system is applied to the input terminals of the amplifier
through the series input impedance 2.

' In order to calculate the net gain of the system cognizsnce should
be made of two facts: first, since the gain of the amplifier VA is very large
(greater than 5,000) e' is negligibly small; end second, since the input to VA
is connected through a high resistance directly to the grid of the input tube,
the current flow from the point P into VA is negligible. Consequently, since
the net current flow into the point P must be zero

11 - 12 = O, (1’2)
or
! -
ey ~e' & -8 .o (1-3)
24 Zr

Since e' 1s negligible, e' drops out of equation (1-3), whiech may then be written

- Ze
s ! (1-4)

A more exact relation between, e, and o) is

—e, . g —
S e ae VALY 0-2)
i

as derived by Regazzini, Randall and Russell.l Equation (1-5) reduces to equation
(1-4) because, as the amplifier is used,

. %
AY) (1 = ).

i

Equation (1-4) shows that as long as e' is negligibly amall, the gain
of the system is solely dependent on the ratio of Z, to Zi, i.e., it is indepen-
dent of changing characteristics of the amplifier vﬁ 80 long as the gain A of the
amplifier is lerge compared with 1 + ZT/Zi.

1.2 Multiglication by a Constant

If the impedances Zy and Z; in the operational amplifier of Fig. 1l-1

are mede equel resistances, for example one megohm each, equation (l-4) shows that
the output voltage e, will be the negative of the input voltage ey, 1.e., the

operationel emplifier will perform the simple operation of sign-chenging. As a
2
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matter of fact, every operation performed by an operational amplifier will include
the operation of sign changing.

If, however, the impedances Z, and Z; are unequal resistances,
1.e., 2p = kZy (or Z; = Z¢/k) the output voltage e5 will be k times the
input voltage e; and of opposite sign. Since k (egual to 2p/2,) may be
& positive number either greater or less than unity the magnitiide of the
input voltege mey be multiplied by any desired factor k either greater or
less than unity. In prectice the multiplication or division by a constant
factor greater than 20, except in special cases, is to be avoided.

l.3 Differentiation

If the feedback impedance Zy is made a pure resistance Ry, and the

input impedance 2, a pure capacitance Ci, then the operational amplifier
becomes a differentiator, Figure 1-2,

_-

Y

o9t

U
D

Figure 1-2 A differentiating operational amplifier.

Making the seme assumptions as for the derivation of equation (1-4), the
sumeation of the currents at the point P is expressed by equation (1-2),
i -ig = 0. It is readily seen that

12 = ("62 - 9! )/Rr = 'GZ/Rf‘ (1"6)

For a capacitor

q = Cv, (l-"?)
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where q is the charge on the capacitor at any time t, and v is the corresponding
voltage across the capacitor. In the case under consideration the voltage across
the capacitor C; is e; = &' = e; (since e' is negligibly small compeared with ey,

i.e., the point P is essentially at ground potential). Consequently equetion (1-7)
may be written

q = Ci Bl.
Differentiating this equation with respect to t gives

d de
i, = —4- . 1
1 at 0 = . (1-8)

Substituting the values of i; and ip from equations (1-6) and (1-€) into equation
(1-2) end solving for e, gives

de
2 £ = . (1-9)
Equation (1-9) shows that the output voltage ) is the negative of the
time derivative of the input voltage ey multiplied by the constant RfCi. Thus
the operational emplifier with the input impedance being that of a cepacitor and
the feedback impedance a pure resistance may simultaneously perform the operations

of differentietion and multiplication by a constant (with sign changing in addi-
tion).

If RpCy of equation (1-9) is equal to unity (Rp, 1 megohm; Cy, 1 micro-

farad) differentiation without multiplication by a constent is accomplished.
If Ry were 5 megohms and Cl one microfarad, then the input voltage e; would be

differentiated end multiplied by the factor -5.

If the input voltage e; were sinusoidal (e; = E sin W %) according to
equation (2-9) the output voltage would be

d
82 =z = Rf Ci "&‘%‘ (E ainwt) = = Rf Ci E Ucos L*)t‘ (1’10)

Equetion (1-10) shows th st the maximum value of the output voltage es is equal to
the constant RfCiE multiplied by the angular frequency «J. Thus if ReC; Were

equal to unity and W equal to 10, the maximum value of the output voltage
85 would be 10 times E, the maximum value of the input voltage I Should there

be some undesired 60 cycles per second voltage (due to pickup, or incomplete
filtering in a power supply) applied to the input it would appear in the output
as a 60 cycles per second voltage with a magnitude 377 times greater (chi) being

equal to unity). Because of this increasing gain with frequency, and verious
troubles associated with it (e.g., phase shifts for higher frequencies in the
de emplifier), it is adviseble to avoid using the operational amplifiers as
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differentiators whenever possible.

1.4 The Operator p

In subsequent analysis it will be convenient to use the differentisl
operator p as used in operational calculus. The operator p represents differ-
entiation with respect to time, i.e.,

pi = 4l sy OI PO =

de_
dt dt

Consequently equation (1-9) may be written
- ey= ..chi pe; . (1-11)

Equation (1-11) could have been derived from equation (1-4) in the following
menner., Using the differential operator p, equation (1-8) may be written as

i, = Cype, , (1-12)

where p operates on ®;. However, the properties of the operator p are such

that it may be treated as an algebraic quentity. Hence equation (1-12) may
be written

5, = G ‘ (1-13)

Since the impedance of a circuit element is defined as the ratio of the voltage
across the element to the current through the element, 1/Cip of equation (1-13)

may be considered the operstional impedance of the capacitor Cye Substitution

of this impedance, together with the other necessary terms, into equation (1-4)
yields equation (1-11).

The operator p designates differentiation with respect to time. The
operator 1/p, as may easily be shown, designates integration with respect to
time. The advantages of the use of the operators p and 1/p will become evident
in later developments.

1.5 Integration

If the impedance Z; is a pure resistance R, and the impedance Z
i f
a pure capacitance Cf then equation (1~4) becomes

Ze 1/C.p 1 1
- e =z - f = e -
1 ey R;C, > 8 (1-14)

e
2‘
Zi R

i
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1
where 1/p is the integral operator of operational calculus. Thus '5 e is the

time integral of e), and the output voltage 2 as expressed by equation (1-14)
1s the negative of the time integral of the input voltage e) multiplied by the
constant l/RiGr. Thus the operational amplifier, with the input impedance

being a pure resistance and the feedback impedance being that of a capacitor,
simultaneously perfoms the operations of integration and multiplication by a
constant, If Ri were 5 megohms and Cf one microfarad then the input voltage

would be integrated end multiplied by the factor -1/5,

If the input voltage e, were sinusoidel (el = E cos wt) according to
equation (1-14) the output voltage would be

1 1 1 E
- - b~ W =T w -
32 Ri cf P (E cos t, Ri cf . sin U t. (l 15)

This equation shows that the meximum value of the output voltage ey is equal to

the constant ‘E/Ricr divided by the engular frequemcy &) . Thus if l/Ricr were
equal to unity, and (v equal to 10, the maximum velue of the output voltage would
be 1/10 that of the input voltage. Similarly, for 60 cycles per second e, would
be 1/377 of e). Because of this decrease of magnitude of output voltage with

frequency the integrating operational emplifier is not subject to the short-
comings described in connection with the differentiating operational emplifier.

An integrating operational amplifier is shown in Figure 1-3. Since
the voltage e' at the input terminals of the amplifier VA is 1/A (less than
1/5,000) of the output voltage e, the voltage e'is negligible with respect to
€2 and the point P may be considered at zero potential (relative to ground).
Consequently the voltage across the feedback condenser cf is equal to the output

voltage €s. This fact, as will subsequently be shown, is of importance in setting
up the initial conditions of a problem,

Ct
[
L
bi,
+ Ri i —
— MWW - - p—
e, P €,

1 —

Figure 1-3 An 1-ntegrat1ng operational ampliriér.
6
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1.6 Summation

One of the most important operations performed by the operational
amplifier is that of summation, or the adding together of a number of different
voltages obtained from different sources. For exemple, suppose three verisble
voltages, e,, ey and e, are to be summed. The manner in which this may be
done is expfained by means of Figure 1-4.

+ 5 la
[ S—— a e —am
l A l,
| -
;t;____ Zy —Eh——Jl *~— _ e }—e——— ¢
eb P | e,
* e
VA
-+ Z 'c i -
* ] C — T— —
€

Figure 1-4. Operational eamplifier used for summation.

1
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Meking the ssme assumptions as for the derivation of equation (1-4),
the sum of the currents at the point P gives

a
or
8q Y ec -0
P — P - 2 =
Zq 7 % = -
Whence
' Z
== (% ey + 2 o+ It o), (1-16)
Zg 2y Ze

If the feedback impedance Zf end the input impedance, Za’ Zb and Z, ere
made equal resistances (say one megohm) the output voltage e, is the negative of
the sum of the three input voltages, e,, e, and e,. One or more of the input

impedances could be given a resistance value different from that of Zf, thersby
miltiplying the corresponding input voltage by the velue zf/zi. In case any one

of the input voltages is required to have a sign opposite to the others it could
be operated on by a sign-changing amplifier before being applied to the corres-
ponding input resistor of the summing emplifier,

1.7 Solving a Simple Differential Equation

There have been described the uses of operational amplifiers for sign=-
changing, multiplication by a constant factor, differentiation, integration and
summation. Some of these operations will now be combined to show how a simple
differential equation may be solved.

The differential equation

2
Y . F(t) (1-17)
at2

is the equation of motion for a body travelling with an acceleration, F(t), a
function of time. F(t) may be zero, in which case the body travels with constent
velocity; F(t) mey be a constant, in which case the body travels with constent
acceleration; or F(t) may be some other function, consistent with the problem
being solved.

The analog computer assembly of Fig. 2-5" for solving this equation can
be understood more easily if the equation is written in the form

®y . Ft) =0 (1-18)
at?

8

* Thig is not the simplest computer for this particular equation but it rather
serves ags & basis from which to develop more complicated computers.
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| meg Imeg Imfd Imfd

VWA, —MAN '————l I——<. 0———-1 "———4
+ Imeg Imeg Imeg L I meg
— MWW lww\i wa-l F-WMW e
y

F(t)

P r—r—r—ir—

\ Y J_ v J\ ~ L s S
SIGN GCHANGING SUMMING INTEGRATING INTEGRATING
AMPLIFIER AMPLIFIER AMPLIFIER | AMPLIFIER 2

Figure 1-5. Analog computer for equation (1-17).

Four operational amplifiers are used. It is assumed that the output of
integrating emplifier 2 will be y. Therefore, since the RC product of the
feedback capacitance (1 microfarad) and the input resistance (1 megohm) is

unity the imput to this integrating amplifier must be -dy/dt or -y . This
follows since the negative of the integrated input is the output. Similarly, the
'1.nput of integrating amplifier 1 (i.e., the output of the summing amplifier) is
Ve

The function F(t) epplied to the input terminals of the sign-changing
operational amplifier gives en output voltage which is -F(t) since the gain
of this amplifier is -1. The suming emplifier may be looked upon as an opera-

tional amplifier adding the two voltages -F(t) end §#. This can be demonstrated
by equating the currents at the point P to zero.

Before equation (1-17) cen be solved it is necessary to designate
the function F(t) and to state the initial conditions. Suppose we set F(t)
equal to a constant (say -1.5 volts, representing an acceleration of =-l.5 ft/secz)
and set the initial conditions, at the time ¢t = 0, at y = 0 and y equal to a
constant (say 6 volts, representing an initial velocity of 6 ft/sec).

Since the output voltage y of the second integrating amplifier is,
for practical purposes, the seme as the voltage across the feedback capacitor
of the same amplifier, the output voltage y can be made equal to zero by
closing the switch So, thereby shorting the condenser,

9
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The solution of equation (1-17).
10
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Similarly, the output voltage -y of the first integrating amplifier

is the same as the voltage across its feedback capacitor and hence the proper
initial conditions can be placed on the velocity ¥ by making the battery B;

equal to -6 volts and closing switch Sl‘

F(t) cen be given its proper value by connecting a 1.5 volt cell

across the input terminals of the sign-changing amplifier.

The solution of the problem is obtained by opening switches S; and

simultaneously and observing the output voltage y which is, of course, a

ction of the time ¢t.

S
rin

If it is desired to observe the velocity y, the output -y of the first
integrating emplifier should be connected to the input of another simple sign-

changing emplifier and y observed at its output terminals.

Figure 1-6 shows the results obtained for the solution of the problem.
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Figure 1-6.
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1.8 Demped Oscillations
The equation
my + ¢y + ky = 0 (1-19)

represents the equation of motion of a mass m supported by a spring with
elastic constant k, the system being 3ubjected to viscous damping cy. The
analog computer for the solution of this equation is shown in Figure 1-7.
Its operation is very similar to that of the computer of Figure 1-5. The
computer is set up for the initial conditions, at ¢ = O, of the velocity

y being zero and of a finite displacement y. The summing amplifier has fed
into it voltages proportional to y, y, and ¥ through input resistors 1l/k,
1/c and 1/m respectively to take cere of the coefficients of the several
terms of the equation. ¥ is obtained from -y by means of the sign-changing
amplifier. Appropriate initial conditions are set up when the switches Sy
and S, are closed. The solution of the problem is started by the simulteneous
openiﬁg of the two switches. As desired the displacement y(t), the velocity
y(t) or the acceleration ¥(t) may be observed at the appropriate output
terminals.

A, y Az y As -y Ay y
SIGN GHANGING SUMMING INTERGRATING INTERGRATING
AMPLIFIER AMPLIFIER "AMPLIFIER | AMPLIFIER 2

Figure 1-7. Analog computer for solution of equation (1-19) with
initial conditions of zero velocity and finite displacement.

11
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It should be noted in Figure 1-7 that the units of the resistances
and the capacitances are not indicated. It is very convenient to take the
unit of resistaence as the megohm and the unit of capacitance the microfarad.
The numbers and quantities associated with each of the resistors indicate as
meny megohms unless otherwise stated. Similarly, the quantities associated
with the various capacitances represent that number of microfarads. This
practice will be followed uniformly from now on.

The coefficient of y is ¢. It appears in Figure 1-7 as the value
1/c of the input resistor for ¥ of the summing emplifier. The seame effective
result could be obtained by meking the input resistance of the sign-changing
amplifier 1/¢ instead of 1, or by meking the feedback resistor of the sign-
changing amplifier ¢ instead of 1. In either case the output of the sign-
chenging amplifier would be ¢y, and the corresponding input resistor of the
summing amplifier would be 1 in place of 1/c¢c. This alternative method is
pointed out here because this practice will be followed in meny problems.

In Figure 1-8 are shown records of y and -y for equation (1-19),for
m= 0,25, ¢ = 0,25 and k = 1, with the initial conditions, y(0) = 6, y(0) = 0,

==
|

e e
B W - - J DR G SR S
e e e
e e e

Figure 1-8, Solution of the differential equation of equation (1-19).

12
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1.9 Differential Equations with Variable Coefficients

Differential equations with coefficients which ere functions of
the independent variable can be solved by electronic analog computers. To
this end it is necessary to provide resistance elements which can be made
to vary in value in such a way as to obtain the desired variasble coefficient
values in the computation. For example, if a coefficient were a linear
function of the time, t, there could be inserted as a feedback impedance
in the appropriate amplifier a linear rheostat the sliding contact of which
is made to move linearly with time. Conversely, if a coefficient were in-
versely proprotional to t a similar device could be inserted as the input
impedance of the appropriate amplifier.

The several methods by which these ch anging resistances can be
obtained are discussed more in detail in Chapter 6.

When the coefficients are functions of some of the dependent
variables of the equation, or equations, being solved, servomultiplier
circuits are used.

The nature of the investigations made by the authors did not make
it expedient to undertake any work wi th servomultipliers. For further inform-
ation on this phase of the problem reference should be made to other authors. »2

13
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CHAPTER 2

COMPONENTS OF THE SYSTEM

2.1 Direct Current Amplifier

Since the solutions of the differentiel equations involve steady or
slowly changing voltages it is necessary that the basic voltage amplifier of an
operational amplifier be a direct durrent amplifier. Figure 2-1 gives the circuit
of the direct current amplifier® used in the electronic computing which forms the
basis of this report., This circuit is that of a three-stage amplifier of good
stability and high gain, having an effective phase shift of 1800 (actually 540°).
The input and output connections each have one termminal at ground. Any good dc
emplifier having similar characteristics eould be used. Frost® shows a suitable
emplifier which has higher gain and more power output than the one shown in
Figm 2“1 L

The dc emplifier is mounted on a chassis as shown in Figure 2-2. Con-
nections to a power supply distribution box are made by a six~-conductor shielded
cable, using the six-contact Jones jack shown at the rear of the chasais. Figure
2«3 is a photogreph of an amplifier ready for use as an integrator.

The two knobs on the top of the chassis make it possible to change the
two variable resistors associated with the input tube. These knobs are to be used
for balancing the amplifier for zero dec output. Each amplifier should be care-
fully balanced before using the computer for the solution of a problem.

To balance a sign-changing or multiplying amplifier the input terminals
should be shorted and the resistances adjusted until balance is obtained. For
testing the balance a multi-range dc vacuum tube voltmeter of high input resis-
tance is desirable. Rough adjustment can be made using a high scale (say 100 volt
scale) and final adjustment by using the lowest scale.

A differentiating amplifier should be balanced in the same manner,
mindful of the fact that as the sliding contact of a resistor passes from wire to
wire the sudden change of current will be differentiated and give sharp voltage
pulses in the output,

An integrating emplifier could be balanced by the sesme method. In %this
case balance is obtained when the output remains constant. If an integrating
amplifier is unbalanced, a charge will gradually accumulate on the capacitor in
the feedback circuit. Before testing for balance this charge should be removed
by shorting the capacitor through a low resistance (1,000 ohms). Alternately,
balance could be obtained by temporarily shorting the capacitor (as well as the
input terminals), and proceeding as in the case of a sign~-changing amplifier.

In this case, however, the amplifier has zero gain and lacks sensitivity. Experience
and the nature of the problem being solved will determine which method should be
used in a particular case.

In general it is advisable to disconnect the output of an amplifier
while it is being balanced. It is also advisable to test the complete computer
or discrete parts of it, for balence, since small unbalances may add up to a
large and unacceptable Over-all unbalence,

Page 14
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Jacks of the size taking banana plugs are furnished on the amplifier
chassis for plugging in feedback and input impedances and the input and output
voltages., Where these elements and voltages are plugged in, the spacing of
the jacks is 3/4 inch, the correct spacing for General Radio Type 274-M double
plugs. In addition, the input and output jacks are placed close enough to
the sides of the chassis so that inter-connections of amplifiers can be made
with double plugs.

2.2 Resistors, Input and Feedback

The resistors used as input impedance %24 and feedback impedance Zf
are Continental X-type, t 1%, Each resistor used as Zi or Zf should be

measured to within 0.1%., Resistors (and capacitors) used in the feedback
and input positions should be matched to each other within 0.1% in order to
obtain the proper resistance ratio (or RC product), Carbon resistors should
not be used, even if carefully calibrsted, because of very poor voltage
characteristics. The resistor are mounted on double plugs for corvenience
in changing circuit constants,

2.3 Capacitors

The impedances used in the feedback circuits of integrators are
polystyrene capacitors. These condensers have very high leakege resistance
and low dielectric adsorption. The ones used in the computers have one micro-
farad capacity, are menufactured by Western Electric Companyf and obtained
from the Signal Corps. Polystyrene capacitors are commercially available.

The cepacitors ere arranged for meking plug-in connections with double
plugs. On top of some of the capacitors is mounted a relay for imposing initial
(shorted) conditions. When the initisl conditions call for a definite voltage
on a capacitor, the relay imposing these conditions is mounted on the battery
supplying the voltage. All initisl-condition relays are operated simultan-
eously by a remote "sterting® button. Figure 2-3 shows a csapecitor with relay
mounted on it.

2.4 Power Supplies

Three high voltege power supplies are used, furnishing well-filtered
and regulated dc voltages of ~190, -350 and +350 volts, respectively, relative
to ground. The circuits for the pewer supplies as constructed for use are
shown in Figures 2-4, 2-5, and 2-6.

Each amplifier takes spproximately 2,0 ma at +350 volts, 0.5 ma at
-350 volts and 2.5 ma at -190 volts, The power supplies should be able to
furnish the currents needed for the maximum number of operationel smplifiers
to be used and to maintain good regulation and low ac ripple. The ac ripple
in tke power supplies used is of the order of 5-10 mv. (The ~-190 volt supply
is mounted in a amall cabinet, the two others together in a large one.)

Suitable power supplies of limited capacity can be obtained with the
use of voltage regulator tubes., Such a supply is shown in Figure 2-9.

Page 17
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Reference to the dc emplifier circuit (Figure 2-1) shows a voltage
difference of 190 volts between the two cathodes of the second 6SL7 tube. In

15 vV
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AG ; 8mfd 8 mfd T 8 mfd 50 K 20 K
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—_

+ 350 V. POWER SUPPLY

Figure 2-6.
order to avoid excessive heater-cathode potentisl one side of the heater voltage
supply was connected to the mid-tep of a resistor across the =190 volt power
supply. ‘

2.5 Heater Supply Voltage

In some of the problems solved it was necessary to use one or more
differentiating circuits. For this reason the power for the heaters of the
amplifier tubes was obteined from a 6 volt storage battery. The use of direct
current for the heaters decreased the amount of undesired ac ripple. It is
probable that an ac heater supply voltege could be used with computing cireuits
that do not have differentieting amplifiers.

2.6 Power Supply Distribution Box

The power supply and filsment supply voltages are carried to a power
supply distribution box by means of shielded cebles, plugs and jacks, using a
different kind for each source to avoid the possibility of wrong connections.
The verious voltages are di stributed to a number (in our equipment 12) of
6-contact, female Jones plugs for distribution through shielded cables to the
respective amplifiers,

2.7 Recoxrding Oscillograph

All solutions were recorded by means of a Brush, Model BL-202, double
Page 19
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channel magnetic oscillograph, which has a frequency range from di rect current
to 30 cycles per second (up to 100 cycles per second with decreasing amplitude).
The sensitivity of the oscillogreph is approximately 1.6 mm per millismpere
deflection at the pen point. The impedance of the driving coil is 1500 ohms
and is critically damped if the impedance of the driving source is 250 ohms.
(The menufacturer states that 500 ohms is satisfactory. The performance seems
most satisfactory if the driving source impedences is much less than 250 ohms.)

Since full scale deflection of the pen point from median position is
40 millimeters about 25 ma are required to drive the pen with maximum eamplitude.

2.8 Impedance Matching DC Power Amplifier

While the operational amplifiers used in the computer have a very low
output impedence they can furnish only a small amount of current (approximately
1 ma)., Consequently in order to take records of the output voltage of a computer
there must be placed between the amplifier and the oscillograph a dc power ampli-
fier with a high input impedance and & low output impedance, cepeble of furnish-
ing without distortion sufficient current to operate the oscillograph.

Figure 2-7 shows the circuit of a two channel impedance matching dc
power emplifier with power supply. Each channel uses two twin 6AS7G triodes
connected as ceathode followers. Each tube has its elements connected in parallel.
In each of the channels one 6AS7G has its grids (connected together) permanently
grounded; the other tube has its grids connected to the input voltage terminals
in parallel with a one megohm resistor to ground. The output to the oscillograph
is taken off of the sliding taps of 100 ohm potentiometers in series with and on
the high side of 1000 ohm cathode resistors. Provision is made by means of a
switch for comnnecting the grids of the active tube (of a chennel) to ground and
simulteneously connecting a 500-0-500 microammeter across the output terminals,
By adjusting one of the potentiometers (with a control on the front of the
panel) the channel can be balanced for zero output voltage with all grids grounded.
Returning the testing switch to the neutral position places that channel of the
power emplifier into normal operation. The other channel can be balanced in a
similar manner by turning the "testing®™ switch.in the opposite direction.

This d¢ power amplifier worked very satisfactorily although the com-
bined characteristics of the amplifier and the oscillograph resulted in a slightly
non-linear and non-symmetrical response., As a consequence when the ultimum in
accuracy of relative deflection is desired it is necessary to replot the oseillo-
graph records using calibration curves. This process is not entirely lost work
since the wave forms of the oscillograms are distorted to the eye (particularly
wave forms of large emplitude). This is beeause the recording pen moves in the
arc of a circle rather than in a straight line,

The Brush, Model BL-913, dc amplifier is designed to perform the
impedance matching operations described above, It has very satisfactory character-
istics for use in recording the curves from the computer, It has attenustor steps
providing for an input voltage range from 0,001 volt to 300 volts. In addition,
its characteristics are such that the combination of the amplifier and recorder
gives linear response to 100 cycles per second.

The combination of the two Brush instruments and the selective gain
amplifier described in the next section is almost ideal.

Page 20




MICHIGAN

AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF

UMM-28

HdVY90T1110SO HSNY8 d0d
SHY3IMOTIOE 3dOHLVO ONIHOLVIW 3FONVA3dWI

| U 0001 = =
Baw | 2 j
M LA LNdNI
U0l p LNO ¢ v 001 k
. - ——————4
,‘ v,
m“_“ 38nt = pig —— PiNg
S,945V9 - ) Lo AV13d 3WIL
J
e —0O—
@ g AE9
006 -0- 00§ Mol _ = =
T
MOG
000!
| 3snL = pifig = pirfg
*®
- 1o AVI3Q 3WIL
U 00!

DA 25]e)

[P

U oge AS

j

Pigure 2-7,.

1

AED

A 05§
R12-1°]
>
A Ogg
L
Uose Ac
s, 74 y|
9.SV9
oL
AED

~ 09
A GH

Page 21




AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM-28

2.9 Selective Gain Amplifier

Figure 2-8 shows the circuit of a two channel dc amplifier with selec-
tive gain. The gain of each channel can be set by a selector switch so that the
output volteges is 0.2, 0.5, 1, 2, 3, 5, 7, 10, 20, 40 or 100 times the input
voltege. This amplifier is very useful in obtaining suitable amplitudes on the
oscillograms, particularly so because the gain factor is definitely known.

Each channel of this amplifier consists of an operational amplifier
used as a sign-changing multiplier. The various geins are obtained by introducing
with a selector switch suitable input end feedback resistors. These resistors are
selected so that their ratios are accurete to within 0.1%. The selective gain
emplifiers with power supplies are housed in a single cabinet. Figure 2~9 shows
the circuit of the power supply.

2.10 Low Frequency Oscillator

In some instances it is desirable %o run frequency response curves of a
system to determine the absolute value of the gain and the phase shift. In
obtaining information to plot a Nyquist diagrem (Chapter 12) for determining
the stability of a feedback amplifier this operation is necessary.

For this purpose there was constructed a low frequency oscillator the
circuit of which is shown in Figure 2-10, From this oscillator may be obtained
frequencies from 0,028 to 5.5 cycles per second in 5 continuously variable steps.
The amplitude of oscillation, as well as the wave form of the output voltage, is
very dependent upon the emount of feedback. Two feedback controls, for coarse
and fine adjustments, respectively, make it possible to obtain the desired ampli-
tude of oscillation. A 500-0-500 microarmeter connected in series with & resis-
tance across the output indicates the smplitude of oscillation. Amplitudes of
about one-half full scale defleetion indicate satisfactory output.

2.11 Frequency Recorder

In the solutions of many problems it is desirable to determine the
length of a record (in seconds) as accurately as possible. Sincz & synchronous
motor drives the paper of the oscillogreph the speed of the paper depends upon
the power frequency. A Leeds & Northrup frequency recorder was used to determine
the value of the frequency at the time a record was taken. Since in many cases
results involving time measurements could be checked to + 0.1%, frequency correc-
tions were necessary, the deviations of the local power supply frequency being
at times as high as two-thirds of a per cent.

2.12 Equipment for Simulating Varieble Coefficients

The equipment for simulating continuous functions by using a resistance
that changes in discrete steps consists of the following: (1) a synchronous
contactor; (2) units consisting of a stepping relay, a panel for lug-in resistors,
and a patch-cord connecting assembly; and (3) a relay control panel.
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2.13 Synchronous Contactor

Cam-operated microswitches (Type BS-2RL2), in series with 24 volts dc,
give 1, 2, 4 or 8 regularly spaced pulses per second. These cems are &about
1 1/8 inches in dismeter and have flets machined on the circumference, each flat
corresponding to a chord subtending an angle of 45° at the center. Any two of
these cams can be mounted on one end of 1/4" shaft driven by a synchronous mo tor
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at a speed of one revolution per second. The pulses are used to drive the
stepping relays for obtaining resistances which vary in steps. Figure 2-11
shows the basic synchronous contactor assembly. By a remote control switch
Sp there can be selected either one of the two pulse rates given by the two
ceams on the shaft. In practice the one-person cam is always kept in place.
A pulse from its microswitch is sent directly to the relay control panel (to
be described later) for the purpose of always starting problems on the same
"flat" of the other ceam used.

2.14 Stepping Relays end Plug-in Resistor Panel

The stepping relays have three levels of 40 contacts:' One level has
a non-bridging wiper; the other two levels have bridging wipers. The level of
contacts wi th the non-bridging wiper was used to eutomatically stop the solution
of a problem and to teke care of the imposing of end removal of initial condi-
tions. One of the two levels of contacts with bridging wipers was used to
connect the wiper to consecutive points on a bank of series connected resistors.

Figure 2-12 is a photograph of a chessis on which are mounted a step-
ping reley and jacks for making connections to plug-in resistors. Figure 2-13
shows the stepping relay and plug-in resistor circuit,

The forty numbered jacks (Figure 2-13) are permanently connected to
corresponding stepping relay contacts. There are al so 40 pairs of jacks for
receiving General Radio double plugs on which are mounted resistors (Continentsl
X-type)., Patch cords with a banana plug on each end are used for connecting
the 40 relay contacts to any desired points on the series-connected plug-in
resistor assembly.

There are indicated two jacks with leads going to &n operational
amplifier. If the jack labeled T is connected to one end of the series-connected
assembly of resistors, there will appear across these two jacks a resistance
which varies in accordence with the position of the stepping relay wiper, For
exemple in Section 6.4 of Chapter 6 there is described in detail the method by
meens of which a function directly proportional to x2 cen be simulated. In the
last column of Figure 6-3 are given suitable values for the plug~in resistors,
i.e., the resistance to bve added for that step. The first resistor is 5,000
ohms; the second, 30,000 ohms; the third, 60,000 ohms; etc., each resistance
being 30,000 ohms more than the preceding one. Contasct 1 of the stepping relay
should be connected to the point between the 5K and 30K resistors; contsct 2,
to the point between 30K and 60K; contact 3, to the point between 60K and 90K;
etc, As a result there will apnear between the two terminals leading to the
operational amplifier a resistance of 5K for step 1, 35K for step 2, 95K for
step 3, etc.

In this example the totel resistance between these two terminals should
be 23.4 megohms for step 4C. In order to obtain as high a resisteance to ground
as possible the jacks on the plug-in resistor panel were all mounted on lucite,
as may be seen in the photograph of Figure 2-12,

The two stepping relay assemblies used in our experimental work per-
formed satisfactorily except in one respect. They did not at all times fulfill
the requirement of having the bridging wipers actually "bridge" in going from
one contact to the next. Careful cleaning of contacts seemed to help.
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2.15 Stepping Relay Control Panel

Figure 2-14 shows the stepping relay control circuit. Provision is made
for controlling three stepping relays.

Relay F is the master pulsing relay, its pulsing rate depending upon the
two cams on the synchronous contactor and on the position of the remote switch Sp
(Figure 2-11).

Relay G, through normally closed contacts, passes pulses from relay F to
the coil of stepping relay A. When stepping relay A reaches position 40, relay G
is energized and no longer passes pulses., Stepping relay A then stops. Releys H
and J performs the seme functions for stepping relays B and C,

These three relays G, H and J also pley an important pert in imposing
the initial conditions. When all three of these relays are energized (i.e., when
all three stepping relays are on contact 40) power is furnished to the coil of
relay L, which is then closed, This removes power from the "loecking" contacts on
relay M.

Relays L, M, and N perform the functions of automatically imposing and
removing the initial conditions. The initial conditions are imposed as soon as all
three stepping relays reach contact 40 and are removed as soon as any one of the
relays reach point 1.

When relay N is closed, the initial-condition relays are energized, there-
by removing the initial conditions. Relay N is controlled by nomally open contacts
on relay M. If relay M is momentarily energized it remains closed by virtue of its
"glectrically locking™ contacts. These contaects obtain power from normally closed
contacts on relay L. (As long as relay M is closed, relay N is closed and =all
initial conditions are removed.) If relasy L is energized (all stepping relays on
contact 40) relay M "drops out™ and the initial conditions are restored. The initial
conditions are not removed until relay M is again energized which is done as soon as
any one of the stepping relays reaches contact 1.

The stepping relays always stop on contact 40. When they are in this
position releys G, H end J are energized and no longer furnish driving pulses to
their respective stepping relays. Relay L is energized, removing power from the
®"locking™ contacts of relay M. Relays M and N are inoperative, no power is furnished
to the initial-condition relays and the initial conditions are imposed.

Relay O is the starting relay, controlled by the remote-control momentary-
contact starting button SS‘ When this switch Sq is closed momentarily, relay O is
energized as soon as the next pulse is furnisheg by the microswitch on the one-per-
second cem. Relay O will then remain closed until relay M closes., As soon as
relay O closes, connections are made for passing the next pulse from relay F to each
of the stepping relays. Actuated by this pulse each stepping relay g es from position
40 to position 1., As soon as contact 40 is left, relays F, G and H open and pulses
are continued to be supplied to the stepping relays. Simultaneously relay L drops
out, energizing the "locking™ contacts of relay M, At the instant any one of the
stepping relays reaches contact 1, reley M closes and remains closed.s This immedi-
ately removes the initial conditions and de-energizes the starting relay O.
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In case any one or more of the three stepping relays are not used, the
corresponding switches S,, Sg or S¢ should be closed. This will then permit
normal operation of relay L.

Figure 2-15 shows a complete laboratory set up for solving a fourth
order differential equation with variable coefficients. The lettered components
can be identified as follows:

A. Low frequency oscillator (not in use).

B. Stepping relay control penel.

C. Synchronous contactor.

D. Stepping relay and plug-in resistor assembly, 1.
E. Stepping relay and plug-in resistor assembly, 2.
F. Power supply, -190 volts,.

G. Power supply, =350 volts,

H. Power supply, +350 volts,

I. Power supply distribution box.

J. Two ch annel selective gain amplifier with power supplies.
K. Impedance matching two-channel dc power amplifier.
L. Two channel oscillograph.

M. Initial condition battery.

N. Potentiometer assembly for fine control of initial condition,
(See Figure 5-7).

0. Initial condition battery (used with N),

P, Amplifier in which variable resistance from D is used.
Qe Integrating emplifier.

R. Integrating amplifier.

S. Amplifier in which variable resistance from E is used.
T. Integrating amplifier,

U. Integrating emplifier.
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CHAPTER 3

DIFFERENTIAL EQUATIONS WITH ONE INDEPENDENT VARIABLE

In paregraph 1.8 of Chepter 1 is given the solution of equation (1-19)
which is a second order differential equation with constant coefficients and one
independent variable. The solution obtained for this equation gives the motion
of the system uninfluenced by outside "forces"™ except those of a static nature
necessary to set up the initial conditions at the time t = O, In this chapter
there will be shown several examples of the response of a similar system when
operated on by outside "“forces", or driving functions.

3.1 Response of a System to a Driving Function

In the equation

my + ey + ky = F(t), (3-1)
F(t) represents the driving function.

Figure 3-1 shows the circuit and a photograph of the computer for deter-
mining the response of the system described by the left-hand side of equation
(3-1) to an arbitrary driving function F(t). The operation of the computer can
be more rsadily understood if equation (3-1) is rewritten as

my + cy + ky - F(t) = 0. (3-2)

The outputs of emplifiers A4, Az end are, respectively, y, -y, and ¥.
Into amplifier A, are fed the driving function F(t) through a one megohm resistor
and -y through & resistor of 1/c megohms, Into amplifier A, are fed: (1), the
output of amplifier A, ey - F(t), through a one megohm resistor; (2), y, through
8 resistance of 1/k megohms; and (3), ¥, through a resistance of 1/m megohms.
smplifier Ao adds these quentities giving the equivalent of equation (3-2). The

response, y, of the system can be observed for emny driving function F(t).

3.2 Transient Response to a Step Input Function

A step input function is one which has the velue zero for time t < O,
and a constant value for time t > 0, i.e.,

Step function = F(t)
F(t)

0, for t £ O,
A, for t > 0, (3-3)

where A is a constant.

Figures 3-2, 3-3, and 3-4 give the responses of the system described in
the equation

0.25y 4+ cy + y = F(t), (3-4)

where F(t) is the step function described sbove, A being equal to 1l.5(volts), for
three different values of c¢; 0,25, 1,00 and 4.00 respectively. The quantities m
and k of equation (3-2) have the values of 0.25 and 1.00, respectively.
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In Figure 3-2 is shown the trensient response of the system to a step
input, the coefficient ¢ (= 0.25) being such that oscillations teke place about
a medien position corresponding to the steady state position of y. Oscillations

will occur whenever ¢2 is less then 4km,

The response of Figure 3-3 is obtained when ¢ has the value correspond-
ing to c® = 4 km., In this case critical demping occurs, i.e., the steady state

position of y is reached in minimum time without oseillations.,

Figure 3-4 shows the response when c¢2 is greater thamn 4km. In this
case the system is highly overdamped, y reaching its steady state position very

slowly.
3.3 Steady State Response to Sinusoidal Input Function

If in Figure 3-1 a sinusoidal wltage, F(t), is applied to the input
terminals there will appear at the output terminsls a voltege, y, which, after
trensients have disappeared, will have a sinusoidal wave form of the seme fre-
quency as the input. In general the output voltage will differ from the input
voltage in both magnitude and phese, Figure 3-5 shows the steady state response
to a sinusoidal input function of the system describved by equation (3-4) with
the constant ¢ equal to 0.25. From records such as these there can be determined
by measurements the relative gain (magnitude and phase shift) of the system.

The steady state response of the system to sinusoidal input functions

having angular frequencies ranging from 0,67 to 4.15 radians per second was
determined experimentally. In Figure 3-6 are shown the absolute values of the
ratio of the output to input plotted as a function of the angular frequency.
The theoretical values appear as the solid line, the experimental values as the

small circles.
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Similarly, in Figure 3-7 are shown the theoretical and experimental values
of the phase shift.

For a sinusoidal input function, F(t) = A ej‘dt, equation (3-4),
with ¢ = 0.25, mey be written,

0.6 ¥y +0.856 ¥y + y = AelWt, (3=5)

For the steady state response the frequency of the output will be the same as
thet of the input but the amplitude and phase will be different., We may assume
then that

y = Bejwt, (3=6)

where B is a complex number, the magnitude of which is the magnitude of the
sinusoidal output and the phase angle of which is the relative phase between
output and input.

Differentiating equation (3-6) once to obtain y and twice to obtain y,
and substituting values of y, y and ¥ into equation (3-5) there is obtained after
cencelling out ej¥t,

(=0.25 W2 + 3j0.256W + 1)B = A4, (3-7)
or
B_ 1 output Z//
A 1-0,25 w< + J 0.25 ® |Tnput phase angle (3-8)

Values of (J may be substituted into equation (3-8) to obtain theoretical values
of the relative magnitude and phase shift of the output. The theoretical values
for the plotting of the solid curves of Figures 3-6 and 3-7 were obtained in this
way.

3.4 Responses to Other Types of Input Functions

In a manner similar to that described above, responses to a system
could be found for other types of input functions. For example, in paragraph
11.2 of Chapter 1l there is described the response of a system to a remp input
function, a ramp function being defined as a function the value of which is zero
for t+< O and proportional to the time t for t > O. In paregraph 11.3 of the
same chapter there is used as an input function one which, after the time t = O,
varies as the square of the time,
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CHAPTER 4

SIMULTANEOUS DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

To show how simultaneous differential equations with constant coeffi-
cients can be solved by the electronic analog computer, there have been chosen
two exemples: (1), the free vibrations of an undamped two~degree-of-frecdom
system with spring coupling; and, (2), a dynamic vibration absorber.

4.1 Free Vibrations of an Undamped Two-Degree-of-Freedom System with Spring
Coupling )

In Figure 4-~1 are shown two masses m, and no supported by springs with
force eonstants k) and k2 and coupled togetherlby a spring with a force constant

k3. If the masses are confined to vertical motions, the system has two degrees
of freedom.

Considering the displacements of m] end mp to be y, and ¥, respectively,
with the downward direction as positive, it is easily seen that the two equations
of motion are

m]_.y'l + (kl + ks) yl-k3y2 = O,
and

m2§2 + (kz + k3) y2-k3y1 = 0, (4-1)

The computer for the solution of these simultaneous differential
equations is shown in Figure 4-2, The upper row of amplifiers in this figure
represents the first of the two equations. 4z and Ay are integrating eamplifiers
and A is a summing emplifier., Al is a combined multiplying end sign changing
emplifier, obtaining its input voltage from the output Yo of the lower row of
amplifiers, A similar explenation could be given for the operation of the lower

row of emplifiers representing the other equation., The switches end batteries
are used for setting up the initial conditions of the problen,

In the solutions given below the following constants were used for
the coefficients of equations (4-1),

ml = m2 = l’

kyj = k= 1,

Case I k3

#t
e

Case II k3 = 0,2,

For all problems solved the initial velocities of both masses were zero, i.e.,

y1(0) = ¥p(0) = o,
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Figure ”4-10
Undamped two-degree-of-freedom gy stem wi th spring coupling.
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Figure 4¢-2,
Computer for solving the simultaneous differential equations of equation (4-1),
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For both cases I and II three sets of initiel displacements were used,

A, yl(O) = yz(o’ = V,
B' yl(o) = V’ yg(o) = -V’
C. yl(O) + vV, y2(0) = 0, where V = 6 volts,

Case I. ks = ]

Figures 4-3, 4-4, and 4-5 are records of Y1 and Ys for the coupling

coefficient k5 = 1. For Figure 4-3 the initial conditions were that both masses

had zero velocity and equal displacements in the same direction. Both masses
oscillate with the same frequency, amplitude and phase. The frequency as measured
from the records was 1,001 radiens per second, the theoretical frequency being
1.000 radians per second,

The mathematical procedure for computing the theoretical frequency is
not given here but mey be obtained, with other theoretical considerations, from
den Hartog's3 text,

For Figure 4-4 the masses were initially at rest with equal and opposite
displacements., The masses oscillate with the same frequency and amplitude but
180° out of phase with each other. The experimental frequency was found to be
1,733 redians per second, the theoretical value being 1.732,

For Figure 4-5 both masses were initially at rest but m, had zero dis~
placement. It is to be noted that energy is transferred back and forth between
the two masses. The reality and significance of this fact can be more readily
appreciated in the case of a smaller degree of coupling between the two masses,
(Figure 4-8).

Case II. k§ = 0,2

Figures 4-6, 4-7 and 4-8 are records of ¥y, and yp for the coupling
coefficient k3 = 0,2, with the saeme initial conditions, respectively, as for the

several examples under Case I, When the two messes were initially at rest with
eugal displacements in the seme direction (¥igure 4-6) the experimental and
theoretical frequencies were, respectively, 0,995 and 1.000 radians per second.
When the two masses, initially at rest with equal and opposite displacements,
osclllated as in Figure 4-7, the experimentsl and theoretical frequencies were
respectively, 1.173 and 1.183 radiens per second,

Figure 4-8 clearly shows the transfer of energy back and forth between
the two masses., Den Hartog shows that the motion of each mass is the combination
of two sinusoidal motions of frequencies corresponding to those of the two ™reson-
ance" frequencies (Figures 4-6 and 4-7). If the two "resonance" frequencies are
close enough together the phenomenon of beats cen be observed, This is clearly
seen in Figure 4-8,
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4.2 Dynamic Vibrstion Absorber

Equation (3-1) of Chapter 3,

my + cy + ky = F(t), (4-2)

may be considered as representing a mass m attached to a spring with elastic
constant k, having a damping force proportional to the velocity of the mass,
and acted on by a driving function F(t). In paragraph 3.3 of Chapter 3 it is
shown that for a sinusoidel driving function F(t) = AeJYW? +the motion of the
mass, after transients have diseppeared, is a sinusoidal motion of constant
amplitude and of a frequency equal to that of the driving function,

In Figure 4-9 this system is represented by the mass my, spring k;
and damping device ¢, the system being subjected to the driving function F(t) =

If there is attached to the mass m; a system consisting of another
mass mg and spring ko, the values of my and ks being so chosen that the

resonance\[ kg/mg of this second system is equal to the frequency (J of the
driving function, it can be shown? that the meain mass my does not vibrate at

all, and that the auxiliary system (mg, kz) vibrates in such a wsy th at the

force exerted by it on the mass oy is at all times equal and opposite to the
driving force A edWt,

Ll L L

ki c
O — —— m,
Y
jwt
ko l Fit)=ae'™
o _ 4 m
Yo
Figure 4-9.

Dynemic vibration absorber,
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The differential equations for the complete system shown in Figure 4-9

(X ) 2 ‘IJ
myy *+ ey;3 * ky; + kg (vl-yz) = A’ t,

and
mz'y.z + kg (Y2 - yl) = 0, (4-3)

For the purpose of setting up a computing circuit to solve these simultaneous
equations they may be written,

" . - - jujt =
my, *+ ey + (5 + k) ¥ = ky¥p = Ae 0,

and "
myy + koyo - kzyl = 0, (4=4)

Figure 4-10 shows the arrangement of operational amplifiers for obtain-
ing the solutions of the equations. The operation of the computer can be readily
understood from the circuit. The only unusual feature is the assumption of an
output ~Yo from amplifier A,. This mekes it possible to use one less operational

amplifier,

.ll—o‘< ®

MW

T

114

—1—1r—

Figure 4-10
Analog computer for dynamic vibration absorber.
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The enalog computer of Figure 4-10 was set up formy = 1, my = 0.5
kl =1, kp = 2 and ¢ = 0,5, A varisble low frequency oscillator was used to

furnish the driving voltage F(t) = real part of AW o pcos Wt. The outputs
y; and -y, were observed and the frequency of the input voltage varied until the

observed amplitude of motion of m; was & minimum (after transients had disap-
peared).

Having determined the proper driving frequency, the input voltege
F(t) was removed and the system permitted to come to "rest™, the energy being
dissipeted by the damping ¢. Then, with the initiel conditions of zero velocity
end zero displacement for each mass (y; = ¥, = ¥y = ¥ = 0, at time t = 0) the

sinusoidal driving function wes applied and records of Y1 and F(t) taken as
shown in Figure 4-11., After initial transients have di sappeared, the vibration
ie negligible, The dashed line shows the steady state amplitude that ¥y1 would

have if mp dnd ko were absent. How small this vibration is may be cleerly seen
in Figure 4-12, where the motion of ¥y, is amplified by a factor of 50 as compared
with F(t). The reduction of the vibration due to my and ko is better than a
factor of 60,

In Figure 4-13 there are recorded ~Yo, the motion of mp and the
driving voltage F(t). The effect of the driving “force™ F(t) on the mass
m) 1is seen to be absorbed by the vibrations of ny which are seen to be 180°
out of phase.

Of some interest is Figure 4-14 which shows the transient and steady
state response of the system of Figure 4-9 to a step imput function, i.e., @
suddenly applied steady force.

Figure 4-11,
Response Y1 and driving voltage F(t) for a dynamic vibration
absorber, y; amplified three times more than F(t).
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Figure 4-13,
and driving voltage F(t) (with equal geins) for

a dynamiczvibration absorber.

Response y
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Figure 4-14.
Response of dynemic vibration sbsorber to a step input function.
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CHAPTER 5

BOUNDARY VALUE PROBLEMS

5.1 Static Deflection of Uniform Beams under Uniform Losads

de Will now consider the solution of differential equations where
not only are there certain given initial conditions but also certain given
final or end conditions. As an example of this type of problem we first
consider the static deflection of a uniform beam under uniform load.

The differential equation representing the static deflection of a
horizontally supported beam of smell cross-sectionasl dimensions in comparison
with the length is given by S

2
_% [EI %;3.’._7 = w(x), (5-1)
dx

where x is disteance along the beam, y is the vertical deflection of the beam,
¥(x) is the weight per unit length along the beam, I is the area moment of
inertia of the cross section of the beam with respect to the central axis, and
E is Young's Modulus of Elasticity. For a beam of uniform cross-section both
E and I are constant, and we can write Equation (5-1) as

\ A
pr &) o gy,
ot
or

4
dy(x, . al(x),

where a = 1/EI = constant.

It should be noted that the bending moment M(x) at amy point along the
beam is given by

M(x) = EI Pyx)

(5-3)
dxg
Since the shear force 4(x) = Q%%El_ , We can write for our uniform
beam
y(x)
Q(x) = EI __.Y_S__ (5-4)

dx
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(A) Beam Clemped at Both Ends.

The diagrem for a uniform beam cl emped at both ends and under a
uniform load is shown in Fig. 5-1.

N \

\\\ W (x)=CONSTANT ~\\
N\

— N

y \

L r—\\

N N

Figure 5-1. Uniform beam clamped at both emnds.

If in Equation (5-2) we let aW(x) = V, we obtain for the equation of
our beam

4
dx%

Wherever the beam is clamped it has zero deflection and zero slope.
Hence we write as our end conditions

y(o) = y'(o) = y(L) = y'(L) = O (5-6)
The theoretical solution to Equations (5-5) and (5-6) can be shown
to be
v 12 4
y(x) =3 (F =L + %— ) (5-7)

#e now proceed to check Equation (5-7) with the analog computer.
The circuit for solving equation (5-5) is shown in Fig. 5-2.
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Figure 5-2,

Computer circuit for solving uniform beam clemped at
both ends and with uniform load.

In solving equation (5-5) with the computer we let the independent

variable x (distance along the beam) be time in seconds. Then when we take
.% s we are actually taking the derivative with respect to time.
X

The conditions y(0) = y'(0) are simulated on the computer by shorting
the feedback capacitors of Ay and A5 through initial condition relays until the

solution of the problem is begun. At x = O and x = L the bending moment M and
the shear force Q have certain definite discrete values, as yet unknown, We

denote 3%%1 as =V, and E%%l— as Vﬁ. These conditions are simulated by means

of battery voltages applied through initial condition relays to the feedback
cepatitors of Az and Az. The battery volteges are released as soon as the
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solution of the problem is begun. The constant V is the input battery

voltage to the emplifier A) and is measured in terms of recorder deflection
units,

The velues of initial voltages Vg and Wy are, as stated above,
unknown, Note in Fig. 5-2 that we make Vo a fixed battery voltage (of the
order of magnitude of 6 volts) and Vg4 a voltage variable by means of a
potentiometer connected across a battery. By changing Vg we can vary the
ratio Va/Vp, and this is sufficient control over the initial volteges Vg
and Vp to allow us to obtain e solution to our problem. The technique of
finding the solution is as follows:

When the starting button is pressed, all the initial condition
relays are energized, the initial conditions y = 0; y' = 0; y" = VW,
y"' = - Vg are all released, and the solution of the problem begins. Since
we have set Vg at an arbitrary value, the ratio Vg/Vy is erbitrary, and the
computer solution will probebly not be correct, that is, the end conditions

y(L) = y'(L) = O will probably not be met. 4n example of a first trial
solution of this type is shown in Fig. 5-3.

|
i o
Tl

‘\
[
BN

“
T [
T ‘

Figure 5-3. ZFirst trial sclution for uniform beeam.

Page 51



AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM-28

Vo 1s then changed by means of the pot (thus changing V,/Vy) and a second

trial solution is made. The process is repeated until the exact potentiometer
setting is determined for a correct solution, i.e., one for which the y(x) and
y'(x) curves pass through zero at the seme time. Since v'(x) is merely the
slope of y(x), the correct solution is obtained when the minimum of y(x) falls
on the zero axis. In Fig. 5-4 are shown several trial solutions where Va is

varied until & nearly correct solution is obtained. In Fig. 5-5 are shown the
curves of y, y', y", and y"/ for a correct solution.

After a solution which satisfies the required end conditions has
been obtained, the length of the beam which that solution represents is care-~
fully measured from the y'(x) curve. The recorder is almost glways run on
medium speed when obtaining records for these measurements of length, and hence
one longitudinal division in Fig. 5-5 represents 0.2 seconds. Using & transparent
millimeter rule, it is possible to obtain the length to a hundredth of a second.
In this case the L is found to be 3.51 sec.

In our particular problem we have made the length L arbitrary. In the
finel solution this length L is in fact the length of the solution recorded
between end conditions. In & problem where an original length £ is specified
end a computer solution length L is obtained, we must meke a change in varisbles.
This problem is discussed fully in Section 5.2.

We have assumed that ¥ x) - V. By measuring V in terms of recorder

deflection, and from the value of L as determined by measuring the length of the
computer solution, we can calculate the theoretical deflection curve for our
problem from equation (5-7). This curve is shown in Figure 5-6, along with
points taken from the computer solution of y(x) shown in Figure 5-5. The small
discrepency of the experimental points is probably because of a slight lag of
the recorder pen due to dead space.

Reference to equations (5-3) and (5-4) shows that the bending moment
M is proportional to y® and the shear force Q proportional to y"', the constant of
proportionality being EI. Therefore the outputs from the computer in which we
are more interested in a uniform beem problem will be y, y“, and y'’.

It should be pointed out that the ratio Vas Vp is often very critical

in determining the solution with correet end conditions, expecially for the
problems in Section 5.2. For this reason the potentiometer which determines
Vg is actually made up of three wire-wound potentiometers (see Figure 5-7).

* Notice that the solution continues beyond the point where the end conditions
are met, However, we are not interested in the solution beyond this point.
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ON\J\ X —1—
ﬁ\ —— THEORETICAL GURVE
|
V O POINTS FROM COMPUTOR
N\ SOLUTION

o &) 4 / P

/

\ J
N )4

A v

4 ﬁ%’

Figure 5-6. Comparison of theoretical and computer deflection curves.

’ !'IIlI
50,000 -
v 1000 _A_ 100 .~
COARSE FINE VERY FINE
r— Va CONTROL CONTROL CONTROL

Figure 5-7. Potentiometer for controlling Va.
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(B) Beem Hinged at Both Epds.

The diagram for a uniform beem hinged at both ends and under a uniform
load is shown in Figure 5-8,

—— x
W (x)= GONSTANT

LAY

/2. /
Y

Figure 5-8., Uniform beeam hinged at both ends.

#hen a beam is supported by a hinge, the deflection y(x) and the
bending moment EI y"(x) are both zero. Therefore our equation is

d W(x
ﬁ_ - ﬁl = V (5-5)
where y(0) = y"(0) = y(L) = y™(L) = 0 (5-8)

For this problem and following problems in static deflection of
beams we will choose our units of deflection such that V= 1. Thus if V = 7.6 mm
on the recorder, 7.6 mm is our unit of deflection.

The computer circuit used to solve equation (5-8) is exactly the seame
as that shown in Fig. 5-2 with the exception that the feedback capacitors of
A3 and Ag ere initially shorted, and the initial wltages Vo and V, are epplied

to the feedback capacitors of 4 and A, respectively, Va being veriable as before.

Following the technique described for the clamped beasm we vary Va until we get a
solution where y(x) and y™(x) cross the zero axis at the seme time, or very

nearly the seme time. The length L of the solution is determined as the average
of the two lengths L, and L, of y(x) and y"(x) respectively. In general one cean

get L1 end L2 to agree within a few hundredths of a second, The oscillograms of

Y, ¥', y" end y"' as recorded from the computer for the hinged beam are shown
in Figure 5-9,
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For purposes of simplifying our problem of checking the accuracy of

the computer we will assume not only that V = w(x) - 1, but that é_I = 1 and
EI

hence that W(x) = 1. Then we cen write

M(x) = y™(x) (5-9)
Qlx) = y* (x) (5-10)

e following formulass are given for the maximum bending moment and

deflection.
2
¥ = WL
max 8 (5-11)
5 wL4
Vmex = Bgz "EI (5-12)

where w = weight/unit length = W(x)

From the computer solution of Fig, 5-9 we find that the length L = 3.664
sec. from (5~11) for w = 1 we have

From the computer solution for y" we obtain

Mpox (measured) = 1.70 .

The agreement is within the limits of recorder error.

From equation (5-12) for w = 1 and EI = 1 we have

5 (13.42)%

Imax * 384 = 2435

From the computer solution for y we find that

Ymax (measured) = 2.33

Again the agreement is within our limits of recorder error. It is to
be remembered that the M, .. and yyay referred to here are not read directly from

the oscillographs of Fig. 5-9 but are subject (1) to a calibration-curve correction
(which may change the values by as much as 5%), (2) to a multiplication factor
depending on the selected gain of the d.c. amplifier between the computer output
and recorder impedance-matcher input, and (3) to a scale factor depending upon
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the value of V measured in rm of recorder deflection. For example, in Fig. 5-9
we see that 1.5 y"max is 15.1 mm. From our calibration curves we correct this

t0 14.4 rm. Now the corrected value of V is found to be 5.64 mm. Hence
our final value of Myey Which is to check with the value from equation (5-10)

is
_ 1l4.4
'mex = T.5 x 5.64 1.70,

(C) Cantilever Besm

In the case of the cantilever beam under a uniform load, one end
of the beam is clamped and the other end is free. The diagram is shown in

7
7

—
7\\\\\\‘\\\\\\\\\\\\\
"’

Figure 5-10. Uniform cantilever beam under uniform load.

For the clamped end we heve the conditions
y(o) = y'(o) = 0 (5-13)
At the free end the bending moment and shear force are both zero,
and our conditions are
y* (L) =y (L) =0 (5-14)

As in the case of the hinged besm we let EI = 1 and w = W(x) = 1

for purposes of simplifying our check of the computer solution. Then our
differential equation is

a4 W(x)
w T .
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where the end conditions given in equations (5-13) and (5-14). The computer

circuit used to solve the cantilever beam problem is exactly the same as that

shown in Figure 5-2., The technique for getting the solution is also the same

as in the case of the beam clamped at both ends except that V, is varied

until y™(x) and y"'(x) ere zero at the same time. Since y"' is the derivative

of y", this will occur when the minimum of y™ lies on the zero axis.

The curves showing y, y', y", and y*' from the computer are shown in
Figure 5-11.

The following formulas give the maximum bending moment and shear for
a cantilever beem under uniform loed.®

w L2
Mnex

(5-15)

v w 14
max 8 EI

From the curve showing y"™' (x) in Fig. 5-11 the length L is found to
be 2,14 sec, For w = 1 and EI = 1 we get from equation (5-15)

2
Myex = iﬁ:lgl__ = 2,29

From the computer solution for y™ we obtain

- 13.2
Mmax (measured) = -—5:-9—2—- = 2.23

From equation (5-16)

y

o (2.14)%
mex = 2.62

From the computer solution for y we find that

14.6
Ymex = T95 ° 2047

The results for the cantilever beam, while not as accurate as those
for the clemped emd hinged beams, are still within 7%. Again the inaccuracy
in results is probably due more to inaccuracies in recording rather than
inaccuracies in the computer, since accuracy in problems where the results
depend upon measurements of length rether than deflection (as taken up in the
next section of this chapter) are much higher.

In conclusion it should be stated that the presentations made thus
far in Chapter 5 showing the solutions of static deflections of uniform beams
under uniform loads by means of the analog computer have not been made with
the main purpose of acclaiming the computer as en accurate end time-saving
means of solving such problems. Problems ghis simple in nature have already
Page 60
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been thoroughly worked out anaelytically. Rather we have tried to acquaint
the reader with the technique of setting up and solving problems with end
conditions, an acquaintance which will be very useful in understending the
remainder of Chapter 5 and all of Chapter 9, where the use of the analog
computer does show considerasble promise as a great time-saving device in
more complicated problems. '

5.2 Normal Modes of Oscillation of Uniform Beeams

In Paragraph 5.1 the equation for the static deflection of a beam with
small cross-sectional dimensions in comparison with its length was given as

2 2
dz [E 9_.?32‘_).] = W(x),
x

ax (5-17)

where x is distence along the beam, y is the vertical deflection of the beem,
and W(x) is the load intensity along the beam. To obtain the equation for the
lateral vibration of the beam we imagine that the vibrating beam is loaded by

inertia forces dus to its own mass end acceleration, the inertia force along
the beam being given by’

YA . 92 yi(x,t)
g 2 t2 ’

inertia force = =~

(5-18)

where ¥ is the density of the material of the beam and A is the cross-sectional
area, We frequently write

M= e (5-19)

where o~ is the mass distribution along the beam. Substituting equation (5-18)
for #(x) in equation (5-17) and letting /A/=,x:ﬁ_ we obtain
8

52
3 x?

EI a:ozgx,t) = - azzgx,t)
[ ‘9 x2 ‘7 2 S t2

) (5-20)
which is the general equation for the lateral vibration of the beam.

In studying the normel modes of vibration of the beem we assume that
y(x,t) = X(x)e‘j)‘t , (5-21)

where X(x) is a function only of distance along the beam and is independent of
the time t, and where ej)‘t represents sinusoidal oscillations of frequency A
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From equation (5-21) it follows that
2
25 - - )\ 2Nt x(x) (5-22)
o9t2
and
Py (BI =2 ¥ ) = _ (EI ) e , (5-23)
0 3x2 dxe axe

where E and I are assumed to be functions only of x. OSubstituting equation
(5-22) and (5-23) in equation (5-20) we get

a2
o2 (EI g%_) - Nx=0, (5-24)

which is our fundasmental equation for the lateral vibration of & beam.
Since equation (5-17) eonsiders only bending forces, the same limitation
applies to equation (5-24). Forces due to shear and rotary inertis are
neglected. However, these additional forces are tesken up in Peragraph 5.3
of this chapter.

In the case of a beem with uniform cross-section where E, I, and

A are constants, we can rewrite equation (5-24) as

EI d% _x-0. (5-25)
#X2 axt

It is apparent that equation (5-25) is a linear, 4th order differential
equation with constant coefficients, and that therefore it can be set up on
the analog computer. However, let us first consider the change of the
independent veriable.

de denote the length of our uniform beam as A . Then the solution
in which we are interested has the renge O4£ x < £ for the independent
varisble x. From our computer we will obtain a length L for the solution
of the problem. Denoting X as our new varisble, we must have the range
0¢ X<« L forX. Hence we let

— L
= - X 5"26)
X 7 (
from which

a4 . La

ax 2 dx

A Rt

2 £2 )

Page 63



AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-28
n n dn
and in general dn - Ln = (5-27)
dx £

Rewriting equation (5-24) in terms of our computer variable ¥ we
find that

L . 4 a2
EI X ). = C 5-28
NI poer ( = ) - v X=0, ( )

and for the beam of unifom cross-section

EILY | 4%

= _+ 4dX . x = o, (5-29)
/u/\‘g/?—‘l ax4

For purposes of simplification we let

2,4
2 . a2
A = Y 'EI ’ (5-30)

—
A= d‘/ , (5-31)
Kk

and equation (5-29) becomes

from which

14 it x

- X = 0 . (5-32)

4
In equation (5-32), 'Lg— is a constant which we will denote as C.
Then equation (5-32) becomes

c ¥ _ yx . o (5-33)

axt

Equation (5-33) is what we set up on the analog computer, where C is

& constant which we may choose to give any velue. (It is usually given the
value unity for a computer solution.) Corresponding to the value of C which
we select in setting up the camputer, we will find a length L of the ccmputer
solution for which the end conditions as determined by the type of beem support
being simulated are met. Knowing L and C we can s0lve for o from the
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formula

4 =

\/'6_ (5-34)

With S\ determined our problem is solved, for by going to
equation (5-31) we can find the frequency of vibration for the type of beeam

in question by substituting the physical constants E, I,/u and/@ of the
beam.

A. Normal Modes of Oscilletion of a Beam with Free Ends.

In the case where both ends of the beam are free (Figure 5-12)
the shear and bending moment at each end are zero, and we have as the end
conditions of our problem

X" (0) = X* (0) = X" (L) = X" (L) =0 (5-35)

Figure 5-12. "Free-Free" or "Floating™ Beam

The equation to be set up on the computer is

c & . x . 0 (5-33)
ax4

where time in seconds on the computer corresponds to the units of X
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The computer circuit for solving equation (5-33) with the conditions
of equation (5-35) is shown in Figure 5-13. Note that the feedback capacitors
across Az and A4 are initially short-circuited, eand that those across Ag and
Ag have initial voltages Vg and Vp, Vg being variable by means of the potentiometer
shown in Figure 5-7. Vg and Vy, are the slope and deflection respectively at each
end of our beam necessary to cause it to vibrate in a normel mode of oscillation.

An alternative circuit requiring only four instead of six emplifiers
is shown in Figure 5-14. Although the experimental data presented in the rest
of this chapter was tsken from the computer as set up in Figure 5-13, preliminary
tests using the circuit of Figure 5-14 showed improved consistency in comsecutive
runs, as would be expected with two less amplifiers in the circuit.

The technique of varying V, until a solution is obtained which satis-
fies the end conditions of equation ?5—55) is described in detail in Section 5.1A4,
where the static deflection of a besm clamped at both ends is solved on the
computer. For the ®“free-free" beam the proper end conditions are obtained when
the minimum (or maximum, depending on the number of the mode) of X" (X) goes through
the zero-axis.

The oscillogrems of X, X", and X"' for the solution of the first mode
of oscillation are shown in Figure 5-15. In order to make certain that we have
a correct solution when we teke & record of X(X), a record of X"(X) is teken
simultaneously on the second channel. If the minimum of X"(x) falls on the
zero axis, we know we have a correct solution for X(X). This procedure becomes
more important in obtaining X for higher modes, where the solutions are not
likely to repeat,

No difficulty is experienced in obtaining an exact solution for the
first mode. The value of Va is critical emough, however, that the fine control
of the potentiometer (Figure 5-7) is necessary in setting Vae

The length L of the solution is most accurstely determined from X"',
since here the curve starts out with a finite slope and ends with a finite slope.
The technique of measuring L and of applying the proper corrections is discussed
in Section 5.4 at the end of this chepter. Since the determination of o depends
on 12 /See equation (5-34)/, the measurement of L is fairly critical.

The following data were obtained from different runs for the length
L of the first mode.

4,73 sec
4,72
4,74
4,72
4,71
4,75
4.73
4,74

Av L = 4,730 sec C=1
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From equation (5-34)

12 (4.73)2
———— - 22.39

3

x _xlll

\\ 7

A+ ) _/.._4|‘|.v)+<.
b
|

Figure 5-13. Computer circuit for obtaining normal mode solutions
of a vibrating uniform beam.
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Figure 5-14. Alternative circuit for obtaining normel mode solutions.
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22,39

Experimental oA

Theoretical® A = 22.4

The setting of V, for obtaining the second mode solution is fairly
near the setting for the first mode. In the case of the second mode the
final setting of Vg is quite critical, and some difficulty may be experienced
in obtaining exact repetition of solutions from run to run. In other words
while the X" curve maximum may fall 2 mm below the zero axis on a first run,
the same X" curve maximum may fall 1 mm sbove the zero axis on & second run,
even though V, has not changed. However, fifteen or twenty trials are usually
enough to obtain several correct solutions for which the proper X" maximum
is within O.1 mm of the zero axis. It is often a question of whether it is
quicker to make a large number of runs in order to obtain several exact
solutions, or whether it is quicker to tske several runs which are almost
correct solutions and interpolate the data. The later method is described
in detail in the discussion of the third mode.

Oscillograms showing X, X", and X'" for the second mode are seen

in Figure 5-16. The following values of the length L were obtained from the
X"' curve.

7.84 sec
7 .86
7.85
7.85

Avg. L = 7.85 sec

Q
it
=

From equation 5-16

X - 12 (7.85)°

JC -1

61.6

Experimental o = 61.6

Theoretical® A = 61.7

With the analog computer and associated power supplies which we were
using, we found it almost impossible to obtain an exact solution of the third
rode, i.e., a solution for which the required minimum or meximum of the X"
curve falls exactly on the zero axis. The setting of Vg 18 very close to the
setting for the second mode solution, and for the third mode this setting is
so criticel thet a chenge in Vg of one part in five-thousand veries the solution

considerably. Therefore the very fine control of the potentiometer of Figure
5-7 is used for final adjustments.

The biggest problem, as stated before, is repetition of results due
to the extreme critical nature of all initial conditions. The length of time
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the sterting button is left up (i.e., the length of time the capacitors are
short-circuited between solution runs) seems to make some difference.

Naturally any fluctuations in power supply voltages will change slightly the
balance of the amplifiers and cause varying results. Any change in the fnitial
condition battery volteges of more than one part in ten-thousand will cause a
noticeable change in the solution form. Contact potentiels from the relays nay
possibly cause trouble. All these effects combine to give inconsistency to

the solution forms for the higher modes. One run may give a solution which is
close to being correct for the third mode. The next run may go through a
fourth mode solution,

A good approximation to the higher mode solutions in the case of a sym-
metrical beam may be obtained by using only the first half of a near solution
since very slight changes in the early part of the solution cause large changes
in the latter part. Symmetry will then give the second half of the solution.

Another method of attack for the higher modes is to obtain a number of
solutions which are somewhere near the correct solution and interpolate the
results to the correct solution. This is in fact the approach we used, and
the results seem to be just as accurate as in the cases where an exact solution
is obteined. The technique consists of measuring the deflection 4 in rm of
the proper minimum or maximum of the X" curve above or below the zero-axis.
Corresponding to that d the length Ly of the nearly correct solution is obtained
from where the X'" curve crosses the zero-axis. Values of d sbove the zero-sxis

are called positive, below the axis negative,

An actual example is shown in

Figllre 5-17 [}

(Note that in the figure the recorder was run on slow speed;

for actual computations the recorder is always run on medium speed,)

T

1

=k ”’77
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! | i
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i
OIS U DS

\ T\“‘\ //—‘

/~’“"T
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diﬁYé&c\ \
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o ij—“ 4T ]
]
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Neer-correct solution.

Figure 5-17.

* A1l theoretical values marked with an asterisk come from Den Hartog,
"Mechenical Vibrations™, Appendix II, V.
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The 4 vs Ld data is then plotted on graph paper and & smooth curve is
drawn through the points. Where this curve crosses the axis is taken as the
length L of the mode in question.

Data obtained from third mode solutions is shown below.

d La
=7.6 mm 10.54 sec
=646 10,605
-5.2 10.71
-2.2 10.88
=0.6 10.97
1.8 11.09
2.8 11.15
4,5 11.235
7¢5 11.34
8 /})
6l ¢ C=l
E
412
©
2
Lg IN SEC
Of— .
105 0.7 09 K 1.3
_2 /J
-4 cr/;/
-6 /
N

Figure 5-18, Interpolation curve for determining exact solution
length L for third mode,
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The plot of d vs Ly for the above data is shown in Figure 5-18.
Note that a smooth curve can be drawn through the points, emd that the length
at which the curve crosses the axis d = 0 is determined to within 0.1%.
From Figure 5-18, L = 11.00 cC=1
From equation (5-34)
A - B (11.00)%
‘c 1

Experimental o = 121.0

121.0

Theoretical®* A = 121.0

The oscillogrems of X" and X'" for the third mode are shown in
Figu.re 5-190

For the fourth mode solution the setting of V, is of course more
critical than for the third mode, so critical, in fact, that to get a solution
to even furnish a value of d and Ly for the fourth mode is quite difficult with
the equipment in use. From ten to fifty records were generally teken before a
suiteble solution was obtained, and to get enough points to debtermine a smooth
curve such as shown in Figure 5-18 requires several hours time. However, enough
values of 4 and Ly were obtained as a result of a good deal of perserverance to
plot the curve shown in Figure 15-20.

From Figure 15-20

L =11.89 c=1/2

From equeation (5-34)

oA = L2 (11.89)2
= = = 199.2
' e .
Experimental A = 199.2
Theoretical®* K = 200.0

B. Normal Modes of Oscillation of a Beam with Both Ends Clamped

A beem with both ends clemped is shown_ in Figure 5-21. As explained
in Section 5.1A the end conditions on a beam of this type are

X(0) = X'(0) = X(L) = X*(L) = O, (5-36)
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and from equetion (5-33) we have

—
-
*
(]
e e e e R e e e e e S e T e e e
= =" = e e e e e e
AWA y T = 1 e e e e = T
d d R - . —— [ g S S R - - — - ) Sl i + % -
P B S— c - - B E—— — B, 1 z 1 = SR - - o S = i -

Third-mode solution for uniform "floating™ beam.

Figure 5-19.
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o
d IN mm
o
n
roj—

Lg IN SEC.
oo e N e .8 2.0 122 24

Figure 5-20, Interpolation curve for determining exact solution-
length L for fourth mode,
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277
L

L
1
777777!}/

Figure 5-21, *Clamped-clamped®™ beam,.

The computer circuit is exactly the seme as the one shown in

Figure 5-13 or Figure 5-14 except that the feedback cmpacitors of a5
and Ag are initially shorted, end that the feedback capacitors of Az and

A4 have the voltages V, and Vy, applied initially, Vg being variseble by
meens of the potentiometer. As explained in Section 5.1A the initial
voltage Va is varied until a solution satisfying the desired end conditions
is obtained., Since X' is the slope of X, both X' and X are zero when the
minimum (or meximum, as required) of the X curve falls on the zero exis.
The length L of the solution is then determined from the X' curve.

Oscillograms of the X, X" and X"' curves for the first mode are
shown in Figure 5-22,

The following values of L were determined for the first mode:
4.740 sec
4,712
4.712

Av L = 4,721 sec C =1
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Figure 5-23. Second-mode solution for uniform "clamped-clamped™ beam.
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From equation (5-34)
2 2
= L (4.721)
A = ,%51 = Y = 22,3
Experimental = 22,7
Theoretical® = 22.4

Oscillograms of the X, X" and X'" curves for the second mode are shown
in Figure 5-23.

The length L for the second mode solution was determined from a
curve similar to that in Figure 5-18. The calculations are as follows:

L = 7.87 sec C =1

From equation (5-34)

12 (7.87)%
A == -
,——«-c 1 = 61.9
Experimental &\ = 61.9

Theoretical®* A = 61.7

C. Normal Modes of Oscillation of a Beam Hinged at Both Ends.

A beam hinged at both ends is shown in Figure 5-24.

\ \ \

|

Figure 5-24, "Hinged-hinged™ beam.
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As discussed in Section.5.1B, the end conditions in this case are
X(0) = X"(0) = X(L) = X"(L) = O© (5-37)
The equation to be solved by the computer is

¢ X . 1 . o (5-33)
ax4

The computer circuit is the same as the one shown in Figure 5-13 or
Figure 5-14 except that in this case the feedback capacitors of Ay and Ag ere
initially shorted, and the voltages Vg and Vy are initially applied to the
feedback capacitors of As and As, Va being variable by means of the potentiometer

For determining a correct solution the X and X" curves are recorded.
The initial voltage Vg is varied until X and X" cross the zero axis together.
Since the radii of the arcs through which the recording pens swing may be

slightly different (for our recorder a difference of sbout 0,06 mm} the lengths
Lo eand Lp of the solutions are measured on both X eand X" respectively, and then

compared to see whether they are equal. If the difference is less than 0,02
sec the average of Lj and Lp is teken as the length L of the solution.

Oscillogrems showing X, X', X", and X"' for the first mode are shown
in Figure 5-25. The experimental values of L which were determined are shown
below

3.142 sec
34132
34132

Av L = 3.135 sec C=1

From equation (5-34)

2 2
A = LB (3.135)
/s T

= g 083

Experimental Ok = 9,83
Theoretical® of = 9.87

Oscillogrems of X, X', and X", and X"' for the solution of the second
mode are shown in Figure 5-26. The following values of I were obtained:

6.292 sec
6290

Av L = 6,29 C=1
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Experimental X = 39.6
Theoretical®* A = 39,5

The X, X', X" and X"' curves as obtained from the computer for the
solution of the third mode are shown in Figure 5-27. In the case of the third
mode the setting of Vy; has egain become very critical, emnd repetition of
solutions again becomes a considereble problem. As a way around this difficulty
the same technique of extrapolation is used as was employed for the higher modes
of the "free-free"™ beam,

We let L, be the length of the X solution and Ly be the length of the
X" solution (see Figure 5-28) end we define A as Lz - L, Denoting L, es

Lo + Lo
2 5 we can plot 4 vs. L; for different runs. Where the resulting
curve crosses the 4 = O axis we have Lg = Lo = L, and our end conditions

of equation (5-37) are met. Using this technique we obtained the following
value for L:

L = 9.44 sec C=1

From equation (5-34)

— R e ——— .

]

Experimental A 89.1

Theoretical®* A = 88.9

In the case of the fourth mode the same procedure of interpolation teo
determine L is used as for the third mode. The experimental value of 1 was
obtained:

L = 12,61,
From equation (5-34)
o« = L2 (12.61)2

7o 1 = 159.0

Experimental ¢4 = 159.0.

Theoretical® X = 157.9
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Figure 5-27. Third-mode solution for uniform "hinged~hinged™ beam.

Figure 5-28,

Page 85




AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM-28

D. Normal liodes of Oscillation of a Cantilever Beam

The cantilever beam is shown in Figure 5-29.

The end conditions (see Paragraph 5.1C) are as follows:

xX(0) = X'(0) = XML) =Xx"(L) =0 (6-38)

N\

Figure 5-29. Cantilever beam.

The differential equetion to be solved is

c 4%

o - X = 0 (5-33)

The computer circuit for solving equation (5-33) with end conditions
of equation (5-38) is exactly the same as the circuit of Figures 5-13 or 5-14
with the exception that the capacitors of A5 ang Ag are initielly shorted and
that the voltages Vg and Vp ere initially applied to the capacitors of Az and
Age Vg 1s varied until the curves X" and X"' are both zero at the same time,

i.e., when the minimum or maximum of X" lies on the zero axis, The length L
of the solution is then measured, the beginning of L being taken from the X"

curve and the end from the X"' curve. any pen-arc difference between the two pens
must be considered.

The oscillograms of X, X', X" and X"' are shown in Figure 5-30, The
values of L as determined for the first mode were

1.89 sec
l.88
1.88

Av L = 1.88 sec C

1]
)

Page 86




MICHIGAN

b

UMM-28

4"_.‘

{

1

T

e

————-

1

T
1

=

&

I

k

AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF

RETTOR JINISITE AT L Tl
I e 0 i
ii.ﬁ I SRSy LTI 1 g J_ﬁi
UL el | ::PT:\ T amnmiRi L il
| ﬂ TV e A T S B L
—1 , lj\\\%\ ll......Al:I”x i ; Easa st ﬂ.\ _ , "b 3 T L
Jl“ﬁ_\ﬁrx\ . 44111;3 A, \.\lmuﬂ* ; . il .._41 7 . 111
v ,.:. +;:17: il ;.55; v BN J_.fﬂ L
il jll: i i Bl Al - e I il
g A 18 [T
R g A0 IBiE- fnly
il .;,\:ﬁ ! #?ﬂjq | i k | \ja #4., T
auniian e Rl s IR [ B Ll |
| . L ,Lli i ! i ] |+ = 4T 1 | I T
o i M s A il
! 1 MAAss= Hiapeeois H T i _ J
st LT Jllti i L T e
W __i‘% T W e L L l HH i N
Tl [ st st it THn TR
e e il TR it
e it et il Jilk s LN
| e T (IR il i T dini
M e T AR b 1R
\,j\ aaa s A 7 ; SR I _vl 1L
j.ﬁ d y f 1_| | iy anacSARREEE .\P+L\.\ 4‘ IH:J...T; _ et IBBEE oo
Bikisun it SACH RN RRR ot A A e’ R R T B
it L LTl e A I Hﬁg, T
A Al JIIEL e e
b e s ] LT ek M
Inwl.rrrl i i ‘\,.\r\x\f\ AAAR EXRRR sanzasaans sunaill T T

First-mode sclution for uniform centilever beem.
Page 87

Figure 5-30.




AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM-28-

From equation (5-34)

L
»
o
(&)}
w»

Experimental A

Theoretical®* oA 3,52

The computer curves for X, X', X" and X'" for the second mode are
shown in Figure ©-3l1. The experimental values of L were

4,726 sec
Av L = 4,73 C=1
From equation (5-34)
2
o 2 =J—%E_ - L‘%.:;i"_).. = 22.4
Experimental = 22.4
Theoretical® = 22.4

The third mode curves for X, X" and X'" are given in Figure 5-32. The
value of L was determined as

L= 7.864 sec C=1

From equation (5-34)

o = L& (7.864)%

IS

|

61.8

Experimentel A = 61.8

Theoreticel* A 61.7

Sunmsry of Results Determination of Normal liodes of Oscillation of

Uniform Beams,

Values of oA
Al "Free~Free™ Beam
Experimentsl Theoretical®
1st kode 22.4 22.4
2nd Mode £1l.6 61l.7
3rd lode 121.0 121.0
4th lMode 192.2 200,0
Page 88

* Den Hertog, "Mechanical Vibretions®, appendix II, V.



AERCNAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-28

T
e
o

 —

=

27/

e

a /’ fr——f—f—
SEEEE

E===

J
.

e e —— —
eSS

/

—

T __,./

L LT T

]

f T 7 7 T T

FEESESSEEEE

EEEEEEE R

v

=

-
—

=

CEEET

7 I ,‘I
==

-

] J 1
i e

,j . "/

T T
=1

e e A e

=1

l’
] -} I

=17

1
- ‘l,,,,

===

EEEEE

=

|

,_;/A
I,,

{—] ;,7—.;—’—??——

\

i

EEEREEE

ERNEE

it

£

=

]

|
\ -

EREEERERNE

B

1\ 5 aiw/deel | |

1
-

el

-

o w\apal

7]

-

—

B

i

] IS T LT

!
L
g
S RIS BN ey
' —
: L
S |I,.I.|I|\.\\\\.\\|
i —
S ot
- T
! [
; U
(OSSN SRS ey
g
N DU REBSS ey
B [ i
SR B DS, oy
Hh
o]
R B

EREEEEREE

SEET

A ;i:i'\fi:z\ -\

\
s

ToL

Second-mode solution for uniform cantilever beam.

Figure 5-31.

Page 89




AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-28

7

/; —

T—F—F

M

P 1 1 1 1 1
@
4

e e T e

?ff

c

ag (023 (3 dho/one

e
===

i A

=

EEEERE===

/

I

e

ErEsss

==

\ =
=

_‘\;,

S —— A

11—

- - 1
=%

= ,\quuk

‘\

=
SR

T
1 1 L1 Y 1
T

==

Y 1
1

e

\,,,

Figure 5-32, Third-mode solution for uniform cantilever beam.

Page 90




AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-28
B. Beam Clamped on Both Ends
Experimental Theoretical™
1lst Mode 22.3 22.4
2nd Mode 61.9 61.7
C. Beam Hinged on Both Znds
Experimental Theoretical*
2nd Liode 39.6 39.5
3rd hiode 89.1 88.9
4th Mode 159.0 157.9
D. Cantilever Besam
Experimental Theoretical®
1st llode 3653 5.52
2nd lode 22.4 22.4
3rd lMode 61.8 61l.7
A EI
Note: frequency = f = —_— —
note auency 2T 04

The Effect of Shearing Yorce and Rotary Inertia on the Normal Modes
of Oscilletion of Uniform Beams,

In Paragraph 5.2 we considered the cross-sectional dimensions of
the uniform beam as small compared with the length, and we obtained
equation (5-20) as the fundamental equation.

2 2 2
25 /i 22Xt 7 o |, 9%(x,t)

However, for beams where the cross-sectional dimensions are not
small in comparison with the length, or for modes of vibration of higher fre-
quencies, it is of considerable importance to consider the effect of shear
forces and rotary inertia., Considering these forces the differential
equations for lateral vibration of a uniform beam becomes 8

2 E
EI 341’ tu o 2! - /% (1 + k?G ) 943’ + Y 21 34}' = 0 (5=39)
a3x dt 9x° 3t? A%'c ot
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where k' is a numerical factor depending on the shape of the cross section and
G is the modulus of elasticity in shear.

For studying the normal modes of oscillation we assume that

yix,t) = X (x)ed ™t | (5-21)

Substituting y(x,t) as given by equation (5-21) in equation (5-39) we obtain

g1 4%, 2 EI 48X _ \2, (1 - MN3c1I _
wh NG T N g 0 ()

where O4x<ﬁ, L being the length of the beam. We wish to change the indepen-
dent variable so that O< X<L and hence we write that

L
x= 1T ¥ , (5-41)
from which
4n n an
T (5-42]

Then equation (5-40)becomes

a4 a%x N2 (12 2 2
EIL__ + / I+ .I'_:.I._ .(_i_}g_ - 2 I
L4 axt —f[r ( e ) '\/"(1“2—2-2‘-,’-(}——))&0
(5-43)
Dividing equation (5-43) by %2 we obtain
2
Bt %X, II° 0 (1, E ) 4% (1 - 2201
- - - ___#.___ X = Ou 5=
N4 axd aL= K'G T xR g (o-24)
He introduce the following dimensionless parameters:
m = m s (5"'45)
radius of gyration _ 1 I
length of beam I) i, (5-46)
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A =Nfph4 (5-47)

Rewriting equation (5-44) in terms of these parameters we get

and

14 a%x d2x 2 _ o4
—_— R212 - - X=0
" el 12 (1 + nm) per (1 = &“ m R¥)
Dividing through by 1 - o 2nR* it follows that
L4 4 22 2
J_i . RL(1+4m) dX _-Xx=0, (5-48)
A2(1 - A 2mR%) dx4é 1 -4 2mR dx2

where 04X < L

For purposes of analysis by means of the computer we rewrite
equation (5-48) as

L4 4 2
df P & L ox - o (5-49)
2 ax N ax2
where 5 5
J° = % (1 -c%m R4) (5-50)
ang L - B2 (1+m)
S (5-51)
If as in equation (5=32) we let
4
C = —-LE (5-52)
ol
and
2
L
D = = (5-53)
Equation (5-49) becomes
4-r 2
¢ &L, p X  _x . o, (5-54)

axé ax2
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Equation (5-54) is what we set up on the computer. For a "free-
free" besm the end conditions are®

X" (0) = X' (0) = X" (L) = X"*(L) = O. (5-35)

The computer circuit for solving equation (5-54) with the end
conditions of equation (5-35) is shown in Figure 5-33., The initial voltage
Vg is varied until the end condition X" (L) = X'™(L) is satisfied. The
length L is then measured from the X'" curve, and - and N are calculated
from the following formulas derived from equations (5-52) and (5-53):

2
— L
&+ = ”-6_;‘- (5-55)
2
N = "11;_ (5-56)
_ 1000__.

)
i
____~ 1000~ qu b
an e — i
f I
"\N\'N\r - . “W\'N\, - l\N\'/\/\, —_— . -
A, X Ag =X A, X(%)

[—1 1171

Figure 5-33. Computer circuit for obteining normal mode solutions
where shear and rotary forces are considered.
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The constant D is varied on the computer in order to calculate the
values of o\ for a wide range of N. In each case the length L of the
solution is measured and N and & are calculated. The effect of the
constant D is to meke L shorter, i.e., to lower X . Enough solutions of

< and N were obtained for various values of D to enable a continuous
curve to be drawn representing & vs N for a wide range of N. Curves of
this type as obtained from computer date are shown in Figure 5-34 for the
first four modes.

It should be remarked here that the effect of the additional
feedback loop p 48X  in the computer is to meke the value of V, much less
dx2

critical. Naturally, the larger the value of D, the less critical Vg will
be. For D>0,5 it is fairly easy to get exact solutions of the third mode
and for D> 2, exact solutions of the fourth mode are possible. For small
values of D the method of interpolation described in Section 5.24 was used
in obtaining the length L for higher modes.,

In Figure 5-35 the percentage change in o due to the ratio N is
plotted for the first four modes. In this case
Ko - A -
% change = ° 100 where ot , is the frequency constent

A for D=0 (i.e., R = 0) as obtained in Section 5.2A.

—

Wde will now derive R in terms of N and A . Multiplying equation
(5-50) by equation (5-51) we find that

2

S

From equation (5-51)

0(2 = _].‘._.. [.f-NRz (l+m_)7 . (5‘58)
mR4

Substituting the expression for & 2 given in equation (5-58) into equation
(5-57) we obtain

5(”2 « (1L +m) _ N(1 + m)2

N R n ,
from which
2 1
? ma 2 N(1 ) (5-59)
+
W1 + o o
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From equation (5-57) we have oy
R//N(l +m) ’ (5-60)
and from equetions (5-59) and (5-60)
- m o 2 Bk
A = A + 1. (5-61)

m + 1P

Knowing the relationship between A and N from the curves in Figure 5-34
or Figure 5-35, we can ealculate the curves for « vs R from equations (5-59) and
(5-60) for any particular type of beam. As an example, we calculated the & vs R
curves for a steel beam of rectangular cross-section. The following values of
the constants were used to calculate m:

E = 30 x 108 1vs/in®
G = 12 x 106 1bs/in®
k' = 2/3

Then from equation (5-45)

E_ 30 30

"T¥G T 3Exiz = g = 8.5

For m = 3.75 equations (5-59) and (5-60) become

2 1
R = —
0.79 Oif_ + 4,75N
and

o o 0.459 F
R /N

The curves of & vs R for a rectangular steel beam are shown in
Figure 5-36. Oscillogrems of X(X) and X"(X) for verious values of R are shown
in Figures 5-37, 5-38, 5-39 and 5-40 for the first, second, third, end fourth
modes respectively. Note how the X(X) curve flattens out as the beam gets

stubbier (i.e., as R gets larger). In fact for the first and third modes the
X(x) curve actually stays entirely on one side of the axis for larger values

of R« This of course cennot be the actual physicel case since it would mean
that the center of gravity of the beam would no longer be fixed. The reason
for this discrepancy is that the end conditions, equation (5-35) given by
Timoshenko are incorrect. The correct end conditions for a free-free beam
are that the bending moment M and shearing force V are zero at both ends.

When shear and rotary inertia are considered, these are no longer ErOportional
to the second and third derivatives respectively but are given by: 0
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Figure 5-36. d vs R for a uniform rectangular steel beam.
Page 99




UMM-28

AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

— —
o Q )
s ] ! | i_h T
i atl ﬁ:ﬁﬁ Li /,.ﬁ,r%r..rr,l I e oy
=T P el HEE [

A 288 N JILJ!.LIC, ! 4 | b
T T T 1A .
i T e e e
Pl P 1 [ h L i b i B -
il ; ,\\\,\,,.\ TS = 7 I:JFL | LT e \M
RN — L el ! [y ||
o P! L [ | i | —1 e
senni R UNE mil LT il e wsE:
; i L JEESE 7.71.._ ! ;, Ll R

O il Tt A - Te

JH Appat ] Hi e et e

T aH R Jikt R T i

L ;7 e +7 NN | L] AT

Hoepd SRR , M P

bl ] : M gl

o i1 O i ] Hiiiins T T

H S _, anc AN JERAMIES ; :

S ] Wit ] Y Tl

HREEB3ec B peath W I ey el ERABRes I ] E W -

e LT 18 T T TN L
.,\,\3\ ..!lf/ i L] 714:1:7:T AL 1,«4\‘\\1\1 1 | ] \\w
N e 7 M T T <3 ; O
e P L1 T AT ERSNCEecy N FURRE MNNTG SO & g ppnf
| BB , B ik il Wgﬁfw B4 | Lm\
P ML | L Tl SEE BANE | ! OSBRSS o Nt
| i i ! :\ﬁ ,Wr, "l E BRI
| re IRt T N T e sasaanifl
iy Jﬂ, HRE snnmii ! 4_.14.; ;Lﬁ..r i h i ,.Tx \%\
, n ] L i WU Hns
i i g Y e
Sy e ! ||t Ifl i I i - WW 1
Biikn il T Tj\\ﬁ\w,f T ﬁ
& 3 N L o IR
| , BRI Riap sai Ny L+ L T
M ALTTIN il ,4 /i .4 i ,ﬁ;AWﬁh+ | |%\W 3
i All,: i Sy a SR T Lt ; i u,,\J\\,A\, ,,
WO T i T T ! .x s ‘%Vh
LI \ Hil L :_._T,-:J.uvw ,T.T‘.T\,\,\ ﬁ %‘1},\\1,
T AT | T el =T
SRR L gl
T —- 2 L 1 T i A Ve ™ : 4.
Ll TN T LT ﬁ Ul ‘ﬁﬁ L
HEt Tt NG T
SRR LR TN el L] e i NG N iaanns
RRans s uusd SRS ARSRNABANSE N gt tARAR AN FIRANC ey BETSARSIREES eopgy B
=TT LT T, ,PAM‘%
TS ,LMJ%A., (] | ; T it L+v
TRl L N T A ot
SRS DR 1 A A 2 Siilinl ot T
™ : R RRRRY BRASA B ! B A ERABALARAR
it in T
It NI T R i e T

-mode solutions considering shear and rotary inertie forces.
Page 100

Figure 5-37. First




AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM -28

i

—
|
1
=
=
{
71
S B B
===

LT N T i T 1l
i T G |

o < r e it T n
P AL e L L ; il i L ,f, !
A1 ] 1 iy m
o O B o
Wi A il 1
Hiliipa Wi il i 1 s 4 i T T 3
Wi i il R ] Hf , s
i U L sl ] R u

i MM ’ ...... i Il il Il TR
L] L IR R T ” , il il
JI,L I,.Ar J %-\\ I ﬂ .T,\ il ,I”‘T.., § % X
AT SRR 11 HIR iR i i T
N | ,}. I JW:.--J,.. J: i\% 1 il i m Riine T Jﬂ,, DK \ﬁ\ ! ,.;, i
i T il i 1l TR WHEVAINHN i i
R LT [l ik |
1 A - A ko -
T ,Y.r{,}.} il FLL M. il I ,.,.._ry,}h{ ! i | , ..g | i (Ti% L,.J%
M H / HA 1 I T | i ik i i
Uy o i i,
m T ] L i I il BHIN Hi
i T T il L i il B e e
A o, B g O s
m WA et e N I i L o
A, A g A, O ey A
g i OO R ﬂm o i
LT LTy ierr il I et T S i
.,._z+!.f .II!.I,.J il i -au .......f.l M 1.{1 T ,4.4.- U +f | ,.\”r\\\;m\
%::T..H.. I ﬂ)\ il i niil A Y » .ﬁ. | Wj\.,\\\”
il o kg i i e
T [TTTerre il L TR i il R
Tt TN ] - et T i 0
i B et Lled ] iR 4 , N
i S Jusean e B i e
i /% ﬁ- ; il |t bl L f-u, el b _ J.%.\\Hv‘
Al fﬁ L LT By Rl | 1 , "l : | rﬁ LT
i il - e SR L i 1

T
i 7
#u,,:
) T

1
—

E

Figure 5-3€, Second-rmode solutions considering shear and rotery inertia forces.
Page 101




=

UMM-28

+F
t

1

]

X

1

)

7

1

T
1

=1

1

1
F——

1

—r

=

1
Y

I

Page 102

X

F

EEE

+

1

-+

=

}

T

===

EEE=

 —

=

1

E==s= RS

T

—

79

T

7

T

+

—

Figure 5-32. Third-mode solutions considering shear and rotary inertia forces.

il

AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN




AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM -28

P e s e ey e I
e ¥ =
e e e e e e e e —— G e
\ === 3 = — Y =
T e e e e e e e =
e e s e T
= e e e e e
= : }
e Pt ==

L e e s e e
S T e e e et
e e e e e e
e e e e e e
e ¢
e
==
~
=
~ ~
=
: =
= =
=
>
f = = :
ot e e e
e e e e e e e e e e e e e e e

L

iy

Figure 5-40, Fourth-mode solutions considering shear and rotary inertia forces,.

Page 103




AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-28

2 2
M=E |23 =+ g N y (5-62)

)xz k'AG

3 2 2
V- EI B s (mAD o+ =X ) Ay (5-63)
1 - I8 3 x2 k' AG E S X
k! AG

How much these inaccuracies effect the frequencies of oscillation is a question
which must be investigated further.

5.4 Measurement Techniques in the Solution of Vibrating-Beam Problems.

In paragrephs 5.2 and 5.3 the frequencies of nomal modes of vibration of
uniform beems were determined using the analog computer. The solution of the
problem involved finding the length L between satisfied end conditions. The
frequency constant & then veried ss L2 (see equation 5-34). Hence the accuracy
of the measurement of L is of great importence in determining the accuracy of dJ-

In order to measure L on the recorder chart-paper an output is selected which
has a finite slope at the ends of the beam, such as the X"' curve in the case of
the "free-~free™ beam.

This makes it possible to determine accurately where the curve crosses
the zero aexis. Due apparsntly to & small pen-lag, the X"' curve for a "free-free"™
beam is slightly rounded at the beginning instead of appearing as a sharp, clean
angle when it changes from zero slope to a finite slope. In order to get
accurate starting point, we extend the first part of the curve back to the origin
along a straight line and teke this crossover point as our starting point. Reference
to Figure 5-41 will clarify this.

SOLUTION ASSUMED TO START
HERE FOR PURPOSES OF

SOLUTION ACTUALLY MEASURING L.
STARTS HERE\ /

ZERO AXIS

PEN
LAG

Figure 5-41. Pen-lag effect, greatly exaggerated.
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Since the X'" curve crosses the zero axis at the end of the
solution with the same slope it had at the beginning, the pen lag should
be the same and the error will cencel out, Actually, this pen lag only
amounts to between 0.02 and 0.04 second when the recorder is run on medium
speed (5 divisions per second). But since our results indicate that we
are measuring the length L correctly to within 0.02 second, the pen lag is a
measurable effect.

One possible alternative method of overcoming the pen-lag effect
is to increase the gain of the "' input to the recorder by a large factor,
while at the same time clipping off the emplitudes which would force the
pen off scale., In Figure 5-42 is shown an oscillogram using this technique,
The clipping was achieved by loading the output of the intermediate selective-
gain amplifier with 25,000 ohms. 1llote that the X"' curve crosses the axis
almost at right angles, since the gein factor is 20.

Figure 5-42. X"'(X) .amplified to reduce pen-lag effect.

After the length L is meesured from the X™' record, several
corrections must be considered if maximum accuracy is to be obtained. The
first of these corrections involves calibration of the recorder chart paper
against a synchronous clock run from the same 60 cycle system as the recorder
input. The error in the printed lines marking off seconds (slow speed) or
fifths of seconds (medium speed) is determined. For our recorder this
error was found to be about 0,2%.

A second correction arises from the fact that the rollers which
pull the chart-paper through the recorder sre driven by a synchronous motor,
the speed of which will of course very directly with the 60 cycle line
frequency. We found the varietion in the 60 cycles in our case to be
+ 0.4 cps. A frequency-recorder was run continuously while normal mode
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solutions were being teken on the Brush Oscillogreph, and the line frequency was
noted at the time of each solution. The necessary linear correction was applied
to L if the frequency at the time of the record was different from 60 cps.

Another important consideration is the accuracy of components in the
computer. All components were measured to 0O.1%. However, an additional method
of insuring that & high degree of accuracy exists in the computer for the vibrat-
ing beam problem is to calibrate each pair of integrators as part of a second
order differential equation analog with zero demping. All components in the
circuit are made equal to unity. Hence when the system is given a pulse, it
should go into oscillations of period 2 7, The components in the integrators
are adjusted slightly until the period of oscillation is exactly 6.283 seconds
as read in chart divisions on the recorder paper. (The period must of course be
corrected for the line-frequency error in each case.) If the integrators of
the circuit are calibrated in this manner, the correction due to discrepeancy
between second-merkings on the chart and a synchronous clock is eliminated.

This meens that the chart-division is then our unit of time rather than the
second, the difference in the two units being equal to the discrepancy mentioned
above. This procedure of calibration was followed for all solutions in this
chapter.
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CHAPTER 6

METHODS OF OBTAINING VARIABLE COEFFICIENTS

6.1 Introduction

In Chapter 5 there were solved a number of problems involving the
static deflections and normal modes of oscillation of uniform beams. In
many cases, however, the beam may not be uniform and may have non-uniform
loading. In these cases some of the coefficients will not be constant.

Bessel's Equation and Legendre's Equation are common exainples of
differential equations with varieble coefficients., The equation of motion
of a rocket involves variable coefficients because of, among other things,
the decreasse of mass with the consumption of fuel.

In o 1lving differential equations wi th constant coefficients the
values of the coefficients determine the relative (fixed) gains of the
operationsl amplifiers. In order to take care of variable coefficients,it
is necessary to actually, or effectively, cause the gains of the proper
operational amplifiers to change appropriately. A fairly obvious method is
to vary the values of feedback resistors or input resistors. Another method
ig shown in Figure 6-l.

R¢
VW,
+ Rj -
— W
—
1 )
R

Figure 6-1. A method for obteining variable gaine.
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If it is required to have fit; as a variable coefficient of e,, the
output voltage of amplifier Ay, it would seem possible to place across %he
output eg & potentiometer R and cause the sliding contact on R to move in

such a way as to obtain from it the desired voltage f(t) es.

However, a dilemma is encountered. If the value of R is made too
small, the amplifier Aj will be unable to furnish sufficient current to maintain
@ linear output for all voltages. If the value of R is made too large, the
add.tional current which flows to the next emplifier through r, that portion
of R between the sliding contact and the high side of the potentiometer, will
cause f(t) to differ from the expected value. For example, if the sliding
contact is placed at the electrical center of a 50,000 ohm potentiometer and
the input resistor, Ry, to the next emplifier is made 1/2 megohm, the effective
voltage input will be approximately 2.5 per cent less than eg/2 as would have
been expected. Because of these difficulties it nas seemed advisable not to
use this method for obtaining variable coefficients.

6.2 Ceam Operated Variable Resistances

A standard practice for obtaining a variable resistance is to cut a
cam of such a shepe that when the cem is rotated it moves the sliding contact
of a linear rheostat so as to vary its resistance in such a way as to obtain
the desired function. While this method has, in many instances, produced satis~
factory results there are definite limitations. The accuracy can be no better
than the linearity of the rheostat or the precision of the cam and connecting
link. Furthermore, there is & definite limit to the ratio between maximum
resistance and minimum resistance that can be maintained with accuracy, In the
solutions of some problems described later, resistance ratios {maximum to minimum)
as high as 4800 are used. It would be difficult, indeed, to have a cam operated
linear rheostat produce this range of resistance values and at the same time
maintain accuracy.

63 Non-Linear Potentiometers

In some instances cam operated linear rheostats (or potentiometers)
are replaced by non-linear potentiometers driven at constant speed. These non-
linear potentiometers are obtainable* with elmost any desired curve of resis-
tance versus rotation - sine, .consine, tangent, square root, logarithmic,
special empirical relationships, etc. The accuracy is of the order of magni -
tude of one per cent.

6.4 Simulation of Continuously Variable Functions by Resistance Changes in
Discrete Steps.

To simulate continuously veriable functions there can be used feedback
and input resistors that vary in discrete steps, and automatic stepping relays
can be used to connect in the desired resistence. The manner in which this is
done is described in Section 2.14.

Reference to the computer circuits already presented shows that in
virtually every case there are two integrating circuits irmediately preceding
the output voltage representing the solution of the problem. It is proposed
to simulate continuously verieble functions by meking the resistance steps
such that at the end of each step 2. RAt would be exactly proportional to
the integral of the continuously variable function.
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For example, suppose it is desired to simulate s function which is
directly proportional to x2, taking s steps for each unit value of x, i.e.,
if x were expressed in centimeters, there would be s steps per centimeter.
In Figure 6-2, x2 is plotted against x in units of 1/s. This means that the

o m—|
3

m
3

m th
STEP

Figure 6-2.

successive points plotted ere 1/s, 2/, 3/8, seeeeees M=1/8, M/8, +ecesen
n/s, for a total of n points or steps. For the mth step there is chosen
en ordinate xmz such that the area of the rectengle is equal toc the area

under the curve. Xy is determined by the relation

m/s
X2 o 1/s = y//ﬂ x2 ax = 1/38% [0 - (w-1)%7 (6-1)
(m-/s
or

x,° = 1/3s% [m - (m-l)§J7 (6-2)
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This value of xmz is proportional to the resistance required during tne mth

step to simulate the function x2 for that step. Consequently we may write
as the resistance R required for the mth step

Ry = Mxp? = /382 /md - (m-1)°7 (6-3)

where M is an arbitrary constent multiplying factor necessary to give the
resistances the nroper magnitudes to be used in the operational amplifiers. The
coefficient }/3s% may be replaced by K so that

Ry =K /md - (n-1)°7 (6-4)

In Figure 6-3 is shown a partial tabulation of the computation of suiteble
resistors for a totel of 40 steps. The K of equation (6-4) equals 5000 ohms
here. The fourth column gives the value of resistence in the circuit (input or
feedback impedence) for each step. "The last column gives the resistance to be
added for each step to the resistance already in the circuit to give the proper
resistance for that step.

m = xs o o= (m=1)3 R, (ohms) Pn = R{(m~1)(obms)

1 1 1 5K 8K

2 8 7 35K 30K

3 27 19 95K 60K

4 64 37 185K 90K

S 125 61 308K 120K

35 42875 3571 17.855 meg 1.02 meg
36 46656 3781 18,905 1.05 meg
37 50653 3997 19,935 1.08 meg
38 54872 4219 21,095 1.11 meg
39 59319 4447 22,235 1.14 meg
40 64000 4681 23,405 1l.17 meg

Figure 6-3., Partial tabulation of the computation of resistances suitable
for simuleting e function proportional to x2 in 40 steps.
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If the "stepping® resistance is used as the feedback impedance of an
operational emplifier it is necessary to determine the value of the input
resistance Ry to give the amplifier a gain of unitywhen ;2 = 1. Since
Ry = Mxm2 , for the general case R = Mx2 and forthe particular case of

Xg = l’ Ri = B'In

Since M = 352K ,

Ry = 332K (e-5)

In the example given above K = 5000. For 4 steps per unit length,
Ry = 240,000; for 2 steps per unit length, Rj = 60,000,

In order to simulate an arbitrary function f(x) by teking s steps
for each unit value of x it can be shown that

m/s
R, = M/ s [ £(x) dx/ (6-6)
m

-1/s
where
f(x) = the function to be simulated
s = the number of steps per unit vealue of x
m = the number of the step for which the calculation is being made
Rn, = the resistance in the circuit for the mth step
M = an arbitrary constant to give proper magnitudes of resistances.,
The series resistence to be added algebraically for the mth step is
Rm = Rﬂl"l 3
where Rm 1 - the resistance in the circuit for the (m-1)th step.

A number of differentiasl equations with varieble coefficients will
be solved in the following chepters,
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CHAPTER 7

SOLUTION OF BESSEL'S EQUATION BY MEANS OF THE ANALOG COMPUTER

7.1 Introduction

It was felt that a classic linear differential equation with variable
coeffieients such as Bessel's equation would serve as an excellent example of
the accuracy attainasble with the analog computer when the coefficients are
varied in steps instead of continuously. Bessel's equation is

2
A&y, 1 4y _ n*
dx2 x dx + (1 %2 )y=0. (7-1)

The computer circuit for solving equation (7-1) is shown in Figure 7-1.
The x2 input resistor to A} is simulated by meens of 40 steps. The values of the

NV
|
kRy | Rg . |
A, A, A, y"
.J = = =
: 3

-y y{x)

L 11 1

Figure 7-1. Computer circuit for solving Bessel's equation.
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resistors selected are exactly those given in the example in Chapter 6,

Section 6.4. The x input resistor to Ag is also simulated in 40 steps, the
first step being 100 K, the second 300 K, the third 500 K, etc., up to 7.9 meg.*
The independent varieble x is, of course, time in seconds for the computer. Ve
will use three different stepping speeds for the relays -- 1, 2, and 4 steps per
second, If s is the number of steps/sec., the value of Rp in thousands of ohms
required to give A] a gain of unity for x = 1 is given by the following equation
(see Section 6.4):

Re = 1882 ., (7-2)

Similarly
Rg = 200 s . (7-3)

The factor k in Figure 7-1 is merely a constant factor inserted to
keep the gain of A] not greater than the order of magnitude of unity for any step.

fle will consider only those solutions of equation (7-1) termed "Bessel's
functions of the first kind™ and denoted by J,(x).

7.2 Besgel's Function of Order Zero

The initial conditions for Bessel's function of order zero are:
Tolo) =1 Jo'(0) = 0 . (7-4)

The initial voltage Vg in Figure 7-1 is made zero by replacing the potentiometer
with a 1000 ohm resistor in series with the shorting-relay. Vi is made finite.
When the starting button is pressed, the stepping releys start, ceusing the
initial conditions to be simultsaneously released, and the solution of the
problem begins. The voltage Vp is varied until the J5(0) curve on the recorder
reads 10 divisions for these runs.

Oscillograms of the J, and Jo' curves eare shown for 1, 2, end ¢4
steps/sec. in Figures 7-2, 7-4, and 7-6 respectively. In Figures 7-3, 7-5, and
7-7, the experimental points are plotted against the theoretical J, curves as
obtained from values in Jahnke and Emde, ™Tables of Functions." Note how the
accuracy of the cémputer increases when a higher number of steps per second are
used,

7.2 Bessel's Functions of Orders Between Zero and One

The initisl conditions for Bessel's functions of orders between
O end 1 are

Jalo) =0, Ty'(0)= ,0 n 1 . (7-5)

In this cese the capecitor across As is initielly shorted end the
voltage Vg is made finite. (Since the functions 1/x and 1/x2 in the camputer
circuit are very large but certesinly not infinite at x = O, it makes
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Figure 7-5. Theoretical J, curve with computer solution; two steps per second.

2 STEP/SEG
— THEORETIGAL GURVE

1.00Q
,\)\{ O POINTS FROM GCOMPUTED CURVE
0.8
0.6 \
Jo(x) \
0.4

LN Vi
© 1.0 20 3.0 40 50 6.0 70 8.0 ‘b@.O 100
X \O\

o2 \ N
L

-0.6

Figure 7-6., Computer solution for Jd(x); four steps per second.,
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Figure 7-7. Theoretical Jo curve with computer solution; four steps per second.

no sense to attempt to meke Va infinitely large.) Care must be teken not to

make Va S0 large that any of the amplifiers are driven to cut off in the first
step. For example, note that when n = 1/4, we make k = 1/16 so that Al has a

gain of égig%g— = 3 for the first step. A good range for Va is around 6 volts.
The value of Va is varied slightly until the Jn curve has its first maximum at the

desired deflection on the recording paper.

Oscillograms of J’n(x) and J ' for n = 1/4, 1/3, 1/2, end 3/4, along

with plots of the computer curves sgainst the theoretical curves from Jehnke-Emde,
are shown in Figures 7~8 to 7-15.*

* A Brush BL-913 dc amplifier was used for checking the computer curves against
the theoretical curves for all solutions Jn other than Jo. This eliminated

the necessity of calibration corrections, since the Brush Amplifier is quite
linear. However, the computer curves shown in the figures were taken using
the dc impedance matcher of our own design, since two channels were availeble,
Ne had only one Brush Amplifier on hand.,
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Figure 7-8. Computer solution for Jl/4(x).
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Four steps per second were used for all solutions in this section.

7.4 Bessel's Function of Order One.,

The initial conditions for Bessel's function of order one are

J1(0) = 0, J1'(0) = constant (7-6)

The initial slope V, is voried until the ¥irst maximum of tlie J; curve is the
desired deflection on the record. Four steps per second were used.

In Figures 7-16 and 7-17 is shown the oscillogrem of Jl(x) and Jl'(x)
from the computer, along with the check of the computer solution against the
theoretical Jy(x) curve from Jehnke-Emde.

‘\',;,\L,g\:ix — "
4

A 1} _
1 LY A
1 Y A}

steps/éec\

Figure 7-16. Computer solution for Jl(x).
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Figure 7-17. Theoretical J; curve with computer solution.

7.5 Bessel's Functions of Order Grester than One.

The initial conditions of Jn(x) for n> 1 are
Jn(6) = 0, T '(0) =0, n>1 . (7-7)

Both feedback capacitors across A; and ere initielly short-circuited.

The generation of the solution despite zero input is caused by the initisal
instability of the system. For higher values of n this initial instability
Zﬁhe to the negative sign of the y term in equation (7-LL7 lasts longer and

is much more pronounced. In order to prevent the computer from g ing to
cut-off on one or more emplifiers before the J curve reverses slope, it is
necessary to balance all amplifiers very carefully before attempting any solu-
tions,

Oscillogrems of J (x) and J,'(x) are shown in Figures 7-18 to 7-23
forn =2, 3, and 4. The pgots of the shapes of the computer curves against
curves from Jahnke-Emde are also shown.
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Figure 7-20. Computer solution for Jx(x).
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In the following table the first nine roots of Js(x) as obtained
from & computer solution (recorded on medium speed) are compared with the
values given in Jahnke-Emde. The oscillogram of J5(x) is shown in
Figure 7-24.

Root Number Experimental Root Theoretical Root
1 8.78 8.78
2 12.34 12,34
3 15.68 15,68
4 18.96 18.96
5 22,18 22.22
6 25.40 25.43
7 28,61 28,63
8 31.78 31.81
9 34493 34,98

A correction for variation in 60-cycle line frequency was
included in the above experimental values.
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Figure 7-24, Computer solution for J5(x).
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CHAPTER 8

SOLUTION OF LEGENDRE'S EQUATION BY MEANS OF THE ANALOG CONMPUTER

8.1 Introduction

Another classical linear differential equation with verieble coef~
ficients which can be solved with the analog computer is Legendre's equation,

2
(l-xz)%—%~2x%+n(n+l)y=0. (8-1)
b

The computer circuit is shown in Figure 8-1.

—MW
r—%——“ —_\N\’;\zAl_ﬁ 1%
MW L iy W
- ™ |-n(n+l)y — >
A Ay A
I
ﬁ‘llM ——-lllM——<-
—\/WW\,T—G» *-‘/WW\.\T——«'
o
6 l
lxz ——VWWA——— qr‘ﬂ———l L&H.__«
- 5 5
— MW

- - y"(t) —_— - _yl(t) [ ——
Ag Ag Ag

[—1 [—1 —1!

Figure 8-1, Computer circuit for-solving the Legendre equation.
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The function (1 - x2) is obtained in steps merely by changing the
output lead (coming from the resistors on the terminal board) from the first
resistor to the last resistor in the x2 set-up used for Bessel's equation.
This makes the first step 24 meg -5k; the second, 24 meg-30k-Sk; the third,
24 meg-60k-30k=-5k, etc. To proceed in this manner we must assume that
0<x<1l, The function x is obtained in steps exactly as in the case of
Bessel's equation, the first step being 100k, the second, 300k, etc., up to
7.9 meg. At the beginning of the first step (x = O) we wish to have the
gain of A4 be unity, hence the feedback resistor should be 24 meg. We
actually use 6 meg, giving a net gain of 1/4 at x = 0, and to compensate for
this the feedback resistor of Az is made 4 meg instead of 1 meg.

One unit of x is made 5 seconds of time for the computer; therefore
the input resistors of the integrators are 5 meg. 8 steps/sec are used for the
stepping relays in order to teke 5 seconds for the 40 steps.

For integer values of the constant n in equation (8=1) there are
polynomial solutions Pn(x) called "Legendre polynomials®. For values of n
from O to 6 the solutions take the following formsi

Po(x) = 1

Pi(x) = x

Po(x) = 1/2(3x2-1)

Pz(x) = 1/2(5x°-3x)

Py(x) = 1/8(35x%-30x2 + 3)

P5(x) = 1/8(63x5-70x° + 15x)

Pg(x) = 1/16(231x6 - 315x% + 10522 - 5)

For even values of n the initial conditions are

P,(0) = 0, P;' (o) = constant, n even. (8-2)

The feedback capacitor across Ag in Figure 8-1 is initielly shorted, and
Vg is veried until the first maximum of Pn(x) is the desired number of
deflection units on the recorder.

For odd values of n the initisl conditions are

Py(0) = constant, P *(0) = n odd. (8-3)

The feedback cepacitor across ag is initially shorted, and VB is varied until
P,(0) is the desired number of deflection units on the recorder.
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FPigures 8-2, 8-4, 8-6, 8-8, 8-10, 8-12, and 8-14 respectively.

The two-channel dc impedance matcher of our own design was used in teking

these records; hence the curves are subject to amall corrections.

Py

in
Curves showing the computer solutions compared with the theoreticel

Oscillograms of Pn(x) end P "(x) forn=1,2,3,4,5,6, apd?
solutions from Jahnk-Emde for n= 1, 2, 3, 4, 5, 6, and 7 are shown in

Figures 8-3, 8-5, 8-7, 8-9, 8-11, 8-13, and 8-~15 respectively.

are shown
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Figure 8-2, Computer solution for Pl(x).
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Figure 8-3, Theoretical Pl(x) with -computer solution.

UMM-28
1.0
0.9 THEORETICAL GURVE
o O POINTS FROM COMPUTER GURVE |_~of

|
0.7 :
0.6 |
[
05
R(x)
0.4
=
0.3
0.2 ’:Z
0.1 —
OM
) Y 02 a3 0.4 0.5 0.6 07 08 0.9

EESE=sas

i

%:‘_
=

J

T

I

Figure 8-4., Computer solution fop Po(x),
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Figure 8-5. Theoretical Pg(x) with eomputer solution.
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Figure 8-6, Computer solution for Pz(x).
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Figure 8-8, Computer solution for Py(x).
Page 133




AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM-28

1.0

09 —— THEORETICAL CURVE

: O POINTS FROM COMPUTED CURVE I
0.8}

o ©
— N
/V7
73
o A =

-04 Kﬂ)- /

EEEREEEBE=EEee=EEe e Er: e
EEEREEEEE *—;:xé ESSEEe=EesE===e=ut

oL e e et

8 steps/sec 5 div/sec

f/ S s 0 / | A PR 3‘#‘#4

NN NEESNESSCEEECEEEEEEESEEc- o

- —] — —r—— o =T
. — | e =
— - —_— et — 4 iy i . z
S Py s 1§ i — — s p—— z
1
. 1 1 1 e
+— ¥ 1 1 I T 1 1
——— ———t——t—
—} - 1
| D o | | o —+%
= ,__i:¥ pm— ny 1 1 1 1 X 1
I\ A‘:\ n g Y A 14 1
1 X X \
) 3 ]
1 1 Y
) S— 1 X
1 A ¢ 1 1
A% — A X

Figure 8-10. Computer solution for Pg(x).

Page 134




. .
) B— N

LA

AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-28

Q
—— -
—
-
«® Zl
2 X
" /
g 5 /
z c
2
o
[ 4
w
s & —
va d
ox =
p=1
33 -
-
38 A
g & @
e}
"
S e 5
EM =
X
- & o hd
o
° d
]
o
N
o
o
y — ——
o ® R @ @ e m oo = o g5 & ° ¢ ©
6 06 o 0o 6 o © ¢ ©o n.vo_._u n_u

Figure 8-11. Theoretical Pg(x) with computer solution.

1
-
1

==

Figure 8-12, Computer solution for Ps(x).

Page 1355




MICHIGAN

o.9j 1.0

0.8

0.6 \\0.7

05

UMM-28
/d—.ch‘i P'(l)

.4

O POINTS FROM COMPUTER CURVE
0.

—— THEORETICAL CURVE

3

0.

0.2

0.1

a4
.4

0.0

0.8
06

0.5

0.3}
0.2

0.1

-0.1

-0.2}
0.3
~0.4

-0.9[
Figure 8~13. Theoretical Pg(x) with computer solution.

AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF

EEAE

A . _Afé&\:% 1
=
f 1 -
1 L
=gt
T

sesE

—F

__’},,,

"
1
1’

— + -

EEEE
==
———=

:

|
_-".,

jj;gf;

=

==

s

E

==

s

1=

— i\’;; i

T

/
:_:f_

,; AE_} *_VW ]

i
f

N
e

T

Sy . -] M
™ A A
H W 4, 7 i i Hi
oy H s, I
i 3 BES Se yy H J_,n:Ji.
T
,.
¢ =y 7 1}
. H :
# T _ i
| 9 & 4 N
N ] Lt et SOARE NI
tﬁ {4 LT ~ 1
" 1
il i
1111111......1.. L L1 lﬁll 7
I
L 1 M
ML 111\1+|\x :ﬂrn
|
et U HH:
|
|

” 4
1 1
T T
1 T
1 - 4
T 1
1 1
7 1
’ |
1 T
) g
1
Y _\‘——\
1 ) 8
.y T
7 ” o
i T
_j_ :ﬁ, ] ‘.f#

[T IA\ .i:..w
,:H:L | -Muﬂx L
N Tl ﬁ s |
% [

1

Page 136

Figure 8-14. Computer solution for Py(x).




AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-28
*‘ o
. =
\>
—5~\
o \0\\\
o) TN
®
,V
"
w
s pad
o
3 /P/
e
x of
w 5 ©
i a e
=
2 O
© 5
—] —~
33 - x
© x ot
- u N (@]
g ©
D oz
T
- g
(o]
*{\\Q
" A,
o \\(
N
(o) Ar
o
J,/
c© o o ~ O o m o -~ o = N ™ + w0
- 0O O o ©o© o © o o ©° ﬁ’ o §> o ﬁi
| 1
Figure 8-15. Theoretical Pn{x) with computer solution.

Page 137



AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM-28

CHAPTER 9

BOUNDARY VALUE PROBLEMS WITH VARIABLE COEYFICIENTS

9,1 Static Deflection of Uniform Beams with Varisable Load

In Section 5.1 we saw that the equation for the static deflection of
a uniform beam is

d4y(x)

(5-2)

where a = 1/EI = a constant and W(x) is the load distribution along the beem.

In Section 5.1, equation (5-2) was solved by means of the analog computer for
A(x) = a constant and a = 1. Reference to Figure 5-2 shows that W(x) was
simulated by a constant voltage applied to the input of the computer. In this
section we simulate a variable W(x) by means of a constant voltage input to

amplifier A; in Figure 9~2, where A; has a feedback resistor Ry variable by
means of the stepping relays.

A, Uniform Beam with Concentrated Load.

Iet wus first simulaete a beam hinged on both ends and with a concentrated
load in the middle (Figure 9-1).

/44421?6477 s

Figure 9-1. Uniform "hinged-hinged™ beam with concentrated load at center.
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We will simulate the concentrated force P by means of a load
distributed over a quarter-second interval, where the total time interval
is 4,75 seconds. In Figure 9-2 the feedback resistor Rm is made zero for
the first 9 steps (0 to 2.25 sec), 10 megohms for the 10th step (2.25 to
2,50 sec), and zero for the next 9 steps (2.50 to 4.75 sec.). Actually
the feedback resistor is shorted for a total of some 6 seconds (we were
using a 25-step relay for these tests) in order to provide a continuous
problem after 4.75 seconds.

As described in Section 1, the starting button, when pressed,
automatically starts the stepping relays which simultaneously energize the
initial condition relays, thus starting the solution of the problem. At
the end of 6 seconds the stepping relays are automatically stopped and the
initial condition relays automatically de-energized, resetting the initial
conditions and hence stopping the solution of the problem. The voltage Vg
in Figure 9-2 is varied until a correct solution, X"(L) = X(L) = 0 ,
is obtained for a value of L different from the one desired. Then R; is
varied and the above process repeated until a correct solution is obtained
for the desired length (L = 4.75 sec). Usually only four or five settings
of Rj are required to obtain a solution of the proper length,.

|
‘l"'l

1000 O
R Va ,
)¢%%£Ar L [
)/ 1] 1T
Ri | l
il — — |y — y!
= A, A, Ay
-4 — i:l:-::' i;L"i:? —
A 1000 QL
— i1
(! (!
1N |
| |
— \ —

L 11

Figure 9-2. Computer circuit for splving stetic deflection of uniform
beeams under varieble loads.
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Oscillograms of y, y', y" and y''' as well as W(x) are shown in
Figures 9-3 and 9-4. From Figure 9-4

P - W(x) _ 18.1 _ 4.53
4 4

The theoretical values(ll) for My, x and yy,x ere

PL 4.53(4,75)

MMJDC = -—4—- = "‘—"—4——‘"_ = 5,37
and
pL3 .53(4.75)3
max = gr - BEEEE L 0a
From Figure 9-3
15.8
Maax = T3 = 9.2
and
_ 18.8
Wax 5 Tg o = 9.4
,1, : f ,;’; St ’
T
R e = o 1
IEESE=ERES RN = &

= | == \ =
fERE-BEEE-ErTpEEEEEEEEEaEEwe

Figure 9-4, W(x) to simulate coneentrated load.
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B. Cantilever Beam with Tapered Load

The cantilever beam with tepered load is shown in Figure 9-5, In this
case 4(x) is simulated in 16 quarter-second steps. This is accomplished by
letting of Figure 9-2 assume the values 775 K, 725 K, 675 K, 625 K, eececec.s,

75 K, 25 K.

The 17th and 18th steps are made 25 K, end the 19th to 25th steps,
775 K in order to make a continuous probvlem. The computer circuit is exactly
the seme as in Figure 9-2 except that V, and Vi, are epplied across the feedback

capacitors of Ap and Az, respectively, and the initial short-circuits across the
feedback capacitors of A4 and Ag. Vg is veried until the end condition y"(L) =

y''"' (L) = 0 is met. Ry is varied and the above process repeated until L = 4 sec.
Oscillogrems of y, y', y™ and y''' along with W(x) are shown in

Figures 9-6 and 9-7. From Figure 9-7

14,3 x 4
A = total weight = =22 == _
gh <10 = 2.86

The theoretical values(lz) for My.x and Tvax are

Mog = AL (2:86) (4) L5
3
and
o = L (2.86) (4)°
MAXC 1561 = 15 = 12,2
W(x)
—— X ———>
v
{‘ L P

Figure 9-5, Uniform centilever with tapered load.
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Figure 9-7. (x) to sim

Page 143




AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM-28

From Figure 9-6

12
= - = .0
Myax 3 4
YMAX = 1:?'3 = 12.3

9.2 First Normal Mode of Oscillation of a Uniform Beam with a Concentrated Load.

The beam which we consider in this section is supported by hinges at
both ends and has a concentrated mass in the center (see Figure 9-8). To
simulate the concentrated mass at the center we solve the problem for a mass
of finite width 1/4 of a second, where L, the total length of the beam, is 3.25
seconds. From equation (5-29) we obtain as our equation

EIL4 a%x -
- f(xX) X=0 (9-1)
PR TA ax4 *
where
£f(xX) =1 0<¢x¢1.5
£f(x) = K 15<x<1.75 (9~2)
£(x) =1 1.75<¢x<3.,25
{ —
<—-—Q/2——>-
|
N S S S S
M

Figure 9-8, Uniforn "hinged-hinged" beam with concentrated mass at center.
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K is the relative increase in the mass distribution along the beam due to M.
If m is the total mass of the beam without the load, the ratio

M k-1 _ k-1
o - 4(3.25) 13 .

Qur end conditions are

X(0) = x"(0) = X(L) = X™(L) , (5-37)

where L = 3.25 seconds.

—|1l
Ve
f(x) [
M W ——
A WI '
—_— —_— —
Ay Ao Az
1
Vb
Sl —Amw—t
! n n
|1 1
— X" — |- — | X
Ay Ag Ag

I/l

— —
- - -

Figure 9-9. Computer circuit for solving normal rmodes of vibration of a
uniform beam bearing &a.load.
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The computer circuit for solving the problem is shown in Figure 9-9.

The feedback resistor of A; is varied by means of the stepping relays as

follows: first 6 steps, 1 meg; 7th step, 6 megs; 8th to 13th steps, 1 meg.

In order to make a continuous problem after 3.25 seconds, the rest of the steps

(14 through 25) were also 1 meg. In this case

M S

K=6 and =~ = *2_

- 5 (see above).
The initial voltege Vy is varied until a solution with the correct

end conditions is obtained. The velue of C is varied until the length L of the

correct solution is exactly 3.25 seconds.

Oscillograms of X, X', X" and X''' are shown in Figure 9-10, &and f(x)
is shown in Figure 9-11.

The theoretical value of the frequency for the first mode is given by(ls)

\ 4BE1
/ m(%& + 005)23

Since m =/U/@

>\ 48 EI
= M . 4
El‘ + 0.5 /(/,Z
and
o 48
= 1
- + 0.5 (9-3)
. M 5
For L = 3.,2% andﬁ = 13
48
o = /5/15 + 0.5 = 7.57

1
For a correct solution with L = 3.25 sec, C was found to be 0.481

from the computer.

Then fram equation (5-34)
L2

- = - (3.25)% ~/0.481 = 7.36

6

737

«
Experimental o = 7.3

Theoretical &
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9.3 MNormal Modes of Oscillation of a Non-Uniform Beam.

For a beam of varisble cross-section our equation becomes, after
separation of variables,

az acx 2 5
EI - X = 0. (5-24)
dx® ( dx2 ) /aX
de let
I= I,i(x), (9-4)
M= Ao Bx), (9-5)

where I, and ¢, are the maximum moment of inertia and mass per unit length

respectively. If/é is the length of our original beam, and L is the length
for the computer circuit, we let

= = ZIi x (5-26)

and from equations (9-4), (9-5) and (5-26), equation (5-24) becomes

EI L4 a2

- d2x -
= i(x) - (X)) Xx=0 . (9-6)
Aokt 2 ax2 L =z 5
Letting
4
_ N\ et
A = N\ T (9-7)
(o]
we get
L4 a? o=y a%x
— — i(x) ==/ = X)X=0 -
2F =3 [i(X) digJ ﬁ(x) , (9-8)
4
where we designate C = L_2_ . The equation which we solve on the computer,
then, is A
d2 L=y d2
c & [u(z) &£X - (X)) X =0 9-9)
dx= axe -/ ﬂ (

The computer circuit for solving equation (9~9) in the case of a beam free ot
both ends is shown in Figure 9-12. TFrom equation (5-3) it is apparent that the
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bending moment M(X) will be proportional to i(%X) 2_32{ and that the
X

shearing force Q(X) will be proportional to 4 _ -\ a2y
Z i - /-

dx
The end conditions for the "free-free" beam become
d2x(0) d d2x(0) d2x(L) a 2
i(0)e ———= = —m — = . 2 . d~X(L) 7 _
1(0) a%2 ax [1(0) ax2 7 = i) =2 = & /i) —égé-j7~ 0

(9-10)

As an example of a beam with vearying cross-section, we chose a problem for
which an analytic solution has already been worked out for the first mode of
vibration.(14) e consider the vibration of the hull of a ship, where the
hull is assumed syrmetrical with respect to the middle section. We assume that
if we place the origin of longitudinal coordinates at the middle section, the

moment of inertia I and mass distribution/a can be represented by the following
formulas:

I=1I,(1-~01bxR) (9-11)

/1:/"0 (1 - cxg) (9-12)
where x veries from -_£/2 to + £ /2, YA being the length of the ship.
The values of the constants given for the ship ere: /e = 100 meters,
Io = 20 (meters)4, ¢, - 7 x 9.81 tons/meter, b = c = 0.0003 1/(meter)2,
E = 2 x 107 tons/(meter)2,

The calculated value of the frequency for the first mode is given as

N = 21.6 radisns/sec

Solving for the frequency constant £ from equation (9-7) we find that

7(100)4
& = 21'6 ( ) = 2806
2 x 107 x 20

We will now compute & on the analog computer and compare the result
with the value given above,

de simulate i(X) and @ (x) by meens of 40 steps, 4 steps per second.
This meens that L = 10 sec for the computer solution. From equations (9-11)
and (9-12) for b = ¢ = 0.0003 we obtain 2

A (X) = 1(X) =1 - 0,75 (E%_
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where - % <-i<% « The resistances added for each step to simulate

equation (9-13), as calculated from equation (6-4), are given in the
following teble.

Step Resistance Added Each Step
1 0.765 meg

2 0.130

3 0.180

4 0,170
18 0.030
19 0.020
20 0.010

For steps 21-40 the same resistances were subtracted in reverse
order by connecting steps 21 to 40 to the same terminals as steps 20 to 1.

At ¥ = 0, i(X) = 1. If the stepping resistors above are used as a feedback
impedance, then for the amplifier to heve a gain of unity at X = O (between
the 20th and 21st steps) the input resistor required is 2.667 meg.

The end conditions fcr our problem are

dx

el ‘
(- 1/2) SEGHEL L & fuy) EELR) 7Ly SR

= 0, (9-13)

& [io/ SHEZ

where

L , =
-=<
> X <

i

The circuit for solution of the problem is skown in Figure 9-12,
where Rj = R@ = 2.667 meg. V, is varied until a solution with the proper

end conditions is obtained. C is then varied until the length L for a
correct solution is 10 seconds. The quickest way to arrive at & correct
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value of C is to plot a curve of C vs L as soon as the values of L ere
within 0.5 second of 10 seconds. Only a few points on this curve are
necessary to locate C such that L = 10 sec + 0,02 sec.

Oscillograms of X, i(X)X" and (i(x)X") are shown in Figure 9-13.

For
L =10.00 sec C = 12,20 and from equation (5-34)

L2 (10)2

¥ = = = 28.65
v Az, 20"

Experimental 28465

Theoretical = 28,6

In order to obtain L for the second mode it was found necessary to
use the method of interpolation of higher modes described in Section 5.2A.

For L = 10.02 sec, C = 1,932, From equation (5-34)
- I (10.02)%

R
Je’ " resz”

Even by meens of interpolation of results solutions of the third mode
are almost impossible to obtain because of failure of the computer to repeat

curves from solution to solution. The following values were obtained using
symmetry of the curves,

— e = PRl poen - I 7 ] O S U S - { I/ [ ,/'
SR | [ ] CJddmE] ] ][]
&HLT-*- + e e O I e i i D o e B I B |
= ESEcEE—CoseRENNNRRCANEEESSuiE
e e e 1 EEERERNEREN
el eeeEee 0T T ; 4 M Vi 1
%i‘\j*{“\\ : '\’%\\'Huilw\%\ L \\ B \ A K\
11i=\10,00 dec\ § = 38.801 | | | \L'. 1000 see\ €\ =\18,20 |\ | | |
1 div/sec
?‘fl EEEREEE=E R
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Figure 9-13, First-mode solution of ship hull.
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For the third mode, C = 0,5335 for L = 9.96 sec., From equetion (5-34)
<+ 2 (9.96)2

= L _
Jer = Josames] = 185.7

Summary of Data -~ Ship Problem

Mode Experimental Theoretical
1 28,65 2846
2 7262
3 135.,7 t 1

Several remarks on the solution of this type of problem by means
of the analog computer should be made at this time. The first is that
extensive tests have showed that the highest accuracy is attainable when
the gains of all amplifiers in the system are kept as close to unity as
possible. This means that the factor C, if different from unity by more
than a factor of ten, should not be embodied all in one resistor or one
amplifier, but should be distributed over several amplifiers, such as Ay
end Ap in Figure 9-12. The length L of the solution should be selected
so that C does not become lerger than about 20, if high accuracy is desired.
In all of these problems with coefficients varied in steps the length L
can be conveniently chenged by an integral factor merely by changing the
number of contacts per second on the curve which steps the relays.

This brings up a second point. Despite the fact that the cems
running the stepping relays (see Figure 2-11) were made on a milling
machine, there was enough lack of symmetry between the flat-surfaces to
ceuse wide variation in solution forms for the higher modes (2nd mode and
up), depending on which surface the problem heppened to start. For this
reason the master cam with one contact per second was utilized to trip the
multi-contact cams always on the same surface.

Veriation in 60 cycle frequency must, of course, be considered,
not only for corrections to the length L, but as having & disturbing effect
on the consistency or repetition of solutions for higher modes. It would
therefore be highly desirsble to have a constant frequency source of 60
cycle power available.

For actual problems there will always be an effect due to shear
and rotery inertia terms (see Section 5.3). By including a constant X" term
to take care of the estimated average effect of these terms, and by neglecting
the A~4 term in equetion (5-43), a very tolersble accuracy could probably be
attained, as well as a considerable stebilizing effect on the computer due
to the X" feedback (see Section 5.3).

In order to obtain solutions for higher modes it is possible to

take advantage of symmetry of curves with respect to the center of the besam,
if the beam is symmetrical. Then an accurate solution for the first half of
the normsal mode curve is all theat need be obtained., The actual length L is
twice the length of the first helf. In order to eliminate pen lag errors in
this procedure, it would be highly desirable to "blow-up" the curve being used
to determine the length L. (See Sec. 5.4 for & description of this technigue.)
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CHAPTER 10

A SIMPLE SERVOMECHANISM
10.1 Definition of a Servomechanism
aA servomechaniam(ls) may be defined as a system which attempts to

impose upon an output signel y(t) the seme functional form as the input signal
x(t), i.e., attempts to make

y(t) = Kx(t) (10-1)

where K i8 a constant. However, there are two restrictions which must be added
to our definition. (1) The energy associated with the output shall be derived
from a locel source and not furnished by the input signal. (2) The effective
cause which operates the system must be proportional to an "error signal®™, the
latter being defined as

error signal = € (t) = x(t) - Zéil (10-2)

This error signal €& (t) is obtained by taking the output y(t), dividing it by
K, and feeding the result back to the input, where it is subtracted from the
input signal x(t).

Thus we see that a servomechanism is a feedback amplifier.

10.2 Physical Exemple with Computer Analog

For a simple example of a servomechanism consider the system shown
schematically in Figure 10-1. Here the problem is to cause the heavy weights W
shown on opposite ends of the trensverse shaft to turn in accordance with the
movement of the handle H on the potentiometer control unit. Note that the
control potentiometer is not connected mechanically to the shaft S which turns
the weights. The movement is to be in one to one correspondence; i.e., if the
control handle is moved ten degrees counter-clockwise, the heavy weights are to
move ten degrees counter-clockwise,

The sliding arm A is fastened to the shaft S and mekes contact with
the potentiometer P. This potentiometer has its center-tap connected to ground
(zero potential) and its ends commnected to +V and -V volts respectively. Denoting
the output of our servo (position of the shaft S) with respect to a fixed reference
line as y(t), and the input signal (position of H) with respect to the reference
line as x(t), then the potential difference between the center-tep on the pot and
the contact-arm A will be proportional to x(t) - y(t). This voltage is then pro-
portional to the error signal of equation (10-2) where K = 1, since our servo has
a gain of unity. We will denote this error voltage as el. Then

€, = Xk /[x(t) - o)/, (10-3)

where kj is a constant depending upon the voltage applied to the potentiometer.
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Fig. 10-1., Example of a simple servomechanism.
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The error voltage is fed into a dc amplifier, the output voltage of
which we shall assume is directly proportional to the input voltage. The power
output of the dc¢ amplifier is used to driva a dc motor. The output shaft of the
motor is our servo output shaft S. The polarity of the input voltage to the motor
is arranged so that the output torque of the motor tends to turn S toward H, i.e.,
to reduce €(t) of equation (10-2) to zero.

Looking at our system we see that we have a system which imposes (or at
least attempts to impose) upon an output signal y(t) the ssme functional form as
the input signal x(t). We see also that the energy driving the output is not fur-
nished directly by the input signal but rather is derived from a local source
(in this cese the dc amplifier). We note also that effective cause which operates
the system is the error signal of equation (10-2), where K = 1, Hence our system
satisfies the definition of a servomechanism.

We will now write the equation of motion of the system. Let I = moment
of inertia of the mechanical systemj; ¢ = damping coefficient (viscous), i.e., the
retarding torque due to a unit velocity; k = torque output of the motor for a
unit error signal input [;(t) - y(§j7 .

Then our equation of motion is
&y & . - .
Idxz Ry k /x(t) - y(t)/ =0 (10-4)

In order to have a numerical problem which we can set up on the computer
we asgume the following values for the constants:
I= 0.25
¢ = 0,25
k= 1.00

Then equation (10-4) becomes

d=
o.zsz_x% + 0.25 % Fy =X (10-5)

The computer circuit for solving equation (10-4) is shown in Figure 10+2.

10.3 Step Response

With the analog computer set up to simulate our servemechanism we can
record the output or response y(t) of our servo to any input signal x(t). In
Figure 10-3 is shown the response of the servo to a step-function input.

If there were no viscous damping in our servomechanism (¢ = 0), the
response of the system to a step signal would be undemped oscillations ebout the
new equilibrium position. The oscillogrem of this condition is shown in Figure
10-4. To simulate this case the y feedback loop in Figure 10-2 is disconnected.
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The frequency of these oscillations will be the natural frequency of
the system and is given by the relation

1 k ‘
P a em— x -
ST 7 (10-6)

1
Rk'k
WA
T\
lll lll
—r —
|
-y y (1)
As Aa
L L I

- -

Fig. 10-2, Computer asnalog for simple servomechanism.

For our problem

£ 2 L /L - = 0.318 cycles/sec.

L
2T / +25 ™
From the computer
£ = 0.317 cycles/sec,

On the other hand suppose that our servo hed more demping than
we originally assumed. ZFor critical demping

C = /411{ a /4 x 0.25 =1 (10-7)

In this case the resistor R, in our computer is changed from 4 meg
to 1 meg. The response of the servo to a step input for critical demping is
gshown in Figure 10-5.

It is apparent that we can change any of the constants in our
problem merely by changing appropriate resistors in the camputer circuit.
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Step response; ¢ = 1 (critical demping).
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10.4 Steady state Frequency Response

It is of considerable interest to know what the response of our
servomechanism is to sinusoidal input signals of verious frequencies. Using
the well-known p-operator notation, we cen rewrite equation (10-4) as

(Ip? + ep + k) y(t) = kx(t) (10-8)

or 1
y(t) =(Iz = ) x(¢) (10-9)
*pp o+l

z{t) - 1
x(t 2 (10-10)
Substituting the constants of our servomechaniam in equetion (10-10)

x%t) . 1
x(t 1 - 0.25W2 + §0,25W

From equation (10-11) we can calculate the steady-state gain of our
servo for any given frequency, the gain being defined as the ocutput divided by
the input. Note that in general this will be a complex quantity.

we get

(10-11)

We can experimentally determine the steady-state response of our servo
by teking the output from the low-frequency oscillator (see Chapter 2, Section
2.10), and feeding it into the emalog computer as x(t). By recording x(t) end
y(t) simulteaneously on the Brush Oscillogreph we cen find the absolute gein
ratio and relative phase shift of y(t)/x(t) for each driving fregueney.

The servo steady-state gain curve showing both calculasted and experi-
mental velues of y(t)/x(t) for verious frequencies is plotted using complex
coordinates in Figure 10-6. Curves showing absolute gain end relative phase
shift as a function of frequency are given in Chespter 3, Figures 3-6 end 3-7,
for the same system.

10,5 Summery of Theory of Servo Mechanisms

The Nyqnist(ls) method of analysis is a means of predicting the
transient response (stability, accuracy, response time, etc.) of a servo-
mechanism from its known steady state response to a sinusoidal signal.

A brief summary of some of the results of the theory of servomechanisms follows.
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Fig. 10-6., Steady-state gain curve for the simple servomechanism,
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Consider a unit having en input x(t) and an output y(t). If we

epply a signel x = § ePt (p, imaginary) after trensients have died out,
the output will be y = OLePt. The transfer function Y of the unit is defined

by

1
v = (10-12)
§

In general Y is complex end a function of p.

If the transfer function of a servomechanism with its feedback loop
opened is Y (p), then when the loop is comnected, the tramsfer function of the
servomechanism will be of the form Y,

1+ Y, ’

For example, in Fig. 10-7 the transfer function of the emplifier Y(p) is
given by

Y(p) = (10-13)

My
ct]ct

(To measure Y(p) we break the feedback loop at Py, Py and epply & sinusoidal
€(t) to the input of the smplifier). when the feedback path is closed, we

have
_oy®) | _ye)
¥e) = @) T T -oyG)
and

() . _Y¥(p) . 1 Yolp)
x(t) 1+C¢¥p) ¢ I n gb(p) (10-14)

where Y,(p) = C Y(p) .

Looking at equation (10-14) we see that our definition of a servomechanism
holds as long as

le(p)\ > 1
for then we have
C y(t) = x(¢t)

We expect the behavior of the servomechanism to be very dependent on Yb(p)
in the region where

‘Yb(p)l ~ 1

and especially those values of p near that for which

Y (p) + 1 =0 (10-15)
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Yy —Cy(t) Ay(t)

X(t) €(t) = X(t)—Cy(t) y(t)

AMPLIFIER

Y(p)

Fig. 10-7. Typical Feedback Amplifier.

Meny of the tramsient input functions in which we are interested can be
expressed in the fom

e [
rl

the path of integration [ being the imaginery axis in the complex plane of p
looping around the right side of the origin.

The integrel of equation (10-16) has the value x(t) = O for % < O
(10-17)
tm—l
= Xo -(x_nrl_)'! fort > 0

Thus when m = 1 x(t) is a steg function Fig. 10-8; m = 2 gives a ramp function
Fig. 10-9 and m = 3 gives the t function Figure 10-10,

If we apply an input signal of the form of equation 10-16 to a servo-
mechanism having the transfer function 1 Yo the output is zero for negative
l + Yo

t and for positive t is given by
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Fig. 10-8. Step function. Fig. 10-9., Reamp function.
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t
Fig. 10-10. The %2 function.
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tp
X
W s e | Sl __ o " o (10-26)
s 1+ Yo(p)

r

fhere the path of integration I is the imaginary axis distorted so as to pass to
the right of any roots of p® (1 + Yy(p)) = O,

Stebility

Equation (10-18) caen be integrated by meking a Heaviside Expansion and using Cauchy's
Theorem to give

y(¢) = > Ky e Palt (10-19)
n
- Y
Jhere p, &re the poles of 1 op) and X p &re constants (or at most
P 1+ Y,(p)

polynomiels in t if any of the poles are multiple).

It is frequently very difficult to determire the poles in an actual
problem; however equation (10-19) will give information on the stebility of the
servomechanism without knowing the exact value of the poles. Suppose one of the
poles pp has a positive real part then y(t), equation (10-19), is exponentially
increasing in time and the system is unsteble. In any real single loop system
Yo(p) is finite for all frequencies and hence the only poles which might have
positive real parts are the roots of

1+ Yo(p) =0 (10-20)

The stability of a servomechanism is determined by whether or not equation (10-20)
hes eny rcots in the right half of the p-plane. (We shall see later the effect of
roots at the origin.)

It can be shown that if we encircle the right half of the p-plane by going
along the imaginary axis (passing to the right of the origin) and returning in a
semicircle of infinite radius (Fig. 10-11), the curve which Y,(p) follows in its
complex plane will encircle the point (-1, jO) once for every root of eguation (10-20)
having a positive resl part. This curve of Y, (p) in its complex plane is called
a Nyquist curve and whether or not it encircles the point (=1, jO) is Nyquist's
stability criterion. Figures 10-12 and 10-13 show stable Nyquist curves while
Figure 10-14 shows an unstable Nyquist curve. (Note that the stability cen depend
on the behavior of Y,(p) for large positive reel values of p. The similar situation
¢an also occur for small positive real values near the origin.

Transient Response

For the following we assume that the servomechenism is stable. The
transient response is very dependent on the behavior of Yq

—_. . near p = O,
1+ Y,
Applying a step function (Fig. 10-8), m = 1 in equation (10-16), what are
the conditions that y(t) will approximate a step function? For an actual servomech-
anism, we cen make a power series expsansion in the neighborhood of p = O
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Yo(p) = p-R + 81D + 8oD° + eeees) (10-21)
Ter g7~ © (S0t et e

where a5 # O and n 2 0,

Substituting this in equation (10-18) end using equation (10-17), we
get (for large t)

n
y(t) = % X5 [an + a1t o+ ...+a°(%!-)_7 (10-22)

If y(t) is to be a constent then we must have n = 0 (no pole at the origin).
Further if the system is to have no static error (Cy = x) then we must have
8.0=lo

If our system is to have zero static error, equation (10-21) must be

Yo(P)

2
= l + & + a + eoee (10"23)

Assuming that equation (10-23) holds, let us now epply a ramp function
(Figure 10-9, m = 2 in equation /10-16/). Substituting equation (10-23) in
equation (10-18), end using equation (10-17) gives (for large )

y(t) = _cxi_ (t + 8y) = E’g (agt + &) (10-24)

1% can be seen that the output y (in the limit) lags behind the input x by ay
secondd. This is illustrated in Fig. 10-15, which shows the lag for the more
general case where the static error is not zero. Here K = 1/C. If the lag is
to be zero then equation (10-23) must become

Y,(p)

2 +
1+ Y,(p)

3

= 1 + a2p Bap t cese (10-25)

This method of analysis cen be continued. If a t2 function is applied, the lag
in velocity can be determined.

Again assuming that equation (10-23) holds, let us apply a t2/2
function (Fig. 10-10, m = 3 in equations /10-16/ and /10-18/). Substituting
equation (10-23) in equation (10-18) end using equation (10-17) gives (for
large t)

2
y(t) = bx&_(g_ + alt + 8'2)
(10-254a)

, 2
y(t) = X lf_I_Eil__ + ag - a1
Y 2 2
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Fig. 10-15. Lag in case of remp function.

It can be seen that for large t the impressed t2/2 function is delayed by a;
seconds and that a static error ag - a1“/2 1is introduced. The derivative is
simply delayed aj seconds.

10.6 Experimental Verification of Nyquist Stability Criterion.

We shall illustrate the Nyquist stability curve by placing an additional
feedback loop in our servomechanism, a feedback proportional to - C %% .

The resulting ssrvomechaniam %s shown schematically in Fig. 10-16 where the trens-
mission ration Y(p) is the Zf%% given in equation (10-11) for our original servo
X

(not the Y(p) of equation /10-13/).

Let us define
_ dy/dt i
Y = = 10-26
1(P) < ( )

where € = X = Ci. Then we have from equstion (10-14) that (x - C§)Yi = §,

or v
S . N R
- N (10-27)
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Ay
Y—cy
x(t) X—Cy y(t)

Fig. 10-16. Servomechanism with additional feedback loop.

Letting
Yo = CY) (10-28)

(not the Yo of equation Zib-;é7)

we get
Yo
l+Yo

A

1
G )e (10-29)

This is now in our standard form for stability investigations. We
breask our feedback loop at Pj and feed our steady state frequency into P;.

The output %{_ at Py is recorded. Denoting the input at P; as € (%)

(= A sin t), (not the € of equation Zib~3§7), we see that %. = - CYy = - Y.

The curve of Yo(jué) is then plotted in the complex plane for theg
frequency renge (ses Fig. 10-17). The computer circuit for determining "% is

shown in Figure 10-18.
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THEORETICAL CURVES
o] EXPERIMENTAL POINTS

REAL AXIS

IMAGINARY AXIS ———————n

Fig. 10-17. Theoretical and experimental plot of YoJj{(w).

|
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—  MWWA————— .
INPUT €= A sinWt
' |
WY
w?/vv dh
' }__1 .
| l |
r ‘—.
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= A Ay As Ag
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]
OUTPUT —

1

Fig. 10-18. Computer circuit for determining - X

.
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Let us calculate Yo(p) from our knowledge of the basic equation of
motion. We have, with the loop open,

Y (p) =o0Yvp = g; (10-30)

Using the operator p notation we have also shown that

e = 1
x 0.25p2 + 0.25p + 1 ) (10-31)
From equation (10-30) we cen write
C
Yo(p) = D . (10-32)

0.25p2 + 0.25p + 1

For steady state frequency response, p = jw, and we have

jwe
1 -0.25 2+ j 0,25

YL (jw) = (10-33)

It can be shown that equation (10-33) represents a femily of circles
in the Y, plane. The centers of the circles lie on the negative real axis, the
right-hand edges of all the circles go through the origin, and the radius of
the circles is 2C., In Fig. 10-17 are shown three of these cireles for values
of C of 1/8, 1/4, and 1/2. The experimental points as obtained from the computer
are also plotted in Fig. 10-17. As can be seen the agreement between experimental
and theoretical points is within the limits of recording accuracy.

As W goes from O to 00 the Y,(jw) curve starts down fram the origin,

curves around to the left and up through the negative real axis at W= 2

(the natural frequency of the system), and comes in to the origin from above
as w—> o . A8 w goes from -00 to O the Yo(jw) curve makes another
clockwise revolution of the circle, making a net of two revolutions as p goes
from + JO to ~ jO. Since Yy(jw ) = Yo(~jw ) = 0, the total curve is closed

and the stability investigation is complete,

For C = 1/8 reference to Figure 10-~17 will show that Y,(jw) does not
encircle (-1,0) and the system is stsble. In this cese the net effect on the
servomechanism when the feedback loop is connected is to reduce the damping
coefficient ¢ in equation (10-5) from 1/4 to 1/8. The servomechanism output
y(t) is shown for a step input in Fig. 10-19,

For C - 1/4 the Yo(jw) curve goes through the point (-1,0). Hence
the system is just unstable. When the feedback loop is connected the net effect
is to reduce the demping in the servomechanism to zero. The response to a step
input will be undemped oscillations of the netural frequency of the servo.
Reference to Fig. 10-20 shows this.
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For C = 1/2 the Y (jw) curve circles well eround the point (-1,0).

Hence the system will be unstable, as reference to Fig. 10-21 corroborates.

Any minute unbalance is

enough to cause the increasing oscillations to build up as soon as the feedback

In this instance no signel is put into the servo.
loop is connected.
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Fig. 10-20, Step response; C = 1/4

Fig. 10-19, Step response; C = 1/8.
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Fig. 10-21.
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10,7 Evaluation of Power Series Coefficients using the Analog Computer.

As an exemple of determining the transient response of a servomechanism,
let us consider the servo deseribed in Section 10.2, where the constents of
equation (10-5) have the following values:

5
S
«00

)oK+
o
H OO

Then our equation of motion, using operator p notation, becomes

(1 + 0.5p + 0.5p%) y(%) = x(t) (10-34)
or
t 1
Yip) = x(t) T 1. 0.5p + 0.5p% . (10-35)

In order to solve for Y(p) in terms of a power series in p, we divide the denomi-
nator of equation (10-35) into the mmmerator.

1-0.5p-0.25p2+0.375p3 + seccecsne
1+ 0.,5p + O.sz )1
1+ 0.5p + 0.5p2

- 0.5p = 0.5p2
- 0.5p - 0.25p% - 0.26p°
- 0.25p2 + 0,25p0

- 0.25p2 ~ 0.125p° - 0,125p%
0.375p° + 0.125p%

]

Thus we see that Y(p) has the form

Y(p) = 1 = 0.5p = 0.25p% + 0.375p° + ....... (10-36)
and hence that
ag =1
a = 0,5
as = 0,25
az = 0,375 etc,

In Fig. 10-22 is shown the cogputer circuit used to solve equation
(10-34) which represents our servomechenism.
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A. Step Response

For the servomechanism under consideration % =1end a, = 1. Hence

the servo has no static error, and the limiting response to a step input should
be an output of the same magnitude. Reference to Fig. 10-23, which shows the
output y(t) of the servo analog for a step input, corroborates this. In Fig.
10-24 is shown the error signal y(t) - x(t). The static error is seen to be zero.

Fig. 10-22. Computer circuit representing the servo of equation (10-34).

B. Ramp Response.

The reamp-function shown in Fig. 10-9 is generated by meens of en integrator
with a constant voltage input supplied by a battery. A relay is connected acruss the
feedback cepacitor so that when the relay is not energized the capacitor is short-
cireuited through 1000 ohms. With the relay not energized (i.e., the capacitor shor-
ted) the amplifier is balanced for zero voltage output. Then when the relay is
energized, the short circuit is removed from the cepacitor, and because of the input

battery voltege, a remp function of the form x,t is generated.
It would be possible to meesure the time lag of yj(t) behind x(t) by
extending yp(t) back to the origin as shown in Fig. 10-15. However, & much more

accurate measurement of the time lag can be achieved by recording the error signal
€ (t) = x(t) - y(t). For a remp-function input where 1L . g = 1 we have
c

x(t) = x,t and yt = Xt + Xp&) from which
ot - Tp(t) = - %2

YL(t) - Iot

or a1 = . (10-37)
(4]
|
——MMW-
2 N
—MMW———]
I !
| 2
lr—w——lw l—‘b ‘_1
l [ ! I _

—MW - - N . o
x(t) A Agp Az A4 y(t)
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1T

T

1 div/sec

Servo response to a step input.

Fig. 10-23,

r? 4

11 X7

(t) for a step input.

Error signel

Fig. 10-24,
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Since we record x,t as well as yL(t) - x,t we can measure the slope
X, of the remp-function and hence determine 8y from equation (10-37). The canputer
circuit for accomplishing this is shown in Fig., 10-25,

As soon as the relsy is energized the ramp-function xot starts, and the
solution of the problem has begun. In Fig, 10-26 the oseillogrem of Xot and y(t) -
xct is shown., Note that the error signal is amplified by a factor of twenty.

Because of slight inaccurecies in the values of the components in the computers,
the gain of the servo simulator may not be exactly unity. Any small deviation
from a gain of exactly unity will be amplified by a factor of twenty in the €(t)
output. The net result is that the limiting error signal Ei}t) may not be a

constant but may drift slowly in either direction. Hence the 1 meg y(t) input
resistor to amplifier Az is changed by a resistance t R until the above men-
tioned drift becomes negligible. The magnitude of R is usually around 2000 ohms.

Note that y;(t) - x,t is negative end hence a; is negative.

Using three different values of the slope X, the following values of a
were obtained experimentally using equation (10-36)

- 0,482 sec,
- 00480
- 0,479

Average a; = - 0.480 sec,
Theoretical a, = - 0.500 sec.,

1000 . RELAY
—MA—"e0

[
__i |.__ﬁ. WWW
R [
A, X Iservo smuLator |Y* A, A
} | l J: (SEE FI6.10-22) 1 f 1

I TO RECORDER CHANNEL 2

—

yit) — x(t)

1

In

x(t) TO REGORDER CHANNEL |

Fig. 10-25, Circuit for measuring 81 by means of a reamp function input.
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The equation of motion becomes
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=1 - 0.25p -~ 0,4375p2 + ......

€(t) for a remp function input.
0.5Y + 0.285y + Y= X
(1 + 0.25p + 0.5p2) y(t) = x(t).
t
x(t

Y(p) =

Figo 10-26.
Before we take up the response of our servomechanism to the xotz

input, let us consider the evaluation of &) in the case where the demping
Rewritten in operator p notation, the equation becomes
obtained the following experimental values for 8, for various slopes x, of the

In this case the theoretical value of 8y is - 0.25 sec, Proceeding as before we
input remp:

coefficient is8 0.25 instead of 0.5,
The expansion of y(t)/x(t) if found to be
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- 0.242 ssc UMM-28

- 0.245
0.232
0.242

- 00240 SecC,

Averege &g
Theoretical 8y = = 0.250 sec,

(Note that the ramp-function leg &, is independent of the moment of inertia I of
the servomechanism. This fact is easily demonstrated with the analog computer.)

c. tz Response.

The input function x(t) = xotz, Figure 10-10, is generated by taking a
constant voltage and integrating it twice. The circuit is shown as a part of
Figure 10-27, Both feedback capacitors in the two integrators are short-circuited
through 1000 ohms until the relays are energized. Both amplifiers are carefully
balenced with the feedbacks shorted, and a battery is connected to the input of the
first integrator. When an initial-condition button is pressed, energizing the
relays and thereby releasing the short-circuits aeoross the capsacitors, generation
of the function x,t° begins at the output of the double integrator.

If both the integrators of Fig. 10-27 have a gain of G, and the input
battery voltage is V, the output of A, will be -GVt, and the output of A, will be

P2

2 e

Therefore

2x, = G2V . (10-38)

ForKaaozlanda1=-0.5

YL(t) = X628 - x t + 2x5a,

- x_t? ’
or ay = TLE) - X7 ¢ xot _ €L

2x° 2:;0

’ (10-39)

?
where €L 1s the limiting fom of €= y(t) - x5t + x t.

We record €' and -GVt. From the slope of GVt we can calculate V (since
G is known) in units of recorder divisions in deflection. From V and G we can find
2::i from equation (10-38) end from equation (10-38) calculate ap using the observed
value of €’L. In Fig. 10-27 is shown the computer circuit for obtaining e ' and

2xgt. The R 1s maintained at the same value found optimum for the evaluation of
a1, and R' is adjusted until éi is a constant without any drift.

The oscillogram of -GVt and &' is shown in Fig., 10-29. Note that &' is
amplified by a factor of 40, A sample calculation of as from Fig. 10-29 follows.
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|000 . RELAY 1000 &1 RELAY
! |
; m
—_ SERVO SIMULATOR — >
v A Bl I — > +y () A -y(t)
’ ! G Vt=iaxt SEE FiG0-22 | 3 y
e _
. Y NN

t GENERATOR |
3t AR'
VW

—_—

€(t) TO RECORDER, CHANNEL #2

L

.|H

-GVt TO RECORDER, CHANNEL ¥

1

Fig. 10-27, Circuit for measuring as by means of t2 input.

From Fig. 10-29 -GV = 11'015 1,0 = 1.0 div/sec
G = =2 1/sec V= - 1.5 div
1.5 .

From equation (10-38)
2
1 L 2
2xo = 62‘, E R —175-> (105) = 1.5 diV/Sec

From Fig. 10-29

/
€L = &> = 087 atv.

From equation (10-39)

ag = E£ / 2%y = = 1.5 (0.187) = - 0.281 sec?
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For the input voltage to A) equal to + 1,5 volts, ag = - 0.281 secg

- 1.5 volts, ag = - 0.305 sec®
Average 85 = - 0.29 sec?

Theoretical a, = - 0.25 sec?

It will be noted that both in Fig. 10-25 and Fig. 10-27 an extra amplifier
was needed to reverse the servo output y(t) to - y(t). In Fig. 10-28 is shown a
computer circuit which gives the required output of -y(t) directly. The only differ-

ence from the circuit of Fig. 10-22 is that the input x(t) is fed into amplifier Ao
instead of Aj.

D. Regponse

The summary of the numerical results appears below.

Servo equation: 0.5y + 0.5y + v = x(t)

Theoretical Value Experimental Value
8, 1 1.00
8 - 0,5 sec - 0.48 gec
ag - 0.25 sec® - 0,29 gec?

F_____

J
!
- MW

11

Ay A, -y(t]

I [/—1LC 10

Fig. 10-28, Circuit to furnish - y(t) instead of y(t).
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Fig. 10-29. <'(t) for a t® input.

05y + 0285y +y=x(t)

Servo Equation:

Experimental Value
1.00

Theoretical Value
1l

0.24 sec

- 0.25 sec

a8

In conclusion it might be noted that although the results of the

determination of the power series coefficienta a; and ap by means of the enalog

computer seem to show rather poor agreement with the theoretical values, it must
be remembered that these results were obtained by amplifying the difference

between two voltages of very nearly the seme level.

mination of a

For example, in the deter-
Hence the actual

the discrepancy between the experimental and theoretical values
20 or only 0.2%.

1
was 4%, However, the final output signal Eljt) was only sbout one-twentieth

of the order of magnitude of the ramp-function input voltage.

error in the analog computer output voltage was 4%

In view of these results we conclude that the method for determining

the power-series coefficients of the servomechanism transmission ratio is not
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higher powers. However, it would seem that the power-series coefficients are of
interest more in a qualitative sense for a particuler servomechanism, the idea being
to make the lower order coefficients as small as possible,

The output of a servomechanism having the coefficient a; = 0 would not
lag behind a reamp-function input after the transients had died out. In the same
manner the output of & servomechanism having a) = O would not lag behind a 2 input
function after the transients had died out, but there would be a static error of

2 .
Xo 82
c

If ag = a; then there is & delay of aj; seconds, but no static error.

Therefore the approximate values of the power-series coefficients give a considerable
insight into the effectiveness of a servomechanism.
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CHAPTER 11

A COMPLETE SERVO-LOOP; AIRPLANE, AUTO-PILOT, ELEVATCR

11.1 Summary of the Problem

It was desired to investigate the suitability of the analog computer
for simuleting a more complicated servomechanism. We chose as our example the
control of an airplane in elevation or pitch by meens of an asuto-pilot. Since
we were not interested in results for design purposes, but rather in results
for the purpose of determining the applicability of the computer, we were not
too particular in selecting certain constants in the problem or in making
certain simplifying assumptions. The main objective was to solve a problem
which would embody typical features of an airplane control problem.

The general approach consists of: (1) determining the equations of
motion of (a) the airplane, (b) the auto-pilot and (c) the elevator; (2) simu-
lating each of these equations of motion by means of analog computers; and (3)
properly tying the three components together so as to represent the complete
system. The block diagrem of the camplete system is shown in Fig. 1ll-1.

After the equation of motion of each of the three component parts is
determined, the corresponding enalog computer is set up. Steady state response
curves for various input frequencies are obtained experimentelly and ¢ hecked
against the theoretical curves for each component part. From these data the
steady state frequency response curve for the whole system is celculated. The
calculated response is then compared with the experimental steady state frequency
response of the whole system of analog computers as set up in Fig. 11-1l. In
addition, step response and ramp response curves are run to detemine the power
series coefficients, as described in Chapter 10.

AIRPLANE —8———3 O

—P—— AUTO-PILOT — ELEVATOR

Fig. 11-1. Block diasgrem of the complete system.
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Stebility is also investigated. Nygquist curves for a paert and for the
whole system are plotted in order to meke predictions about the stability.

11.2 Airplane Simulator.

We arrived at the equation of motion of an airplane in elevation in a
rather roundabout menner. In a report(l covering the steady state response of a
B-25 J airplame to sinusoidal oscillations of the elevator for a range of frequencies
of oscillation, the following formula is given:

{ QS L 2 (/o)

w* ¢ (61® - 2c,) W24y

)

where £ 1is the angle of pitch of the airplane with respect to the
horizontal.

§ is the engle of the elevator with respect to the stebilizer.
w 1is the forcing frequency applied to the elevator.

Mg, Cl, C, and 2, are constents.

Equation (11-1) is the formula for the absolute value of the frequency

regponse of the airplame. From Equation (11-1) we can deduce that for steady state
oscillations,

1 + 432,/w
é‘ i ) ?, b (11-2)
- W + 02 - f"w Cl

6
Tz Li

The signs of all terms sbove cannot be directly deduced from Equation
(11-1), but a subsequent check of points on the curves for the phase angle of &8/
versus frequency in the report(lV)establishes the signs in Equation (11-2).

Since for steady state oscilletions p = f'w s We assume, using
operator p notation, that we can write from Equation (11-2),

o~ Mg . :' 2w/ §® (11-3)
P -Clp + Cy

' where we are no longer limited to the steady state. Rewriting Equation (11-3) in
the usual notation we obtain as the equation of motion of the airplane:

- C] — + 0 = = - . -
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Note that Equation (11-4) is a linear, third order differential
equation with constant coefficients. In its derivation it is assumed that the
angles & and © are small enough 80 that the forward velocity U of the air-
plene remains constant.

Below are the values of the constants in Equation (11-4) as given in
Table 1 of the report(” for U = 175 m.p.h.

- 00864 / sec

£
<
"

- 3,75 / seec

<
T
R

4,31 / sec®

Q
av)
[

2

=
(=)
]

- 8,98 / sec

Before we set up Equation (1l1-4) on the computer it is convenient
to divide through by 4u5 , Obtaining:

1 ’y C . Cc
- m— O 4 1 e - 2 = - -
Mg .....g_ — © Iy wag dt . (11-5)

The computer circuit used for solving Equation (11-5) is showr in
Fig. 11-2. Response of the airplane angle of pitch © to a square pulse input
of the elevator angle & 1is shown in Fig., 11.3.

Using Equation (11-8) and the values of the eonstants given above,
we calculate the steady state frequency response curve of the airplsane.
Following the method outlined in Chapter 3,we determine experimental steady
state frequency response data. The solid-line curves in Fig. 11-4 show the
calculated steady state response (amplitude ad phase shift). The experimental
points as obtained from the computer are also shown. It is evident that agree-
ment is well within the limits of recording error.

11.3 Auto-Pilot Simulator

The auto-pilot frequency response curves were based on actusal curves
for a B-24 auto-pilot amplifier.(!¥) A circuit was designed which would give
roughly the seme gain and phase characteristics except for a frequency ratio of
approximately two, i.e., it was assumed that the frequencies for a B-25 would
be about double for the same response as a B-24,

The auto-pilot circuit is shown in Fig. 11-5. Assuming that the point
P is at ground potential we see that

13 + 14 = 15 . (11-6)
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Computer circuit for Equation (11-5).

Fig. 11-2.

1 div/sec
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Response © of airplane to square pulse input

Figo 11-30
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D.G. AMPLIFIER

Fig. 11-5. Auto-pilot .circuit.

Denoting the output of the auto-pilot emplifier sas -8 (the negative
sign is necessary because the d.c. emplifier reverses the phase by 180 degrees)
end the input as € we can derive, using Equation (11-6), the following formula
for 8o

€

Rg Pap3 & ;921,2 . ,91P . o (11-7)

where

°<2 = (Rs +R4) chlcg
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Ro + R Rz
1 1
B R (R Re) Ci + (B3 4 1) RoCo| + RoRCC
2 = %605 2 * %l P1t(E] 22 2Rg¥1%2
,53 = RyRxRsCCoCs
a a2
/0 = -a—t- ’ pz = dtz ’ etc,

The following values for the circuit constants were used:

Rl a 0,500 meg C; = 0.195 mfd
R2 = 0.95 meg Co = 0,099 mfd
Ry = 0.200 meg Cs = 0,006 mfd
Ry = 3.00 meg
Rg = 3.00 meg

Substituting the sbove circuit constants in Equation (11-7) we get

2
S 0.615 p° + 3.943p + 21.30 . (11-8)
€ 0.000680p% + 0.0967p2 + 3,730p + 21.30

For steady state (p = 7300) Equation (11-8) becomes

60 - 21.30 - 0.615w2 4+ £3,943 w
c 21.30 - 0,0967 w? + F (3.73w - 0,000680w3) (11-9)

From equation (11-9) the steady state response curves of the auto-
pilot cen be calculated. Both the calculated curves and those obtained experi-
mentelly from the simulator are shown in Fig. 11-6.
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Lack of perfect agreement may be due to the fact that G. E. Pyranol

capacitors were used in the auto-pilot circuit instead of the polystyrene
capacitors normally used in our computer circuits,

Note that for high frequencies the gain of the auto-pilot decreases
sharply due to the presence of Cg in the circuit. The circuit acts as an
integrator for these high frequencies,

11,4 ZElevator Simulator.

Before we consider the complete elevator problem, let us first essume
a relationship between the net torque Tg applied to the elevator, the hinge
moment Hp applied to the elevetor, and the angle of pitch © of the airplans.
We will ignore the effect of the normal acceleretion of the airplane, not because
this is justifieble in the actual problem, but because it considerebly simplifies
our simulator problem. That is, we wish to simplify the problem as much as
possible and yet still retain a legitimate problem. Thus, we assume that

Ts = K, Hy + Kg8 . (11-10)

Now consider the equation of motion of the elevator. We assume it to
be of the fomm:

2§ 6
1 d d
352 + C - * K§ = T , (11-11)
where
§(t) = the elevator angle with respect to the stabilizer.
I = moment of inertia of the elevator.,
C = gerodynamic demping coefficient

K = aerodynamic restoring torgque for a unit deflection of &

Tg (t) = the net torque applied to the elevator.

The following numerical values for the constants of Equation (11-11)
were used.

I - 0.000315 seo2 radian'l
1.2
0.0119
C = 1.z sec? radian'l
1 -1
K = 1.2 radian
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The equation of motion of the elevator now becames:

0.000315 § + 0,0119§ + 5§ = 1.2Tg (11-11a)

The computer circuit used as the elevator simulator is shown in Fig. 11-7,

Note that the natural frequency of the elevator is given by:

1

oo " 56,5 radians/sec .

3
HIX

The elevator response to step-function input T 1is shown in Fig. 11-8.

Writing Equation (11-11) in operator p notetion we get

b . 1.2
T, 0.000315p¢ + 0.0119p + 1 (11-12)
For steady state oscilletions, p = fw and
£ 12
T, 1 - 0.00031542 + 0,0119w (11-13)

From Equation (11-13) the steady state frequency response of the elevator
is calculated., Calculated and experimental curves of elevatar frequency response
(as obtained from the analog computer) are shown in Fig. 11-9. Here again the dis-
crepancy between theoretical and experimentsl curves is perhaps due to the use of
paper condensers in the integrating amplifiers.

Referring again to Equation (11~10) we assign the value unity to Kj and
Ko, We also denote H as Be,, where Hy, is the hinge-moment applied to the elevator,

e, is the output of the auto-pilot circuit shown in Figure 11-5, end B is a constant
which we will call the auto-pilot gain-factor. Then Equation (11-10) becomes:

Te  (t) =Bey (t) + 0 (t), (11-14)

and Equation (11-11) becomes

0.0003155 + 0,01195 + S = 1.2 (0 + Bey) (11-15)
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11.5 Steady-state Response of the €omplete Sysvem.

¥We must now tie the auto-pilot, elevator, and airplane together in order
to simulate the action of the complete control system. The following notation is

used
(t) e, (%)
Y, = Hm = B o = +trensmission ratio of auto-pilot
1 € (%) € (%)
Yé = _Jgifl.___ = b () = transmission ratio of elevator
Ts (t) 9(t) + Begy(t)
Y = —E—LEL———— = trensmission ratio of airplane.
3 5(t)

Our complete servomechanism in terms of the transmission ratio is
shown in Figure 11-10.

From Figure 11-10:

H, = (e, - 0) Y, (11-152)
S = (0 + Hy) Yo= 6Yg+ 6V ¥p - 6N (11-16)
But S 2 (11-17)
Y3
9 -t
Y
(<]
> 8, —© Yy Y2 § Y3
6, o AUTO=PILOT ELEVATOR o AIRPLANE 8
HM

Fig., 11-10. Complete servomechaniam.
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Therefore, we cen write fram Equations (11-16) eand (11-17):

® = Yp¥30 + Y)Y¥pY¥a0, =~ Y1Y¥ Y8 ,

or

g 1(;1:5 - T (11-18)
0 Y1Y2Y3 - Yo¥3 + 1l

Since we already know Y;, Y, and Yz, we can calculate 6(t) from
’ ’ Go(ti
Equation (11-18).

The complete analog computer circuit for simulating Figure 11-10 is
shown in Figure 1l1-11.

In Figure 11-12 are shown the steady state frequency response curves as
calculated from Equation (11-18) using the theoreticel or calculated values of the
transmission ratios,

The emto-pilot gain constant B was chosen as 3 for these steady state
curves. The experimentel points for steady state frequency gain as determined
from the computer are also shown in Fig. 11-12., Note that the agreement is fairly
close except at the higher frequencies. This is due to the discrepency in theoret-
ical and experimentally determined auto-pilot gain curves (See Fig. 11-6).

The steady state frequency response curves for the complete system as
calculated from the separate experimental transmission ratio curves are shown in
Figure 11-13.

11.6 Stability Considerations.

Whenever a servomecheanism has more than one feedback loop, the simple
Nyquist theory as presented in Section 10.5 is not edequate. Each feedback loop
system within the main outside feedback loop must be investigated separately for
stebility by means of a Nyquist diagrem.(19)The net number of loops about the
critical point for each feedback system is detemmined. The net totel number of
encirclements of critical points for all the inner feedback systems is determined.
For the complete system to be stable when the final feedback loop is commected,
the Nyquist curve for the complete system must encircle the critical point exactly
as many times as the net revolutions of the critical points of the inner systems,
but in the opposite direction.

Thus the net number of encirclements of the critical point for all the
feedback systems is zsro.

In our particular problem we have two feedback loops and we must first
investigate the stability of the inner loop. Ietlﬁz denote Yo¥z. The steady

state frequency curve of Y, as calculated from Ys and Yz for w running from +0
to o0 is shown in Figure 11-14. The reflection of the curve sbout the real axis
giveg the Y, curve for w going from -®© to - O, Note that Y, (-}0) =74 |

end Y, (+ y0) = = 4% . In order to join the two ends at infinity we must find
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out on which side of the real exis the semi-circle at infinity crosses. Hence,
we wish to find the limit of Y,(p).Y;(p) as p approaches zero slong the real axis.

From Equation (11-12) we see that
Lim  Ys(p) = 1.2
p—>0
Remembering that Z,, is negative, we get from Equetion (11-3)
Lim  Yz(p) = +<0
p—0
Then it follows that
Lim  Yo(p) = lm Yo(p)¥s(p) = + 0 (11-19)

p—0 p—0

_Thus the circle at infinity is in the right half plane and the Nyquist
loop for Y is completed as shown in Fig, 11-14,
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Referring to Figure 11-10 we see that

(e + EM) Y2 = = _i_
Y3
and
o . Y273 - Y (11-20)
Hpn 1 - Yo¥3 1-Y,

From equation (11-20) it is apparent that the critical point is (1,0), end
from Fig. 11-14 we see that the loop does encircle the critical point, and
in a clockwise direction.

From equetion (11-18) we can write

YleY;j
o . 1 - Yo¥
%) Y
o 1+ 1¥pY3
l - Yo¥n
Letting
Y, 11YpYs
1 - YoYs (12-21)
we get
8 = YO
50 1 e YO (11-22)

The critical point is (-1,0).

In Fig. 11-15 the Nyquist loop for Y, as calculated from the
theoretical values of Y;, Yo, and Y according to Equation (11-19) is plotted.

Note that the critical point is encircled in a counterclockwise direction.
Since the Yb loop encircled the critical point in a clockwise direction, the
Nyquist Criterion for stability has been met and the system will be stable.

In Figure 11-16 the Yb points as calculated fram experimental computer
curves of Y, Yp, and Yz are shown against the theoretical curve of Y,.

The response © of the system to a step input 6, as recorded from thé

computer is shown in Fig. 11-17. The elevator angle & is also shown for a step
input 6, in Fig. 11-18. The response of the system when the elevator angle Y
is held at a constent deflection from zero for a short length of time is shown
in Fig. 11-19,

Page 201



AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM-28
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Fig. 11-15. Nyguist diagram for entire system.
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Fig., 11-16., Comparison of experimental and theoretical performeance
of entire system on ‘the Nyquist plane,
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It 18 interesting to consider the effect of removing the first and
second derivative components of the auto-pilot system, i.e., letting Y, = B =
constant. For B = 3 the resulting Y, Nyquist diegram is shown in Figure 11-20,

Since the loop still encircles the critical point once in a counter-
clockwise direction, we would expect a stable system. But note that the curve is

closer to the eritical point by roughly a factor of two., Hence we would not
expect the system to be quite as stable for Yi = constant.

In Fig. 11-21 the response @ to a step input 6y bears out this expecta-

tion; the oscillations of the angle of pitch € die out much more slowly then in Fig.
11-17-

From Equation (11-21) it is evident that changing the auto-pilot trans-
mission ratio Y; by a constant factor will chenge Yo by only a constant factor.
Thus far we have considered the problem only for the auto-pilot gain factor B = 3.
As the gain factor of the auto-pilot is made larger, the Y, (jW) curve of
Figure 11-15 is expanded out from the origin by the seme factor. If we neglect
scale effect in Figure 11-15, we see that this is equivalent to moving the critical
point (-1,0) in toward the origin along the real axis. In fact, if the auto-pilot
gaeln B is made large emough, the critical point will be inside the small inner loop
of Fig, 11-15, and the Nyquist loop encircles the ecritical point in a clockwise
instead of a counterclockwise direetion. Hence the system will be unstable.

By blowing up the region of Y, about the origin it is determined that the
curve crosses the real axis at ebout the point (-0.175,0). For B = 15 instead of

3 (euto-pilot gain increased by a factor of 5) the crossover point is moved out to
the point (-0.875,0),

IMAGINARY AXIS

N

w:-0  REAL AXIS 6,0) Lete
w=+0 “Nw:-o

Fig. 11-20, Y, Nyquist diagrem.

Page 204




AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM-28

Fig. 11-21. Response 6 to a step input &, for Y; = 3.

Figure 11-22 shows that in this case the system shows much less
stability in response to a step function input.

The value of B such that the system oscillated continuously for a
step input was determined from the computer and found to be 18.0. According
to the theoreticel curve of Y, this value of B should be 3 x1 _ 197,29,

0.175
The response of the system to a step function input is shown in Figure 11-23.

The frequency of oscillation as determined from Fig. 11-23 is 36.4 radians/sec.
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Fig. 11-22. Response 6 to a step input Go for autopilot gain-factor B = 195,
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and elevator simulators themselves are not too accurate at these higher frequencies.

fair agreement with the theoretical values when one considers that the auto-pilot
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(11-8)
(11-23)

Letting B = 3 and

-

€,
€

and check the first two coefficients experi-
Page 206

step input 6, for auto-pilot gain-factor B = 18,
l of Chapter 10, we will calculate the theoretical
Y
+ 28l,30

.or 6
+ 0,0967p2 + 3,730p + 21.30

Response 6 to
Y, (p) = 3% 0.03p + 0.678p2 + 0.0121p° + ...

0.615p° + 3.,94%p

From Equatior (11-8) we have for the auto-pilot
0,000680p>

From Section 11.5 we remember that Yj = B
dividing the denominator of Equation (11-8) into the numerator, we obtain the

Following the met’
power series expansion for Y; (p).

power series representat io

€ -

&,

Fig. 11-23.
11,7 Evaluation of Power Series Coefficients.

mentally on the analog computer,
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Referring to equation (11-12) we find that for the elevator

Yo = 5 = 1.2
2 . | . _
T 0.000315p2 + 0,011’ 1 (11-12)

Substituting the values of the airplane constants given in Section
11.2 into Equstion (11-3) we get

= (8.98). 1+ .864p (11-24)

YS =
ne 4 3.75p + 4.31

)
s

Multiplying Equation (11-12) and (11-24) together, the following
expression for Yo Yz is obtained when terms of order higher than p° are
neglected.

Y., = -1 9,31 + 10.8p
2¥3 P * 431 + 3,80p + 1,046p2 + 0,0131p%

Dividing numerator by denominator, we find that

Yo(p) - Y3(p) = 21')15 + 0.603 = 1.06p + 0.778p% + ...... (11-25)

Substituting the power series expansions for Yi(p) and Yz(p)' 3(p)
in Equation (11-18) and neglecting all terms of order higher than p3 we obtein
the following power series expansion for @ when the numeratar of the expression

o
is divided by the denominator.

.g. = 1.5 - 0.354p + 0,167p2 - 0.243p° + ..... (11-26)
(o]

For a step function input we have

6, =0, t<0

6, = A= constent, t>0, (1x-27)
and from Equation (11-26) it is apparent that
& - s, (11-28)

where € is the limiting angle of pitch after all transients have died out.
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In Figure 11-17 the step response curve is shown. Note that €
within the limits of recorder error. 'g';

In general it is desireble to have a servomechanism for which the zero order
coefficient a, is unity or near urity (so that the static errar is zero; see 10,5).
Reference to Fig. 11-22 shows that when we increase the auto-pilot gain factor B from
3 to 15, the ratio 8, becomes very nearly one., In fact it can be shown that

= 105

B-1 (11-29)

However, B cannot be increased beyond the value 18 without meking the
system unsteble, as shown in Section 11.6. Even for B = 15 the system shows

oscillatory tendencies (see Fig. 11-22). A more practical value for B would be
between 5 and 10.

For a ramp function input we write

00 = 0 N t(o . (ll 30)
90 = At ’ t>o .
and from Equation (11-26) we got
eL
- = (1l.5t- 0,354) ’
g0
or
()
L . 1.5 (¢ - 0.236) . (11-31)
e0

As explained in Section 10.5, this means that the 6y, "ramp" should lag
behind the input remp function 8, by 0.236 seconds.

Assuming thet &, is known tc be 1.5, but that aj, the coefficient of t,
is unknown, we can write for a ramp input

OL = 1.5 At + Ml = 10590 + A.al ’
or
o - o, - (11-52)
° 1.5

If we record 6y (= At) along with GL/1.5 - 6, , We cen calculate &
following the method of Section 10.5.

The circuit for obtaining these values is shown in Fig. 11-24.

The remp response for the system is shown in Figure 11-25 and the quantities
6, and 8 - 8, are shown in Fig. 11-26.
1.5
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I
e

—AMW .

(5]
5~ TO RECORDER,

CHANNEL¥2

—x

TO RECORDER,
O GHANNEL *1

Fig. 11-24. Computer circuit for obtaining a;.

For different values of the slope A the following values of &)
1.5
were determined experimentally using Equation (11-32).

-0. 184
‘O' 198
-00182

Average -0.19 sec
8y = =-0.19 (1.5) = -0,29 gec
theoretical &y = -0.35 sec
At first consideration this discrepancy seems rather large, but
when it is Pemembered that we are measuring the difference between two very

similar quantities and that the total error is only 0.06 sec, the result is
not so alarming.
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11.8 Conclusions.

In conclusion it might be said that the analog computer shows great
possibility in the simulation of complicated servo systems. Response of the
system to any kind of input signal can immediately and accurately be observed
and recorded. System constants cean be changed merely by changing resistors.
Stability of the system is easily observed and checks well with the Nyquist
Criterion.

It is to be noted that the overall accuracy of the simulator would
have been considersbly improved by using polystyrene capacitors throughout.
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