THE UNIVERSITY OF MICHIGAN

College of Engineering

Department of Mechanical Engineering

Cavitation and Multiphase Flow Laboratory

Report No. 02643-2-PR Progress Report No. 2

A STATISTICALLY VERIFIED MODEL FOR CORRELATING VOLUME LOSS DUE TO CAVITATION OR LIQUID IMPINGEMENT

(Submitted for presentation at ASTM Symposium on Characterization and Determination of Erosion Resistance)

by: F. G. Hammitt
Y. C. Huang
C. L. Kling
T. M. Mitchell
L. P. Solomon

Financial Support Provided by:

U. S. Naval Air Development Center.

Contract No. N62269-69-C-0285

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Commanding Officer, Naval Air Development Center.

ABSTRACT

Rocket sled data has been used to evaluate statistically best values for threshold velocity and velocity exponent as well as the coefficient n in the relation:

$$MDPR = K(Vsin\Theta - V_0)^{\alpha} / sin^{n}\Theta$$

It is found that a reasonable assumption for most materials is that threshold velocity is zero, n=1, and that there is a rough correlation between K and a. The correlations with the data are relatively poor. However, within the basic precision attained, a single figure of merit for the material in terms of either K or a could be easily derived.

A more basic relation for the evaluation of MDPR has been assumed in terms of the energy flux model suggested by Hoff et al (5). In this relation the material properties are described in terms of an energy per volume term describing material failure. It has been found that the material energy term is best described as proportional to ultimate resilience. No correlation with any efficiency term relating liquid and material properties alone has been found.

TABLE OF CONTENTS

Ι.	INTRODUCTION	1
II.	ROCKET SLED DATA CORRELATION	. 2
III.	GENERALIZED EROSION MODEL	
	B. Basic Equation Selected	
	C. Evaluation of Energy Parameter	
	l. General Remarks	8
	2. Selection of Data for Evaluation	10
	3. Best Fit Results Attained	11
IV.	CONCLUSIONS	16
NO	MENCLATURE	19
ВІ	BLIOGRAPHY	20
T_A	BLES	22
FI	GURES	30
ΑT	PENDIX	33

I. INTRODUCTION

One of the major objectives of much past and present erosion research, either cavitation or impingement, is to establish a mathematical model with fluid-flow, and material parameters as input data which would allow the engineering prediction of erosion rates for given, as yet untested, materials. A precise model of this sort has so far eluded investigators. This appears to be inevitable in view of the highly complex and varied natures of the erosion processes, even though produced by droplet impingement or cavitation, for example, alone. Nevertheless, it is desirable, using a large and diverse group of data, to attempt to determine optimum correlation relationships, and also to determine roughly what degree of precision can be expected from correlation models using easily measured standard engineering parameters as input data. development of an optimum model and the examination of other possible models, particularly for droplet impingement in the range of interest of aircraft rain erosion, is the objective of the present paper. fairly complex set of data, including both impingement and cavitation data has been used. This combination of data seems reasonable due to the presumed basic similarity of the erosion phenomena in impingement and cavitation. The model chosen for further investigation has been made dimensionally-consistent and as simple as possible, in hopes of obtaining a maximum generality and applicability for the results. This objective is also enhanced by the use of a diverse data set including items generated in different impact and cavitation type tests. It is expected that additional data items as they become available (or are reduced to the form here required) will be incorporated into the overall analysis, thus increasing its generality still further.

Prior to the investigation of an overall erosion model, attempts were made to correlate data obtained on rain erosion materials in the

Holloman AFB rocket sled facility, using previously published semi-empirical relations between erosion rate, velocity, and angle of impact. The relatively poor fit achieved in this instance emphasized the necessity for a model more closely based on the details of the physical processes involved. this reason it was decided to attempt a step-by-step development, relating as closely as possible to measurable data at all times, of a more basic model along the lines suggested by Hoff etal (1), relating the rate of erosion (MDPR = mean depth of penetration rate) to the kinetic energy impacting the target, the efficiency of energy transfer between drop and target (m), and a material parameter (£) with dimensions of energy per unit target material The equation adopted, explained in detail later, relates MDPR to the impinging kinetic energy and the energy necessary to remove material:

MDPR =
$$\left(\frac{\mathcal{M}}{\mathcal{E}}\right) \left(\frac{A_p}{A_p}\right) \left(\frac{\mathbf{f}_{eff}}{2}\right) \left(\mathbf{v}^3\right)$$
 - - - (1)

Our analysis to date, carried out within the framework of this equation and utilizing a data set which includes both impingement and cavitation data, has concentrated on the optimum evaluation of the material parameter ε in terms of mechanical material properties, and has also included the contribution to the energy transfer efficiency term γ due to the material and fluid, rather than geometrical and flow, parameters.

II. ROCKET SLED DATA CORRELATION

A. General Considerations

As a portion of the overall program aimed at the evaluation of potential rain erosion resistent materials, we have examined some of the data generated by the 1967 rocket sled tests at

Holloman AFB to determine the suitability of certain semi-empirical damage-predicting equations. The portion of the rocket sled data selected for this analysis comprised ten groups of materials including ceramics, plastics, and metals. They had been tested in the 6000 ft. rain field at Holloman AFB at Mach numbers ranging from 1.5 to 3.0, at various angles of impact ranging from 13.5° to 90°. The full details of this analysis have been reported previously (2). However, certain salient features will be repeated here for convenience.

An earlier report by Tatnall, et al. (3), based upon an experimental fit of rocket sled data suggests the velocity appears in an exponential form:

MDPR =
$$C_{k}e^{aV}\sin\Theta + C_{2}e^{bV} - - - - - - (2)$$

where C_1 , C_2 , a and b are constants depending on material properties.

Baker, et al. (4), proposed a relation based on their impact data, which includes the concept of a threshold velocity below which damage is essentially zero:

MDPR =
$$K(V \sin\Theta - V_0)^{\alpha} / \sin\Theta$$
 for $V \sin\Theta > V_0$
= 0 for $V \sin\Theta \leq V_0$ - - - (3)

More recently Hoff and Langbein (5) have suggested a modification of eq.(3) whereby the denominator is squared:

MDPR =
$$K(V \sin \Theta - V)^{\alpha} / \sin \Theta^{2}$$
 for $V \sin \Theta > V$
= 0 for $V \sin \Theta \leq V$ o - - - (4)

Eq. (2) is simply a curve-fitting expression, not based on any physical model. Eq. (3) on the other hand assumed basically

that MDPR is proportional to the difference between the normal component of the impact velocity and some "threshold velocity", all raised to some power, a. A similar assumption has often been made in the cavitation literature (6, e.g.) where damage was assumed proportional to the 6th power of the flow velocity. In eq. (3), sin has been added to the denominator to take some account of the damage due to shear from the high radial velocity after impact, which increases for oblique collisions. Actually, since in the rocket sled type test the specimen impacts a reduced number of raindrops if the impact is not normal, it might be argued that an additional sin is required in the numerator, cancelling that in the denominator. This latter variation was not tried in the present analysis.

Eq. (4) is identical to eq. (3) except that $\sin^2 \Theta$ appears in the denominator. This term can be derived logically from a model assuming energy flux on the target to be the predominent mechanism (5), if it is also assumed that the efficiency of energy transfer between impacting drop and target is a function of VsinO only. However, it seems unlikely that this is strictly the case, so that eq.(3) and (4) remain semi-empirical in nature, and to be tested only in terms of a data fit.

B. Computer Correlation Results

The most comprehensive analysis of the rocket sled materials was made using Baker's proposed eq. (3). For each material a least mean square fit regression analysis was made to determine the best value of threshold velocity V_{o} , and of the amplitude constant K and the velocity exponent a. Full details are given elsewhere (2), but the important general results are included here. Table I shows the comparison between predicted and measured MDPR for Pyroceram, along with the best values of V_{o} , K, and a. It is noted that these differ by factors in excess of 10 in many cases. This is typical for most of the results. It

is also noted that the best value for the threshold velocity in this particular case is zero, which is also fairly typical.

Table II shows the effect of choice of V on the best values for the exponent a and the amplitude constant. K. on K of varying V between 0 and 2000 f/s is small but a varies over this range from 6.44 to 2.28. A plot of MDPR vs. V shows a small or zero MDPR for small velocities and then a rapidly increasing MDPR for larger velocities. Such a curve can be fit almost equally well by various combinations of V (including 0) and velocity exponents a, as the present calculations Since, strictly, it is unlikely that there will be zero damage for repeated impacts at any velocity, it may be permissible to avoid the concept of threshold velocity entirely. If it is used, it is obviously a function of number of impacts per second as well as velocity, and it may be necessary to define an arbitrarily small but finite limit for MDPR which will then define the threshold velocity. Fig. 1 shows two typical sketches for the relation between probable error and choice of threshold velocity for this data. For those materials exhibiting behavior of the type shown in sketch l-a, the optimum choice for threshold velocity is zero. For other materials, as in sketch 1-b, a definite optimum V_0 appears.

For some materials the best values of V_0 , K and a were computed from both eq. (3) and (4). Table III shows the comparison for an inorganic laminate, D-2 and a thermal plastic, I-2. While eq. (4) calls for an exponent 2 for the sinO term, the effect of exponents ranging from 1.0 to 2.5 was examined (n=1 corresponds to eq. (3)). It is noted that for these materials, the choice of n affects the best choice of threshold velocity (and of course a, which is not listed), but affects the minimum probable error

only slightly. From this data it appears that a choice of n=1, desirable for the sake of simplicity, would not significantly reduce the "goodness" of the correlation. The effect on probable error of assuming zero threshold velocity (also desirable for simplicity) is shown in the last column. It is noted that the additional error so introduced is not particularly large.

For the best-fit values of V for the different materials as analyzed under eq. (3), it has been noted that there is a rough correlation between K and a (Fig. 2). If a sufficiently precise correlation of this type existed, it might be possible to characterize a given material by a single figure of merit, which could be either K or a.

III. GENERALIZED EROSION MODEL

A. General Considerations

The limited success achieved in correlating the rocket sled test data using eq. (3) or (4), leads to the general conclusion that a more basic mathematical model is required. However, in the present instance the lack of good correlation is partly due to the type of data used. It is not permissible to compare damage attained after a fixed exposure period for materials of widely differing resistances, since only a mean MDPR can then be computed for materials in very different portions of their MDP vs. time (or number of impacts) curve. It is thus necessary to use data wherein the total MDP vs. exposure curve is available so that only comparable portions of this curve will be compared. After further understanding and the verification of predicting equations has been achieved, it may then become possible to interpret data from a test such as that of the rocket sled in a more suitable manner. However, this data is not adequate for

the generation and verification of a basic model. For these reasons, data from various types of facilities, both impact and cavitation, have been compiled together and used for the remainder of the present investigation.

B. Basic Equation Selected

The best hope of achieving a relationship of the generality necessary to allow possible applicability over the broad range of rain erosion materials, lies in a relation which is directly related to a physical model of the erosion process, is dimensionally consistent, and is as simple as possible. it will be possible often to achieve a better fit for a given data set with more complex mathematical expressions, the likelihood of fitting other data sets with the same relation is reduced. this line of reasoning, we have elected to use the basic energy flux model suggested by Hoff et al. (1). However, we have not carried this beyond the stage where verification from our available data was possible, and hence have not introduced some of the assumptions used in the Hoff paper (1). We assume simply that the product of the rate of volume loss per unit exposed area (MDPR) times the exposed area (A_{ρ}) is proportional to the product of the impacting kinetic energy per unit projected area times the projected area. The constant of proportionality is the quotient of the efficiency of energy transfer between impacting drop and material damage processes (m) and a material parameter (E) describing the energy per unit material volume absorbed in the material in such a way as to cause damage. This relation is expressed by eq. (1).

To utilize this equation it is of course necessary to evaluate $\mathcal E$ and $\mathcal M$. Our analysis to the present has produced a simple best fit expression for $\mathcal E$, as will be explained later. We have not as yet, however, fully evaluated $\mathcal M$.

For the moment it appears that the efficiency influenced by several factors, and may perhaps be considered as a product of several separate terms reflecting each of these mechanisms. Considering the details of the collision process between a liquid drop and a material surface, it seems likely that γ will be a function of (a) material and liquid properties perhaps as reflected by the acoustic impedance ratio (7), (b) geometrical factors involved in the collision, i.e., shape of impacting drop, angle of impact, surface roughness, etc., and (c) velocity of impact which will affect the pressure applied to the surface and hence the degree of surface deformation and the departure from the concept of an elastic material. Since (a) material and liquid properties involves no other parameters of the collision, we have lumped its consideration into that of the energy parameter Σ , assuming as a first approximation that this portion of the efficiency term m_{a} may be some function of the acoustic impedance ratio. No attempt has yet been made to evaluate the remaining portions of

C. Evaluation of Energy Parameter, E

1. General Remarks

It is desired to find a material mechanical property with units of energy per unit volume having the characteristic that for a given test (impingement or cavitation) with fixed test

parameters (velocity, fluid conditions, geometry, etc.), the product of MDPR x & will be nearly constant as possible over a broad range of test materials. The material property must appear only to the first power, i.e., a polynomial expression of an energy term will not do, since this would destroy the dimensional consistency of eq. (1). To be of use in a predicting equation, the energy term must be measurable in a simple mechanical test, and hopefully already available in the literature for most standard materials. The only parameters meeting these conditions are those energy terms which can be computed from the standard stress-strain curve. Our own previous work (8, e.g.) as well as that of Hobbs (9), and Rao (10) (all, incidently for cavitation tests) and Heymann (11, 12) for a combined data set suggests that the best single parameter correlation is to be found with ultimate resilience = T.S. 2/2E, i.e. the area under the elastic portion of a stress-strain curve if elastic strain were continued up to the full tensile strength (T.S.). Thiruvengadem (13, e.g.), on the other hand, has reported that the best fit is in terms of strain energy (area under the complete stress-strain curve of a material). This latter can be evaluated either as the "engineering strain energy" (SE), i.e., area under the conventional stress-strain curve where tensile strength is computed from the observed machine breaking load without consideration of reduced area) or "true strain energy" (TSE) where actual breaking stress is used. We have used approximations of both in this analysis. In the case of ultimate resilience, for simplicity we have used the observed breaking load only, since for many rain erosion materials, reduction of area data is not available. Also, our previous work with other materials indicated this to be preferable (8).

2. Selection of Data for Evaluation

In the interest of maximum applicability and generality of results we have elected to use as broad a group of data as possible in the evaluation of E/m_a , including some from cavitation tests and some from impingement tests. However, for incorporation in the analysis it is necessary that the stressstrain curves for the materials be accurately known to us, and that the damage data exist in such a fashion that the entire MDP vs. time curve is available so that a comparable portion of this curve can be used in all cases. Consistent with our previous practice (8), and that of Hobbs (9), we have selected the maximum MDPR as the characteristic value for the material. The largest single portion of the data we have used is that generated by our own vibratory cavitation facility in water (20 kHz, 2 mil nominal operating condition at 75 F). data has been incorporated into the analysis only when tests were available on at least one common material (i.e. identical material, from same bar stock, etc., if at all possible). these cases, a ratio between maximum MDPR for the common material in the differing tests or facilities was established, and the additional materials tested in the other facility (or test condition) normalized to the common material. in our vibratory facility. Thus values of the amplitude constants apply to this particular vibratory facility. In this manner it is possible to incorporate data from various types of tests since the efficiency factors involving test geometry and velocity are thus removed from consideration. Data from the following sources , in addition to our standard vibratory cavitation data has been used.

- a. Impact tests by King of RAE (14) in Dornier rotating arm facility
- b. Impact tests by Electricite de France (15,16) on rotating wheel
- c. Venturi tests by Rao et al (10)
- d. Vibratory cavitation tests in our laboratory (17) using stationary specimen arrangement in close proximity to vibrating horn (same unit also used in standard set-up).

As tests on additional common materials become available, it may be possible to include further data sets, hopefully including some from other impact facilities.

The materials and their mechanical properties are listed in Table IV. Test data on Stellite 6-B was not included in the actual data fits since much previous data has indicated that its resistance is much greater than expected on the basis of its mechanical properties (a factor of about 10 in this case). Other exotic alloys for which we have data also were not included since these are very far removed in their properties from any rain erosion materials.

3. Best Fit Results Attained

a. Predominant Mechanical Property

Previous work here and elsewhere led us to the conclusion that the most likely form for the energy parameter \mathcal{E} would be a combination of ultimate resilience and strain energy so arranged that the resultant term would have the units of energy/volume. To attain reasonable flexibility within this limitation, the following relation was postulated:

where C_1 , C_2 , a, and b are constants to be computed by a least square fit regression analysis of the data. Investigation of this relation showed that the best values for a and b were close to zero, so that the simpler relation of eq. (6) was indicated. An additive constant, C_0 , was used since this improved the data fit. The physical interpretation of C_0 is that of a threshold energy necessary to cause measurable damage, i.e., a concept analogous to that of threshold velocity.

Using the least mean square fit analysis with eq. (6), or the following special case versions of it:

it was found that the best correlation coefficient and the smallest percent standard error of estimate resulted from eq. (7-d), although in general (7-a) was in all cases nearly as good, indicating that ultimate resilience was the material parameter of major importance. This was further verified by the dominance of the second term over the third in eq. (7-d). The statistics of the correlation with either eq. (7-b) or (7-c) were relatively very poor with TSE worse than SE. Hence SE is used in eq. (7-d). This data is summarized in Tables V and VIII. While the correlation with eq. (7-d) is better than that with (7-a), it is only slightly so. Hence for the present data set it is permissible to use eq. (7-a) in preference to (7-d) in the

interests of increased simplicity, so that the only mechanical property involved in the correlation becomes ultimate resilience, which is much more easily measured for materials such as those used for rain erosion than is engineering strain energy. Since the best value of C in eq. (7-a) is relatively very small, it is justified to use the form of (7-e) where this threshold energy term is neglected.

The standard error of estimate has been computed in such a way that it is always approximately proportional to to give equal weight to both weak and strong materials in the correlation, and allow the reasonably accurate prediction of MDPR for materials of low \mathcal{E} . The applicable relations are shown in the Appendix.

b. Determination of Efficiency Factor,

As previously discussed, it has been assumed that one factor of the overall energy-transfer efficiency term in the basic eq. (5), i.e. \mathcal{N}_{α} , may be represented to a first approximation as a function of the acoustic impedance ratio (AI) between liquid and material (AI = $\rho_{L} c_{L}/\rho_{S} c_{S}$)

A consideration of the "water-hammer equation" for materials of finite elasticity, usually assumed to give a reasonable approximation of the pressure applied to the material surface under droplet impact (18, e.g.), indicated the importance of AI in determining this pressure, and in fact suggests a functional form of AI,

f(AI), which might be tried.

$$\Delta p = \frac{\int_{L} cV}{AI + 1}$$
so $f(AI) = AI + 1$ (8)

Here f(AI) is taken as a direct factor in the relation describing the pressure generated at the point of impact. Since pressure has units of energy per volume, the consideration of pressure is dimensionally consistent with the general model assumed.

Another possible form of f(AI) is the "transmission coefficient!" giving the ratio of absorbed to reflected energy for the case of a shock wave impinging upon a solid surface in a continuous medium (which is not identical to the present case).

Then
$$f(AI) = \frac{(AI + 1)^2}{4AI}$$
 - - - - - (9)

The best fit correlations have been investigated for both forms. It was assumed that:

$$\gamma_{a} = f(AI)^{n}, \text{ where } n = +1, +2, +3$$

Table VI summarizes the results. It appears that there is no substantial improvement in the correlation to be attained by the use of f(AI) in any of these forms. This is surprising in the light of Heymann's result (11, 12) that the fit with UR was improved by using UR x E, since $E^2 \cong gE = g^2 c^2$ for the metals used. As also suggested by Heymann's discussion (12) it seems necessary that Max differ substantially between materials, since the ratio between

the extreme material erosion resistances is orders of magnitude greater than that between the corresponding material energy properties. Nevertheless, in light of the present results \mathcal{M}_{α} has been assumed unity, and omitted from subsequent relations.

c. Non-Linear Parameter Fits

i. Polynomial Energy Parameter Fit

Our postulated basic equation (1) requires a first power energy term for dimensional consistency. In order to verify that the assumption of such a linear relationship with energy is reasonable, polynomial data fits of the type

$$\mathcal{E} = C_1 + C_1(UR) + C_2(UR)^2 + C_3(UR)^3 - - - - (11)$$

were investigated. An earlier incomplete data set was used, but it is felt that the values shown in Table VII are typical.

As expected there was some improvement over the linear fit, but it was not great, Table VIII indicating that the linear relationship is physically reasonable and suitable for the present purpose where the maintenance of dimensional consistency is important.

$\underline{\text{ii.}}$ $\underline{\text{Fit}}$ $\underline{\text{with}}$ $\underline{\text{UR}}$ $\underline{\text{x}}$ $\underline{\text{E}}^2$

Heymann's correlation (11, 12) was improved by using UR x E rather than E. However, this statistical fit for our present data is not as good as that with UR alone, and of course is dimensionally inconsistent with the assumed model (Table VII).

d. Recommended Relation

Based on the foregoing, the following relations are recommended for common metals and alloys at this time. As additional data is incorporated, it is anticipated that the best values of the constants may change slightly, but it is believed that such a change will be small, and that the form of the equation will remain unchanged.

Coefficient of Correlation = 0.808 0.808

Standard Error of Estimate = 1.981 2.007

Since the improvement due to the inclusion of C is small, the form (12-b) is recommended.

Table VIII lists the full data set used along with measured and predicted values of £ (which is equivalent to MDPR for data normalized in the fashion here used), according to eq. (12) and the coefficient of correlation and standard error of estimate, computed as shown in the Appendix. The predicted and measured values are tabulated for both eq. (12-a) and (12-b) along with the deviations for each material. Fig. 3. presents the same information graphically for the recommended eq. (12-b) where the "conical" standard error of estimate band is shown.

The amplitude constants apply to the UM vibratory facility only. Constants for other facilities are found by multiplying the given constants by the ratio between maximum damage rates in the other facility and the UM facility.

IV. CONCLUSIONS

It is postulated that the most likely form for an equation relating material, liquid, and test parameters with impingement or cavitation erosion rates with good hope for general applicability, is one which is based on a clear physical model with dimensional consistency. For the evaluation of impingement erosion rates, consistent with the previous suggestion of Hoff, et al (1) the equation

MDPR =
$$(\underbrace{\text{Mina}}_{E})(\frac{A_p}{A_e})(\underbrace{\text{Peff}}_{2})$$
 - - - - (1-a)

has been chosen.

A statistical evaluation of \mathcal{E} , which must have units of energy per volume, has shown the best fit with a comprehensive data set including both impingement and cavitation data, in the form:

$$\mathcal{E} = C_1 UR$$
 .- - - - - (12-b)

Neither higher power terms in UR or terms in SE improved the statistics of the fit substantially, and the fit in terms only of SE was relatively very poor. It is thus concluded that for the large group of metals here used the best linear energy per volume mechanical property correlation for volume loss rate under droplet impingement or cavitation attack is the expression eq. (10-b) in ultimate resilience alone.

Rocket sled rain erosion data has been statistically evaluated to find best values for threshold velocity and velocity exponent, as well as the coefficient n in the expression (4,5):

$$MDPR = K(Vsin\Theta - V_0)^{\alpha} / sin^{n}\Theta - - - - - (4-a)$$

It was found that the statistical fit is relatively insensitive to n so that n=1 is a suitable value. It was also found that for many materials, the statistical fit is also insensitive to the choice of a threshold velocity V_{o} , so that only slight reduction

in the "goodness" of the fit occurs for most materials if it is assumed that $V_0 = 0$. However, the best fit values for K and a are sensitive to the choice of V_0 and n. It was found that there is a rough correlation between best fit K and a, with K decreasing approximately linearly with increasing a. Thus it might be possible to characterize a material by a single figure of merit in terms of eq. (4-a), if a best fit relation between K and a is determined, so that either may be eliminated in terms of the other in eq. (4-a). However, the statistical precision of the correlations is relatively very poor for the rocket sled data.

Acknowledgments - Financial support for this investigation has been derived primarily from the United States Naval Air Development Center, Johnsville, Penna, under Contract N62269-69-C-0285. In addition the cavitation testing of some of the materials was financed by the Worthington Corporation, Harrison, N. J. The authors wish also to acknowledge the work of Messrs. Dale Kemppainen and Edward Timm of this laboratory for the supervision and data reduction of test data.

NOMENCLATURE

MDPR = Mean depth of penetration rate (= volume loss rate/exposed area).

K = Amplitude constant eq. (3)

a = Velocity exponent eq. (2)

V = Impact velocity

V = Threshold velocity

Angle between tangent to surface and dirrection of impact

= Efficiency of energy transfer between impacting drop or jet and surface - - eq. (5)

= Removal energy (= energy/volume to remove given volume from surface).

A = Projected target area in flight direction - - eq. (5)

A = Exposed target area - - eq. (5)

Peff = Effective liquid density, mass of liquid per unit volume of gas-liquid mixture - - eq. (5)

 $C_0, C_1, C_2, C_3 = Constants, eq. (6), (7), (9), (10)$

Δp = Pressure differential due to liquid drop impacting surface - - eq. (8)

F = density

c = Sonic velocity, or velocity of propagation of shock wave.

AI = Acoustic impedance ratio between impacting liquid and target material =

UR = Ultimate resilience

SE = Engineering strain energy

TSE = True strain energy

BIBLIOGRAPHY

- 1. G. Hoff, G. Langbein, and H. Rieger, "Material Destruction Due to Liquid Impact", ASTM STP 408, 42-69, 1966.
- 2. T. M. Mitchell and F. G. Hammitt, "Preliminary Analyses Applied to a Portion of Holloman AFB Rocket Sled Data on Rain Erosion Materials", ORA Report No. 01077-4-T, University of Michigan, Oct. 1968.
- 3. G. Tatnall, K. Foulke, and G. Schmitt, Jr., "Joint Air Force-Navy Supersonic Rain Erosion Evaluation of Dielectric and Other Materials", Report No. NADC-AE-6708, 1967.
- 4. W. C. Baker, K. H. Jolliffe, and D. Pierson, "The Resistance of Materials to Impact Erosion Damage",

 A Discussion on Deformation of Solids by the Impact of Liquids, Phil Trans. Roy. Soc., A, No. 1110,

 Vol. 260, 193-203, July 1966.
- 5. G. Hoff, G. Langbein, and H. Rieger, "Investigation of the Angle-Time Dependence of Rain Erosion", Progress Report No. 62269-7-002050, Dornier System GmbH, March 1968.
- 6. R. T. Knapp, "Recent Investigations of Cavitation and Cavitation Damage," <u>Trans. ASME</u>, v. 77, 1045-1054, 1955.
- 7. F. G. Hammitt, etal, "Initial Phase of Damage of Test Specimens in a Cavitating Venturi as Affected by Fluid and Material Properties and Degree of Cavitation", Trans. ASME, J. Basic Engr., D, 87, 453-464, 1965.
- 8. R. Garcia and F. G. Hammitt, "Cavitation Damage and Correlations with Materials and Fluid Properties", Trans. ASME, J. Basic Engr., D, 89, 4, 753-763, 1967.

- 9. J. M. Hobbs, "Experience With a 20-Kc Cavitation Erosion Test", ASTM, STP 408, 159-185, 1967.
- 10. B. C. S. Rao, N. S. L. Rao, K. Seetharamiah, "Cavitation Erosion Studies With Venturi and Rotating Disc Equipment in Water", to be presented ASME Annual Meeting 1969 and published Trans. ASME, J. Basic Engr.
- IL F. J. Heymann, "Erosion by Cavitation, Liquid Impingement, and Solid Impingement", Engineering Report E-1460, Westinghouse Electric Corporation, March 15, 1968.
- 12. F. J. Heymann, "Toward Quantitative Prediction of Liquid Impact Erosion Damage", ASTM Symposium on Characterization and Determination of Erosion Resistance", Atlantic City, N.J., June 1969.
- 13. A. Thiruvengadam, "A Unified Theory of Cavitation Damage", Trans. ASME, J. Basic Engr., D, 85, 3, 365-376, 1963.
- 14. R. B. King, letter to F. G. Hammitt, June 13, 1968.
- 15. C. Chao, F. G. Hammitt, C. L. Kling, D. O. Rogers, "ASTM Round-Robin Test With Vibratory Cavitation and Liquid Impact Facilities of 6061-T 6511 Aluminum Alloy, 316 Stainless Steel, Commercially Pure Nickel", to be presented ASTM Symposium on Characteristization and Determination of Erosion Resistance, and published ASTM STP
- 16. R. Canavelis, "Comparison of the Resistance of Different Materials with a Jet Impact Test Rig", HC/061-230-9, Electricite de France, Chaton, France, Nov. 1967.
- 17. D. J. Kemppainen and F. G. Hammitt, "Effects of External Load on Cavitation Damage", to be presented IAHR Symposium, Kyoto, Japan, Sept. 1969 and published IAHR Proc.
- 18. J. H. Brunton, "The Physics of Impact and Deformation: Single-Impact", Phil. Trans. Roy. Soc., A, v. 260, No. 1110, pp. 79-85, July 1966.
- 19. Murray R. Spiegel, Theory and Problems of Statistics, Schaum Publishing Co., New York, 1961

TABLE I

Comparison of Actual and Predicted MDPR's for Material A-1, Pyroceram, using MDPR = $(K(V\sin\theta-V_0))^{\alpha}/\sin\theta$ as a Predicting Equation with $\alpha=6.27,\ V=0,\ K=5.34\times10^{-5}$. (Standard Deviation of Predicting Equation = $428\mu/s$.)

V (f/s)	θ (°)	(MDPR) (μ/s) predicted	(MDPR) (μ/s) actual
1580	30	. 9	7.9
1580	30	. 9	0
1580	45	5.5	10.5
1580	45	5.5	10.5
1580 1580	60 60	16.1 16.1	0 5.3
2197	30	6.8	0
2197	30	6.8	0
2197	45	43.7	. 0
2197	45	43.7	3.6
2197	60	127.3	7.3
2197	60	127.3	80.6
2594	30	9.6	0
2594	30	9.6	0
2594	45	124.1	0
2594	45	124.1	4.3
2594	60	361.4	3,849.
2594	60	361.4	2,240.
2905	30	40.6	0
2905	30	40.6	14.5
2905	45	252.4	2,189.
2905	45	252.4	179.
2905	60	735.3	4,465.

V _O (f/s)	α	K (x10 ⁵)
0	6.44	25.7
200	6.36	27.9
400	6.24	29.7
600	6.08	32.3
800	5.87	34.8
1000	5.59	36.7
1200	5.22	39.6
1400	4.73	43.4
1600	4.09	41.3
1800	3.28	40.1
2000	2.28	28.4

TABLE III $\frac{\text{Results of Evaluation of Equation MDPR } \sin^n\theta = \boxed{K(V-V_0)\sin\theta}^{\alpha} \text{ for } Various \ Values \ of \ n.}$

Material D-2.

n	Threshold Velocity (f/s)	Minimum Probable Error (μ/s)	Probable Error for $V_O = 0 (\mu/s)$
1.0	1100	82	146
1.5	1000	88	143
2.0	900	95	141
2.5	800	101	140
	Materia	al I-2.	
1.0	350	7.3	7.7
1.5	200	7.3	7.4
2.0	100	7.2	7.3
2.5	0	7.2	7.2

	331 8.657	.194 4.594	144 1-613									189 2.179				311 3.857			_						2.	0	7	0	8		1.194 4.594	3.444 1.613	`	0.298
•	8E 04 1.000 1E 05 3.531	05 1	4E 05 3.444	90	02	02	05 1	40	04	03	05 1	05 1	02	0.5	0.5	.50	90	40	05	40	04	92	40	03	02	94	05	04	90	05	02	0.5	05	3E 04 6.111
	E 02 0.648E E 03 0.561E		E 03 0.104E	03	05	03	03	02	0.2	02	03	03	03	02	03	l	03	02	03	02	05	03	03	02	05	05	05	. 02	03	03	05	03	03 (E 03 0.193E
R	01 0.360E 00 0.127E			0	01 0.798E		_	01 0.329E					00 0.319E	01 0.347E		00 0.155E	00 0.170E	01 0.181E		02 0.140E		01 0.105E	01 0.157E	02	01	01		01 0.754	8	00 0.127E	01 0.430E		-01 0.313E	-01 0.220E
MDPR	02 0.647E 02 0.301E	02 0.128E		03 0.330E	03 0.189E		03 0.220E	03 0.176E												02 0.304E		03 0.465E	03 0.802E	02 0.255E		02 0.440E		02 0.236E	03 0.653E	02 0.713E	02 0.126E	02 0.436E	03 0.180E	03 0.730E
HARD	0.900E 0.748E	0.249E	0.600E	0.237E	0.189E	0.304E	0.225E	0.152E	0.974E	0.152E	0.290E	0.418E	0.264E	0.968E	0.146E	0.227E	0.315E	0.174E	0.885E	0.512E	0.900E		0.114E	0.270E	0.600E	0.950E	0.150E	0.950E	0. 170E	0.748E	00 0.249E		0 0.322E	0.235臣
ם	0.180E 00 0.690E 00	1	0.220E 00	0.638E 00	0.230E	0.205E							0.195E 00	0.543E		ı	0.168E	0.173E	0.255E 00	0.541E 00	0.180E			0.500E-01	0.500E	0.110E	0.530E 00	0.600E-01	0.570E 00	0.490E 00	0.610E	0.220E 00	0.210E 0	0.175E-01
>	0.180E 08		0.910E 07	0.290E 08		0.147E 08		0.121E 08		0.711E 07		0.257E 08	0.251E 08	0.160E 08	0.157E 08	0.300E 08	0.290E 08	0.140E 08	0.650E 07	0.900E 07	0.180E 08	1	0.100E 08	0.900E 07	0.170E 08	0.150E 08		1	0.280E 08	ł	0.277E 08	0.910E 07	0.304E 08	0.275E 08
15	0.360E 05	1		0.945E 05	0.452E 05	0.112E 06	0.119E 06	0.282E 05	0.189E 05	0.193E 05	0.157E 06	0.188E 06	0.126E 06	0.333E 05	0.605E 05	0.965E 05	0.994E 05	0.225E 05	0.392E 05	0.159E 05	0.360E 05	0.780E 05	0.560E 05	0.160E 05	0.310E 05	0.416E 05	0.260E 05	0.650E 05	0.930E 05	0.813E 05	0.488E 05	0.475E 05	0.138E 06	0.110E 06
۸۶	0.300E 05			0.647E 05	0.243E 05	0.790E 05	0.880E 05	0.190E 05		0.162E 05		0.186E 06	0.104E 06		0.489E 05		0.410E 05		0.241E 05		0.300E 05		0.450E 05	0.150E 05	0.142E 05	0.394E 05	0.157E 05	0.484E 05		0.310E 05	0.800E 04	0.407E 05	0.710E 05	0.540E 05
	BS1433 COPPER STAINLESS STEEL 316			STAINLESS STEEL 304	BRONZE #1	BRONZE #2		BRONZE #4		BRONZE #6	STAINLESS STEEL #1	STAINLESS STEEL #2	STEEL		BRASS (65-35)	MILD STEEL 1020	STAINLESS STEEL 304	ASTM B144 (SAE660)	MAGNES IUM	ALUMINUM 3003-0	COPPER	CR-130 STEEL	AL ALLOY	ALUMINUM	COPPER	PHOS PHOR BRONZE	BRASS	MILD STEEL	STAINLESS STEEL	STAINLESS STEEL 316	NICKLE 270	AL 6061	STELLITE 6-B	TOOT, STEET, #1

Mechanical Properties of Materials in Data Set

TABLE IV.

= Maximum Mean Depth of Penetration Rate (mils/hr) (All values are corrected to U. M. vibratory facility)	$= \min_{x \in \mathbb{R}^2} \sum_{x \in \mathbb{R}^2} \sum_{y \in \mathbb{R}^2} \sum_{x \in \mathbb{R}^2} \sum_$	- Other regimence - 1 - 1 - 1 - 1 - 1	= Strain Energy to Failure = TS x E (psi)	= Ultimate Resilience normalized to BS 1433 Copper	= Strain Energy normalized to BS 1433 Copper
MDPR	1	4 0	SE	NUR	NSE
z Yield Strength (psi)	= Tensile Strength (psi)	= Elastic Modulus (psi)	= Elongation (%)	HARD = Brinell Hardness	
YS	TS	Y	EL	HARI	

Summary of Statistical Correlation Data for Eq. 7.

TABLE V

		o .	C ₁ =2.875	$C_1 = 6.487$	$C_{\bullet} = 1.633$	C = -1.735	73
		$C_2 = 1.897$	$C_2 = 1.824$	$C_2^1 = 0.445$	$C_2^1 = 0.889$	$C_2 = 1.139$	6
& NUKMALIZED	EPSILON	C1+C2*UR	C1+C2*SE	C1+C2*TSE	C1*UR+C2*SE	C0+C1*UR+C2*SE	C2*SE
BS1433 COPPER	1.000	2.811	4.699	6.931	2 522		SOURCES
NICKIE 270	21.482	7.611	18.664	12,474	13.464	16.210	
	5.044	3.179	11,254	14.510	6-035	5 524	
STAINIES STEEL 202	1.482	7.446	5.817	7.103	7-057	040	
315	19.594	9.026	19.845	13,565	15.258	16.250	,
まし まし	3.471	5,119	5.801	6.924	5-046	3 000	UM Vibratory
7±	39.669	23,359	9.326	7,612	22.468	20 780	Cavitation Facility
U# 1	29,391	22.556	7.895	7.278	21-079	21 161	Carration Facility
† #. #	3.674	2.645	3,352	6.553	1.723	101.12	
	1.959	2.601	3,567	6.581	1.789	0.109	
	2.516	2,295	3,038	6.511	1 248	707.0	
STEEL	25.659	25.666	12,609	8.452	26.055	20.408	
STAINLESS STEEL #2	23.948	37,310	6.850	7.230	33.271	126.02	
SIEEL	15.037	17.729	9.818	8, 706	17 841	24.005	
	0.963	2.740	7,965	7.240	4 052	11.946	
DRASS (65-55)	3.801	7.056	9.567	7-455	8 550	3.07	
CIAIN SEEL 1920	8.002	9.091	9.910	7.571	10.470	10.102	OM Vibratory
- 10	19.476	9.889	7.575	7.017	10.018	10.102	Cavitation Facility
13456601	4.584	1.867	3.971	6.643	1,354	-0.217	with Stationary
ALTIMINIA 3002-0	1.490	7.142	5.689	6.849	6-733	5.682	Specimen
D-600	0.213	1.654	5.296	6.764	1-818	2005	
CR-130 CTEE!	000-1	2.811	4.699	6.931	2.522	7	RAE-Dornier Rotating
	1.391	6.441	9.022	7.654	7.755	7 133	
	0.806	9.175	4.451	6-740	000 7	(210)	min racinty
	0.254	1.663	3.100	6.523	0.755	60,00	
72,100	0.785	2.403	7.238	7.320	7000	23.40	
DKUNZE	1.470	3.953	4.163	6.787	3.244	1 013	Venturi Facility
	3.228	2.027	6.754	7,323	2.849	(710-1	
MILU SIEEL STAINITES STREE	2.739	4.889	3.973	6.724	3 057	1.009	
	9.902	9.051	17,795	9.383	16.280	646.7	
STAINLESS STEEL SID	690-6	7.611	18.664	12.474	13.466	14. 210	
	5.111	3.179	11.254	14.510	A.035	017.41	Rotating Wheel Impac
	1.482	7.446	5.817	7.103	7.057	6.040	Facility
		And the second s	The second distance of the second sec			•	
		The state of the s					
CORRELATION COFFFICIENT	12	000					
STANDARD ERROR OF ESTIMATE	IMATE	5.914	0.466 8.874	0.236	0.854	0.856	
				7.144	2000	5,191	

TABLE VI
Acoustic Impedance Correction

f(AI) ⁿ	AI	+1	$\frac{(AI + 1)^2}{4AI}$	
n 	Correlation Coefficient	Standard Error of Estimate	Correlation Coefficient	Standard Error of Estimate
0	0.808	2.007	0.808	2.007
1	0.807	2.005	0.807	2.101
2	0.807	2.003	0.782	2.324
3	0.806	2.001	0.743	2.668
-1	0.808	2.009	0.781	2.070
-2	0.808	2.011	0.721	2.431
-3	0.809	2.014	0.582	3.745

TABLE VII

<u>Equations Using Non-linear Parameters</u>

Equation	Correlation Coefficient	Standard Error of Estimate
E = 2.330 UR	0.808	2.007
ϵ = -2.681 + 3.343 UR -0.087 UR ²	o.870	5.616*
ϵ = 0.266 UR + 0.412 UR ² - 0.019UR	0.919	4.459*
\leq =3.685 UR \times E ²	0.678	5.714
$\mathcal{E} = 1.147 + 1.444 \text{ UR } \times \text{ E}^2$	0.678	4.271

 $[\]boldsymbol{*}$ These values are more comparable to the results of Table \boldsymbol{V}

Table VIII Recommended Correlating Equations

		C = 0.463		2 330		
MATERIAL & NORMALIZED	EPS ILON	61 * T13889	# C +	ປ້ ະ . ງງຽ ດຸ ≉ປR	# C -+	S#108
BS1433 COPPER	1.000	2.462	1.981	2.330	2.007	
STAINLESS STEEL 316	21.482	7.520	6.993	8.225	7.086	UM Vibratory Cavitation Facility
AI 6061	1 482	778 7	0607	20.00	2.390	
STAINLESS STEEL 304	19.594	9.011	8,471	9.964	8.584	
BRONZE #1	3.421	4.894	4,391	5.164	4.449	
BRONZE #2	39.669	24.115	23,438	27.568	23.750	
1	29,391	23.269	22.600	26,582	22.900	
BRONZE #4	3.674	2.288	1.808	2,127	1.832	
BRONZE #5	1.959	2.240	1.761	2.071	1.784	
BRONZE #6	2.516	1.918	1.442	1.696	1.461	
	25.659	26.547	25.847	30.402	. 26.191	
STAINLESS STEEL #2	23.948	38.817	38.007	44.704	38,513	
STAINLESS STEEL #3	15.037	18.182	17.559	20.653	17.792	
COPPER	0.963	2.387	1.906	2.242	1.932	
BRASS (65-35)	3.801	6.935	6.413	7.543	664.9	
MILD STEEL 1020	8.002	9.080	8.539	10.043	8.653	UM Vibratory Cavitation Facility with
STAINLESS STEEL 304	19.476	9.921	9,372	11.024	165.6	Stationary Specimen
ASTM B144(SAE660)	4.384	1.467	0.995	1.170	1.008	
MAGNESIUM	1.490	7.026	6.503	7.649	6.590	
ALUMINUM 3003-0	0.213	1.243	0.773	0.909	0.783	
	1.000	2.462	1.981	2,330	2.007	
CR-130 STEEL	1.391	6.287	5.771	6.788	5.848	DAT Downion Bototing And Escilitu
AL ALLOY	908*0	9.169	8.627	10.147	8.742	the total maring arm raining
ALUMI NUM	0.254	1.253	0.782	0.920	0.793	
CORPER	0.785	2.032	1.555	1.829	1.576	
PHOS PHOR BRONZE	1.470	3.666	3.174	3, 733	3.216	Venturi Facility
BRASS	3,228	1.636	1.162	1.367	1.178	
	2.739	4.652	4.151	4.882	4.206	
	9.902	9.038	8.497	9.994	8.610	
STAINLESS STEEL 316	690.6	7.520	6.993	8.225	7.086	
	5.111	2.850	2,365	2.782	2.396	Dototing Wheel Immeet Desilities
AL 6061	1.482	7.346	6.820	8.022	6.911	notating wheel impact racinty
CORRELATION COEFFICIENT		000		o o		
PERCENTAGE STANDARD ERROR OF ESTIMATE	R OF ESTIMATE	0.000		0.808		
		1.981		2.00₹		

Figure 1. Typical Curves for Probable Error as a Function of Threshold Velocity.

Figure 2

Figure 3.

V. APPENDIX

A. Correlation Coefficient r:

The correlation coefficient is defined as usual (19)

as

$$r = \frac{N \leq XY - \leq X \leq Y}{\sqrt{N \leq X^2 - (\leq X)^2}} - - (1-A)$$

between two variables X and Y, if a linear relationship is assumed.

B. Standard error of estimate, s.

$$Y = a + bX$$
 - - - - - - - (2-A)

the scatter about the regression line is measure by the so-called standard error of estimate of Y on X namely

$$s_{y,x} = \frac{\sum (Y - Y_{est})^2}{N}$$
 - - - - - - - (3-A)

which is derived from the following equation

$$Y = a + bX + s_{X} = Y_{X} + s_{X} - - - (4-A)$$

if we assume the scatter is independent of X. However, it was found, from preliminary plotting of Y vs. X in our data, that the scatter is nearly linearly dependent on X so that

was used. The constants a, b, and standard error of estimate were determined by least square regression analysis according to

$$\frac{Y}{X} = (\frac{a}{X} + b) + s$$
 - - - - - - (6-A)

TABLE I-A Least Square Fit Program

FORTRAN	IV G COMPI	LER	MAIN	05-14-69	23:20.17	PAGE 0001
	С		·			
	č			OSION FAILURE ENERG	;Y	
0001			GROUP (60)			
0002		DIMENSION	NAME (200,	5),DEN(200),WL(200)	DPR(200),Z(200)	.AI (200)
0003		DIMENSION	YS (200), T	S(200),Y(200),EL(20	0),RDA(200),A(20	0)
0004		DIMENSION	URO(200),	SED(200), TSED(200),	UR(200), SE(200).	TSE(200)
0005		DIMENSION		•	•	
0006		DIMENSION	EA(200).	EB(200), EC(200), E	D(200), EE(200)	
0007				RB(200), RC(200), F		
0008			CG(10), S			
0009		DIMENSION	H(100)			
0010		DIMENSION	EF(100),E	G(100),RF(100),RG(1	00)	
0011		COMMON N				
0012		COMMON /S	4/ CON,UR,	SE.TSE	the same of the sa	
0013			5/ GROUP,N			
	С					
	С	INPUT				
0014		DENW=1.0				
0015		YW=0.28E6				
0016	1	READ (5,	7) N, (GRO	UP(K), K=1,15)		***************************************
0017		DO 20 I=1				
0018		READ (5,1	O) (NAME(I	,J), J=1,5), DPR(I)	, DEN(I)	
0019		READ (5,1	2) YS(I),	TS(I), Y(I), EL(I),	RDA(I)	
0020		READ (5,4				
0021		A(I)=1.0-	RDA(I)			
0022		CON(I)=1.				W. 18.
0023	20	CONTINUE				
0024	7	FORMAT (I	5, 5X, 15A	4)		
0025	10	FORMAT (5	A4, 2F10.3)		
0026	12	FORMAT (3	E15.3. 2F1	0.3)		
0027	4	FORMAT (F	10.1)			
	С				1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	С	ANALYSIS	E CALCULAT	IONS		
0028		SE1 = TS(1)*EL(1)			
0029		TSE1 =0	.5*((YS(1)	+TS(1)/A(1))*EL(1)-	TS(1)*YS(1)/(A(1)*Y(1)))
0030			5(1)**2.0/		,	
0031		DO 11 I=1	• N			
0032		SEO(I) =	TS(I)*EL(I)		
0033		SE(I) = SI	EO(I)/SE1			
0034				+TS(I)/A(I))*EL(I)-	TS(1)*YS(1)/(A(1)*Y([)))
0035			EO(I)/TSE1			
0036			5*TS(1)**2	.0/Y(I)		
0037		UR(I)=URO				
0038	11	CONTINUE				
0039		Z1=SQRT(D	ENW*YW/(DEI	N(1)*Y(1)))		
0040		AI1=1.0+Z				
0041		DO 30 I=1	• N			
0042				DEN(I)*Y(I)))	•	
0043		AI(I)=1.0	·Z(I)	· · · · · · ·		
0044		AI(I)=AI(
0045			(1)/OPR(I)			
0046	***************************************	EB(I)=EA(
0047			[)*AI([)**;	2.0		
0048			I)*AI(I)**			
0049		EE(I)=EA(
						

FORTRAN	IV G COMPIL	ER MAI	IN .	05-14-69	23:20.1	7 PAGE	0002
0050		EF(I)=EA(I)/	AI(I)**2.0		*		
0051		EG(I)=EA(I)//	1(1)**3.0				
0052	30	CONTINUE	•				
	С	DATA					
0053		WRITE (6,28)	(GROUP(K),	K=1,15)			
0054	28	FORMAT (1H1,					
0055		WRITE (6,25)					
0056	25	FORMAT (1HO,	28, 'YS', T4	0, 'TS', T52,	'Y', T64, 'EL', T7	6, 'HARD',	
	1	. T88, 'MDPR',1	100, UR ,T	112, 'SE')		·	
0057	-				(I),TS(I),Y(I),	EL(I),H(I),	
	1			UR(1), SE(1)		•	
0058	24	FORMAT (5A4,	8E12.3,2F8	.3)	· · · · · · · · · · · · · · · · · · ·		
	С						
0059		CALL CAL(EA,	RA, CG(1),	SG(1))			
0060		CALL CAL(EB,	RB, CG(2),	SG(2))			
0061		CALL CALLEC,	RC, CG(3),	SG(3))			
0062		CALL CAL(ED,	RD, CG(4),	SG(4))			
0063		CALL CALIEE,	RE, CG(5),	SG(5))			
0064		CALL CAL(EF,F	F,CG(6),SG	(6))			
0065		CALL CALLEG, F	G, CG (7), SG	(7))			
	C						
0066		GO TO 1					
0067		END					

FORTRAN	IV G COMPII	LER CAL	04-24-69	15:5!	5.10 PAGE 0001
0001		SUBROUTINE CAL	EA.G .OCC.OSD)		
0002		DIMENSION URACE	200),SEA(200),TSA(20	01.USA(200).	AUS (200) - FA (200)
0003		DIMENSION GROUP	(60), NAME (200,5),CO	N(200)	1031200742H(2007
0004		DIMENSION UR (20	00),SE(200),TSE(200)		-
0005		DIMENSION EU(10	00), PU(100)		
0006		DIMENSION G(100),P(100),S(100)		
0007		DIMENSION H(100			
0008		DIMENSION COCI			
0009		DIMENSION CO(10			
0010		COMMON N /S1/ (C,SDEV /S2/ C1,C2 /	S3/ AD.B.C	
0011		COMMON /S4/ COM	I.UR.SE.TSE	,.,.,	
0012		COMMON /S5/ GRO	UP NAME		
	С				
	С	REGRESSION ANAL	YSTS		
0013		WRITE (6,80)			
0014	80	FORMAT (1H1)			
	С	101111111111111111111111111111111111111			
0015		SEU= 0.			
0016		DO 40 I=1.N			
0017		EU(1)=EA(1)/UR(TI		
0018		PU(I)=1.C/UR(I)			
0019		SEU= SEU+EU(I)			
0020	40	CONT INUE			
0021		C=SEU/N			
0022		CALL REG(EU, PU	COMA		
0023		DO 41 I=1.N	, CUN)		
0023			1		
0025		G(I) = C1 + C2 * UR(I			
0025		P(I) = G(I)/UR(I)			
0027		H(I)=C*UR(I)			
		CO(I)=C			
0028		CONTINUE			
	C	COOR 51 47 1611 1111			•
0020	<u> </u>	CORRELATION ANA			
0029		CALL COR (EA, G, C	OC(1),SOD(1))		
0030		OCC=COC(1)			
0031		CALL COR (EU, P,C	OC(2),SOD(2))		
00 32		OSD= SOD (2)			
0033		DO 42 I=1,N			
0034		S(I) = OSD * UR(I)			
0035		CONT INUE			
0036		CALL COR (EA, H, C	OC(3),SOD(3))		
0037		CALL COR (EU, CO,	COC(4),SOD(4))		
0038		DO 43 I=1.N			
0039		T(1)=SOD(4)*UR(1)		
0040		CONT INUE			
	С				
		SOLUTION			
0041			DUP(K), K=1,15)		
0042	8	FORMAT (///	•10X•15A4)		
0043		WRITE (6,21)			
0044	21	FORMAT (//, *	MATERIAL & NORMALIZ	ED', T30, 'F	PSTLON.
	1	T47, A+ E + UR +, T	62,"+-D*UR",T77,"C*(JR 1, T92, 1+-D*	UR*•/)
0045		WRITE (6.22) ((NAME(I,J),J=1,5),EA	I),G(I),S(I)	.H(I).T(I).I=1.N1
0046	22	FORMAT (5A4,5FI	5.3)		
0047		WRITE (6,23) CO	C(1),COC(3),SOD(2),S	SOD(4)	

FORTRAN IV	G COMPILER	CAL	04-24-69	15:55.10	PAGE 0002
0048	23 FORMAT	(/,16X,2F30.	3,T1, CORRELATION C	OEFFICIENT',/,1	6X,2F30.3.
	1 T1, 'F	PERCENTAGE STA	NDARD ERROR OF ESTI	MATE!)	
0049	RETURN	4			
0050	END				

FORTRAN IV G COMPILER	MAIN	04-24-69	15:55.15	PAGE 0001

	C	
0001		SUBROUTINE REG(E,R,S)
0002		DIMENSION E(200), R(200), S(200)
0003		COMMON N /S2/ C1, C2
	С	REGRESSION ANALYSIS
00C4		T1 = 0.
0005		T2 = 0.
0006		T3 ≤ 0.
0007		T4 = 0.
0008		T5 = 0.
0009		T6 = 0.
0010		DO $102 I = 1$, N
0011		T1=T1+R(I)*R(I)
0012		T2=T2+R(I)*S(I)
0013		T3=T2
0014		T4=T4+S(1)*S(1)
0015		T5=T5+E(I)*R(I)
0016		T6=T6+E(1)*S(1)
0017	102	CONTINUE
0018		D=T1*T4-T2*T3
0019		D1=T5*T4-T6*T3
0020		D2=T1*T6-T2*T5
0021	5	C1=D1/D
0022	4	C2=D2/D
0023		WRITE (6,1) C1, C2
0024	1	FORMAT (2F15.3)
0025		RETURN
0026		END

c	
	SUBROUTINE COR(X,Y,CC,SDEV)
	DIMENSION X(200), Y(200), DEV(200)
	COMMON N
r	CORRELATION ANALYSIS
	XN = 0.
	YN = 0.
	XY = 0.
	XX = 0.
	YY = 0.
	VAR=0.
	DO 6 I=1,N
	XN = XN + X(I)
	$\frac{2}{2} = \frac{2}{2} = \frac{2}$
	XY = XY + X(I) + Y(I)
	XX = XX + X(1) + X(1)
	AA = AA + A(1) + A(1)
	DEV(1)=X(1)-Y(1)
	VAR=VAR+CEV(I)*DEV(I)
	CONTINUE
·	XYM= XN*YN/N
	XXM= XN*XN/N
	YYM= YN*Y N/N
VP	V1=XY-XY M
	V2=X X-X X M
	V3=YY-YY K
	WRITE (6,8) V1, V2, V3
8	
·	V4=V2*V3
	IF (V4) 2,2,1
1	CONT INUE
	CD=(V1*V1)/(V2*V3)
	CC=SQRT(CD)
	60 10 3
2	CONTINUE
	CC=1.
3	CONTINUE
	FN=N-2.
	SDEV=SQRT(VAR/FN)
	WRITE (6,7) CC, SDEV
7	FORMAT (2F12.3)
	RETURN
	END
	2 3