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SUMMARY

In the work of the previous year (September 195h-September 1955)1

it was found that melting in vacuum improved the elevated-temperature proper-
ties of three prominent nickel-base alloys (Final Report, Contract No. NOas
55-110c). The objectives of this year's research were (1) to investigate addi-
tional processing variables such as melting time and pouring temperature and
(2) to explore further the changes in properties associated with vacuum melt-

ing.

A, FEFFECTS OF ADDITIONAL PROCESSING VARIABLES.
The following variables were investigated:

Effect of charge preheat before melting.

Pouring temperature.

Pouring pressure.

Tncreased time of melt in liquid state (nucleation effect).
Mold preheat temperature.

bW DD

The effect of charge preheat was pronounced, resulting in an in-
crease of 100-hour rupture strength (15C0 F) from 40,000 to 50,000 psi for
the Guy-type alloy. Variables 2-5 inclusive were without effect (95-percent
confidence limits).

B. VACUUM-MELTING EFFECTS.

One of the principal differences in vacuum-melted material is low ni-
trogen. As nitrogen was increased in vacuum melts by late additions, the elon-
gation of the Guy-type alloy was reduced from 7-10 percent %o 2 percent.
Strength was unaffected.

Analysis of metal vapors during vacuum melting exhibited surprisingly
large quantities of undesirable elements such as lead and calcium. Refining
time during vacuum melting reduced the elongation of the Guy-type alloy from
7-10 percent to 5-5 percent.

Electron microscopy, electron diffraction, x-ray diffraction, and
spectroscopic investigations of vacuum- vs air-melted material were conducted.
The phases CrpCs3, IezE, and Cb(CN) were identified along with the matrix lines
in both melts. Electron microscopy disclosed the presence of a rod-like pre-
cipitate present only in air-melted samples, after testing. Also, a grain-
boundary precipitate has tentatively been identified only in air-melted micro-
structures.

v
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INTRODUCTION

In the past few years, many new heat-resistant alloys have been de-
veloped for high-temperature applications, such as turbine blades in jet en-
gines. Nickel-base alloys containing major percentages of chromium, molybde-
num and aluminum and varying percentages of boron have been prominent in
these development programs. Prior to the initiation of this research, the ma-
jority of these alloy programs dealt only with variations of chemical compo=-
sition which were correlated with stress-rupture properties at 1500° F. The
effect of processing variables upon elevated-temperature properties of exist-
ing nickel-base alloys in order to demonstrate their ultimate potential had
received relatively little attention.

It appeared necessary, therefore, to parallel the investigations of
compositional effects with research on the effects of processing variables;
such as melting and casting atmospheres, pouring temperatures, etc., upon
stress-rupture properties of cast nickel-base alloys.

Previous research on this contractl determined the effect of melt-
ing and casting atmospheres upon the stress-rupture properties of three com-
mercial nickel-base alloys. Table I and the following discussion briefly
review that research.

As shown in Table I, vacuum + argon melting increases the elonga-
tion of all three alloys and also significantly raises the 100-hour rupture
strength of the Guy-type alloy. Metallographic examination with the light
microscope revealed no reasons for the above effects. The only positive dif-
ference found between vacuum+ argon and air or argon-protected heats was nitro-
gen content,

OBJECTIVE

Based upon the foregoing data, this year's research had two objec-

tives.

First, the remainder of the processing variables, such as melting
practice, pouring temperature, pouring pressure, etc., were to be evaluated to
determine their individual effects upon stress-rupture properties.

Second, because of the pronounced influence of vacuum melting upon
stress-rupture properties, further investigation to explain the mechanism for
these effects was needed. 1
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TABLE I

EFFECT OF MELTING AND CASTING ATMOSPHERES
UPON STRESS-RUPTURE PROPERTIES AT, 1500° F.

Research at The
University of Michigan
Alloy Type Published Atmosphere
Properties Alr Argon- Vacuum
Protected] + Argon
100-hour rupture strength (psi 19,000 |42,000 11,000 56,000
Guy
Percent elongation 2=5 b) 1-3 =10
100-hour rupture strength (psi)] 37-40,000 [k1,000 41,000 42,000
GMR
b35 Percent elongation 6-10 6-9 3-7 14-19
100-hour rupture strength (psi){ 43,000 [P7,000 43,000 42,000
Tnco ~
700 Percent elongation 10 2=l 3=l 21
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PROCEDURE

In order to accomplish the obJjectives of this research, the follow-
ing experimental program was planned, involving A , processing variables in
general, and B, the effects of vacuum melting:

A. Processing Variables

1. Charge preheat time before melting in air and argon-protected atmos-
pheres.,

2. Pouring temperature.

3. Pouring pressure.

4, Holding time of the melt in the liquid state after all additions
were made,

5. Mold preheat temperature.

The above variables are considered to be the more important processing
variables affecting elevated-temperature properties.

E; Vacuum-Melting Effects
1. Nitrogen additions to vacuum + argon melts.
2. C(Collection and analysis of metal vapors evolved during vacuum +
argon melting.
3, Structural studies to determine the effects of vacuum + argon melting
upon metal structure.

The nitrogen additions were made to increase the nitrogen of the
vacuum + argon heats to the level of air and argon-protected heats. If nitro-
gen is an important factor in controlling stress-rupture properties, these
additions should lower the strength and/or ductility of vacuum + argon melts
to that of air and argon-protected heats,

The vapor analyses were collected to determine whether any trace
elements, which might be harmful to elevated-temperature properties, were

evolved during vacuum melting.

The objective of the structural studies was to compare the microcon-
stituents (size, shape, number, etc.) of air and vacuum + argon heats.

The detailed procedures for carrying out this program are presented
below:
A. DETAILED FROCEDURE~-PROCESSING VARIABLES

Two particular alloys of comparable chemical analysis, except for
boron content, were selected for studying the effects of the processing var-

iables.
3
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The alloys selected were the Guy type (.50 percent B) and the GMR
235 type (.06 percent B). The processing variables , such as pouring temper-
ature, pouring pressure, etc., were varied individually, maintaining the re-
mainder of the variables consistent with those used in determining the effects
of melting and casting atmosphere upon stress-rupture proPerties.l With this
experimental design a statistical treatment of the data was possible in order
to evaluate the individual effects of each processing variable upon stress-
rupture properties at 1500° F. :

The processing variables studied and the conditions under which
they were investigated are listed in Table II.

The melting and casting techniques for the argon-protected GMR-235-
type alloy and the vacuum + argon melted Guy-type alloy were the same as those
previously described,l while the melting of the Guy-type alloy, under air
and argon, was slightly different.

For the air and argon-protected Guy-type alloy, the charge was
melted slowly at the beginning of the heat to avoid bridging and, consequent-
ly, severe overheating of the molten metal, The time required to melt down
the heat increased from five minutes for the conventional practice to twenty
minutes using this preheat practice.

Since these alloys contained fairly high percentages of easily
oxidized elements, such as Al, Ti, etc., a melting practice which occupied
the least time from start-up to pour originally seemed to be the best melting
practice. However, one heat of the Guy-type alloy with an air melting atmos-
phere, which was designed to evaluate the effect of the time of vacuum + argm
melting practice in air, displayed a 100-hour rupture strength comparable to
vacuum + argon properties. This melting procedure was further investigated
and it seemed advisable to use this practice for the remainder of the melts
involving the effects of processing variables upon the rupture properties of
the Guy-type alloy. The effect of the variables outlined above upon the prop-
erties of the GMR-23%35-type alloy had already been collected and up to the pres
ent time these experiments have not been conducted using the slower melting
practice.

B. DETAILED PROCEDURE--VACUUM-MELTING EFFECTS

Since vacuum + argon melting affected both the high-temperature
strength and ductility of the Guy-type alloy, this alloy was selected in order
to study the mechanisms for the vacuum effect.

1. Nitrogen Additions.--Nitrogen was added to vacuum + argon heats
in the form of high-nitrogen (1.75 percent N) ferrochrome. This was added
just prior to pouring, under an argon pressure of approximately 400 mm of
mercury. The application of argon pressure insured reasonable nitrogen re-
covery in the melt.

L
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TABLE II

Engineering Research Institute

PROCESSING VARIABLES INVESTIGATED

Alloy Type Melting Heat Range of Variable
Variable Used Atmosphere No.(1) Employed
1. Charge preheat time Guy air and argon, (F-285
before melting | R-218 Slow melting at beginning
JR-300 of heat (20 minutes to melt
R-213 charge vs 5 minutes of previous data)
R-284
R-301
2. Pouring temperature R-212
Guy argon R-213 2660 - 2950° F,
R-214
-302
-223 )
Guy vacuum R-224 2660 - 3000° F.
R-225
R-150
GMR 235 argon R-151 2660 - 2950° F.
R-152
3. Pouring pressure R-215
Guy argon R-216 0 - 12 psig.
R-217
-153
GMR 235 argon =154 0 - 15 psig.
-155
4. Holding time -219
Guy argon R-220 1/2 - 2 hours
R-221
GMR 235 argon R-222 1/2 - 2 hours
5. Mold preheat temperature R-278
Cuy air and argon |/R-281 1800° F.
R-2T79
-280

(1)

Full details given in Appendices I-V.
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In order to evaluate the effect of a late chromium addition and
argon pressure upon the vacuum + argon Guy-type alloy, a control heat was
melted in which standard ferrochrome (essentially O percent nitrogen) was
added prior to pouring and argon pressure of 40O mm applied to the heat.

The nitrogen additions and appropriate heat numbers are listed in
Table I1I.
TABLE III

NITROGEN ADDITIONS TO VACUUM-MELTED HEATS OF THE GUY-TYPE ALLOY

Heat No. Percent N, Added
R-209 0 (control heat)
R-211 .01
R=-210 .03
R-287 .10

2. Vapor Collection and Analysis.--Metal vapors evolved during
vacuum melting were collected on a thin sheet of 99.90 percent nickel. The
sheet was cleaned in acid and washed thoroughly in water before mounting it
above the crucible. The vapors were collected throughout the entire heat and
were easily flaked off after completion of the melt.

The analyses of these vapors were conducted spectrographically by
the J. H. Herron Company in Cleveland, Ohio.

3. Structural Stﬁdies.—nThe structure of the Guy-type alloy was
examined using several different metallurgical techniques:

Optical microscopy.
X-ray diffraction.
Spectroscopy.
Electron diffraction.
Electron microscopy.

o &0 o P

The metallographic specimens were again studied by optical micro-

scopy. The inclusion content of alloys melted in vacuum + argon was com-
| pared to air and argon-protected heats. The ratings of the inclusion content
of the vacuum + argon heats to which nitrogen was added were also included in

this survey.

X-ray diffraction patterns were obtained from solid and powder sam-
ples of air and vacuum + argon heats, before and after testing. Minor phases,
extracted by a bromine-alcohol mixture2 from the metal samples of air and
vacuum + argon heats, before and after testing, were analyzed by x-ray dif-
fraction.

6
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The same extracts mentioned above were analyzed spectrographically
to determine whether any compositional variations were present in the minor
phases.

Electron diffraction was used to attempt to identify the Chinese-
script phase present in all Guy-type alloys. By directing a low-angle beam
of electrons upon the Chinese-script phase, which remains in relief after
polishing and etching, positive identification is possible from the diffrac-
tion pattern.

Examination of the precipitates and other phases present in the
structure and unresolved by optical microscopy was initiated with electron
microscopy. The metal surface was prepared in the conventional manner and
standard practices, developed by Bigelow and associates,2 for obtaining
shadowed plastic replicas were used.

The samples examined consisted of vacuum + argon and air-melted
heats.

DATA AND DISCUSSION OF RESULTS

The presentation of the results of this research is most conven-
iently discussed under two major headings:

A. The effect of processing variables upon stress-rupture proper-
ties.

B. The mechanism of the influence of vacuum melting upon stress-
rupture properties.

A, THE EFFECT OF PROCESSING VARIABLES UPON STRESS-RUPTURE PROPERTIES

To evaluate the significance of the effect of the processing varia-
bles investigated upon stress-rupture properties, two methods of statistical
analyses can be used:

1. 95-percent confidence limits for stress-rupture curves,.
2. 95-percent confidence limits for individual rupture tests.

1. 95-Percent Confidence Limits for Stress-Rupture Curves.--If a
sufficient number of rupture tests are conducted so that a representative
stress-rupture curve can be drawn through the data, the first method of sta-
tistical analysis can be employed. Essentially, this analysis consists of
determining whether the stress-rupture curve for the variable investigated
belongs to the same universe as the data to which it is compared. If the
rupture curve for the variable studied falls outside the 95-percent confidence

7
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limits of previously established data, the variable has a significant effect
upan.-stress-rupture properties.

2, 95-Percent Confidence Limits for Individual Rupture Tests.--If
too few rupturg_tests are conducted to calculate a representative stress-rup-
ture curve for the particular variable, the second method of statistical anal-
ysis must be used. In this case, an individual rupture test is compared to
the 95-percent confidence limits for individuals of previously established
data. If an individual rupture test for a variable falls outside the confi-
dence limits of the previously established data, the variable has a signifi-
cant effect upon stress-rupture properties. Otherwise, the effect is not
significant.

In this section the results of each processing variable will be
discussed separately.

a. Charge Preheat Time.

The effect of charge preheat time upon stress-rupture properties at
1500° F. of the Guy-type alloy, melted under air and argon, is shown in Fig. 1.
In order to determine the significance of charge preheat time with regard to
stress-rupture properties, both types of statistical analyses were used.

Since the rupture curve for the 20-minute charge preheat time falls
cutside the 95-percent confidence limits for a preheat time of five minutes,
charge preheat time is a significant processing variable. Also, 50 percent
of the individual tests fall outside the 95-percent confidence limits for
individual rupture tests when only one would show a significant effect. There-
fore, it is evident that preheat time 1s a significant processing variable and
congiderably affects 100-hour rupture strength (Table IV).

TABLE IV

EFFECT OF CHARGE PREHEAT TIME UPON 100-HOUR RUPTURE STRENGTH
OF THE GUY=-TYPE ALLOY

100-Hour Rupture Percent
Time Atm Strength (psi) Elongation
5 air, argon 40,000 1-3
20 air, argon 50,000 2 - b
20 vacuun 56,000 7 - 10




Engineering Research Institute

The University of Michigan

‘shoTTe adh3-£Any

pa3o230ad-uodae pue -ate JO sarjJgadoad sanadna-ssaaas aya uodn awrq 21eoysad a3aeyos JO 109IJT
SYH ‘3WIL
000! 00S 002 ool 0s - o2 Oi S Gl
ojop wobio pup 410 ojop uobip puo 2D SnolAa.d
SNOIASId WOJ) 3ul| |DSIRAIUN woJaj s§sa} njdni |DNPIAIPU]
104 sjwi| 20UdPIHU0D YoS6 —1 10} spwi| 2uaP1U0D %S6 17 000"
T l/ \
/ \
S < [ = ~—— \
-
/

P——

-0——8=0~]

— 0

v /

:818p pojosjoxd-uoBrss pur -ITB SnOoTAdxd J0J uot3yenbyg

2x Bo1 L690° - 64L°H = TX 3ol

2 BoT &KTT® - Te6°h = “IX Bot

000‘6e

0000t

~—~ ’7HW/
—— 1%”/ ./Nc * . 000'st
: 0000S
. |ooo'ss

00009
00069

:gauT 901908ad BuijTaw posoxdwt J0F uorjeNbI

*3897 aanjdna Sujjuasaadax 0 " TO¢H e " 00%H
qutod TB3U USAIZ uUOIBBUOTH @ " wged % “ gTed
‘ uodxe ¢Tc™ Ite cged
*918d ¢ - 8389Y TTe J0JF °*ssaad Buiamod
L,00ge - 839y TTe 07 *dmey Buyamod ToquAg w3y  °ON 383H Toquis W3y  °ON 3®3H

®3ep LoTe-AND
gh°-g2° 0£°2-3C°T #6°9-9¢°h TeL-¢eth LgTGrenty GE GT-€g°2T 92°-go°* snotaaxd 103 aBusx sysATeuy

(owes au3 838
3o Tre I0J *31qo)
cq* gL T 69K 22’9 08°6G gL 1T T gTed Jo suoljzjsodmo)

g G 1Y) ad w O R )

‘T 314

SS3YLS

-

ISd




——— The University of Michigan « Engineering Research Institute

Tt is also of interest to note that the 100-hour rupture strength
is nearly comparable to the vacuum + argon melted Guy alloy. The charge pre-
heat time, however, has no significant effect upon elongation.

The influence of this variable upon rupture strength is undoubted-
1y due to the elimination of severe overheating of the heat during melting.

b. Pouring Temperature.

The Guy-type heats, melted under argon and vacuum + argon atmospheres
were poured at temperatures of 2660°, 2770°, and 2950° F. to evaluate the
effect of pouring temperature upon stress-rupture properties. Similarly, the
GMR-235-type heats, melted under argon, were poured at 2660°, 2760°, and 2950°
F. The stress-rupture results from these experiments are shown in Figs. 2, 3,
and 4.

To evaluate the influence of pouring temperature upon rupture prop-
erties of the two alloys, the second method of statistical analysis was used.
In Figs. 2, 3, and 4 a1l the rupture tests fall within the appropriate con-
fidence limits for individual tests. Therefore, it can be concluded that
pouring temperatures, over the range investigated, do not significantly
affect the 100-hour rupture strength of argon-protected and vacuum + argon
melted Guy-type alloys or the GMR-235-type alloy melted under argon.

Also, pouring temperature gave no significant change in 100-hour
elongation for the Guy alloy. The 100-hour elongation of the GMR 235 alloy
increased, compared with the values previously reportedl (6-12 percent vs 3-T7
percent). The effect seemed to be general for all GMR 235 heats regardless
of the processing variable investigated. This increase in elongation, however,
is possibly due to the lower molybdenum content of the present heats (3.0 per-
cent) compared to higher contents (approx. 5.0 percent) published previously.l

¢. Pouring Pressure,.

The Guy~type and GMR-235-type alloys melted under argon were poured
at pressures of O, 8, and 12 psig and 1.25, 10, and 15 psig, respectively.
The stress-rupture results are shown in Figs. 5 and 6.

The second statistical method was used to evaluate the effect of
pouring pressure. Since the individual rupture tests for all pressures in-
vestigated were within the appropriate 95-percent confidence limits for indi-
vidual tests, pouring pressures, over the range investigated, did not signi-
ficantly affect 100-hour rupture strength of the Guy- or MR-235-type alloys
melted under argon.

The 100-hour elongation of either alloy was not affected by pour-
ing pressure.

10
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d. Holding Time,.

The Guy-type and GMR-235-type alloys, melted under argon, were main-
tained in the liquid state for one-half and two hours after all additions had
been made, The stress-rupture data are shown in Figs. T and 8.

The second statistical method was used to evaluate the data. All
the individual rupture tests, for the holding times investigated, were within
the appropriate 95-percent confidence limits for individual tests. Therefore,
holding time does not significantly affect 100-hour rupture strength. Also,
no effect upon 100-hour elongation was observed.

e. Mold Preheat Temperature

The Guy-type alloy, melted under air and argon, was poured into molds
preheated at 1800° F. instead of the usual 1600° F. preheat temperature. The
stress-rupture data are included in Fig. 9.

The second method of statistical analysis was employed to evaluate
the data. All the individual rupture tests fell within the appropriate 95-
percent confidence limits for individual tests. Therefore, mold preheat temp-
erature, varied from 1600° to 1800° F., does not significantly affect 100-
hour rupture strength of the Guy-type alloy. Also, no effect upon 100-hour
elongation is evident from the data.

To summarize the effects of processing variables upon stress-rupture
properties of the two alloys investigated, the following statements can be
made .

1. The charge preheat time significantly affected the 100-hour rupture
strength of the Guy-type alloy.

2. The remainder of the variables did not significantly affect the rup-
ture strength of either alloy.

3., None of the processing variables affected the 100-hour elongation of
the Guy- or GMR-235-type alloys.

4. 1In general, the 100-hour elongation of the GMR-235-type alloy in-
creased, compared with the values previously reported (6-12 percent vs 3-7
percent ).

The experimental data for all the variables investigated are includ-
ed in Appendices I-V.
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B. THE MECHANISM OF THE INFLUENCE OF VACUUM MELTING UPON STRESS=-RUPTURE
PROPERTIES

The results of this segment of the research are conveniently dis-
cussed under the following headings:

1. Nitrogen additions to vacuum + argon melts.
2. Vapor collection and analysis.
3. Structural studies.

The Guy-type alloy was selected for the above analysis because of
the effect of vacuum + argon melting upon 100=-hour strength and ductility.
The stress-rupture properties were obtained at 1500° F.

1. Nitrogen Additions to Vacuum + Argon Melts.=-=Nitrogen reduces
ductility and does not significantly affect the high-temperature strength of
the Guy-type alloy (Table V and Fig. 10).

TABIE V

THE EFFECT OF NITROGEN CONTENT OF THE GUY ALLOY UPON 100-HOUR ELONGATTON

Percent Percent Percent
Nitrogen Added Nitrogen Analyzed Elongation (100 Hour)
0 .01 6 -7
.01 .02 5 =6
.03 .03 ‘ L - Lh.5
.10 . 2

The second method of statistical analysis was used in determining
the insignificant effect of nitrogen content upon stress-rupture properties
of the Guy=-type alloy. All individual rupture tests are within the appropri-
ate 95=-percent confidence limits for individual tests.

2. Vapor Collection and Analysis.--The analyses of the metal vapors
collected during vacuum + argon melting are shown in Table VI. Two different
refining times were used to determine the importance of this procedure.

More metal vapor wag collected during the 20-minute refining period.
It is evident from the data that considerable refining of trace elements oc-
curs during vacuum melting.
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TABLE VI

ANALYSES OF VAPOR COLLECTED FROM VACUUM-MELTED HEATS OF THE GUY-TYPE ALLOY

Estimated Percentage Range
Elements Present Zero Refining Time 20-Minute Refining Time
Cr .10 - 1.0 .001 - .01
Mn .10 - 1.0 .01 - .10
Ni over 10 percent over 10 percent
(major constituent) (major constituent)

Al .10 - 1.0 .01 - .10
Cu .10 - 1.0 .01 - .10
Pb .01 - .10 .01 - .10
Ca .01 - .10 .01 - .10
Mg .01 - .10 01 - .10
Mo 01 - .10 .01 - .10
Si .10 - 1.0 .10 - 1.0
B i .001 - .01 001 - .01

|

{

F.
the effect of refining time.
95-percent confidence limits for individual tests and, therefore, refining
time does not affect the 100-hour rupture strength of the Guy-type alloy.

The effect of refining time upon stress-rupture properties at 1500°

is shown in Fig. 11. The second statistical method was used to evaluate

A1l the rupture tests fall within the appropriate

However, zero refining time results in lower ductility at 100 hours

as shown in Table VII.
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TABLE VII

EFFECT OF REFINING TIME UPON 100-HOUR ELONGATION OF THE GUY-TYPE ALLOY

Refining Time (minutes ) Percent Elongation
20 ‘ 7 - 10
0 -5

Therefore, removal during vacuum melting of the trace elements
listed in Table VI affects elongation in the same manner as nitrogen.

3, Structural Studies.--In order to determine whether any struc-
tural differences existed as a result of air vs vacuum + argon melting of
the Guy-type alloy, these structures, before and after rupture testing, were
examined by optical microscopy, x-ray diffraction, spectroscopy, electron
diffraction, and electron microscopy. The results are conveniently discussed
under the above headings.

a. Optical Microscopy.
The microstructures of air, vacuum + argon, and vacuum + argon heats
to which nitrogen was added were examined for inclusion content. The inclu-
sion ratings are listed in Table VIII.

TABLE VIII

INCLUSION CONTENT OF THE GUY-TYPE ALLOY AS A FUNCTION OF MELTING ATMOSPHERE

Inclusion Type (ASTM Inclusion
Atmosphere . . .
Designation for Steels, Globular-Type Oxides)
vacuum + argon D-1
vacuum + argon D -4
(nitrogen additions)
air D -k

Figures 12 and 13 exemplify the ASTM designations given in Table
VIII. It is evident from the table and figures that a smaller number of in-
clusions result from vacuum + argon melting compared with air or nitrogen ad-
ditions to vacuum + argon melts.

2L




The University of Michigan + Engineering Research Institute
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Fig. 12. Inclusion content typical of vacuum +
argon heats of the Guy-type alloy (250X, unetched).

Remarks: No inclusions present in entire cross
section of test bar.
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Fig. 13. Inclusion content typical of the Guy-
type alloy melted under vacuum + argon (with ni-
trogen additions) and air atmospheres. (250X, un-
etched)

Remarks: Considerable amount of inclusions present,
micrograph representative of entire cross section
of test bar.
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b. X-ray Diffraction.

X-ray diffraction patterns have been obtained from minor-phase ex-
tracts, powder samples, and solid samples of the Guy=-type alloy for both air
and vacuum + argon melting atmospheres. Since the phases present in the as-
cast condition may disappear and new phases appear during rupture testing at
1500° F., as-cast and after-rupture-testing patterns were obtained for each
of the above atmospheres.

The diffraction resulte are shown in Appendices VII-X. The phases
CrsCs, FesB, and Cb(CN) have been identified along with the . C. C. matrix
lines. No appearance or disappearance of any of these phases occurs with
melting atmosphere or with the as-cast or after-rupture-testing condition of
the specimen,

Other diffraction data indicate the presence of either a precipitate
based on the NisA'(y') phase or the existence of a sujerlettice formation with-
in the alloy matrix,.

c. oSpectroscopy.

To insure the presence of the above elements (Cr, B, Fe) and to
measure their relative concentrations, the minor-phase extracts were analyzed
spectrographically. The lines for the above three elements were definitely
present in the spectrum of the vacuum + argon, as=-cast, and after-rupture-
testing extracts and the air, as-cast, and after-rupture-testing extracts.

To measure the relative concentrations of Fe and B in the four
samples, the intensities of a sensitive iron line, one of the lines of the
boron doublet, and a chromium line, whose intensity remained relatively con-
stant for all four samples, were measured. (Chromium was the major element
present in the extracts.) The intensity ratios Fe/Cr and B/Cr were calcu-
lated from the above measurements and are shown in Table IX.

These data show that air heats contain a greater percentage of
boron and a smaller percentage of ircn than vacuum + argon melted heats,

As a result of the data in Table IX, it is apparent that FezsB is not
a pure stoichiometric compound but actually a solid solution with small bound-
ary limits.

d. Electron Diffraction.

Electron diffraction patterns have been obtained from etched surfaces
of the four different specimens (air melted, before and after testing; vacuum
melted, before and after testing), using reflection diffraction techniques.2
The patterns obtained to date have been generally of rather poor quality, con-

sisting of weak, diffuse spots and having rather heavy vackgrounds, Becausge
. 20
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of their spotty character, accurate measurements of interplanar spacings have
not been possible. It appears, however, that the patterns are essentially
the same for all four specimens.

TABLE IX

RELATIVE CONCENTRATIONS OF IRON AND-BORON IN MINOR-PHASE
EXTRACTS OF THE GUY-TYPE ALLOY

Melting Atm Condition Fe/Cr B/Cr
vacuum + argon as-cast .89 1.58
vacuum + argon after testing .89 1.57

air as-cast .76 1.98
air after testing .6l 2.21

e. Electron Microscopy.

To date, microstructure examination of electron microscopy has yiel=-
ded one definite difference between air- and vacuum-melted structures. 1In all
air-melted heats, a rod-like precipitate appears in the microstructure of
after-tested specimens. This precipitate is shown in Fig. 1k, The rod-like
phase appears to precipitate along definite crystallographic planes.

The general structure of the y' (based on NigAl) precipitate within
the matrix is shown in Fig. 15. No difference in size, shape, etc., of the
y' precipitate is evident for air- or vacuum-melted samples.

The etchant used in the above work is designed to delineate the
over-all microstructure. Several other etchants, which bring out grain bound-
aries, grain-boundary precipitates, and selectively etch the y' phase, have
only been tried on a preliminary basis. These preliminary tests indicate the
possibility of a grain-boundary precipitate present in air-melted but not
vacuum-melted samples.

The research on the mechanism of the influence of vacuum melting
upon stress-rupture properties is sumarized below:

1. Nitrogen and zero refining time during vacuum melting reduces ductil-
ity of vacuum + argon melts to air-melted values.

27
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Fig., 14. Electron micrograph of rod-like precipitate
found in air-melted specimens after testing (Guy-
type alloy). (10,000 X)

Remarks: ZEtched electrolytically in HF, glycerine,
and alcohol mixture.

Fig. 15. Electron micrograph of the general struc-
ture of the matrix and y' precipitate (Guy-type alloy).
(10,000 X)

Remarks: Etched electrolytically in HF, glycerine,
and alcohol mixture.
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2. Vacuum melting removes many elements which might be harmful to stress-
rupture properties.

3. The phases Cr,Cs, FegB, and Cb(CN) have been identified in both air-
and vacuum-melted heats,

L, A rod-like precipitate is present only in the microstructure of air
samples, after testing.

CONCLUSIONS

Following the arrangement of the report, the conclusions are best
given under two divisions: A, Effects of Additional Processing Variables,
and B, Vacuum-Melting 7"iffccts,

A. EFFECTS OF ADDITIONAL PROCESSING VARIABLES

1. Charge preheat time, that is, the time during which the charge
is visibly heated before melting, has a major effect. An increase from a pre-
heat period of 5 to a period of 20 minutes improves the 100-hour, 1500° F.
rupture strength of the Guy-type alloy from L0,000 to 50,000 psi.

2. Pouring temperatures of 2660°, 2770°, and 2950° F'. for the Guy-
type alloy and of 2660°, 2760°, and 2950° F. for the GMR-235-type alloy result-
ed in no change in stress-rupture properties at 1500° F. (95-percent confidence
limits).

%, Variations in pressure from O - 15 psig during pouring were
without effect upon the stress-rupture properties (1500° F.) of Guy- and GMR-
235-type alloys.

4. Variations in the time during which the melt was in the liquid
state (under argon) up to two hours were without effect upon the stress-rup-
ture properties (150C° F.) of Guy=- and GMR-235=-type alloys .

5. Preheat temperature of the mold was raised to 1800° F. in place
of the usual 1600° F. without effect upon the stress-rupture properties (1500°
F.) of Guy-type alloy.

B. VACUUM MELTING

1. Late nitrogen additions from O to .10 percent N to vacuum melts
of Guy-type alloy decreaced the elongation regularly from 7-10 percent to 2

9
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percent elongation (at 1500° F., 100-hour). No effect upon strength was noted.

2. Zero refining time during vacuum melting decreased the elongation
from 7-10 percent to 3=5 percent in Guy-type alloys. No effect upon strength
was noted.

3. Vapor samples collected during vacuum melting showed appreciable
amounts of deleterious elements, such as lead.

L, Structural studies employing electron diffraction, spectro=-
scopic, and x=-ray diffraction techniques identified the phases CrCs, FezB,
and Cb(CN). These three phases were present in air- and vacuum-melted samples.

5. Electron microscopy disclosged a rod-like precipitate which
appeared only in air-melted samples, after testing.

SUGGESTIONS FOR FUTURE WORK

The work of the past two years has demonstrated that vacuum melting
produces very definite improvement in the 100-hour elongation of nickel-base
alloys. It is also evident that the 100-hour elongation of vacuum heats is
decreased to the elongation of air-melted heats by nitrogen additions and zero
refining time. In view of the above discussion, the following future research
would greatly add to the understanding of the effects of vacuum melting upon
stress-rupture properties:

A, Further examination of vacuum-melted microstructures by electron mi-
croscopy.

B. An investigation of the physical chemistry involved during vacuum
melting.

C. The investigation of the effect of ordering upon stress=rupture prop -
erties.

A. EXAMINATION OF VACUUM=-MELTED MICROSTRUCTURES

The preliminary investigations with different selected etchants
revealed the possibility of a grain-boundary precipitate present only in air-
melted heats. Since this type of precipitation is known to decrease ductility,
the presence of such a grain-boundary phase could explain the difference in
ductility of air- and vacuum-melted heats. Therefore, it ie suggested that
research along these lines be continued to explain the elongation differencges
in vacuum- vs air-melted heats of the Guy~-type alloy.
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B. PHYSICAL CHEMISTRY OF VACUUM MELTING

Preliminary analysis of vapors collected during vacuum melting dis-
closed important amounts of deleterious elements such as lead. This work in-
dicates that further quantitative analyses of the purification during vacuum
melting by evolution of undesirable elements might also explain the improve-
ments in properties which have been obtained.  The entire field of vacuum
melting is of such widespread interest and importance that the development, in
this way, of basic data might constitute major progress,

Tt is proposed, therefore, first, that vapor samples be collected
over melts prepared under variou: conditions and that the vapor analysis be
correlated with elevated-temperature properties,

Secord, oie elements which seem to huve major effects could be
reintroduced separately into vacuum melts and individual effects upon elevateds=
temperature properties determined. At the came time, the evolution of deleter-
jous elements from the melts should be followed quantitatively along the
classical lines of physical chemistry, developing activity data for the impor-
tant harmful trace clements.

C. INVESTICATION OF 1HE EFFECT OF CORDERING UFON STREES-FEIFTURE PROPERTIES

Tt is suggested that a small amount of research be devoted to
the exploration of the effect of ordering upon the elevated-temperature prop-
erties of these nickel=chromium-aluminum alloys. A higrh-temperature x-ray
camera operating with a bent calcium fluoride monochromat is now available
and could be used to determine ordering temperatures for several alloys. The
changes in elevated-temperature properties accompanying ordering could be de=
veloped.

In addition to the foregoing, there is a portion of work to be com-
vleted involving other processing variables, A number of unsuccessful attempts
were made to evaluate the effect of grain c¢ize. A procedure has now been de-
veloped at Michigan to produce very fine grained material ucing graphite molds
and it is recommended that representative cpecimens be tested.
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EFFECT OF MOLD PREHEAT TEMPERATURE UPON THE STRESS-RUPTURE
PROPERTIES OF AIR AND ARGON-PROTECTED GUY ALLOY

Tmproved Melting Practice Used For Both Air and Argon-Protected Heats

Pouring Temperature 2800° F.
Pouring Pressure 5 psig
Mold ) o Rupture| Percent
Heat Atm Temp . Chemical Composition Stress | Life Elong-
(°F) C Cr Mo Al Fe Cb B (Hours ) ation
R-278 air 1800 50,000 119 L
45,000f 317 1
R-281 air 1800 50,000 | 164 3
R-279 argon | 1800 50,000 | 326 3
45,000 88.7 3
R-280 argon | 1800 50,000 91.6 3
45,000 220 L
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APPENDIX VIT

EFFECT OF REFINING TIME UPON THE STRESS-RUPTURE
PROPERTIES OF VACUUM + ARGON MELTED GUY-TYPE ALLOY

Pouring Temperature 2900° F.
Refining Chemical Composition Rupture Percent
Heat Time C Cr Mo Al Fe Cb B Stress Life Elong-
(Min.) (Hours) ation
R-227 0 60,000 61.1 L
56,000 88.1 5
56,000 25 2.5
50,000 191.2 3
R-297 0 65,000 30 k.5
56,000 83.8 5
R-298 20 56,000 78.4 L
Control
Heat

Lo
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APPENDIX VIII
X-RAY DIFFRACTION RESULTS FOR THE GUY-TYPE ALLOY MELTED IN VACUUM + ARGON, AS-CAST
Cu Rad. Cr Rad. Cu Rad. 7' Precipitate
Extract Powder Solid Sample CrsCs FeoB CbC CraCs Or Ordered F.C.C.
Pattern Pattern Pattern CbN 'F.C.C. Matrix Matrix
a I a I a I a I a I d I a I a T a I
3.62 vw
3.56
3,22 vw  3.22  mw
3.1 R
3.12 w
3.09 m
3.01 mw
2.87 W
2.7 .7
2.70 W
2.65 W
2.59 m :
2.56 s
2.55 wm 2.55 vs 2.55 8
2.52
2.48 e 2.48 mw 2.48 5
2.46 m 2.46 5
2.38 m
2.30 1.0
2.26 w 2.26 .6
2.23 1.0
2.22 W
2.20 w 2.20 s
2.16 v
2.15 w
2.13 m
2.12 s
2.10 s 2,10 g 2.10 T
2.07 m 2.07 vs 2.07 2.07 s
2.0k s
2.03 wm
2.02 vs
2.01 s
2.00 mw
1.99 .8
1.98 s
1.96 m
1.86 ] 1.86 1.0
1.85 w
1.84 s 1.84 w
1.82 W 1.82 m 1.82 m 1.82 w 1.82 1.0
1.79 w 1.79 1.79 s
1.78 W 1.78 T
1.76 m 1.76 .7
1.71 m
1.66 4
1.64 m
1.62 mw 1.62 5
1.61 mw
1.60
1.58 5
1.56 n 1.56 vw 1.5 ms
1.5k W
1.53 8
1.52 W
1.51 m
1.50 .8
1.46 W 1.46
1.l 5
1.43 s 1.43 s
1.k2 Rt
1.1 1.0
140w 1.0 ww
1.38 W 1.38 R
1.36 W
1.35 s
1.34 ms 1.34 vw 1.3 ms
1.33 w 1.33 ms  1.33 A
1.28 wm
1.27 ms 1.27 s 1.27 ms 1.27 v 1.27 1.27 m
1.26 m 1.26 8
1.24 v 1.24 vw .
1.19
1.13
1.09 m 1.09 m
1.08
1.0  mw 1.0k 1.0k
892w .892
.83 m .83
b1
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APPENDIX IX

X-RAY DIFFRACTION RESULTS FOR THE GUY-TYFE ALLOY MELTED IN VACUUM + ARGON, AFTER RUPTURE TESTING*

7' Precipitate

Powder Solid Sample CreCa FeoB ChC CraCo Or Ordered F.C.C.
Pattern Pattern CbN F.C.C. Matrix Matrix
<} I d I d I a I d I d I d I d I
3.62 v
3.5
3,22 me
3.1k vw 3.4 R
3.01 mw
< 2.Th .7
2.70 W
2.65 W
2.61 m
2.58 w
2.57 W
X5 wm 2.55 vs 2.55 .8
2.52
2.50 mw
2.49 .5
2.48 m
2.46 .5
2.38 m
2.30 1.0
2.26 W 2.26 €
2.23 1.0
2.22 W
2.20 s
2.17 W
2.15 W
2.13 ms 2.13 m
2.12 s
2.11 wm
2.10 T
2,07 ms 2.07 2.07 s
2.06 vs
2.0k s
2.02 vs
2.01 vs
2.00 ms
1.99 .8
1.96 m
1.90 w 1.90 .0
1.87 W
1.86 s 1.86 .0
1.85 w
1.84 s 1.8k w
1.82 e 1.82 w 1.82 .0
1.81 w
1.79 vs 1.79 1.79 s
1.78 s 1.78 w 1.78 .7
1.76 m 1.76 e
1.71 m
1.66 A
1.65 vw
1.6k mw
1.62 mw 1.62 .5
1.61 W 1.61 mw
1.60
1.59 5
1.56 W 1.56 ms
1.5% .8
1.51 m
1.50 .8
1.46 w 1.46
1.4k .5
1.43 s 1.43 s
1.4 .0
1.40 v
1.38 W 1.38 w 1.38 .5
1.35 s
1.34 w 1.34 m
1.33 W 1.33 ms 1.33 R
1.28 wm
1.27 vs 1,27 vs 1.27 mw 1.27 1.27 =m
1.26 s 1.26 .8
1.19
1.13
1.09 1.09 m
1.08
1.0k 1.0k 1.04
.892 .892
.83 .83

* Same extract pattern as shown in Appendix VII
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APPENDIX X
X-RAY DIFFRACTION RESULTS FOR THE GUY-TYPE ALLOY MELTED IN ALk, AS-CAST*
7' Precipitate
Powder Solid Sample CraCa FeoB CbC CraCs Or Ordered F.C.C.
Pattern Pattern CbN F.C.C. Matrix Matrix
d I d I d I d I d I d I d I d I
3.62 oW 3.62 vw
3.56
3.22 mw
3.1k R
3.13 w
3,01 W
2.88 w
2,7k T
2.70 W
2.65 w
2.59 m
2.56 vs 2.56 .8
2.55 wm
2.54 me
2.52
2.49 mw
2.48 mw 2.48 .5
2.38 m
2.30 1.0
2,26 W 2.26 .6
2.23 1.0
2.22 W 2.22 w
2.20 s
2.13 m
2.12 mw 2.12 s
2.10 T
2.07 vs 2.07 2.07 s
2.06 vs
2.04 5
2.02 Vs
2.01 vs
1.99 m 1.99 .8
1.96 m
1.90 w 1.90 1.0
1.86 s 1.86 1.0
1.84 s 1.84 w
1.82 nmw 1.82 W 1.82 1.0
1.79 m 1.79 1.79 s
1.78 w 1.78 T
1.76 m 1.76 m 1.76 T
1.7 T
1.71 m
1.66 R
1.64 mw
1.62 mw 1.62 .5
1.61 mw 1.59 .5
1.56 ms
L.53 .8
1.51 m
1.50 .8
1.6 W
1.kk .5
1.43 s
1.h2 b
1.4 1.0
1.39 A
1.38 W
1.37 5
1.35 s 1.35 s
134w
1.33 w 1.33 ms
1.30 .3
1.28  wm 1.28 .5
1.27 vs 1.27 m 1.27 m 1.27 1.27 il
1.26 s 1.26 .8
1.19
1.13
1.09 1.09 m
1.08
1.0k 1.0k 1.0k
.892 .892
.83 .83
*Same extract pattern as shown in Appendix VII.
L3
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APPENDIX XI
X-RAY DIFFRACTION RESULTS FOR THE GUY-TYPE ALLOY MELTED IN AIR, AFTER RUPTURE TESTING*
7' Precipitate
Powder Solid Sample Cr¢Ca FeoB CbC CraCa Or Ordered F.C.C.
Pattern Pattern CbN F.C.C., Matrix Matrix
d I d I d I d I d I d I d I d I
3.68 mw
3,62 vw
3.56
LR W
3.22
3.1k Rt
3.01 mw
2.7k .7
2.70 W
2.65 W
2.61 n
2.56 m 2.56 .8
2.55 wm 2.55 vs
2,52
2.48 mw 2.48 mw 2.48 .5
2.38 m
2.32 W
2.30 1.0
2.26 W 2.26 .6
2.23 1.0
2.20 s
2.13  wm
2.12 m 2.12 s
2.10 LT
2.07 vs 2.07 2.07 s
2.06 5
2,04 s
2.02 wm
2.01 vs
1. 99 m 1.99 .8
1.96 m
1.90 W 1.90 1.0
1.86 s 1.86 1.0
1.84 s
1.82 mv 1.82 v 1.82 1.0
1.80 m
1.79 s 1.79 1.79 s
1.78 W 1.78 N
1.76 m 1.76 .7
1.71 m
1.66 R
1.6k m
1.62 mw 1.62 mv 1.62 5
1.60 W
1.59 p)
1.56 W 1.56 ms
1.53 .8
1.5L m
1.50 .8
1.46 W
1.4k 5
1.43 m 1.4% s
1.h2 R
1.1 1.0
1.39 Rt
1.38 W 1.38 . ms
1.37 5
1.35 s 1.35 s
1.33 vw
1.30 .3
1.28 wm 1.28 .5
1.27 vs 1.27 vw 1.27 m 1.e7 l.27 m
1.26 s 1.26 .8
1.19
1.13%
1.09 1.09
1.08
1.0k 1,04 1.0k
.892 .892
.83 .83
FExtract pattern same as Appendix VII.







