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PREFACE

The purpose of this report is to swmmarize the results of an
investigation into the suitability of an electronic differential analyzer for
solving linear differential difference equations. These equations arise when
a partial differential equation is converted to a system of ordinary differ-
ential equations by replacing one or more of the partial derivatives by finite
differences,

The report includes both a theoretical analysis of the accuracies
attainable using the difference method and actual examples of solutions of
specific problems by the electronic differential analyzer. Three general types
of partial differential equations are included; the heat equation, the wave
equation, and the vibrating beam equation.

No attempt is made to discuss in a detailed manner the theory of
operation of the electronic differential analyzer, nor are the actual circuits
of the d-c amplifiers and power supplies given here. For this information the
reader is referred to other reports.l’

The actual computer solutions were carried out on the electronic
differential analyzer of the Department of Acronautical Engineering. As a
result of the promise shown by the difference method discussed in this report,
construction of an 80-amplifier analyzer has begun. Complete details of this

new computer will be presented in a later report.
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CHAPTER 1

INTRODUCTION

1.1 Usual Differential Analyzer Technigque for Solving Partial Differential
Equations

The electronic differential analyzer is limited to the solution of

ordinary differential equations. When one desires to solve a linear partial
differential equation on the analyzer, it is necessary to separate variables
and hence convert the partial differential eyuation to ordinary differential
equations of the eigenvalue type. One must then find, usually by trial and
error techniques, the normal modes, from which the complete solution to the
original problem can be built up.
The above method of separating variables and obtaining a series type

of solution can be carried out fairly efficiently on an electronic differ-

ential analyzer.l’2’3

Certainly, for most problems the analyzer is much
faster than any hand methods. But for the engineer who is interested in
getting numerical answers to specific problems, even the analyzer approach
might seem somewhat tedious. It therefore would be highly advantageous to be
able to solve the partial differential equations directly. This can be done
by replacing some of the partial derivatives by finite differences in order to
convert the original partial differential equation into a system of ordinary

differential equations. In the next section we shall show how this is done.

1.2 Replacement of Partial Derivatives by Finite Differences

Assume we are interested in solving a partial differential eqﬁation
in which the dependent variable y(x,t) is a function of both a distance
variable x and a time variable t. Instead of measuring the variable y at all
distances x, let us measure y only at certain stations along x; thus, let Y1
be the value of y at the first x station, Y, be the value of y at the second
% station, T, be the value of y at the nth x station. Further, let the
distance between stations be a constant Ax.

Now clearly a good approximation to —%‘jﬁ 1 (i.e., the partial
derivative of y with respect to x at the i station) 2is given by the differ-

ence




a1 | ENGINEERING RESEARCH INSTITUTE
UNIVERSITY OF MICHIGAN

ar|] . %
\33‘ 1/2 AX

In fact the limit of equation (1-1) as Ax -0 is just the

(1-1)

‘definition of the partial derivative at that point. Writing (1-1) in more

general terms

oy n n-1
ox n-1/2 Ax
In the same way
2 ,
2y L1 |ox _2X
a-xz n Ax | 9% lne/2 9% Ip1/2
or from equation (2-2)
821 - Vel = n * T .
ox° n (4 x)*
Similarlj
kN Tne1 T * VW tno
A N3
3x3 n-1/2 (Ax)
and
a"x - Vpe2 = My * 6y = Wy * Yo
ox* (ax)*

(1-2)

1-3)

(1-4)

(1-5)

(1-6)
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Thus we have converted partial derivatives with respect to x into
algebraic differences. The only differentiation needed now is with respect
to the time variable t, so that we are left with a system of ordinary differ-
ential equations involving dependent variables yo(t), yl(t),...yn(t),....

Before considering how a specific partial differential equation is
transformed into differential difference equations or how boundary conditions
are imposed, we will review the principles of operation of the electronic
differential analyzer. The reader familiar with such a computer may choose to
omit the following chapter and go immediately to Chapter 3 (Solution of the
Heat Equation).
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CHAPTER 2

PRINCIPLES OF OPS&RATION UF Tiis SLICTHONIC DIFFEkidiTIAL ANALYZAR

2.1 Introduction to Operational anplifiers

The basic component of the electronic differentiel analyzer is the
operational amplifier, which is shown schematically in Figure 2-1. It
consists of a d-c voltage amplifier of 'high gain, an input impecdance Zi, and

a feedback impedance Zf.

Z¢
p'2
iy
+o—, Z; > | 4-
e e D.C. AMPLIFIER ez

Figure 2-1. OUperational Amplifier.

If we neglect the current into the d-c amplifier itself (i.e.,
neglect the current to the grid of the input tube), it follows that il = 12.
Let us also neglect the voltage input e' to the d-c amplifier in comparison
with the output voltage e, or the input voltage e to the operational amplifieq
e then have




O BRI o 5
or
1. 22
Zi T Zf
from which
e, = - ;i e (2-1)

which is the fundamental equation governing the behavior of the operational
amplifier. In general, zf/zi is made the order of magnitude of unity. We
shall now consider the scheme by which the operational amplifier can be used

to perform three different functions.

(a) Multiplication by a constant.

If we wish to multiply a certain voltage e by a constant
factor k, we need only make Zf/Zi = k. From equation (2-1), then, the output

voltage e, of the operational amplifier will be given by
e, =~ ke, . (2-2)

Thus the required multiplication by a constant has been achieved, except for
a reversal of sign. For example, if we wish k to be 10, we may let Zi =

1 megohm resistance, Zf = 10 megohms resistance. If we also desire the sign
of e, to be the same as ey, we must feed e, through an additional operational
amplifier with Zi = Zf = 1 megohm. This second operational amplifier merely

acts as a sign changer by multiplying any voltage by -1.

(b) Addition.

In order to add a number of voltages, say e_, €y and e.> the

a
arrangement shown in Figure 2-2 is used. Here ia + ib + ic = 12, and if we

neglect e' as small compared with €5, We have

Sa,p, % __%2
Za Zb zc zf
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or
Z Zz Z
e, =-|7Ee +ie +oiel. (2-3)
2 2 %a Z bz “c
a b c

Thus the output voltage e, is the sum of the three input voltages,
each multiplied respectively by a constant —Zf/Zn (n=a, b, or c). The
operational amplifier can, of course, be used in general to sum any number of
input voltages.

i
+e—— 2o 2 Z¢
a
L #iz
ip
+ ;"‘-"‘— Zb r———ey e —p -
b
I e D.C. AMPLIFIER e
' —
+ o— z° Vc

I

Figure 2-2, Operational Amplifier Used for Summation.

(¢) Integration.

If we make the input impedance Zi a resistor and the feedback
impedance Zf a capacitor, then the operational amplifier serves as an
integrator. Referring to Figure 2-3, we see that if we neglect e!' and let

i, = 12 as before, we have

1
i.dt e
- 1 S |
e2-JC and 11—-§—,




ENGINEERING RESEARCH INSTITUTE
AIR-1 UNIVERSITY OF MICHIGAN Page 7
from which
. :
e, = - RC,//;ldt . (2-4)

The output voltage e, is then the integral with respect to time of the input
voltage e, (miltiplied by a constant factor -1/RC).

C
L
i
Ai2
R i -
+ ——MWWWWWW——+- > |
e, ¢ D.C. AMPLIFIER

Figure 2-3. Operational Amplifier as an Integrater.

2.2 Solution of an Ordinary Differential Equation with Constant Coefficients

In order to demonstrate how operational amplifiers performing the
above three functions can be combined to solve ordinary linear differential
equations, we will now set up the amplifier circuits required to solve the

following differential equation:

2
d
a, .;—;% +ay g% +ay =£(t) (2-5)

subject to the initial conditions

y(0) =V, and L (0) =v,. (2-6)
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The constants a,, 2y, and a  are assumed positive. Since the electronic
gifferential analyzer integrates with respect to time, the independent
variable t in equation (2-5) will be tiume. The dependent variable y is rep-
resented by voltage.

The computer circuit for solving eguation (2-5) subject to initial
conditions (2-6) is shown schematically in Figure 2-4. If we assume that the
output of amplifier A, is aéy, then this voltage is multiplied by -—l/a2 and
integrated once in passing through amplifier A3, the output of which is
therefore —5. This voltage is in turn multiplied by -1 and integrated once
to give y as the output of AA' In order to obtain +al& instead of -ﬁ, it is
necessary to pass —& through sumning amplifier Al. At the same time f(t) is
fed into A, so that the output of i) is + al& - £(t). This output is then
added to ay in amplifier A2, which finally has as its output - alﬁ -ay -+

£(t). But we originally assumed the output of A, to be a2§. Hence
ay = = ay - ay + £(t),

which is just the equation which we wish to solve.

i B

i

ot 1 N i

R

f(1)

ALL RESISTOR UNITS ARE MEGOHMS

ALL CAPACITORS ARE IMFD.
GROUND CONNECTIONS ARE OMITTED FOR CLARITY

Figure 2-4. Computer Circuit for Solving

ay +ay+ays= £f(t).
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The initial conditions (2-6) are imposed as voitages across the
integrating condensers of A3 and Ah in Figure 2-4. hen phe two switches
holding the initial voltages across the condensers are opened simultaneously,
the solution of the problem begins, i.e., the time variation in voltage output
of A, represents v(t).

The mechanical analogy to equation (2-5) is the ma ss-spring-damper
arrangement shown in Figure 2-5. The type of transient response of such a

system depends upon the damping ratio g » Which is defined as

1
§ - ' - (2-7)

For §<l the transient response is oscillatory (underdamped), and for‘f > 1
the transient response is exponential (overdamped).

In order to have a specific problem for the computer, let us examine
the response of our second-order system to a step-function input force. For
simplicity, assume a, =a, = 1. Then § = al/2 and we can vary f merely by
changing a,. Also, let us assume that initially y(0) = y(0) = O.

G

SPRING PAMPING

MASS DISPLACEMENT

w |
f

APPLIED FORCE f(t)

Figure 2-5. One-Degree-of-Freedom Mass, Spring, Damper System .
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at t =0 for § = 0.2,
t and output voltages y(t)
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g =1, and § = 2 is shown in Figure 2-6. The inpu

were recorded on a Brush, lModel BL-202, two-channel magnetic oscillograph.
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2.3 Solution of Two Simultaneous Ordinary Differential Equations

Consider the two-degree-of-freedom system shown in Figure 2-8, The
two masses my and m, are supported by springs having constants kl and k2’ and
are coupled by a spring with constant k3° If the masses are constrained to
vertical motion, then in terms of the deflections Yy and y, we find the

following equations of motion:

my) + (g + ky)yy - kg3, =0
and . (2-8)

my, + (ky + ky)y, - kgy) =0

The computer circuit for solving these equations is shown in Fig-
ure 2-~9. The analysis of the circuit is exactly the same as the analysis
described for Figure 2-4. The upper bank of amplifiers in Figure 2-8
represents the first equation of (2-8), the lower bank the second of (2-8).
Cross-connections between the two banks are made as necessary to satisfy
equation (2-8).

For simplicity, assume m o=m, = 1, kl = k2 = 1. Let us make k3
somewhat less, say 0.2. For initial conditions we will set &1(0) = 52 =0
(1.e., no initial velocity for the masses).

As a first example we let the masses start with equal displacement,
so that yl(O) = yz(O) = V., The response of the masses for these initial
conditions is shown in Figure 2-10. Evidently the masses perform simple
harmonic oscillation in phase with each other, so that the coupling spring is
never compressed or expanded. The period of oscillation of each of the masses
" is therefore the natural period of the single mass-spring system without
coupling, namely 2T seconds. This is evident in Figure 2-10.

For a second example, let the masses start with equal but opposite
displacement, so that yl(O) = - yZ(O) = V. The response for these initial
conditions is shown in Figure 2-11, and now the masses oscillate 180 degrees
out of phase and with a shorter period (actually ZTT/VITK seconds) .

In the above two examples we have found the two normal modes of
vibration of our two-degree-of-freedom system. Any other motion which the two
. masses can exhibit must consist of a superposition of these two normal modes.
For example, if we start one mass with finite displacement and the other mass

with zero displacement, so that yl(O) =V, y2(0) = 0, we get the response
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4,

i/

Figure 2-~8. Two-Degree-of-Freedom System with sSpring Coupling.

AAAAAA.
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2 m[yl -9| yl

yvyvy
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Figure 2-9. Computer for solving the osirultaneous LUifferential Igquations

of Hqguation (2-8).
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CHAFTER 3

SOLUTION OF THE HEAT EQUATION

5.1 Equition to be Solved

As a first example of a partial differential equation, it seemed
advisable to select the equation of heat flow through 2 continuous medium,
since it involves second order spacial derivitives and only first order time

derivatives. The basic heat equation is given by

L8 .y Kkgu+ T (3-1)

where

u = temperature and is a2 function of the spacial coordinates
and time

¥ = thermal conductivity, in general a function of the
spacial coordinates,

= specific heat, a function of spacial coordinates,

C
C(\= density, also a function of spacial coordinates,
f

= rate of heat supplied by sources in the medium, a function
of spacisl coordinates and time.

The left-hand side of equation (3-1) represents the rate at which
heat is stored in = unit volume due to the heat capacity of the medium. The
right-hand side represents the rate at which the unit volume receives heat,
first due to heat conduction into the volume from the neighboring medium
(the §7 * KYu term) and second due to the heat flow into the volume from
sources within the volume itself (the f term). Written in terms of Cartesian
coordinates x, y and z, equation (3-1) becomes

A TR A R LS LR E

The ctual heat flow or flux due to conduction normal to any unit

surface is given by - K X (component of ¥V u normal to the surface)., Thus the

heat flux ¥y across a unit surface normal to the x direction is given by
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-1
Fr=-K35%- (3-3)

In a given heat flow problem it is necessary to stipulate spacial
boundary conditions either on the temperature u or the heat flow -K Yu, as

well as the initial temperature distribution throughout the medium.

3.2 Derivation of the Difference Equations

For simplicity in illustrating the application of difference
techniques, let us assume for the time being that spacial variations in the

temperature u are confined to the x direction. Equation (3-2) then becomes

o(x) 2UmL) gxﬁﬂx) —a%%’i“l] v £(x,8), (3-4)
where we have let
C(x) = c(x)§ (x) . (3-5)

For example, this could represent the temperature distribution in a medium
between two infinite slabs, as shown in Figure 3-1.

Following the technique discussed in Section 1.2, we will consider
only values of u at certain equally spaced stations along the x coordinate
axis. Thus u(x,t) is replaced by u (), uy(t), ....,etc. If Axis the
distance between stations, we can write for the heat flux,Fn_% at the n-1
station

< ¥ 7SS S ‘
Yeteled :‘0,0,0

> CONTINUOUS MEDIUM “‘
§:§:§:§ GONDUCTIVITY » K(x) :::::::
oS %! HEAT CAPACITYs G(x) XS
XN ] %%,
’0’ TEMPERATURE = w(x,t) "‘
92994 KRS
KKK XX
KKK %90 ¢,
S / KRS
XK KX
QXS XK
XK SRR
GRXES K
RS LK
KXK XK
XX X
XK S

Figure 3-1. Temperature Distribution Between Two Infinite Slabs.




I ENGINEERING RESEARCH INSTITUTE
AIR-1 UNIVERSITY OF MICHIGAN : Page 18
P, =K =-K—n'-é(u -u ) (3-6)
n-3 ax| _ 3 AX n n-1/ °

In the same way, g—; (K -g-%) at the nth station becomes

g 2u 2u
ax Tt ax
2 (x2Y| - nt3 S
X X n AX
or
ned ) - nd
i_(K__a_g)l _ax ned "% T TAx Vn T Tl (3-7)
9x ax . AXx -

From equations (3-4) and (3-7) we can now write the equation of heat-flow
balance at the nth station, ‘Thus

du
c. == =

n dt

K

(An;)Z (un+l - un) - _(:n;_%_ (un - n-l) * I (3-8)
where Cn is the hea’f. capacity at the nth station and fn is the rate of heat
supplied by a heat source at the nth stationL(fn will in general be a function
of time). Note that dun/dt is now a total derivative and not a partial deri-
vative, since by definition x remains fixed while we take dun/dt.

Equation (3-8) will be iterated for different values of n until the
boundaries in x are reached, at which point it is necessary to impose boundary
conditions.,

3.3 Imposing Boundary Conditions

(a) Conditions on the temperature.

Suppose that one of the boundary conditions specifies the
temperature at x = 0 (i.e., at the zero station). Then we have
u, = constant

and hence

g -2 [ -5, ] (3-9)
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Our difference equation for the first station is now
du, (t)
18 Ky ) [ _ _
R 5 [0 ) el [TOREN RENCRECED

The equation for the second station proceeds as in equation (3-8)
for n = 2. All we have done in imposing the boundary condition, then, is to
fix uo(t) at a constant value of u.

If the temperature is specified at x = L (i.e., at the Nth station,

where N = L/AXx), then for uN(t) we substitute uy = constant, the desired

temperature.

(b) Conditions on the heat flow.

Often a condition is placed on the rate of heat flowing past a
boundary, either that this flow be zero (as for an insulating boundary) or a
constant. Supose we let
' F, = constant.

2
Then the equation for the first station is

du, (t) Fo/o(t) = Fy
gl ét - T 3/243; =+ 1y(8) (3-11)
or
dy, (t) Ky, F)
oL 7t T (Ax)2 [“2“” B “1(*')] tax ). (3-12)

The equations for Uy, u3, .es are the same as usual. If we desire
FN+% = constant as a boundary condition, then the equation for the Nth station

becomes

du,(t) F+,1_ Ky 1
R Bh < By RG] ELVCRENCED

C

The process of setting in boundary conditions is evidently quite-

straightforward. Notice, however, that when we denote temperature at integral
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stations, the boundary occurs at an integral station when temperature at the
boundary is specified, whereas the boundary occurs at a half-integral station
when the heat flow at the boundary is specified.

3.4 Imposing Initial Conditions

In addition to specifying boundary conditions in this type of heat
problem, it is necessary to specify the initial temperature distribution in

our medium. Thus we have

ul(O) = Uy
u2(0) =U,
uB(OE = U3
(3-14)
uy(0) = Uy

These initial conditions must then be imposed on the electronic differential

analyzer, similar to the way in which initial conditions are applied in

Figure 2-4.

3.5 Complete Differential Difference
- Gonditions

For purposes of illustration, let us assume that the boundary

Equations for a Given Set of Boundary

conditions of our conducting slab in Figure 3-1 are that at x = O the tempera-|
= A x(N+3) the heat flow is zero. The

L is therefore broken into N cells, and from

ture remains fixed at u,s and at x

space between x = 0 and X
equations (3-8), (3-10), and (3-13) we have for our complete set of differ-

ential difference equations

du K K
1 3/2 %
C = - - + f
1 " dt (Ax)z(“ uy) (A x —Em (uy -u) + £
du, K K, /o
c = (u, = u,) - —1—-( -uw) +f
2 " dt (Ax)z Uz = Uy (4x)2 U = Y 2
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ATR-1

. . . . (3-15)

o PR Kn_3/2
o1 ~at - (ax) (uy = uy_q) - (ax)2 (g, 4 -u

)+ £

n-2 N-=1

duN K 1
n-s
C = - (u =u_ ,)+°f_ .
N dt (‘ax)Z n n-1 N

The initial conditions specify the temperature for each station at t =0
[see equation (3-14)]. A schematic diagram showing all the locations relative
to the conducting slab is shown in Figure 3-2 for N = 10.

A

INSULATOR <
T = Ug

;ﬁo’
N

= CONSTANT .0.
‘ DRSS

/ Yo '_’ I ) b"’

z=0 sl

Figure 3-2. Station Arrangement for N =10.

In Figure 3-3 the computer arrangement for solving equations (3-15)

is shown. Note that the outputs of each successive row of amplifiers are
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“Fonnt Fare s

Frn=Fass _

fs

~fn-1/ax

-2t Fn-3r2 +
Bx -1

N /ax

......
vvvvv

~Frn-12

Ax =t

Figure 3-3. Computer Circuit for Solving the General Heat 3guation

with Temperature = C at x = O and lleat Flux = 0 at x = L = (li+1/2) Ax.




o ENGINEERING RESEARCH INSTITUTE Page o
ALR-1 UNIVERSITY OF MICHIGAN

reversed. This allows thz necessary difif'erences to be taken without sign-
reversing amplifiers. Note also that the heat flow or flux F is available at
any half-stotion as a dependent variable. Thus one can obssrve directly as a
functicn of time the tempcrature u and heat flux F across the slab.

It is possible to reduce the nunber of amplifiers shown in
Figure 3-3 from three to one per station. The exact way in which this is done
is explained in Section 3.7. In many ways, however, the circuit of Figure 3-3
is simpler d:spite the increased nurbe=r of amplifiers. To change the conduc-
tivity K or heat capacity C at any station, one need only vary the appropriate
resistor. Initial temperature distribution across the slab is changed by
setting the bl, U2, oes U voltages to the desirsd values. The heat sourcss
through the g¢lsb are r=presentcd by the voltages 11, f2, cee f_‘;J whlch may be
varied as 2 function of tiue in any aesired manner.

Belore actuclly solving a p.rticular heat problem with the differ—
ential analyzer, it micht be rell for us to wake some calculations of the

accuracies we can expect whnen using the ¢iffcrence technique.

3.6 Theoretical 3.lutions of the Diffcreince Bgquations Sor Heat Flow

(a) Prelirinary solution by separation of variables.

In order to evaluate the accuracy of the difference technique,
1t is worthwhile first to solve the partial differentisl ecuations of heat
flow Ly separating variebles, For sliplicity we will solve the problem of
the temperature distribution bstween tac inficite slabs held at & tempersture
of zero (Figure 3-4). Assuue thet the medium has constant corductivity I :nd

constant specilic hiat capacity ¢ . Also sssume no hest sources within the

medium. Then from equation (3-4)

cd du 32@
1 + o}
K 9t 9x”

. (2-16)

The boundary conditions are

u(0,t) = u(L,t) = C. (3-17)

Let us assurme as a simple initisal condition that the Leuperature in the

medium is everywhere constant at t = 0. Thus

u(2,0) = U = constaab. (3-18)




ENGINEERING RESEARCH INSTITUTE
AIR-1 UNIVERSITY OF MICHIGAN Page 2L

NN

o7
2

T:O

N

AN

x=0

Figure 3-4. Temperature Problem Solved by Separation of Variables,
To solve this problem by separation of variables we let
u(x,t) = Z(x)T(t). (3-19)
Substituting (3-19) in equation (3-16) we find that

X" < 8 T'
X()(c)) - % T(S) ‘ (3-20)

For equation (3-23) to hold for all values of x and t, it necessarily follows

that both sides of the equation equal a constant, say -o<2. Thus

L e8I 2 (3-21)

from which we obtain the following two eguations:

X"(x) + O\ZX(X) =0
and (3-22)

7' (t) -—C-I%-o(z'r(t) -0 .
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The general solution to equation (3-24) is
X(x) = A cos xx + B sinX x (3-23)
while the solution to equation (3-25) is

- K x?

T(t) = De ©° . (3-24)

The boundary conditions (3-17) can be satisfied only if X(0) = X(L) = 0.
Reference to equation (3-23) shows that this is true when A = 0 and when

has discrete values o{z . given by

X =2Ll ,n=1, 2, 3. (3-25)

These values dn are known as eigenvalues, and the resulting functions

Xn(x) =B_ sin nll:lx (3-26)

are known as eigen functions or normal modes. They are orthogonal, since

L

f X_(x)X (x)dx -0  nfm (3-27)
0

n = m L]

1] [

From equation (3-19), (3-24), and (3-26) we see that the complete
solution to our heat problems can be written as

X
u(x,t) =ZBn sin ng“‘ e 8 TL7 7 (3-28)
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To evaluate the B constants we must apply the initial condition (3-18).
Thus

oo
u(0,t) = U =§- B sin ngfx . (3-29)
=1

mfx
L

Multiplying both sides of equation (3=-29 by sin
between 0 and L we have

and integrating

L

00 L
f Usinmgxdx= an/ sinmfxsin%{—r—{dx.

0 n=1 0

From the orthogonality relation (3-27) it is evident that the right side of
the above equation vanishes except when m = n, so that

L
mhx _ L
J( U sin I dx = Bn >
0
from which
- AU
By = o7 n odd (3-30)
= Q0 n even .

The final solution can now be written in the series form

oo K (24-1)2% >
-2 U—z)-—- t
u(x,t) = 5#_1 z 231-1 sin Q‘j:%m e °¢ L . (3-31)

J=1

This solution actually represents an infinite number of sinesoidal tempera-
ture distributions across the medium from x =0 to x = L. At t = O the sine
waves all add up to give the initial flat temperature distribution. For t >0
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the sine waves decay exponentially at different rates, with the decay rate
faster for those sine waves having more nodes and loops. The resulting
temperature distribution at various times is plotted in Figure 3-5, where a

dimensionless time variable 7" has been used. 7 is defined as
K
i S (5-32)

Thus Figure 3-5 is independent of the physical constants of the problem.

We will now proceed to calculate theG*n’s for a differential
difference equation representation of the heat equations. If thesec(n’s
agree well with the valueso(n = nj;; L from the solution above, and if the
equivalent normal modes X, show good agreement with sine waves, then we can

expect accurate results using the difference technigue.

(b) Solution of the difference equation for N cells.

When the space between x = 0 =2nd x = L in Figure 3-4 is broken
up into N cells so that there are N + 1 temperature stations, the general
difference equation is given by (3-8). At station 1 and station N-1 the
difference equation is obtained from equation (3-8) by setting u, and Uy
equal to zero respectively. In the problem under consideration the con-
ductivity K and specific heat capacity C are constant. By proper choice of
our distance variable x we can makedx = 1, so that L = NAx = N. By pro-
per choice of our time variable t we can mike C/K = 1 so that for f = 0
equation (3-8) becomes for the ith cell.

ui = ui'!‘ - ?_ui 4 ui_l . (Z—53)

For N cells and for boundary conditions Uy = Uy = 0, we have

e
no
]
N
i
o
Ny
+
o
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Figure 3-5. Temperature Distribution as a Function of Time,

x=0
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(3=34)

o2 T Wop T ez t a3

Uy T T 2yt Yoo

To solve for the normal modes we assume that the ith temperature uy

At

varies with time as aie_ » where a; is a constant. If this is true, then

equations (3-34) become -
(_)\+2)al-a2=0

—a) + (= A +2)z=12-a3 =0

L] . (3

eyt A Dy, - 33 =0
(-N*+ Dayy -y, =0

The only nontrivial solution of equations (3-35) is obtained when

the determinant of the coefficient vanishes. Thus

(A-2) 1 0 . . . . .
1 (A =2) 1 0 . . . .
. 1 (A =2) 1 0 . . .
. . . . 1 (\=2) 1 .
. . . . . 1 ()-2) 1
. . . . . . 1 ( p-2)
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This determinant, when expanded, becomes a polynomial in >\of order N-1. The
polynomial will have N-1 positive roots )\n which are the eigenvalues for our
N cell system, corresponding to the eigenvalues X, of the continuous system
[see equation (3-25)] . To solve this determinant for a specific N is very
tedious, and to solve it in general would be next to impossible. The roots }\n
can be found much more easily by the following procedure:

Assume that the spacial mode shape for the difference equations is
the same as for the continuous equation, i.e., sinesoidal. If this is true,

then for the temperature u, at the ith station we have

R
. nlli n
u; = a sin =~ e < (3=36)
From simple trignometry it follows that
3 . nMi nil
Ut WS 2a sin == cos =~ ., (3=37)

From equations (3-33) we have for the ith station

. =Nt : “ )\t
.. nmi n _ .. nml ni n
(2 - AIQ sin == e = 2 sin == cos - e
from which
i
)\n = 2(1 - cos Qﬁl‘)a . (3-38)

By substituting equation (3=36) into the first and last of equa-
tions (3-34) it is easy to show that the boundary conditions are satisfied.
Thus, our assumed solution (3-36) is the exact solution, where the eigen-
values >‘n are given by (3-38). Expanding equation (3-38) in a power series,

we have

(3=39)

In the limit of infinitely many cells N equation (3-39) reduces to equation
2
(3-25) for o ", since here L = NAx = N (We assumed earlier thatax = 1).
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The equivalent of the decay constant a&-n2 is An In Figure 3-6 the
percentage deviation in c(.n2 due to the difference method as a function of
the number of cells N is shown. Note that the lower modes (lower values

of n) require fewer cells to give accurate decay constants.

NUMBER OF CELLS
2468l0l2l4l6|8202224

N 1:‘3
el
_——
/
] ]
oo(" - .
4 « pd
> d
v\“ Q@
u\ *0
b“/
6 / /

10}

PECENTAGE DEVIATION IN DECAY CONSTANT Q

2
. N . . . “~
Figure 3-6. Percentaze Deviation in the Decay Constant 0(n

as a function of the Number of Cells.
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To swaarize, we sce that uwnen the spacial derivelives of the neat
ecuztion are repluced by Jinite dirfereice, the resultlng normal wods shapes
agree exactly, whareas the decay constants (eigenvalues) for csch wode are
sonewiat smaller. This means that the hisher wodes will decay someihiat slowen
when the dillerential difference ecuatlon spproximation is asea. The error is
Ligzer for hisgher modes, but fortunstely the higher moces are generally nuach

less important.

3.7 Computer Solution for Une-Dimensional Heat Flow

1

We now procesd to the computer solution of the oue-dimensional heat
flow problem considered in the last scction, namely the tewperature distribu-
“tion between two infinite slabs a distance L apart anda .ith boundarics held
at szero tcmperature (See Pigure 3-4). ¢ can select the oistance varieble so
that A x = 1 and hence L = NAX = i, where W is the number of cells. After
proper clioice of the units ol time t so thet K/c & =1, the basic heat equa-

tion becomes from (3-16)

ga_ 29w (3-40)

ox

which in terms of a difference cquation is

du,
B - 2 : (3-
dt Yl RN | (3-41)

For the problen ‘n Section 3.0 the initial toeoperature cistribution

r'q

was a constant U. Thus, we have the initial conditions

un(O) = U = constant . (3-42)
Boundary conditions are
Uy, =% ° 0. (3-43)

Let us solve this heat problem with the differentisl enalyssr for 9 cells.

From equations (3-41) and (3-43) the difference equations become
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3 2
ﬁ3 = uh - 2u3 +u,
. . o . (3=44)
u6 = u7 - 2u6 + u5

£
1l
of
]
N
F
+
of

u8 = -2u8 + U

7
where dun/dt has been abbreviated as ﬁn. Equation (3-44) is subject to the
initial condition (3-42). The computer circuit used to solve equation (3-4L)
is shown in Figure (3-7). Note that only one amplifier per cell is needed.
The results of the computer solutions are shown in Figure 3-8, wherd
temperature at stations 1, 2, 3, and 4 appears as a function of time. Since
our initial temperature distribution is symmetrical about the station L=1/2,
as are our boundary conditions, the temperature distribution remains symet-

rical as a function of time. Thus

u.l+ = u5, u3 =, u, = u7, and U, = ug.

In order to compare the computer results with the solution shown in
Figure 3-5 for a continuous medium, we must convert our computer time units
to the dimensionless units of Figure 3-5. Remembering that we chose computer

time units so that K/c§ =1, we have from equation (3-32)

1
T =44
L2

or since L = NAx where Ax =1,

T -5t (3-45)

=
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INITIAL CONDITION CIRCUITS
OMITTED FOR CLARITY

Figure 3-7. Computer Circuit for Solving 9-Cell ieat Problem .
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Figure 3-8. Computer Solution for 9-Cell Heat Problem.
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Thus for our 9-cell problem we divide computer time t in Figure 3-8 by 8l to
obtain the dimensionless time T of Figure 3-5. In this way points from the
computer solution are compared in Figure 3-5 with the theoretical solution
for a continuous medium. The correlation is evidently quite good, as we
could have predicted from our theoretical work in Section 3.6.

It has already been pointed out that the temperature distribution
is symmetrical for this problem. Therefore, the heat flow will be zero at
station 4-1/2, and the appropriate boundary condition can be established
there. If this is done, it is only necessary to solve the problem half-way
across the distance between the slabs, the solution for the other half being

symmetrical. In this case our difference equations become

1 - % 1
fx2=u3-2u2+ul
(3-46)
ﬁ3 =y - 2u3 +u,
i

subject again to initial conditions (3-42). The four-amplifier circuit
required to solve equation (3=46) is shown in Figure (3-9).

In the same way, if the initial temperature distribution in our
homogeneous medium had been antisymmetrical with respect to station L-1/2,
we could have treated the problem for N cells by setting u, = uN/2 = 0 and
solving the N/2-cell problem. Here we must obviously have an even number of
cells to begin with, whereas in the symmetrical case we needed an odd number
of cells. '

It is evident that by cbnsidering symmetry effects the number of
amplifiers needed may often be cut in half. Furthermore, any arbitrary
initial temperature distribution can always be split into a symmetrical and
antisymmetrical form. The solution for each of these initial distributions
can then be found, and since the equations are linear, the final solution is
the sum of the two solutions. Of course this procedure will only work when

the conductivity K and the specific heat capacity c & for the medium are
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Figure 3-9. Computer Circuit for Solving Y-Cell Syumetrical Heat Problem .

constant (as in our problem) or syiumactrical about the center of the medium.

Also, the boundary conditions must be symmetrical.

3.8 Computer Solution for Two-Dimensional Heat Flow

. i -

It was felt that it would be interesting to solve at least one
second order space problem using the cdifference technique. secause only one
amplifier per cell is required, the heat equation was selected as the simplest
two-dimensional problem for the electronic differential analyzer. Consider
the homogeneous medium of rectangular cross section shown in Figure J-1C. Let
the temperature u be a function of x and y and independent of the height .
The walls are held al zecro temperature and separated by X and Y respectively.
de can select the units of time so that k/c§ = 1. Thus, the heat ecuation

becomes

QE B 9}(2 + 3 2 . (3-47)
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Figure 3-10. Two-Dimensional Problem in Heat Flow.
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with boundary conditions

u(-X/2,y,t) = u(X/2,y,t) = u(x,-¥/2,t) = u(x,Y/2,t) = O.

The division of the medium into cells and the numbering system for
the cells is shown in Figure 3-10. By selecting the units in x and y properly
we can make Ax = Ay‘ =1, Thus for an N X N cell division X =Y = N.

Since the initial distribution is symmetrical with respect to the x
and y axes, we can solve the problem in one quadrant (See Figure 3-10), subject.
to the new boundary conditions

u(' 'xé':y,t) = u(x,%,t) =0 (3"‘&9)

8
% (0,y,t) = -b—;‘-c- (x,0,t) =0 . (3-50)




AIR-1

ENGINEERING RESEARCH INSTITUTE

Figure 3-11. Computer Circuit for Two-Dimensional Heat Froblem ,

UNIVERSITY OF MICHIGAN Page 39
C
0.25 | § 0.25 0.333
MWW FAMAM- AW
| t o | 1 O =
—VWWWW\— MWWW— MWW—
| N
| Ié
2 025 2025 20333
i g R i
LoInC ] :ﬁ
WWW AMMW—
| % l/”2| | g>“22 %_D“zs
0.333 0.333] 0.5 |
AW MWW AW
ST | i 1 L
—MWWWW\—




ENGINEERING RESEARCH INSTITUTE
AIR-1 UNIVERSITY OF MICHIGAN Page 4o
The difference equation for the temperature W becomes
J
dun m
——de = - + +u - 2 +
dt n+l,m 2un,m un—l,m n,m+l un,m un,m.—-l
or
du.n n
— - - Lu + + .
at - Yn+l,m ~ Yn-1,m b n,m © Yn,m+l T Yn,m-1 (3-51)

Let us consider the 7-cell by 7-=cell system shown in Figure 3-10.
The boundary conditions of equation (3-45) are imposed by setting

Ugy = Yoz = Up3 = Yo T Uy T W30 = 05

and the boundary conditions of equation (3-50) are imposed by setting

=u

43

u

23 T Uy U

33

= u

34°

u

31

=u

41’ U

Y13 = Y B32 7 N2r Y33

The complete set of 9 difference equations representing the upper left-band
quadrant of Figure 3-10 then reduces to

o

R i R P

Gy = Uyy = bupy +upy * g

Uyg = Upy = 3Uyg + Uy

Uy = Uy = AUy w4 Uy, ‘
. (3-52)
Upy = Ugy + Upy = Ay + Upg + Uy

Upg = Ugg + Ujg = 3Upy + Uy,

Uz) = Uy = 33y * Y

Ugp = Ugy = 3ugy * Ugg * Uy

o a

Uzp = 235 *+ Unge
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As in the case of the one-dimensional heat flow treated in the
previous sections, we solve the problem for an initial temperature which is

everywhere constant. Thus, the initial condition becomes

u = U = constant .
n,m

The computer circuit used to solve the set of difference equations

(3-52) is shown in Figure 3-11. Computer solutions for temperature Uyys Upos

> and u,, as a function of time are shown in Figure 3-12. By symmetry

13 33

Ujp = Uy and u13 = u31'
The resulting temperature agrees closely with the theoretical

u

distribution calculated for a continuous medium.

3.9 Summary of Investigation of the Use of Difference Techniques for the

Heat Equation

We have shown that it is both simple and straightforward to solve
the heat equation with the electronic differential analyzer by replacing
spacial derivatives with finite differences. Normal mode shapes show exact
agreement with those calculated by separation of variables for the simple
problems considered. Decay constants corresponding to the various modes also
show good agreement but tend to be somewhat lower than the values calculated
by separation of variables, particularly for higher modes or if fewer cells
are used. For most engineering problems the order of eight to sixbeen cells
per spacial dimension should be completely adequate (see Figure 3-5).

Only one operational amplifier is needed per cell, although in some
problems it may be more convenient to use three amplifiers per cell. The
problem is completely stable, and the final outputs of the computer are

temperature and heat flow as a function of spacial coordinates and time.
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Figure 3-12, Computer Solution for Two-Dimensional Heat Problem.
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CHAFTER 4

SOLUTION OF THE WAVE EQUATION

4.1 Equation to be Solved

One of the most important partial differential equations met in
" physics or engineering is the wave equation. If we let ¢ represent the
magnitude of a disturbance in any medium in which weve propagation can take

plece, then we cen write the wave equation as

2
e, 1 8
V= el at*z (4-1)

or in terms of Cartesian coordinates x, y, and z

2
2% oY 10 i
dx~ vy z v ot

Here v is the wave velocity in the medium and t is the time wvariable,
Equation (4-1) or (4-2) must of course be subject to spacial boundary
conditions end initial time conditions.

The spacizl derivatives of the wave equation have exactly the same
form as the heat equation, but the time derivative is second order instead of
Tirst order. The difference techniques for converting the partial differen-
tial equation to a system of ordinary differential equations in time are also
practically identical. Because of this gimilarity it was decided in this
report not to solve any problems involving the application of the electronic
differential ansalyzer to the wave equation, but rather to limit the discussion
to a theoretical one showing what the analyzer should be able to do.

In order to have a specific problem Involving the wave equation to
use as an example, the classical problem of the vibrating string will be
treated.
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L,.2 The Wave Eguation for the Stretched String

Consider the string shown in Figure (4-1). Let the string be
fastened at x = 0 and x = L, and assume that the transverse displacement of

the string is @(x,t). If T(x) is the longitudinal tension in the string at

p(x) = MASS/UNIT LENGTH

TENSION= T
B

¢(x,t) = DISPLACE-
MENT

ANNNNN

~ N\

3

n

o
b

Tigure 4-1. Stretched String.

any distance x, and /L/(x) is the mass per unit length of the string at any x,

then the eguation of motion for the string becomes

2
2 (38,28
with boundary conditions

g(o,t) = g(L,t) =0, (L4=4)

The left side of equation (4-3) represents the transverse force on
a unit length of the string due to the curvature in the transverse displace-
ment; the right-hand side represents the insrtial force on a unit length of
the string.

If the tension T in the strinz is a constant independent of x, then

equation (4-3) can be written

‘a‘;‘% = 7“-/-%}-()' —a‘;‘g‘ (4=5)
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which is seen to be the wave equation (4~2) in one space dimension. Thus, the

velocity of wave propagation in the string will be given by

v = /}? (4=6)

and in general may be a function of x. When the wave velocity is a function
of spacial coordinates, equation (4-5) is much more difficult to solve by
separation of variables, and hence it is of considerable interest to have a
direct method of solution by means of a computer.

The initial conditions for our string problem can be written in
general as

B(x,0) = £(x)
(4-7)

—g-% (x,0) = g(x) .

4.3 Derivation of the Difference Equation for the Stretched String

We now proceed to break the string up into N cells a distance A x
apart. The difference equation for ¢n’ the displacement at the nth station,
is given by

gz&xzz d2¢n
2 2 - ¢n+]_ - 2¢n * ¢n—l . (4-8)

v dt
n

n
and/L/n is the mass per unit length at the nth station. The boundary condi-

Here v_ = / T,//n’ where v is the wave velocity at the nth station

tions given in equation (4-4) are imposed by letting ¢o = ¢N = 0., The com-

plete set of difference equations then becomes

2&0
Myjl =8, -,

2-0
LG -p -2, + ¢
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) . .. (4-9)

Y Py = Pyt Py
N-1

The equatzons are subject to 1n1t1al conditions ¢1(O) ¢2(0), ces ¢N 1(0
and ¢1(0) ¢2(0), cos ¢N (0

For some types of problems involving the wave equation, 9@/9x may
be specified at the boundary instead of @. In this case the boundary occurs
half~-way between two stz*ions, and the boundary condition is imposed by equat-
ing the @'s on either side of the boundary (See Section 3.3).

L., Computer Circuit for Solving the Stretched String

Although the set of difference equations (4-9) was derived for the
stretched string of Figure L4-1, it clearly represents the wave equation (4-1)
in general when the propagation is in one direction. The electronic differ-
entiagl analyzer circuit for solving equation (4-9) is shown in Figure 4-2.

L.5 Solution of the String Equation by Separation of Variables

Once again it will prove instructive to solve for the normal modes
of vibration of our stretched string by separating time and space variables.
By comparing the normal mode shapes and frequencies obtained by this method
with those gotten from the difference equations, we can evaluate critically
fhe accuracy of the difference method as a function of the number of cells.
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Figure 4-2.

Computer Circuit for solving the Wave iquation.
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As in Section 3.6a, we begin by assuming that

Plxyt) = X(x) ¥(t). | (4-10)

Although it is not a necessary simplification, we make the further assumption
that the string is uniform, i.e., M= constant. The wave equation (4-5) then

becomes
1 i
/%% =% = - X% = constant (4-11)
from which
X (x) + % X(x) =0 (4-12)
- and
" T 2
Y (t) *,3 << Y(t) = 0. (4-13)

The general solution to the second of these equations is

Y(t) =Acos\//‘i;0<t+Bsin/;0(t- (4~14)

The boundary conditions of equation (4-4) can be met only if X(0) = X(L) = O.
The latter condition limits solutions of equation (4-12) to the following:

X(x) = sin X x (4-15)
where
< =2 -1, 2 3, ... (4-16)

n L’

The general solution to the problem is then

o0
#(x,t) = E(An cosw t + B_ sinw_t) sin n{’ X (4-17)
n=1

where the normal-mode frequency of oscillation wn is given by
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n / T
wn =JL" /7, n = l, 2, 3, csee (h-ls)

The constants Al’ A2, ceey Bl’ B2, ... are evaluated from the initial
conditions (4=7) by the method used in Section 3.6a.
Thus, the normal modes are sinesoidal in shape and the frequency of
the nth mode is n times the frequency of the fundamental, which is (1T/L) \/1"_47/ .
We will now solve for the normal modes of the difference equation

and compare them with the true normal modes given above.

L,6 Difference Equation Solution of the Stretched String

We have already derived the difference equations obtained when the

string is divided into N cells [see equation (4=9)] . If our string is uniform

so that v = / T//U = constant, then we can always select our units of time
and distance so that Ax =1 and v = 1. The length L of the string then be-
comes L = NAx = N, and we have from equation (4-8) for the ith cell

¢i = ¢i+l - 2¢i + ¢i—l' (4-19)

Let us assume that the normal modes of vibration of the difference equations

have the same shape as those for the continuous string. Then for the nth mcce

u, = a sin nl\?l sin }\nt (4-20)

and

nmi nir nni . nm )
N C°S T * cos N Sin T) sin )\nt . (4=21)

Usgy = a(sin
Substituting equations (4~20) and (4-21) into (4-19) we have
>\ 2. 2(1 - cos p_T_l'_) (4=-22)
n N

as the expression for the normal-mode frequency )\n. From equation (4-20) it
is apparent that u, =Wy = O, so that our boundary conditicns are met.

Equation (4-22) can be expanded in a power series giving
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2 /nT\2 1 (nm,\2
)\n "(N) [1—12(N) + "0]' (A‘ZB)

In the limit of infinitely large N the 4Anlabove approaches the 00n given in
equation (4-18), since here L = N and vaZD =1, For a finite N the normal-
mode frequencies from the difference equations are evidently lower than those
for the continuous string. A plot of this frequency deviation as a function

of the number of cells for the first seven modes is shown in Figure 4-3.

4.7 Summary of Investigation of Difference Techniques Applied to the Wave
Equation
The equation of the stretched string has been solved both by

separation of variables and by replacing spacial derivatives with finite
differences., Comparison of the normal-mode shapes in both cases shows exact
agreement. Comparison of normal-mode frequencies shows the difference equation
frequencies are somewhat lower than the true frequencies, particulérly for
higher modes or if fewer cells are used (see Figure 4-3). Since the string
equation is the wave equation, the above remarks apply to the solution of the
wave equation in general by difference techniques.

Thus far we have considered partial differential equations with
boundary conditions occurring a finite distance apart. It seems evident that
our difference techniques as used here are limited to this type of equation.
Thus, it would not seem possible to solve problems in semi-infinite or infi-
nite media unless one can let the time variable in the computer represent the
spacial variable which goes to infinity.

It should be straightforward to solve problems having spacial
coordinate systems other than Cartesian, e.g., cylindrical, spherical, etc.
For the appropriate geometries this would undoubtedly require many less cells

to realize a desirable accuracy.
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NUMBER OF CELLS
2 4 6 8 10 12 14 16 18 20 22 24

>
—
) —|
M

W 2
uw

Ww

(&)

O

2 4
-

<

=

1

S

z ©
Z

o

’.—

I 8
2 | |
w

(@]

®

g 10
’—

2

1Y

O

o

a2

Figure 4-3. Comparison of Normal-iiode frequencies of tie Lifference Equations

and the Continuous otring.




T oA ENGINEERING RESEARCH INSTITUTE P
al=-1 age 52
UNIVERSITY OF MICHIGAN

CHAPT:IR 5

‘fI EJ 1 xTi;} Q J‘.:L;-

5.1 .sguation to ve Lolved

It woulc seei: of narticular engineering interest to investigate the
usefulness of thie difference technique in solving the problein ol flexural
vibration of beams. ‘Jork of this type iias been done on the Caltech analogue
cor:q;u’c,er.l‘L In this chapter we will investizate tue theoretical possibilities
of the difference technique anc present the results of solutions by the

elecironic diflerential enalyzer at the University of idcnizen.

figure 5-1. Vibreting Bea:.

Consider the vibrating beam shown in figure 5-1. If we limit
ourselves to the transverse deflection shiown anc assume that the flexual
planes remaln parallel, then for small deflections the equation of motion is

given by

2 2 2 (.
/’(X) 2 Y(J‘?‘(at) + 3 5 EI(X) ..B_ALLE;.IQ =0 (5_1)
ot 2x 9 x

where
X = horizontal distance from the left ead of tiie beanm
t = time
" y(x,t) = transverse deflection of the beam at any instant

mass per unit length of beaii, at x

™
7~
>
~_r
1]




' ENGINEERING RESEARCH INSTITUTE
AIR-1 UNIVERSITY OF MICHIGAN Page 53

I(x) = area moment of inertia, at x
E(x) = modulus of elasticity, at x
EI(x) = flexural rigidity at x.

In the derivation of equation (5-1) the effects of rotary inertia and deflec-
tion due to transverse -shear are neglected. This is valid when cross-sectional
dimensions are small compared with the length. We observe that the bending
wonment M(x,t) is given by

, |
M(x,t) = EI(x) —a%%u (5-2)
X

whereas the shear is given by

V(x,t) = 'a?':? (x,t) - (5-3)

Equation (5-1) is of course subject to both boundary and initial condi-
tions. The boundary conditions depend on the type of end conditions., Vari-

ous end fastenings and the appropriate boundary condition at the end are
summarized in the following table:

Boundary Conditions

End of Beam Boundary Conditions
Free M =0, V=0
Hinged y =0, M=0
Built-in y =0, 3y/3x =0

The two types of beams of most general enginecring intersst are the
free-free beam (both ends free) and the cantilever beam (one end built-in,
the other free). We will also consider the hinged-hinged beam because it is
the -easiest to analyze theoretically and will give us a good idea of how the
.other beams will behave when difference techniques are used.

52 Derivation of the Difference Lquation for the Vibrating Beam

Once again we will convert the partial differential equation (5-1)
for the vibrating beam into a set of ordinary differential equation by using

the difference technique. Thus, distance along the beam is broken into N seg-
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ments of width Ax; the displacement Y, at the nth station will then be a
function of time only. Following the method of Section 1.2, we have from
(5~1) as the equation of motion of the nth cell

2 d2yn .
(ax) /)n dt2 * Mn+l - 2Mn * Mn—-l =0 (5-4)
where
i )
M. = Viq = s + V., . (5-5)
i (Ax)2 i+l i i-1
We also note that
M -M
_._n n-1
Vn—l/2 T AX (5-6)
and
Sil In " Vpa
B3 =1/2 - AX . (5-7)

Before writing down the complete set of difference equations for

N cells, it is necessary to consider the boundary conditions,

5.3 Representation of Boundary Conditions in the Difference Equations

Assume we have an N cell beam and wish to impose the boundary
conditions associated with a particular end fastening, e.g., a free end at
the right-hand extremity of the beam. This means that both the shear V and
bending movement M must vanish at the beam end. Let us assume, then, that
the end occurs at N+1/2 and that VN+1/2 = 0. From equation (5-6) this implies
that MN = MN+1 = 0. But from equation (5-~4) this means that

2
2, 4y
(Ax)°Py 72 * M=
2
2 4 In_1
(Ax)'Py =7 — Ay, + My, =0.
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The remainder of the equations are similar to equation (5-4) until the left-
hand boundary is reached, at which point the difference ecuations azain depenc
on the type of end fastening.

Following the same line of reasoning as above, one obtains the
following set of conditions for the diiference ecuations for various end

fastenings of an N cell beam:

And dhere Ind Uccurs tondition
Free N+l/2 bﬁ S el T 0
Hinged K by =vg =0
Bulilt-In N+1/2 4 R TS 0

The actual way in which thess conditions modify the difference
equations is best seen by considering a specific type beam, as in the next

section.

5«4 Computer Circuit for Solving the Cantilever Beam by Lifiference Technigues

Since it involves both a free end and a built-in end, the cantilever

beam shown in Figure 5-2 seems the best cholce ror a specific example. The

SNSRI
\

Figure 5-2. Cantiliever Beam.
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left-hand end of this beam occurs at station 1/2, while the right-hand end
occurs at station N+1/2. From equations (5-4), (5-5), and (5-7) along with
the boundary cenditions of Section 5.3 we obtain the following set of differ-

ence equations:

d2y

2 2 _
(Ax)/az-c-i-F+M3-21v12+M1-o

d2

2, _73 B}
(Ax) /)Bdt,z +Mh-ﬂ£3+M2-O

L] ] . L] .

. . L . . (5-8)
2
dy
2 N-2 .
(8x)' Py o2 * My~ Myt My =0
‘ 2
d7y,
2 N-1 _
(Ax)pya 7z ~ Py * M2 = 0
2

(Ax)Z/J N, M, =0
N2 -1

where
EI
-5 ¥
1 (Ax)z 2

2

X

EI
My = (a2 (v, - 23 + 7))
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EI
. -
M, Y. (y5 - 29, *+73)
: ’ (5-9)
EI a
_ o
B2 T2 3 Uy = 2yep * Yys)
EI
Mya = (A )2 (yy - Wy * Tyg)

Notice that even though the left-hand end of the beam occurs at
station 1/2, the displacement y1 at station 1 is held fixed at zero.

The computer circuit for solving equations (5-8) and (5-9) is shown
in Figure 5-3. Initial conditions on Y, and in must of course be specified
in an actual problem.

5.5 Theoretical Solution of the Difference Equations for Vibrating Beams

(a) Hinged-hinged beam.

In order to check the accuracy of the difference method for
beams, we will now solve for the normal modes of vibration of a hinged-hinged
beam by separation of variables. The resulting mode shapes and frequencies
will then be compared with the difference equation solution of the normal

modes for a hinged-hinged beam. From equations (5-1) we have for a uniform

beam
L 4
2 y + 2L oo (5-9)
at. ax
with end conditions
y(0,t) = y(L,t) -——1 (0,t) ———1 (L,t) =0 . (5-10)
331 ¢9X

We separate variables by assuming that

y(x,t) = X(x) T(t). (5-11)
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Substituting equation (5-11) into (5-9), we have

'
gf 1"1‘—' = 2%];2 = - 0(2 = constant (5-12)
from which
T+ o2 ;OE-I- T =0 (5-13)
and
Ve %X =0 (5-14)

The solution to the first of these equations is

T(t) = A cos a(/%i t + B sino\/if— t . (5-15)

The only way the boundary condition (5-10) can be met is if X(0) = X(L) =
1] 1
X (0) =X (L) = 0. Hence, equation (5-14) has the solution

nmwx

X(x) = sin fxX x = sin T n=1,2,3, ... (5-16)

from which of can have only discrete values of n given by
2
dn = (EI‘E) s n = l, 2’ 3, ®o e 0 (5-l7>

Thus, from equations (5-15) and (5-17) the normal mode frequencies W are

w, = n27r2 "E-I-Z . (5-18)
PL

The shape of the modes is seen from equation (5-16) to be sinesoidal.

Let us now proceed to solve for the normal modes of the uniform
hinged-hinged beam when the spacial derivatives are replaced by finite
differences. If we select our unit of x so that Ax = 1 and hence
L = Nax =N, the equation of motion for the ith cell becomes from (5-4)
and (5-5)
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d2yi
& 22 T Tie2 T Wi T T T 7O (5-19)

We now assume that the normal modes of vibration of the difference
equation are the same as those for the continuous beam, namely, sinesoidal.
Then for the nth mode

mi .
N sin >\ nt (5-20)

where )\n is the normal mode frequency for the nth mode., It is evident that
this solution satisfies the boundary conditions that Vo = Mo = 0 and
vy = My = 0. Substituting squation (5-20) into (5-19) we find that

}\ 2 3—hcos%?-+cos%%m'] (5-21)

is the expression for )‘n' After expanding the cosine functions of (5-21) in

a power series, it follows that

)\nz i, E;a (nT )& [1 _%- (EBIILF + ] . (5-22)

Since here N = L, comparison of equation (5-22) with equation (5-18) shows

_ tHat as the number of cells N becomes very large, the normal-mode frequency
>\ approaches the value w, for the continuous beam. For finite N the
difference equation frequency >\ is somewhat lower than the true frequency
Wy A plot of the percentage deviation in normal-mode frequency versus the

number of cells is shown in Figure 5-4 for the first five modes.

(b) Free-free beaui.

One can solve for the normal modes of vibration of a uniform
free-free beam by separating variables, just as we did for the hinged-hinged
beam. However, in order to find the normal-mode frequencies w, it is
necessary to solve for the roots of a transcendental equa’c,ion.5 If we define

a dimensionless frequency parameter ﬁn as
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Wwp

f.- = (5-23)
b

then the values of /3n for the first five modes of a free-free beam are:

™

1 2 3 L 5
22,4 61.6 121.0 199.8 298.6

It is not so straightforward to solve for the normal modes of the
difference equation representation of the uniform, free-free beam. If we
choose our units of x so that Ax = 1 and our units of time so that é%-= 1,
then from equations (5-4) and (5-5) we have for the ith cell

Vi * Viap = Wgaq * OV - My t Y3 =0 (5-24)

After we apply the boundary conditions we are left with a set of
N ordinary differential equations. Contrary to the case of the hinged-hinged
beam, it is not easy to solve for the normal modes here in general. Rather,
we have to choose a particular number of cells N, write down the specific
difference equations, and solve for the normal modes by a direct but tedious
process.,

Suppose, for example, we decide to solve for the normal modes for
8 cells. If we choose the ends of the beam at the 1/2 station and 8-1/2
station, then from equation (5-24) and the boundary conditions in Section 5.7

for a free-free beam we have the following set of equations:
yl+yl-2y2+y3=0
Yo = 2y * Syy - hyy +y, =0

Y3+Y1‘AY2+6Y3'Z+yh+Y5=O

|
O

Y, * Yo = hyg + by, = hys + g =
. (5-25)
Y5 + YB - Ayh + 6y5 - hyé + y7 =0
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Vg * ¥, - b+ 6yg = by, + ¥ =0
y7+y5—l+y6+5y7-—2y8=0
3;8+y6_2y7+y8=0
In order to solve for the normal modes of vibration we assume that

at the ith station, Y3 varies with time as sin )t, where ,\ is the frequency

of the oscillation. Making this substitution in equations (5-25) gives us
(1 - Ny, -2y, +y, =0
1 2 3

-2y1 + (5 - )2)3"2 - l+y3 + yh =0

!
o

2
yl"l-tyz""(é" X)YB"'ZQ’L‘_*'YS_
Y2-1+.V3+ (6" )Z)yh_l&y5+Y6=o

‘ (5-26)
2
Y3-1+Yh+(6— ) )ys-h)’6"’y7=0
2
y), = by + (6= XNyg - byy + ¥ =0
“ kg v (5= My, - 27, =0
y5 y6 y7 g8
2
Y6‘2y7+(1“ >\ )y8=0
The only nontrivial solution of these 8 simultaneous algebraic
equations is the one for which the determinant of the coefficients vanishes;

i.e., we have to eliminate the y's and find an equation in )\ When the

tedious algebra is carried out, one is left with the following equation in >\2
8
336 + 331222 - s10N* + 232 0% < 456 W8 + 36 M0 = \R 0. (5-27)

The roots of the polynomial then represent the normal-mode frequencies. The
first three values of )‘n obtained from equation (5-27) are
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M, =0.352, N, = 0.940, Ay = LT .

From equation (5-23) we must evidently multiply \ n oY 64 to obtain ﬁn for
the 8 cell free-free beam, since now L = N = 8, and EIﬁO =1, A summary of
the dimensionless normal-mode frequencies /3n for the continuous beam and the

cellular beam is shown below,

Frec-Free Beam

Mode (continuous beam) (8 cells) % deviation
1 22,37 22,55 + 0.8
2 61.7 60.1 - 2,5
3 121.0 111'3 - 8.0

Comparison of these results with those for the hinged-hinged beam
with 8 cells (see Figure 5-4) indicate that the difference method gives
somewhat more accurate frequencies for the normal modes of a free-free beam,

In order to sol&e for the mode shapes, it is necessary to substitute
the roots wabaCK into equations (5-26), In Figure 5-5 a comparison of the

8-cell mode shapes with the mode shapes for the continuous beam is made.

(e) Cantilever bezm.

When the space and time variables are separated in the equation
for a cantilever beam and the normal-mode frequencies are determined, the
following values of the dimensionless frequency parameter /Zn defined in

equation (5-23) are obtained:5

1 2 3 4 ' 5
3,516 22,03 61.7 121.0 199.8

If the units are selected so that Ax =1 and f/EI = 1, equation
(5-24) represents the difference equation for y; when the cantilever beam is
broken into cells. Again let us consider 8 cells. When the boundary condi-
tions outlined in Section 5.3 are applied (left end built in, right end free)
" the followirnig set of seven simultaneous difference equations result:




ENGINEERING RESEARCH INSTITUTE ,
; P
Alk-1 UNIVERSITY OF MICHIGAN age 05

|.o\
I
8 FIRST MODE /
6
AN /
2 1\ S
§ 0 STATIONS ALONG THE BEAM |
S, I 2N3 ¢+ 5 e/71 s
2 AN 4
- .6} ‘\\\\‘hh--—‘f”’/’
—| CONTINUOUS
Bs‘mm|
1.0 o OELL|ULAR
.BIK BEAM
.G_XY__ SECOND MODE //‘\
-
Z 4
i /N
3 0 \ STATIONS ALONGAHE BEAM \
@ T\ 2 3 ¢/°5 § 7 \ 8
G-2 | |
3 \ /S \
x-.4
8 N~ |/
-8 \ll

Figure 5-5. Comparison of lode shapes for 8-Cell Free-free

and Continuous Beam.




‘ ' ENGINEERING RESEARCH INSTITUTE
AIR-1 UNIVERSITY OF MICHIGAN Page 66
Yo + 6y2 - hyB + yh =0
y3 = by + 6yy - by, + Y5 =0
YA+Y2_4y3+6yh‘hy5+y6=o
(5-28)

y5+y3'l+yh+6y5—h5’6+y7=o
Vo * ), — b¥s + byy = byg +yg =0
y7+Y5-hY6+5y7"2Y8=0
Vg *+ Vg = Wy * Vg =0

As before, we assume yi varies with time as sin )\ t. Equations
(5=28) are then reduced to 7 simultaneous algebraic equations. Eliminating
the y's gives us

1 - 33602 + 33120 % - 51008 + 23208 - 56 N0 4 36 X2 - AW 0.
| (5-39)

The roots of the above polynomial in )‘2 are the normal mode frequencies. The
first four values of >‘n obtained from equation (5-29) are

N = 0,055k, Ay = 0347, Ay = 0.940, A, = 1.77.

For our 8-cell cantilever beam Ax =land L =N =8, Also, EI/P‘ = 1 and
hence the dimensionless normal-mode frequency /3 o °f equation (5-23) is
obtained by multiplying Aby 64. In the following table B, for the g-cell
beam is compared with /jn for the continuous beam.

Cantilever Beam

Mode (continuous beam) + _ (8 cells) 4 deviation
1 3.516 36545 + 0.8

2 22.03 22.2 +:0.8

3 61.7 60.1 - 2.5

A 121.0 111.3 - 8.0
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Evidently an 8-cell uniform cantilever beam (actually requiring only 22 oper-
ational amplifiers) gives tolerable normal-mode frequencies for the first four
modes, For many engineering problems this would be entirely adequate.
Difference-equation representation of a nonuniform cantilever beam would pre-
sumably give the same order of accuracy.

The mode shapes are calculated in the same manner used for the free-
free beam. In Figure 5-6 these mode shapes are compared with those for the

continuous beam. Agreement séems to be entirely satisfactory.

5.6 Computer Solution for a 5-Cell Cantilever Beam

By choosing our units of x so that Ax = 1 and our units of time
so that /Q/EI = 1, then from equations (5-4) and (5-5) the equation for the
ith cell becomes

Vit Vip = Mgy Oy - by vy, = 0. (5-24)

For the 5-cell beam under consideration here let us assume that the clamped
end occurs at the 1/2 station and the free end at the 5-1/2 station. Then

after applying the boundary conditions as in Section 5.5¢ we are left with

four differential difference equations:

.ytz*éyz-li‘yB"'yh:O

.3;3-4Y2+6Y3-1&yh+y5=0

. (5-30)
yh+yZ_l+y3+5yh°2y5=O

e

y5+y3—2yh+y5=o

We note that the length of our beam is L = NAx = 5 for 5 cells. From
equation (5-23) and the table for /gn in Section 5c the period of the

fundamental mode for an N cell cantilever beam is

2w owi? .

D =1421JE§F

2

ltN2
/3

T

(5-31)
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since EI//Q = 1 for our beam. Thus, when N = 5 we find that Tl = Ll,.7 seconds,
which is somewhat inconvenient for the electronic differential analyzer. 1In
order to shorten the normal-mode periods by a factor of five the input
resistor to each of the integrating amplifiers is reduced by a factor of five.
Then one unit of computer time actually is the equivalent of 0.2 seconds. The
computer circuit for the 5-cell cantilever beam is shown in Figure 5.7.

It was decided to examine the response of the beam to a step force

applied at station 3, i.e., at the middle of the beam. In order to do this,

a voltage V(t) was summed with the various feedbacks of station 3 (see

Figure 5-7). A constant voltage was first applied and resistors were inserted
across several of the integrating condensers to damp out the resulting beam
oscillations. The damping resistors were then removed and finally the constant
voltage input was released. This corresponds to suddenly removing a force at
station 3. The resulting computer response at each of the four stations is
shown in Figure 5-8, Note that the second harmonic is clearly visible at
stations 2 and 3. Higher harmonics (There are four in all) are visible in
Figure 5-9, where the acceleration yé (near the clamped end of the beam) is
shown as a function of time.

From Figure 5-8 the periods of the fundamental and second harmonic
are 8.90 and 1.42 seconds, corresponding to 44.5 and 7.1 units of computer
time. From equation (5-31) the value of [3n forn=1and n =2 can be
calculated. In the following table these values of ﬂl and /32 are compared
with those for a continuous contilever beam and those calculated for a 5-cell

beam using the method of Section 5.5c.

Mode (continuous beam) (computer, 5 cells)  (theoretical, 5 cells)
3.516 3.54 3.59
2 22.03 22,1 - 22.3

The theoretical values of /3fbr a 5-cell cantilever beam were
calculated by assuming y, varies in time as sin A t. Equatisns (5-30) then
become algebraic and are satisfied only for those values of‘A satisfying the
equation 2 . 6
1-500%+750%-180° + A8 -0 (5-32)

2
By multiplying the roots of this polynomial by N = 25 as in Section 5.5c, one

obtains the values of frequency parametar/Q.




AIR-1 ENGINEERING RESEARCH INSTITUTE
UNIVERSITY OF MICHIGAN Page 70
176 | “| |
W i —i
/4 02 0.2
-¥3  —MMWW— ° L-D«»—‘WWW——‘%—* Yo
| Y2 -Yo
Yo AW~
\/4 | | |
Yo e AMAWA— — ——
/6 0.2 0.2
Yy AW A — ey,
174 -¥3 Y3
Y, AW
|
Y5 AW
| | | Jl|
Y,  —AWWWW— — L
I1/4 0.2 0.2
Y3 MWW L AN — .y,
/5 Ya Y
Yo —WWW—
172
-Ys —AMVWW——WWW— V(1)
| | | “|
-ys MWW — 1
172 0.2 0.2
Yo MWW —WWW— Y5
| ./ Ys
-Ys —VWW\/—

FEEDBACK CONNECTIONS OMITTED FOR CLARITY

Figure 5-7. Computer Circuit for 5-Cell Cantilever Beam.




ENGINEERING RESEARCH INSTITUTE
AIR-1 UNIVERSITY OF MICHIGAN

Page 71

[////////i////////’////////'//’
[ ] ////

A SENENNNENREERNE

[ %2 ] ; fff/- ' : L]
._1 T T T T T

T M e \*'\f“"i !

L L e W T W
L\\\\\\\\1\\1\dl\vfw\\\\\\\\\\\\\\x.
CHART NO. BL

Lj/////////z‘///[//f//////,/,/77f[

L] ////// EENETNRNNAEE
LT T EBNEEE e AL T

T T -\m RN
Ayl LU AR N \_|
"\'jx S R NS
| e

L T T T T _
X\\\\\\\\\j'\\\\\\\\\\\\\\\\\ !

r
b1
L —1
A
B
|
| —1
B
/.
N
-
B

A

Figure 5-8. Computer Solution for 5-Cell Cantilever Beam.




AIR-1 ENGINEERING RESEARCH INSTITUTE
UNIVERSITY OF MICHIGAN

RS
\\\\\\

Figure 5-9. Acceleration along the 5-Cell Cantilever Beam

Following a Step Input Force.

It should be remarked that the input resistors to each summing
amplifier were matched to 0.1 percent. This is necessary to assure that

accurate differences are obtained. This point is analyzed in the next sectionl

5.7 Accuracy Requiremenuvs for the Difference Technique

(a) Component accuracy.

One of the fundamental difficulties encountered when continuous
derivatives are replaced by finite differences is that the smaller the inter-
val used, the more accuracy is required in taking the difference. This is
particularly true when the order of the derivative is high, such as fourth
order.

In the case of the vibrating beam, it is evident that the greater
the number of cells for any half-wave length of a normal mode, the smaller the
differences become and the more critical the accuracy requirements become for

the summing resistors. For example, consider the 5-cell cantilever beam of
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the previous section. Suppose all the summing resistors in Figure 5-7 are
perfectly accurate except the ys input resistor to the bottom bank of
amplifiers. Let us assume that it is 1 percent high, i.e., 1.0l instead of

1 megohm. Then, the difference equations are exactly the same as those given

in (5-30) except that the last equation is now
¥ .Oly, - 2 =0 .
yg + 1.0Lyg = 2y + y5 =0
The characteristic polynomial for this perturbed system is

11 - 49.67° + Tha99 " - 1820 + A8 = g (5-33)
compared with

1-5007 + 152 - 180+ A8 =0 (5-32)

for the unperturbed system. The value of/g 1 obtained from the first root of
equation (5-33) is 3.79, which is 5.6 percent higher than the value of 3.59
calculated for the unperturbed system.

Thus, a 1 percent error in 1 of the 1y summing resistors of
Figure 5-7 results in a 5.6 percent error in the frequency of the fundamental
mode. The error in the higher modes will be very much less, of course.

This simple examble is graphic demonstration of the necessity in
maintaining high accuracy in the swmming resistors. The main requirement is
that the relative values of any set of input resistors to one amplifier be
accurate. The absolute values are relatively unimportant. Also, the toler-
ance in the resistors representing LI an%j: in Figure 5-3 is not critical.

For the summing resistors requiring high tolerance it is planned to

use wire-wound resistors matched to the order of 0.0l percent.

(b) Effect of small voltage transients.

The deflection of a beam due to an applied force is proportional
to the fourth power of the length of the beam. The deflection of the beam at
any point is represented by a voltage output of the electronic differential
analyzer, while an applied force is equivalent to a voltage input to a sumning
amplifier in Figure 5-7. This latter voltage may be deliberately introduced
through an input resistor or may be inadvertently introduced through a sudden

shift in the balance of a summing amplifier. As a result, transient oscilla-
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|

tions in the whole computer circuit can be caused by fluctuations in power
supply voltage. The sensitivity of the network to small voltage inputs will
increase as the fourth pbwer of the number of cells.

Thus, it becomes important to have an extremely well regulated
power supply.3 Drift stabilized amplifiers would not help a transient condi-
tion but would serve to maintain the static deflections to a high degree of

accuracy.

5.8.‘Summanx,of Difference Technique for Vibrating Beams

The vibrating-beam equation has been solved with the difference
method both theoretically and with the electronic differential analyzer.
Results show that normal-mode shapes and frequencies exhibit good agreement
with continuous beams providing 3 or more cells per half-wave length of the
normal mode are used.

If a large number of cells is used, it is necessary to realize
extreme precision in the summing resistors in order to be able to take small
differences accurately. Also, a large number of cells means that transient
voltages, such as might be introduced by power supply fluctuations, must be
held to a minimum.

Cantilever and hinged-hinged beams have a fixed equilibrium position
relative to their surroundings and hence are stable on the electronic differ-
ential analyzer. Free-free beams are not supported, however, and will tend to]
be unstable, since any small voltage unbalance will cause them to rotate and
translate as well as vibrate.

Damping can easily be included in the beam equation by placing the
appropriate resistors across integrating condensors. Any variable force as a
function of time can be introduced at any point or points along the beam.  The
final computer response gives directly the bending moment and displacement as
a function of time and distance along the beam.

This same difference method can be used to solve beams with both
torsional and lateral bending.,l+ In this case the ﬁorsional equation is
similar to the wave equation treated in Chapter 4. The proper cross-coupling

resistors then tie the two systems together.
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