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ABSTRACT

This study was conducted to evaluate the fatigueé
resistance of partially prestressed concrete beams.. All
beams were 9in x 4.5in (229x114 mmz) cross section, 10 ft
(3.05 m) long, simply supported, 9 ft (2.74 m) span and
loaded in four point bending. Twelve different sets of
beams were tested. Each set consisted of 2 identical
specimens designed with the same input parameters. One
control beam was tested under static load to determine the
ultimate load resistance. The second beam was tested under
cyclic fatigue loading at a constant load range fluctuating
between 40% and 60% of the observed ultimate load capacity
of the static specimen. The main input variables were the
partial prestressing ratio (PPR) and the reinforcing index
(w). Four different levels of PPR and three different levels
of w covering both fully prestressed and fully reinforced

were explored.

The six pértially prestressed and the three fully
reinforced beams survived 5 million cycles wi;hout suffering
fatigue failure. The three fully prestressed beams which
were loaded beyond cracking failed respectively at 1.21,
2.17 and 1.94 million cycles by fracturing of the
prestressing strands in the constant moment region. The
stress ranges from strain measurements in the strands
observed in the early cycles were 10 ksi (68.95 Mpa), 16 ksi

(110 Mpa) and 19 ksi (131 Mpa) respectively. Throughout the



test, measurements of deflections, crack widths, curvatures
and reinforcement s;rains were systematically recorded. 2
comprehensive set of data was obtained in these tests and
could be used as a data base for any'future studies. A

qualitative analysis of these data is also provided.
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CHAPTER 1

INTRODUCTION
1.1 General

Due to the widespread use of concrete structures in
different types of appliéations, fat&gue is becoming
increasingly an important aspect in design. Fatigue is a
process of progressive and irreversible deterioration<in the
material subjected to repetitive loads. There are several
reasons given by the ACI committee 215 ( 1 ) to indicate
that the fatigue strength of concrete might be an important
design consideration; these include:

l. Use of concrete members in different types of
applications which undergo continuous repetition of
load, such as prestressed concrete in railway and
highway bridges, reinforced concrete pavements, marine
Structures and the like.

2. Widespread use of ultimate strength design procedures
and higher strength materials.

3. New recognition of the effects of repeated load on a

member, which lead to increase in the crack widths and

deflections in comparison to identical static load.

In addition to the reasons mentioned above, the
continuously increasing traffi¢c volume and heavy loads,
specially on highway and railway bridges, requires a special
attention for and better understanding of the fatigue

characteristics of these structures.



Fatigue strength is rarely properly considered in the
current design codes and this is also the case for
prestressed concrete. L;ttle guidance is given to engineers
concerning the design of prestressed concrete members for
fatigue. Numerous tests conducted on prestressed strands and
reinforcing bars tested freely in air have shown that 1) the
stress range, 2) the minimum stress level ana 3) the length
of the specimen are all factors that influence fatigue
life. The stress range was observed to be one of the most
important factors in the fatigue life of prestressing
strands and reinforcing bars. Every thing else being equal,
the higher the stress range the lower is the fatigue
life. Most of the experimental tests conducted on structural
concrete beams (22-25,29,31,32,34) showed that their fatigue
life is mainly governed by the fatigue fracture of the
tension reinforcement. Fatigue fracture of the concrete in
compressiocn,when the concrete is part of a flexural concrete
beam is very rare and not likely to occur. Many of these
tests have also indicated tha£ the stress range in the
reinforcement resulting from repetitive application of live
loads is one of the main factors that dictate the fatigue

life of the beam element.

Most of the earlier fatigue tests available in
literature on prestressed concrete flexural beams refered to
the fictitous nominal tensile stress in the concrete
calculated by assuming uncracked section as being an

important index for fatigue studies. However it is becoming



increasingly evident that the stress range in the steel is
the basic influencing factor to be considered and also the
most important factor in controlling the fatigue resistance
of structural concrete -beams. This is particularlthrue iﬁ

the case of partial prestressing.

1.2 Fatigue in Partially Prestressed Beams

Partially prestressed concrete beams are defined here
as concrete beams reinforced with a combination of
prestressed and non prestressed reinforcement intended to
resist flexure. Such beams are generally designed to crack
under full service load (dead plus live load). Partially
prestressed concrete can offer some advantages over fully
reinforced or fully prestressed concrete. Compared to fully
reinforced concrete, partial prestressing offer better
cracking and deflection control (short and.long term) and
lesser use of materials; compared to fully prestressed
concrete, partial prestressing offers better camber and a
higher ductility and energy absorption to failure ( 54
). Improved ductility is an important factor in earthquake

resistance design.

Today it is possible to design partially prestressed
beams following the same ACI code design philosophy
prescribed for reinforced or prestressed concrete, namely:
design to satisfy ultimate strength as well as

serviceability criteria. Serviceability criteria includes



allowable stresses, cracking, deflection, corrosion and

fatique.

Although a reasonable number of investigations has-
dealt with the fatigue behavior of reinforcing bars and
prestressing strands tested freely in air, little
information exists on the fatigue behavior of partially
prestressed beams and experimental data are greatly
needed. It is generally agreed that a different fatigue life
may be observed for a prestressing strand tested freely or
as a part of a concrete member. Some of the reasons were
summarized in ( 28 ) :

a) In a.free test the effect of gripping and the effect
of strand untwisting may substantially influence the
observed fatigue life.

b) Fretting action between the concrete and the strand
might reduce the net sectionai area of the strand. This
effect increases the stress range of the prestressed strand
and therefore reduces its fatigue life.

c) Extensive slippage of tendons in pretensioned members
due to a possible bond failure will result not only in a
higher stress range in the strands but also in excessive
crack widths and deflections. This condition will lead to
unserviceable conditions hence failure for all practical

purposes.

Partially prestressed beams are generally more

susceptible to fatigue failure than equivalent reinforced



concrete beams. Naaman ( 28 ) explains this characteristics
as follows. In fully reinforced and fully prestressed
concrete members the stress changes in the concrété and in
the steel under the effect of repetitive loads are not
critical. This is partiéularly the case in fully prestressed
concrete where the stress change in lhexprestressing”strand
is of the order of few ksi. However, in partially
prestressed concrete beams, the section is generally
uncracked under the sole effect of the dead load and will
crack due to first application of live load. Subsequent
applications of live loads will lead to cracks opening at
the decompression stress which is lesser than the cracking
stress. First cracking or subsequent crack opening will
shift upward the location of the neutral axis of bending of
the section leading to a higher rate of increase in the
steel stress and correspondingly in the concrete extreme
fiber compression stress (to maintain equilibrium of forces
and moments in the section). These repetitive changes in
stresses create fatigue damage in thg corresponding
materials, reduce bond properties at the interface between
steel an concrete and lead to substantial increase in crack

widths and deflections under service loads.

Because the stress range generated by live loads are
believed to be higher for partially prestressed than for
fully prestressed or fully reinforced beams, it is expected

that the effect of fatigue loading on the corresponding



increase in crack widths and deflections will be more

pronounced, hence deserve careful investigation.

1.3 Literature Background
1.3.1 Concrete

Fatigue of concrete is generally influenced by many
factors such as range and rate of loading, load history,
material properties and environmental conditions ( 1 ). The
failure of concrete under cyclic fatigue loading results
from progressive microcracking which leads to progressive
damage in the concrete indicated by the increase in the

level of strain at £ and fmax' The fatigue failure of

min
concrete, when part of a concrete flexural member, is very
unlikely to occur. Computerized analysis on more than 200
partially prestressed beams ( 27 ) indicated only 3 possible
cases of slabs and hollow core slabs where fatigue of

concrete may have been critical.

Tests conducted on plain concrete specimens (4-7) have
shown that concrete could sustain about 10 million cycles
for a stress range between 0 and 50% of its static
strength. The fatigue strength of concrete (stress range)
decreases almost linearly with increasing number of cycles
when plotted on a semi-log scale. The relation between fmin'
fmax' and N is often expressed in terms of an S-N

diagram. However, for the purpose of design, the relation

suggested by ACI committee 215 on fatigue of concrete to



achieve at least 10 million cycles (modified Goodman

diagram) could be used:

fop = 0.4f' = £ .. /2 (1.1)

where f.. and f'_ are the stress range and the static

strength of concrete respectively while‘fmin is the minimum

stress level of the concrete in compression,
1.3.2 Reinforcing bars

Reinforcing steel exhibit a good resistance to
fatigue. Although fatigue failure of reinforcing bars has
not been a controlling factor in the fatigue life of
reinforced concrete flexural members, the trend in the
concrete structure toward using ultimate strength design
approach and higher yield strength reinforcement makes
fatigue characteristics of reinforcing bars of more concern

to designers.

The most important parameters that influence the
fatigue life of reinforcing bars are summarized in a study
conducted by the Portland Cement Association (PCA) in 1975 (
10 ). The study was sponsored in part by NCHRP to
investigate the fatigue strength of deformed reinforcing
steel bars. A total of 353 deformed bars from 5 United
states manufacturer were tested. The following important

observations were obtained ( 10 ) :



1) Stress range, minimum stress, bar diameter, bar grade
and bar geometry are all factors that influence the fatigue
life of reinforcing bars.

2) The stress range in‘thé reinforcing bar is the primary
factor in detérmining its fatigue life.

3) The lowest stress range at which fatigue fracture
occurred in No. 1l bar grade 60 was 21.3 ksi at a minimum
stress level equal to 17.5 ksi.

4} Increasing the minimum stress level by 3 ksi was found
to be eQuivalent to changing the stress range by 1 ksi.

5) . Every thing else being equal, the fatigue strength of
reinforcing bars increases with decreasing bar grade and
with increasing yield strengﬁh.

-6) Transverse lugs and manufacture bar identification
‘marks cause stress concentration at the intersection of the
base of transverse lugs and longitudenal ribs induced during
the deformation process. The magnitude of this stress
concentration depends primarily on the ratio of the lug
radius at the base of deformation to its height (r/h). All
fatigue fractures in the test were initiated at the base of
transverse lug or bar mark.

Based on these test results, the following equation was
recommended for design for straight hot-rolled reinforcing
bar with no welds and no streés raisers (more severe than

deformation meeting ASTM standards (A615) ) :

fr = 21 - fmin/3 + 8r/h (1.2)

where



fr = stress range in ksi
fmin = minimum stress level in ksi (tension positive)
r/h = ratio of transverse lug base radius to 1lug

height (a value equal to 0.3 is suggested in
the absence of any information)
This last formula was adopted by ACI committee 343,
1977 report (11) and currently adopted in AASHTO
specifications ( 3 ). Typical S-N curves from the PCA test (

10 ) are shown in figure 1.1.
1.3.3 Prestressing strands

ACI committee 215 ( 1 ) pointed out that fatigue of
prestressing steel and anchorages is generally unlikely to
be a critical design factor in uncracked prestressed concret
beams. However, fatigue should be considered in prestressed
concrete structures to 1) allow provisions for design of
cracked sections under service loads and 2) permit the use
of presﬁressing in structures that undergo significant load
repetitions and overloads ( such as bridges, vibrating

equipments and the like ).

Based on fatigue studies (13,14,20,21,45), many
mathematical equations have been proposed in the technical
literature to describe the fatigue characteristics of
prestressing strands. A summary of the proposed equations is
shown in table 1.1. It could be observed from this table
that these equations are expressed in terms of stress range,

number of cycles N and minimum stress level fmin as being
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the most important parameters that influence the fatigue
life of the strands. Some other factors might also be
important such as type of prestressing steel, steel

treatment, anchorage type and degree of bond .

A fatigue life of 2 million cycleg for stress relieved
strands is considered normal for most applications. a
typical stress range versus number of cycles of prestressing
strands tested in air collected from various investigations
(13,14,15,47) are shown in figure 1.2. Best fit line of data
given as a funcﬁion of stress range versus number of cycles

to failure was expressed as follows (60):

(S/£,) = =0.12310gN + 0.87 (1.3)
where
§ = maximum safe stress range for a fatigue
life of N cycles
fpu = ultimate strength of the prestressing strand
N = number of cycles to failure

It is important to indicate that most fatigue failures
in these test data occurred at the grips or occurred because
of fretting between a failed wire and adjacent wires in the

strands.

Based on a fatigﬁe study of prestressed beams Irwin (
19 ) pointed out that prestressing strands might exhibit an
endurance limit at a stress range of about 0.13 fpu at a
mean stress level equal to 0.66£pu. Such values seem quite

optimistic in view of more recent results.
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Table 1.1 Proposed S-N Equations For Prestressing Strands

: 1
Fisher and Viest (21 ) LogyoN = 9.354 -00.0423f, _ 0.0102f, min
’

fr = fo,max = fg,min
Warner and Hulsbos (1445) | LogjoN = 1.4332/R + 5.5212 - 0.0486R

‘R = Smxf (0-835,“_"‘ + 23)
valid for 408 < Sy, <60%, 0 <R < 15%

Hilmes and Ekberg (20 ) S5r = (1640 - 11.55,;,)N-0.320
for 40,000 < N < 400,000
§r = (115.5 - 0.785,;,,)N-0.1154 .
for 400,000 <N < 4,000,000

Van Horn (13 ) | LogjoN = 6.356 - 0.1373r. + 0.00303R,2
Rg = Smag - (1.055,;, + 8.0)
valid for 40% <Sp;,'<60%, 0 < Ry < 20%

Number of specimens
OWarner and Hulsbos((75s) min = 60 %] 3
@ Warner and Hulsbos| (fos) mn = 40 %] 24
OTide and Vanhorn [(%25) mun = 60 %) 65
B Tide and Vanhorn | (fa5) rn = 40 %] 74
0.50 - AGylitoft [((fos) mun =0 ]
A Gylitott [{fos) eun = 0 ]; grip failures
< Edward and Picard [{fos) run = 60 %]
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F1g.1.2 S-N Curve For Prestressing
Strands (Ref. 60 )
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For design purposes, the fatigue requirement in
prestressed concrete structures is accounted for by limiting
the stress range in the prestressing strands and/or limiting
the nominal tensile stress in thé concrete under service
load. The 1971 FIP ( 39 ) suggested a maximum stress range
in the prestressing strands equal to Q.lepu ét a mihimum
stress level equal to O.75fpu for a 2 million cycles fatigue
life (based on Smith diagram). Recent tests however have
shown that the above stress range is on the unsafe side ( 23
). In 1974, ACI committee 215 ( 1 ) limited the stress range
in prestressing strands to 0.1f_ . However, recently, the

pu
ACI committee suggested that this stress range be lowered.

1.3.4 Prestressed and partially prestressed beams

Ozel and Anderman ( 24 ), tested eight 6in x 8in x 20°'
long beams prestressed with 7/16" strands. Six of the beams
wvere subjected to a constant fatigue load range producing a
different nominal tensile stresses in the bottom tension
fiber. Five of the beams failed in fatigue by fatigué
failure of the prestressing strands. The rate of deflection
increase with.cyclic load was slightly reduced for the first
30,000 cycles but showed a significant increase prior to
failure. Bond failure of the prestressing strand was

observed to be insignificant in these tests.

Hanson, Hulsbos and Vanhorn ( 22 ), conducted fatigue
tests on 6 concrete I beams with 18" overall height and 3"

web width prestressed with 270 ksi grade strénds: The beams
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were simply supported and subjected to a symmetrical two
point load. All the six beams were initially overloaded to
about 80% of their calculated ultimate load resistance for
studying the effect of precracking on the fatigue
performance of fully prestressed beams. After overloading,.
the beams were cycled under fatigue load fluctuating betwéen
19% and 45% up to 2 million cycles producing a nominal
tensile stress in the concrete of 5-6¢f'c.‘At the end of 2
million cycles, little structu;al damage was observed. The
maximum fatigue loads were increased to between 48% and 54%
to produce a nominal tensile stress varying between 8¢f'C
and IOMf'C until failure. Failure in the beams was.partly
due to strand fracturing and partly due to failure of shear
stirrups. Based on the fesult of their test they suggested
that the nominal tensile stress in the concrete be limited
to 6/f'c. Also they indicated that the fatigue life of the
peams were less than expected from available data on the

fatigue life of the strands.

Abeles, Brown and Hu ( 25 ), tested 33 fully
prestressed small scale flexural beams under different locad
ranges varying between a minimum load level equal to 30% and
a2 maximum load level equal to 50-90% of the ultimate load
capacity of the beams. Slippage of the strands contributéa
significantly to failure of the beams in these tests. They
concluded that strand fatigue life for beams with good bond
between the concrete and the strand exceed the fatigue life

of strands tested freely in air. However, specimens that
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suffered strand slippage showed a tremendous reduction in
the fatigue life of the strands. This was attributed to the
increase in stress range that result from a decrease in the

effective prestress due.to slippage.

‘Rabbat, Kar, Russel and Bruce (.23 ), tested 6
composite full-size type.II AASHTO béam épecimens, 50" long,
with blanketed and draped tendons. Thé main purpose was to
study and compare the behavior of blanketed and draped
tendons in prestressed beams under fatigue loading.kAll
specimens were precracked statically prior to fatigue
loading. Three beams were cycled under load producing zero
tensile stress while the remaining beams were cycled under a
load producing 6/f'c. Crack former were used for all test
specimens. They observed that fatigue life of the beams
designed under 6;/f'c nominal tensile stress were
significantly less than those designed at zero tensile
stress. Specimens cycled at zero tensile load survived 5
million cycles while those at 6/f'c failed between 3.2 and
3.7 million cycles by fracturing of the prestressing
strands. They concluded that beams designed for 6;/f'c
nominal tensile stress under full service load could be
vulnerable to fatigue failure. The maximum stress range in
the strands observed in the 379 cycle was 12.8 ksi and
increased to 20.1 ksi in subsequent cycles before
failure. In this test the strands in the beams suffered

slippage of different magnitudes for the various test beams.
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Dave and Garwood ( 30 ), tested 9 I section beams three
of which were tested under cyclic fatigue loading. The beams
were partially prestressed bonded post tensiohed class
"3". The fluctuating test load varied betveen 29% and 58% of
the design ultimate load. All beams survived 3 million

cycles.

Bennet and dave ( 29 ), tested 9 partially prestressed
beams under repeated two point loading. The load range
varied between around 25% and 50% of thé ultimate design
moment. All beams survived 3 million cycles except one beam
which failed at 2.6 million cycles by fatique fraéturing of

the prestressing strand.

Fauchart, Kavyrchine and Trinh (31,32), tested a number
of partially prestressed rectangular and T beams from fully
prestressed to fully reinforced. All beams were tested under
a8 constant cycle load range with minimum load equal 15% and
maximum load equal to 45%-75% of the beam ultimate load
capacity. Stresses in the reinforcement were measured by
extensometers. Measured and calculated stresses were
comparable to within 10% difference. The most important
‘conclusion from their test is that the failure of the test
beams by fatigue can be fairly well predicted from the

fatigue life of the prestressing strand alone.

Foo and Warner ( 34 ), tested 6 pretensioned partially
prestressed concrete beams under constant load cycle. All

test units were identical and prestressed with 7-wire
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strands. Beams were simply supported and loaded at two point
load. Deflection and curvature were mostly marked in the
early load pha;e, and became progressively less with
increasing number>ofycj;ies. Five beams failed ih‘fétigue by
successive fracturing of the reinfogcing bars and wires in
the prestressing stfandg. They'obse;ved that cyciic ioading
helps in 1) destroying local bond specially around the
prestressing strand, 2) extending and widening existing
cracks, and 3) initiating new cracks locally. Tﬁey‘also
concluded that fatigue failure in the prestressed strands or
reinforcing bars are equally likely in partially prestressed
beams. Also the fatigue performance of reinforcing and

prestressing steel is not significantly different from that

observed in specimens tested freely in the air.

Mansur (41), tested 12 partially prestressed beams
having 12x6 in cross section. All beams were loaded at two
point load and were designed to have identical load
capacity. The purpose of this test was to examine the
effect of post fatigue loading on the ultimate load capacity
and deformation of partially prestressed beams. Three
different levels of partial prestressing ratio equal to O,
0.4l'and 0.67 respectively were explored. For each level of
partial prestressing ratio, 4 beams were tested. One beam
was tested under static load to determine its ultimate load
capacity, while the remaining three beams were subjected
respectively to 11,000, 33,000, and 100,000 cycles prior to

the static cycle to failure. Every beam in the fatigue test



18

was cycled between 10% and 60% of the ultimate load capacity
of the static specimen. In these tests, all beams that were
preloaded in fatigue were observed toﬁgain strength. The
increase in strength wéé higher for higher‘values of partial
prestressing ratio. Alsb it was observed that most of the
beam deformation (crack width, deflection and curvature)
occured in the early stage of cyclic loading.

One of the main drawback of many of the investigations
available in the technical literature is the lack of some
technical information related to the experiment. Although
the observed fatigue life is generally'given'in all studies,
very few investigations give simultaneously information on
measured and/or calculated stresses in the reinforcement,
basic material properties, crack widths, deflections, and
their variation under fatigue. None gives a complete set of
data related to the above variables or obtainedvﬁnder the

same conditions.

1.4 Objectives and Summary

The objective of this study is to investigate the
behavior of partially prestressed concrete rectangular
members under cyclic fatigue loading. The particular feature
of this study is that a special emphasis was devoted to
instrument the beams under load hence providing a complete
set of data related to a number of input and output
variables. This include materials properties, loads,

stresses and strains, curvatures, crack widths, and
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deflections under static and cyclic loads. This report
describes the first set of tests on rectangular beams. It is
expected that the study will be extended to include T beams
and hollow core slébs. fhis reporﬁ concentrates oh providing
a complete data baée. Analytic models to predict cracg
width, deflection and fatique life basgd on the testsgand

data described herein are in progress.

A total of 12 sets of beams were tested. The main
parameters utilized in this investigation are the
reinforcing index w and the partial prestressing ratio
PPR. The reinforcing index is representative of the total
tensile force (and/or moment) taken by the steel at
ultimate. The partial prestressing ratio is representative
of the amount of tensile force or moment taken by the total
steel. Four levels of partial prestressing ratips were
selected, namely, 0, about 0.33, about 0.67 and 1. The value
of PPR, 0 and 1, represent respectively fully reinforced and
fully presfressed concrete, while the values of 0.33 and
0.67 represent two different levels of partial
prestressing. For every level of partial prestressing ratio,
3 levels of reinforcing index were utilized, namely, about
0.1, 0.2 and 0.3. Two beams were designed for each set of
variables. One beam was tested under monotonically
increasing load up to failure as a control specimen, while
the second beam was tested under high cycle fatigue with a
constant load range between 40 and 60% of the ultimate load

capacity of the beam tested under static loading. Each beam
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in the dynamic series was cycled up to 5 million cycles, or

failure, whichever occurred first.

Chapter 2 of this report includes extensive deté{ié of
the experimental program and the input variables. Chapter 3
present the results of all the static aﬁa cyclic tests. This
include data on the fatigue life of the members, the
variation of deflection, crack width, curvature and stresses
in the tension reinforcement under static and fatigﬁe
loading. Chapter 4 provides a brief summary of the

observations and conclusions.
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CHAPTER 1I1

EXPERIMENTAL PROGRAM

2.1 Beam Parameters

2.1.1 Input variables

A flow chart of the planned experimental program is
shown in figure 2.1. A rectangular beam cross section was
used throughout. 1Its dimension and span length-are shown in
figure 2.2. The major variables included the reinforcing
index w and the partial prestressing ratio PPR. For each
combination of reinforcing index and partial prestressing
ratio, two beams were tested; one beam was tested under
static load as a control specimen and the other was tested

under fatigue load.

The reinforcing index and partial prestressing ratio

were defined as follows :

w= (Apsfps + Asfy - A Sfy)/bdf c (2.1)
PPR = <Mu)p/(Mu)p+s ( 2.2 )
where
A s* As' A's = area of prestressing steel, tension
p and compression non prestressed
steel respectively.
f gr £, = stress in the prestressing steel and
p Y yield stress of non prestressed
stell respectively.
(M ) (M ) = ultimate moment contribution of the

prestressing steel and total steel
respectively.
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The values of fps,was estimated from prior non-linear
analysis. The three target reinforcement indices vere

respectively l/3wmax, 2/3wma and w

X max’ where w

max
correspond to the limit between under-reinforced and over
reinforced sections. Wrox is egual to 0.3 for purely
prestressed rectangular section and corresponds
approximately to the maximum reinforcement ratio 0.75pbal
for purely reinforced sections ( 16 ). The target values of
the partial prestressing ratio were 1, 0.33, 0.67 and 0.
However, it is not possible to achieve simultaneously, an
exact level of reinforcing index, an exact level of partial
prestressing ratio and an exactly specified nominal moment
resistance. Moreover once theoretical values are arrived at,
they can not be achieved exactly in practice because of non
continuous sizes in reinforcing bars and strands. Hence

trial and error was used for selecting reinforcement areas

as close as possible to the theoretical values.

The beams were designed using a specially written
computer program for non-linear analysis to calculate the
"exact" input variables of the test specimens, namely, w and
PPR, as well as the nominal moment resistance of the
beam. The computer program also allowed evaluating the
deflection and curvature of the beams under monotonically
increasing load thus facilitated planning for the test in
advance. The design was also checked using ACI 318-83 ( 2 )
approach for designing concrete sections. Beam cross section

and steel reinforcement for all beam specimens are shown in
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EXPERIMENTAL PROGRAM ' REMARKS

‘

Y Y THREE TYPES OF
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RECT. H.C. (Selected tests only on
hollow-cored slabs)

<+ ———| 4
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Fig. 2.1 Planned Experimental Program For The Two
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figure 2.3. Beams designation with their reinforcement and
their corresponding reinforcing indices and partial

prestressing ratios are shown in table 2.1.
2.1.2 Cyclic load range

For each beam, two design criteria were used to
determine the level of cyclic loading. In all cases the
maximum load was selected to generate a maximum moment Mmax:
1) less than 60% of the predicted nominal momenf resistance
and 2) less than the moment which would induce a predicted
stress in the prestressing strand equal to 95% of its
proportional limit stress and a.predicted stress in the
reinforcing steel less than 90% of its yield strength. Non-
linear analysis of the designed specimens in addition to
experimental measurement of the tension reinforcement
stresses of the static test beams had shown that the first

criteria governs for all the beams considered in the

experimental program.

Keeping the maximum moment less than 60% of the nominal
moment resistance leads to a safety factor against flexural
failure of about 1.67, which compares well with the current
safety provisions implied in the ACI code, as shown next.

Let us Define:

Mu = ¢Mn

1.4MD + 1.7ML (2.3 X

where the subscripts u,n,D and L refer, respectively, to

required strength, nominal strength, dead load and live
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load. The value of ¢ is taken equal to 0.9 for flexure. In
equation ( 2.3 ), the safety factor on the average is egual

to (1.4+41.7)/2x0.9 = 1.72, which is close to the above 1.67.

The minimum load was selected so as the difference
between the maximum load and the minimum load is about equal
to the full design live load. This leads to a minimum

moment of the order of 0.4 Mn as shown next:

Assume:

Mmax=MD+ML=Mmin+ML= 0.60 M (2.4 )
and

¢Mn = 1.4MD + 1.7ML = 1.4Mm.m + 1.7ML (2.5 )

in which the minimum moment M ipr Simulates the dead load
moment in a full size member. Using ¢ = 0.9 and replacing M

by its value from (2.5) into (2.4) leads to Miin = 0.4 M

Note that for the same magnitude of the fluctuating
load, the stress change in the steel depends on the value of

the partial prestressing ratio and other design parameters.
2.2 Materials
2.2.1 Concrete

Normal weight concrete was used throughout. The cement
used was ASTM type III high-early strength. The aggregate
was P stone of maximum size 3/8 inch (10 mm). The sand was
masonry type sand. A superplasticizer (Melment) was added in

about 0.6% by weight of cement to increase the'workability
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of the concrete. The mix proportions per cubic yard are

shown in table 2.2.

Table 2.2 Concrete Mix Proportions

Cement \ ‘ . 795 ibs .
Aggregate 1840 1bs ’
Sand 1358 1lbs

Water | 36 gallons -
Super plasticizer 0.6% of the weight of cemént

The mix were designed to achieve a 6000 psi (41.4 Mpa)
concrete strength (Actual concrete strengths for the various
test specimens obtained at the time of loading are shown in

table 2.1).
2.2.2 Prestressing steel

Two types of prestressing steel 7 wire strands was used

: 3/8 and 5/16 inch (9.53 and 7.94 mm) in diameter with 270
and 250 ksi (1862 and 1724 Mpa) specified ultimate strength
respectively. The reason for using two different types of
strands was due to the difficulty in obtaining the desired
input variables with one strand size. The strands were
supplied by (Florida wire and Cable Company) and their
properties as supplied by the manufacturer are described in

table 2.3.



The apparent modulus of elasticity measured in this
study from strain gages attached to a single wire of the
strand was 33500 and 32850 ksi for the 3/8 and 5/16 inch
strands respectivelf? These highfﬁaiues'are attriguied to
the‘fact that the strain gages were attached to one wire
which is spirally ofientéd relative to the longi£udiﬁal axis
of the strand. Actual moduli are of the order of 28600 ksi
(197.2 KN/mm?) and 28000 ksi (193 KN/mm?) for the 3/8 and

5/16 inch strand respectively.

Table 2.3 Stress-Strain Proporties of Strands
3/8" 5/16"
strands strands
Ultimate breaking strength (lbs) 123500 14900
Ultimate extension (in/in) 0.0495 ~ 0.0495
Force at 1% extension (1lb) 21600 13100
Elongation at 0.7fpy (in/in) 0.00662 0.00625
rMcdulus of elasticity (ksi) 28600 28000
Cross sectional area (in2) 0.085 0.058

2.2.3 Reinforcing steel

The longitudinal bars in the test beams were grade 60
deformed bars with size No.2, No.3, No.4, and No.5. The
actual yield stress of the reinforcement varied between 63

ksi (434.4 Mpa) and 77 ksi (531 Mpa) depending on the size

In converting the prestressing steel apparent strains (obtained from strain gages
reading) into real stresses, the apparent strains were first mulitiplied by a
factor equal to 1.171 and 1.173 for the 2’8" and 5/16" respectively, then used in
the actual stress-strain curves of the crestiressing steel (poroviced.by -ne
Manufacsturer) to get the stiresses. Tnese factors (1.171 and 1.773) were obtzined
by Ccividing tne observed appzrent moauius ©f eiastic iy of tne presiressing
strands by the moculus of =ziasticitv supdpiiec by the Manufacturer
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of the bar. The modulus of elasticity was of the order of
29000 ksi (200 KN/mmz). Special high strength deformed steel
wires (Dl type) supplied by Portland Cement Associat;onf‘
(PCA) was used for shear reinforcemeﬁt. This wire was 0.12
inch (3 mm) in diameter, 0.01 in2 (6.45 mmZ{ in cross
section and had an approximate yield strength of 140 ksi
(965 Mpa). A low yield strength wire, (also type D1) of 40
ksi (276 Mpa) yield strength was used in the top and bottom
of the beam (where and whenever no longitudinal
reinforcement was provided) in order to support the shear
reinforcement. This steel was not considered in designing

the beam specimens, nor in the analysis of the test data.

2.3 Beam Fabrication

2.3.1 Preparation of reinforcing cages

- The reinforcing bars were cut in the laboratory to the
required size. Their middle section was prepared for strain
gage insfallation. Shear reinforcement was bent using a
special bender and then spot welded, forming a closed type
stirrup. The shear and longitudinal steel reinforcement were
assembled and tied together. A one foot long wire mesh cage
( mesh gauge 19 with 1/2 inch opening) was added at each end
to strengthen and stiffen the reinforcing cage. Then strain
gages were attached. Additional stirrups were also provided
at both ends of the beam to account for any possible

bursting or spalling due to overstresses at release of the
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pretensioned strands. A photograph of the cages is shown in

figure 2.4 b,

Before casfing, the cages were placed in an,b{ifcoated
wood mold inside aAprestEessing bed. The wood mold was made
of 3/4 inch (19 mm) thick ply wood and designed to
accommodate 2 beams side by side at one time. The
prestressing bed was 12 foot long (3.66 m) clear length,
with a capacity to prestress up to 32 strands and 4 beams of
the size used in this test. The prestressing bed was
specially designed for the purpose of this test and was
fabricated by Smedberg Machine and Tool, Inc. Chicago,
Illinois. A photograph of the wood mold and prestressing
bed is shown in figure 2.4 c. Strand pieces in 16 foot (4.5
m) length, were then inserted into the reinforcement cage,
anchored at one end of the prestressing bed and positioned
for prestressing. Note that the strands were already

instrumented ( strain gages attached ). (Fig. 2.4 a).
2.3.2 Tensioning procedure

The tension was applied by a 20 ton capacity, 2 inch
stroke center hole hydraulic ram, driven by a hand pump. The
hydraulic ram was calibrated with a proocfing ring beiore use
in order to make correlation between the pressure in the
pump, the force transmitted at the head of the ram and into
the strand, and also to check the calibration provided by
the hanufacturer for the pressuré gauge. Each strand was

pretensioned individually in increments of 2 kips (8.5 KN)
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and strain gages readings monitored by a strain gage
indicator was recorded. The tension force was increased
until the desired force (70% of Strand ultimate strength) on
the strand was reached (16100 lB§V(§l.6 KN) and 10100 1lbs
(44.9 KN) for the 3/8 and 5/16 inch. strand respectlvely)

and the readings from the strain gages were recoroed Then
the force was increased by about 750 lbs (3.34 RN) to
accéunt for estimated strand seating loss upon

anchorage. After anchoring, the strains given by the strain
gages were also measured. The initial force in the strand
after anchorage was then obtained from the final strain gage
reading using the average apparent modulué of elasticity of
the two or three strain gages attached to this particular
strand. Due to the short length of the prestressed strands
(12.7'), the loss of prestress due to strand seating during
the anchorage process was substantially high, thus resulting
in a low initial prestress for some beam specimens. This
problem was minimized for some beams by repeating the
prestressing operation twice. A picture of the prestressing

operation is shown in figure 2.5 a.
2.3.3 Concrete casting

Concrete was poured depending on the case after a
period of 1 or 24 hours from the time of pretensioning. Each
two beams in the static and dynamic series were generally
cast together. Concrete was mixed in the laboratory using a

small rotary mixer. A laboratory size needle vibrator was
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used for internal vibration of the concrete; care was taken
not to damage the strain gage installations or disturb the
position of the reinforcemen; cage. The concrete surface.
was then levelled, trowel finished and éovered with buflap

and plastic sheets.

An average of nine 3x6 inch concrete cylinders were
taken for each t&o beams cast in order to determine the
concrete strength. Three of the concrete cylinders wefe
tested to determine the concrete strength just before
releasing the prestressing strands; while the remaining 6
cvlinders were used to determine the concrete strength just
before starting the flexural load test. Forms were removed
after 1 day of casting and the beams were mois; cured
(hosed) occasionally every 6 hours together with the
concrete cylinders. The resistance of the strain gages were
checked after removing the molds for any possible damage
during casting; no such damage was encountered in this phase

of testing.

The prestressing strands were released 2 to 3 days
after casting and also after the concrete strength had
reached at least 3000 - 4000 psi (21- 28 Mpa) as obtained
from cyclinder tests. The release was accomplished by

cutting the strand with an oxygen torch, (Fig. 2.5 b).

The beams were then lifted from the prestressing bed by

two hooks inserted at the two ends before casting using a
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specially designed laboratory crane. A photograph of some of

the cast beams is shown in figure 2.5 c.

2.4 Instrumentation
2.4.1 Strain gages

Strain gages were attached to the reinforcing bars and
the prestressed strands at their mid span location. Two
types of electrical strain gages supplied by
Micromeasurement Group were used. One type EA-06-125BT (gage
factor equal 2.05, transverse sentivity equal 0.2%, gage
length equal 0.125 inch and matrix size 0.35Lx0.15W in2)
were used on the reinforcing bars: the other type EA-
06-230DS (gage factor equal 2.055, transverse sensitivity
equal -0.1%, gage length equal 0.23 inch, matrix size
0.5Lx0.12W in2), being thinner, was used on the prestressing
strands. Both types of gages had 120 ohms electrical
resistance. A photograph of the type of strain gages used
is shown in figure 2.6. Typical strain gage attachement to
the prestressing strands and reinforcing bars is shown in

figure 2.7.

Before attaching the strain gages, the surface of the

reinforcing bars and the prestressing strand was cleaned and
o (Fﬂj By ¥ Sendivy o e Sve-N
treated with "Fr%ép TF"KdegreasegG conditioned with "M-Prep"

conditioner and neutralized with "M-Prep" neutralizer (all
supplied by Measurement Group). Adhesive type "M-Bond

AE-1o
EA-I0/¥5" was applied, then the strain gages were clamped to
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Fig. 2.6 Strain Gages : 1 Used on The Prestressing Strands,
2 VUsed on The Reinforcing Bars

Fig. 2.7 Typical Strain Gage Mounting On The Prestressing
Strands And Reinforcing Bars
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the bar reinforcement surface using a rubber band (wrapped
several times), end to the prestressing strand using a
specially designed clamp. Clampﬁng pressure was malntalned
for at least 6 hours requwred for the adhe51ve to cure.
Occasionally, some of the stva1n gages were damaged durlng
the installation procedure. These gages Wwere remoxed and

Ll Ty e T e Mave
replaced using "M-bond 200" adhesive (;ur:ng time 2 HZnutes)
which performed similarly to the "AE-10/15" adhesive. The
1ead wires were then soldered and the resistance of the
strain gages ﬁffecehecked before applying any coating
material. "M qdat A" was then applied to insulate the strain

)cages, followed by "M—coat/G“ to waterproof and protect the

train gages from the fluid concrete.
()"V\v-‘m, TeClon Frive = NG T3, <« Twwe Tw et Austioan Tuew @ 33 Sfsoaa.

5

_Two strain gages were attached to the reinforcing
steel, one on each exterior bar. Two or three strain gages
were attached to each prestressing strand at the same
section depending on the number of strands used in any one
beam. Each strain gage was located on every 2nd 31'd wire
in the strand depending respectively on whether 3 or 2

strain gages were attached.
2.4.2 Deflection

Deflection of the beam specimens during the test was
measured at 5 inches away from mid span by two linear
voltage differential transformers (LVDT) placed on either
side of the beaﬁ‘at symetrical distances relative to midspan

( Fig. 2.8 ). The two LVDT's were Shaevitz 1000 DC-D havihg
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+ 1" stroke limit. During the test, both LVDT's were
supported by two magnetic bases attached to the tésting bed
of the loading machine. Two dial gages were used to measure
the deflection of the tesﬁing bed at the location of the end
supports during one of the’static test: in.order to acccunt
for any possible differential deflection between the
supporting bed and the beam specimen. The measured
deflection at maximum load was found negligible in alil

cases. An HP X - Y recorder was also used to trace the load-
deflection curve at the 1/3 loading’points.transmitted

through the load ram.
2.4.3 Crack width

During the test, crack width was measured at the
location of a crack former at midspan. Two Schaevitz AC-500
MHR LVDT's (stroke limit equal + 0.5") were used for this
purpose. Both LVDT's were attached on either side of the
beam by a special device and located at 1" distance from the
bottom tension fiber along the centroid of the reinforcing
steel. Photographs of the crack width measurement in the
beam and crack width measuring device are shown in figures
2.8 and 2.9 respectively. The crack width was also measured
occasionally during the testing using a telescope mounted
with a scale reticle to check and examine the readings of

the LVDT; both readings were generally in good agreement.,
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2.4.4 Curvature

For some beams ( P52,PP2SB,PPIS3,RS2 ), curvature
obtained during test was measured by two dial .gages placed
along the constant moment region at midspan. For the
remaining beams these dial gages were replaced
by two Schaevitz AC-125 HPA (stroke limit equal + O. 125")
The gage length was 10" (254 mm) and the height between the
centerline of the two LVDT was 11.5" (292 mm). Curvature
increase with load was measured for all beam specimens in
the static test series (except beam RS1). Also Curvature
variation with increasing number of cycles was measured for

7 beams in the dynamic series.
2.4.5 Slip

Slip of the prestressed strand due to any possible bond
failure was measured during the static and cyclic test. One
dial gage was attached to a stretch of one of the
prestressed strands extending outside the beam ends. The
dial gage was secured to the strand by a C-clamp and
oriented in horizontal direction along the axis of the
strand with its sensing bar supported directly on the
vertical end faces of the beam. A photograph of the dial
gage is shown in figure 2.10. As explained later, in no
case was any significant reading observed indicating that no

slippage has occured during testing.
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A photograph of some of the various measuring
instruments and their location in the beam is shown in

figure 2.11.
2.4.6 Data acquisition system

To simplify the systematic acquisition of the data, a
computarized data acquisition system (trade name sfstem
4000) supplied by Micromeasurement Groups was used.. The
‘system is composed of the data acquisition control unit
itself, an HP 86 microcomputer, a video screen, a printer,
and disk drive. The data acquisition system included a
strain gage scanner capabie of scanning up to 20 strain gage
channels and a universal scanner capable of scanning up to
10 LVDT channels. A software program was supplied with the
system. A data disk allows entering all the information
related to the measuring instruments such as gage factor,
transverse sensitivity, LVDT stroke, excitation voltage and
the like. The program disk reads the information given by
the data acquisition system and translates it into useful
engineering units ( michrostrain, mm, inch etc ... ). The
use of this data acquisition system allowed full
automization of the data . The program disk also allowed for
direct plots of observed results as one channel versus

another channel.



Fig. 2.8 Instrumentation: Deflection And Crack Width
Measurement

Fig. 2.9 Crack Width Measuring Device
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Fig. 2.10 Dial Gage Mounting For Strand Slip Measurement
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Fig. 2.11 Close Up View Of Instrumentation: Deflection, Crack
Width And Curvature



2.5 Test Setup

The beams were supported on two sliding rollers
designed to allow rotatiqnal twisting between the two ends
of the test beams. Both follers were mounted on a 12 'foot
long and 2 foot wide steel testing bedl The rollers were
adjusted to 9' (2.74 m) span and centered relative to the
loading ram by a graduated tape fixed on the teétihé
bed. They were then properly tightened by 4 bolts to prevent
any lateral sway during the test. A photograph of beam

setting is shown in figure 2.12.

The load was transmitted to the concrete specimen
through a steel beam with two adjustable loading pads. The
steel beam was connected to a steel swivelhead bolted to the
loading cell. The load pads were adjusted to a 1/3 load
points, thus creating a constant moment region over 3'
length (0.915 m), then tightened properly to the steel beam

to prevent any possible movement during the test.

The testing machine was an Instron's specially modified
closed - loop servo controlled hydraulic machine with load
and stroke control capability. It comprised a 110 kip
dynamic capacity frame, a 55 kip dynamic actuator with 6
inch stroke, a 60 gpm hydraulic service manifold and a 40
gpm pump. The machine had a load and stroke digital

voltmeter readout and was capable of high loading freQuency



g Machine

Fig. 2.12 Beam Setting In Testin
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for different cyclic wave functions. The sine wave is
believed to best represent the live load cycle application
on actual structures and therefore was adopted in this
experiment. The tesfing ﬁachine wgg:eqdipped with a load

cell calibrated for 50 kips full capacity.

A photograph of the test setup is shown in figures 2.13

and 2.14.

2.6 Test Procedure

2.6.1 Static test

Prior to the actual test, the beams were loaded
initially to a small fraction (about 5%) of the ultimate
load then unloaded so as to stabilize the beam and also to
prevent any possible twisting. The strain gages and LVDT's
connected to the data acquisition system were then zeroed
and calibrated. The static load was applied at an
approximate rate of 1 kip/min. At every load increment which
ranged from 2.5 to 5% of ultimate load, the data from the
various measuring devices were scanned by the data
acquisition system and printed automatically by the printer
without interrupting the loading sequence (the data
aguisition system was capable of reading up to 30 channels
per second). In addition, the load deflection history of
the beam at the loading points was also monitored by an HP X
- Y recorder. The overall testing time of one beam under

static load took, on the average, 15 to 25 minutes depending
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Fig. 2.13 General Test Setup: Loading Machine And Data
Acquisition System
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Fi1g. 2.14 Close Up View Of Test Setup
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on the maximum load capacity of the beam tested. At the end
of every test, the ultimate load capacity of the beam was
recorded on the print out and some remarks about the test

were taken. The beam was then dismanteled for further

inspection.
2.6.2 Fatigue test

The static test was in general followed immediately by
a fatigue test of the sister beam (having the same design
variables). The maximum and minimum cyclic loads Pra and

X

P_.
min

were taken as 60 and 40% of the ultimate load capacity
as observed from the statically tested beams. lThe

instruments were initialized following the same procedure as
in the static test. Then the load was applied statically to

P then unloaded to Pm.

max in® In order to stabilize the beam

for fatigue measurements, three subsequent static cycles at
a rate of 1 kip/minute were applied between Pmin and pmax

and for each, strains, deflections, crack widths and

curvatures were recorded. The cyclic test between P and

min
Pmax was then started at a cyclic frequency ranging from 6
to 7 cycles/sec depending on the compliance of the beam

specimen considered.

Throughout the test, readings were taken at a number of
cycle intervals. Those readings were taken at a small cycle
interval dufing the early stages of the test, then the
intervals were increased at a later stage depending on the

fatigue damage observed. For every reading, the cyclic load
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was interrupted and a static cycle was applied between Pmir

“and Polax® During the static cycle, measurements were taken

by the data acqulsltlon system for 10 to 12 ecually spaced

load increments on- the Ioadlng and" unloadlng portlons of the

cycle including pmin and Pmax'

Each fatique test took on the average 8 to 10 days of
continuous cycling. At the end of the test (5 millioﬂ
cycles) and if fatigue failure did not occur, the beam was
unloaded to zero load and a static test was conducted up to
destruction to examine the effeét of prior cyclic fatigue on

the ultimate load capacity and deformation of the beam.
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CHAPTER II1I

TEST RESULTS

3.1 Calculation of Effective Prestress

A spec1al computer program was wr1tten to determlne the
loss of prestressing force in the strands for the fully and
partially prestressed units due to elastic shortenlng at
transfer, shrinkage and creep in the concrete. The t;me step
method was used. The detail of this method and its
formulation are given elsewhere ( 60 ). The precompression
force in the reinforcing steel at the time of testing due to
shrinkage and prestressing force was also accounted
for. Table 3.1, includes a description of the approximate
time between tensioning and casting, age at loading, total
 prestress losses (computed as mentioned above), reinforcing
steel precompression stress, and effective prestress in the

prestressing strands at the time of testing.

3.2 Static Load Test

3.2.1 Cracking load

A crack was initiated at the location of a crack former
at midspan. In the fully reinforced and partially
prestressed units, the crack former extended up to the
nonprestressed reinforcement. The.cover to the céntroid of
the nonprestressed reinforcement was kept constant and equal
1" (25.4 mm) in all cases. For fully prestressed specimens,

" the crack former was 0.25" (6.35 mm) high.
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Under increasing load or moment, the precompression
stress in the concrete bottom fiber due to the prestressing
force decreases. Cracking develops when the tension stress
exceéds the tensile—strength of thé/contréte. For all beam
'specimens, cracking‘was iqifiated at the\location’of_fpe
crack former at midspan. However, visiblg tensile crééks
spread along the length of the beam mostly in the conétant
moment region. These cracks developed shortly after
initiation of the midspan crack. Cracking caused‘a
noticeable change in stress increase in the tension steel

and in the measured crack widths.

The cracking load as well as other relevant data for
each beam specimen in the static test series are given in

Appendix B ( tables 1S - 12S).
3.2.2 Ultimate load

The ultimate load was taken in this test as the load
corresponding to the maximum load on the load-deflection
curves beyond which the beam suffered a reduction in
strength and collapsed. The magnitude of the ultimate load

varied depending on the level of the reinforcing index.

The ACI 318-83 approach for calculating the ultimate
moment capacity of flexural concrete section was used in
calculating the theoretical moment capacity of the
beams. However, the yield strength of the non prestresséd

reinforcement was taken equal to 70 ksi (483 Mpa) which
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represent the average observed from test. Comparison between
the ACI predicted and observed ultimate momenis are shown in
table 3.2. The high ratio of test to calculated moment
observed in the fully prestressed beams is due in;part to
the conservative equatidh specified by the ACI code.for
calculating the stress in the prestréssing steel‘fpé;.at

ultimate.

3.3 Behavior of Static Test Specimens

3.3.1 Load-deflection

The load-deflection curves for some of the test beams
are shown in figures 3.8a,3.9,3.10a-3.12a along with some
relevant plots from the fatigue test. Load-deflection curves
for remaining beams are shown in figures Al-A7 of Appendix
A. Numerical results are summarized in tables 1S-12S of

Appendix B.

It could be observed from these figures that for most
reinforced and partially prestressed beams, the load-
deflection curve comprises 4 portions: 1) from zero load up
to cracking, 2) from cracking up to yield , 3) from yield up
to strain hardening if any and finally 4) from strain
hardening up to ultimate. However, for under-reinforced
fully prestressed beams only three stages generally
exists. Note that for beam PS3 which was over-reinforced, a

brittle failure was observed (Phot. is shown in figure 3.1).
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Beam ‘ " Ultimate moment | Test/Calc.
designation | (k=inch) ‘
Calculated Test .
ACI(318<83)] results
( 2 )
pS1 122.0 147.2 1.21
PS2 205.0 250.6 1.22
PS3 275.7 342.0 1.24
PP2S1 132.4 151.2 1.14
PP2S2 187.5 208.8 1.11
PP2S3 297.2 360.0 1.21
PP1S1 242.4 293.0 1.21
PP1S2 265.3 283.5 1.07
PP1S3 370.9 384.1 1.04
RS1 173.1 204.1 1.18
RS2 303.1 324.0 1.07
RS3 441.7 444.1 1.01
Mean = 1.14
S.D = 0.08

Table 3.2 Comparison Of Observed And Computed Ultimate Moments
For All Test Beams
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Prior to cracking all beams behaved essentially in an
elastic manner. After cracking, fully reinforced concrete
beams and beams with low PPR develdpea a :elativei§ linear
load-deflection response in compariébg‘torbéams fuii§‘
prestréssed or with high pqrtial‘prest;essing
ratio. Reduction in stiffnéss resulted’inkall the test 'beams
after cracking as expected, depending on the level of the
reinforcing index and the partial prestressing ratio. For
equal partial prestressing ratio, increasing the iével of
reinforcing index implies increasing the area of tension
reinforcement, this in effect result in a stiffer beam and
therefore in a low rate of deflection versus applied
load. Also, for equal w, increasing the level of partial
prestressing ratio results in a high pecentage of
prestressing steel relative to the total steel and hence a
small overall area of tension reinforcement. This leads to a
larger deflection rate with increasing load. Although the
fully prestressed beams had the highest stiffness before

cracking, these beams suffered the highest stiffness

reduction after cracking, (specially beam PS1).

Yielding of the reinforcing steel occurred prior to
that of the prestressing steel for all partially prestressed
units because of the physical location of the reinforcing
steel relative to the prestreésing steel. Beam PS1 in the .
fully prestressed series yielded at a load of about 7 kips
(31 KN) and showed substantial reduction in stiffness uﬁ to

failure. Beam PS2 and PS3, because of their high reinforcing
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index, did not show a clear yielding pattern. After
vielding, fully reinforced beams RSl and RS2 developed a
wvell defined yield plateau followed by a stra;n hardenlng
stage up to fallure. However7 Beam RS3 falled before
reaching the strain hardening stage. St§a1q hardening of
the reinforcing steel is also evident in som;‘partially
prestressed units., Its effect however decreases with an

increase in the reinforcing index and PPR.

All beams in the static series failed in flexural
compression (concrete crushing) at the top concrete fiber in
the constant moment zone except beam PS3 where failure was
due to spalling of the concrete cover surfounding the
prestressed strands. Typical photographs of beam failure in
both the static and fatigue beam.specimens are shown in
figures 3.1-3.3. The prestressing strand of beam PS1 broke
shortly after reaching the peak of the lcad deflection

curve.
3.3.2 Crack width

Throughout the test, crack width was measured at the
location of the crack former at mid span. Data results are
summarized in table 1S-12S. Typical plots of crack width
versus applied load is shown in ficure 3.4. It could be
seen that the rate of crack width increase; as described by
the slope of the curves, depends 6n the partial,prestressing
ratio. It was generally observed that the higher the partial

prestressing ratio, the higher is the slope of the crack
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Fig. 3.1 Typical Beam Failures: PS3, PDl
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Fig. 3.2 Typical Beam Failures: PP1D3, PPISl
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Fig. 3.3 Typical RBeam Failure: PP2D3
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width versus load curve. Although the crack initiation in
the fully prestressed beams was delayed due to prestreesing,
these beams suffered the hlghest rate of crack w1dth
increase w1th load after crack1ng Beams w1th re1nforc1ng
steel placed close to the bottom concrete ten51on fi ber or
beams with a high area of reinforcing steel (low level of
PPR) showed more evenly distributed cracks, and less crack
spacings. This may be due to the better overall bond
characteristics of the tension relnforcement with the

surrounding concrete.

It has been shown (50,51,53) that crack widths can be
expressed as a direct function of the average strain in the
reinforcement and crack spacing. For a given reinforcement
parameters, the crack spacing generally remains constant
within the elastic range of loading. Hence for a linear
increase in load, a linear increase in stress in the
reinforcement thus in crack width is observed. Figure 3.5
show the variation of crack width versus reinforcing steel
stress. The sudden decrease in the crack width rate in some
curves is due to the formation of extra cracks with

increasing load.
3.3.3 Load-curvature

Curvature was measured at midspan over a gage length
equal 10". Figure 3.6 shovws the variation of curvature with
the applied load for some of the test specimens. The

curvature obtained was in general in a region where at least
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two or three cracks were formed. Therefore it represents the
average curvature over 10" length in the constant moment
region of the beam., It is clear from these figures that the
load-curvature curves'sﬁow Ehe same é;endé as _the loéd-'

deflection curves.

The load-curvature curves and the load-deflection
curves mentioned before reveal an important aspect of the
behavior of concrete beams under monotonically increasing
load, namely, ultimate deformation or ductility. It can be
observed that the level of maximum curvature and/or
deflection is most importantly related to the level of
reinforcing index. 1Increasing the level of reinforcing
index results in a larger neutral axis depth at ultimate and
thérefore less deformation capacity. The ductility of
concrete beams depends globaly on the ductility of the
reinforcement; prestressing steel is less ductile than
reinforcing steel. Therefore, beams reinforced with
preétressing steel are expected to be less ductile than
beams reinforced with reinforcing steel. Fully prestressed
beams showed the least ductility in comparison with the
remaining beams in this test. However, partially prestressed
beams (for both levels of partial prestfesing) vere observed
to have the same order of maximum deformation as fully
reinforced beams of approximately similar levels of
reinforcing index. This increase in ductility is in favor
of partial prestressing which also combines the advantages

of both full prstressing and full reinforcing.
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The effect of compression reinforcement in increasing
the ductility of concrete beams is evident in figure
3.6a. It can be seen from this flgure that the maximum
curvature in beam PPlSl 1s substantlally iarger than‘that of
beam PPlSZ although both beams were of approxlmately equal
observed strength (both beams have approx1mately equal
tension reinforcing index). Compression reinforcement in
beam PP1S1 resulted in decreasing its total reinforcing

index (see equation 2.1) and therefore in a dramatic

increase in its maximum deformation compared to beam PP1S2.

3.4 Fatigue Test

All specimens were tested under constant load range
varying between 40 and 60% of the ultimate load capacity of
the control specimen having the same input variables in the
static test series. The average cycle frequency was equal
6.0-7.0 cycles/sec depending on the compliance of the test
specimens and the frequency response of the
actuator. Fatigue test datas for all beam'specimens are

summarized in tables 1D-12D of Appendix B.
3.4.1 Fatigue life

All the 6 partially prestressed and the 3 fully
reinforced beams survived 5 million cycles (beam RD1 was
cycled only up to 3 million cycles) without suffering a
major fatigue damage. Fully reinforced beams encountered the

least fatigue damage in comparison with partially and fully
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prestressed beams (fatigue damage is evaluated with respect
to relative increase in deflection, curvature and crack

width with increasing number of cycles).

The - three fully p;estreésed beams, PD1, PD2 and PD3
failed during cycling. The failure resulted from fatigue
fracturing of the strands at the location of a crack in tpe
constant moment region of the beam. One wire of the‘strahd
was broken at approximately 1 million cycle for beam PDl and
at around 2.0 and 1.8 million cycles for beams PD2 and PD3
respectively. One indication of a wire being broken is a
clearly heard bang from inside the beam. The failure of one
wvire was generally accompaﬁied by a sudden jump in the
residual deflection of the load-delection hysteresis loop,
substantial reduction in stiffness, increase in crack width
and high increase in the area enclosed within the hysteresis
loop. The failure of additional wires in the sfrands reduced
the net tensile area of the prestressed steel and therefore
increasea its stress range. This in effect accelerated the

fatigue damage of the beam and reduced its fatigue life.

The observed stress ranges in the prestressing strands
in the three fully prestressed beams during the early cycles
were 10.0 ksi (69 Mpa), 16.0 ksi (110 Mpa) and 19.0 ksi (131
‘Mpa) for PD1, PD2 and PD3 (bottom strand) respectively. The
stress ranges observed at last reading before failure of the
strain gages (See tables 1D-3D) were 16 ksi (110 Mpa), 19.3

ksi (133 Mpa) and 27.1 ksi (187 Mpa) respectively. Beam PDl
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failed at 1.212 million cycles after failure of its only
prestressed strand. The maximum deflection, crack width and

curvature at P_

max measured in the last reading befogre
i . -, - - . . e

failure (1.1 million cycles) weréﬂb.43",'0.35mm éhd'3xlo—4
in-1 respectively.'Beam PD2 failed at 2,2 miliion cyéles |
after several wires in the strands wereybroken. The'ﬁéximum
deflection and crack width in the last reading ( 2.1%
million cycles) were 0.9" and 1.27 mm reSpective;y.‘Beam PD3
failed at 1.94 million cycles after the bottom strand
totally failed; this was accompanied by a very large
increase in crack width. The beam was considered failed for
all practical purposes. The maximum measured deflection and

curvature at 1.94 million cycles were 0.98" and 10.1x10-4

in-1 respectively.

The fictitious nominal tensile stresses in the bottom
concrete tension fiber was calculated assuming uncracked
section for all beam specimens in the fatigue,
series. Results are summarized and compared with the
observed stress ranges in the tension reinforcement in table
3.3. The large values of the calculated nominal tensile
stresses indicate that little corrolation exists in general
between the fictitious nominal tensile stress and the
fatigue life of the beam specimens in this test. A nominal
tensile stress of up to 52.8/f2: (PP1D3), did not result in
fatigue failure. Also, on the other hand a nominal tensile
stress as high as 24.l|/f'c in the fully prestressed beams

(PD3), compared to the 6;/f'c limit recommended by the ACI
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committee, led to a fatigue failure of the beam at a
reasonable number of cycles (1.94 million). Moreover, the
stress ranges in the prestressing strands observed in the
- 3f rd cycle were compared wzth the S*N-curve ‘shown eari;er
(Fig. 1.2). Results are shown in flgure 3.7. This flgure and
also table 3.3, suggest that the stress range in the ten51on
reinforcement is a far more indicative parameter for

evaluating the fatigue life of the beam specimens than the

fictitious nominal tensile stress.

3.5 Behavior of Fatigue Test Specimens

3.5.1 Deflection

The load-deflection curves for some beams are shown in
figures 3.8b,3.9,3.10b-3.12b along with some relevant data
pertaining to the beams tested. Load-deflection curves for
the remaining beam specimens are shown in figures aAl-a7
(Appendix A). These curves show the progressive variation
of the load-deflection hysteresis loop measured between Pmin
and Pmax with increasing number of cycles. It can be seen
that the load-deflection for partially prestressed and fully
relnforced beams remained stable throughout most of the test
cycles. The continuous narrowing of the hysteresis loop of
these beams with subsequent cycles is one indication of

their stable behavior under cyclic fatigue loading,

The residual deflection of beams PDl, PD2 and PD3

increased progressively with approximately constant load-



73

*8911e38p 210w 103 gZz1-al setqey 99g

»

“TTe3. J0uU PIP sweaq 19ylo (e ‘spueiys burssailsaad ayj jo butanjoeay Aq pagreg +
[ “qO1Xg - 1°11 - v-o1 - v sy € EBEE €°0¢€ §°G66C¢C €ay
wcﬁxm, 0°¢C1 == €°11 - 9°ve £°T1L9C S €T (A TA cay
90TXg 8 vl -= 9°GT. - 9°¢te T°L181 €°61 8°SLIT Tay
oO01Xg . 6°C1 9°L LA 6°9 8°C¢t A.HVWN S°61 o "vist €d1dd
;wodxm>~ 8¢l v'8 €°v1l 6°L 9°Le 9°€01C S$°91 €°8s¢C1 ¢atdd
- 90TXg €°L1 8°6 cLl 8°8 L°9C 8°viLoC 6°ST voeEeeCt Tatdd
,@cﬂxm S°ee S°v1 LA 4 8°C1 0°8¢ v°soece (AL 0°9111 €dcdd
g90TXg s$°81 ¢'ot 9°81 c°6 €°81 coveer v'8 vetio Zdacdd
901Xs 1°S1 0°¢L 1°81 8°S 6°01 1°¢88 'S 9°vey 1dedd
woﬁnvo.a - +1°LT - +0°61 1°ve 0°8Z81 6°'8 €°SL9 t£dad
901X0Z°¢C - +€°61 - +0°91 9°61 0°9L11 S°v 6°0vE Zad
9OTXTZ" 1 - +0°91 -- +0°01 | 6°8 S°v99 9°¢ 0°S61 Tad
(¥s3) | (vs31) | (vsx) | (vew) 2 3% Y84 2 3x T84
N 83v sdjy Sjv sdyy Xeuwy-4 e ssaiys UtWg-4 3e ssoigs uawyoadg
21J8U93 TRUTWON 9118U@3 TRUTWON
cmcq@mmu Ise| 81240 pa€
je paaassqQ 103 Pp9aaesqp | buypror wasy 310Ys 19pun s8889135
Juswedaogjuray ayy uy sabuey 89138 paaaasqQ
buy S888913g @1TSuUay [euTWON 939I0U0p pajeINOTRD €' IBTqey




(Stress range S)/fpy

74

® This Study ~ Number of specimens
OWarner and Hulsbos[(fos) min =60 %] 33
@® Warner and Hulsbbs{(fps) min=40%] - 24
- OTide and Vanhorn  [(fos) min=60%] 65 |

@ Tide and Vanhorn  [(fos) min =40 %)= 74

0.50 = AGylitoft (Fa) min=01 N
A Gylitoft ((£2s) min = 0 ]; grip failures |
O Edward and Picard [(fps) min = 60 %]

A
0.40 - \\

N4
\ ({i)=-au3mgN+am

\ P
e
\

J
0.30 ~
&
\
&
0.20 ~
N
@
2 & O
\S |
0.10 - AA % 6 samples
© LA A
© A
| I - ! | &
103 104 105 106 107
Number of cycles N, log scale
Fig.3.7  Comparison Of Observed Fatigue Life With

Existing Data (Ref. 60 )




75

Deflection, mm
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Fig. 3.8 Load-Deflection Curves For Beams: (a). PS2 (Static)
(b) PD2 (Cyclic)
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Deflection, mm
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deflection slope for most of their fatigue life, However,
prior to failure, the residual deflection is observed to
increase dramatically, accompanied by a tremendoﬁs‘increase
in the area enclosed within the load:defieqtion,loopfand a
substantial reductibn>in’stiffness;xTh{s Behavior is»a Clear
indication of the degree of distress andzsoftening-suffered

by these beams due to fatigue.

The variation of maximum deflection for the various
beams versus number of cycles N, measured at Pmax‘is'shown
in figures 3.13-3.15. It can be seen that the curves show

three different portions when plotted On a semi-log scale:

Steady state increase up to 80-90% of the total number of
cycles (log scale) and/or total life of the beam. In the
third portion, geénerally all beams showed a8 sharp increase
in deflection with increasing number of cycles. However, the
increase in‘deflection is more pronounced in the fully
prestressed beams in comparison with the partially
brestressed or the fully reinforced ones indicating that
these beams were about to fail. A similar behavior was

observed by Bennet and Dave ( 29 ),

Generally it can be Observed from these figures
(3.13-3.15) that the rate of deflection variation with
number of cycles (drawn on semi-log scale) tends to increase

with an increase in the level of partial prestressing ratio
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for approximately equal reinforcing index (this obsevation
is ciearer in figs. 3.14 and 3.15). Moreover, within- the
load range adopted in this study, the relnforC1ng 1ndex
seems to have little 1nfluenc; on the beam deflection
response with 1ncre351ng number of cycles for most spec1mens
(compare 3.13-3.15). However, for fully pmestressed beams,
the rate of deflection increase with increasing number of
cycles was larger, the larger the reinforcing index. Thls
observation for the fully prestressed beams is not genercl
because the fatigue life of the fully prestressed beam with

o close to 0.3 (PD3) was governed by the fatigue life of the

strand closest to the bottom tension fiber.
3.5.2 Cracks and crack width

At the beginning of fatigue tests, crack spacing was
measured for most of the beam specimens. Cracks that may
have developed due to cyclic fatigue were checked
occasionally; no such cracks developed for all the test
beams. A summary of the average crack spacing and number of

observed cracks are shown in table 3.4.

All beams were cracked during the first static cfcle to
Pmax' In particular, beams PD1, PD2 and PD3 cracked at loads
corresponding respectively to 53%, 51% and 43% of the
ultimate load capacity of their sister (control) beam tested
under static loading. The crack width at P, in the first
cycle was 0.15, 0.25 and 0.16 mm for PD1, PD2 and PD3

respectively measured at 1" from the bottom tension fiber.
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The variation of crack width with increasing number of
cycles (drawn on a semi-log scale) is shown in figures
3.16-3.18. Similar to the trend_bbéervgd in deflection,

crack width showed in general 3 afffefent‘porfioﬁs of

Table 3.4 Measured Crack Spacing And Number Of Cracks

Beam Average crack Number of
Designation spacing cracks
(in)
PD1 8.2 6
PD3 4.8 11
PP2D1 4.3 11
PP2D2 3.1 ‘20
PP2D3 3.6 19
PP1D1 3.3 22
PP1D2 4.2 18
RD3 3.4 22

behavior (as described for deflection), specially for fully
prestressed beams. However, this behavior was less
pronounced for an increase in the level of reinforcing index
specially for partially prestressed and fully reinforced
specimens. Also, similar to the deflection trend, the rate
of créck width tended to increase with increase in the
partial prestressing ratio. This trend is more substantial
for PPR equal 1 and PPR equal about 0.72. Fully reinforced

beams showed little increase in the crack width with loading.

cycles.
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For most of the beam specimens, the crack depth
remained practically constant during the entire test. In the
case of fully prestressed beams, cracks 1n the constant
moment region, propagated upward with increasing anber of
cycles at relatively small rate. Hd@eye:, after‘pqe?or
several wire failures, these cracks were observed to

propagate well into the compression zone of the beam

branching out in two or three different directions.

Among all test specimens, only beam RD3 developed
inclinaa shear cracks at its end supports during the first
cycle to P _.. The crack propagated to abdut 2" (51 mm) from
the top compression fiber and showed no sign of width
increase througout the entire test (See figure 2.14-Test

setup).
3.5.3 Average curvature

The average curvature was measured for 7 beams in the
dynamic test over 10" gage length. Variation of curvature
versus number of cycles drawn on a semi-log scale is shown
in figure 3.19. It can be seen that a very similar trend
exist between curvature and deflection variation with
increasing number of cycles. Also similar observation can be
made i.e 1) three stages of behavior cpmprising every curve,
2) increase in the slope of the aveage curvature versus logN
with increasing PPR and 3) the relatively insignificant

effect of the reinforcing index.
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3.6 Reinforcement Stresses

The measured strains (or stresses) in the tension
reinforcement for the different tggt*beéms~showedja

continuous increase in strain measured at Pnax and Py.. and

X
generally a continuous increase in the mean stress_;eyel and
the stress range with increasing number of cycles. The
increase in the stress range of prestressed strands during
cyclic loading could be either due to reduction.in the
effective prestress resulting from slippage, (a similar
phenomena was observed by Rabbat et al (23) ), or could be
due to stress redistribution resulting from the cyclic creep
of concrete with increasing number of cycles. However, slip
measurement during the test (Fig. 2.10) showed no sign of
strand slibpage. Moreover, strand slippage leéds
theoretically to a reduction in the stresses measured at

P _._ and pmax‘ Therefore the increase observed in this study

min

was attributed to cyclic creep only.

Although most of the beams cracked well before Pm‘n'
specially those with low PPR, the strains in the
prestressing strands and reinforcing bars measured during

the first cycle at P
nd

min vere smaller than those measured
and 3rd

during the 2 cycles. This phenomena resulted in
stress ranges in the reinforcement higher in the first cycle
than in subsequent cycles. These subsequent stress ranges

were smaller than computed.
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Measured and calculated stresses in the tension

s . SR
reinforcement at Pma and Pmin for both static and cyclic

X
beams are shown in tablgs;B.&,‘3.6 and:§.7._51n_ca1culating
these stresses, a general equétion basea on equilibrium ahd
compatability (elastic analysik) predicted}bxysiriaksorn;aéd
Naaman ( 26 ) was used. These tables show that for most Seém
specimens, the measured and calculated stresses are quite'
comparable for the static beams and the first static .ecycle
in the dynamic beams as well as at the maximum load level
Flax in the 3rd cycle. In the fully and~partially
prestressed beams where the crack had to close under Pmin'
the observed stress in the reinforcement was consistantly

higher than predicted during 3rd

cycle at P.... This was
attributed to the roughness of the crack which did not close
to zero or near zero level. Also, it can be observed from
table 3.6 that the difference between the observed and
calculated stresses at Pmin is smaller for beams that
cracked at smaller load level (PPR close to 0.3 and PPR

equal to 0). The difference reaches an insignificant level

in the fully reinforced beams.

3.7 Ultimate Load After Cycling

At the end of the fatigue test provided the beam did
not fail before 5 million cycles, the test specimens were
unloaded to zero load and then a static load test was
conducted up to destruction. This test gives an indication

of the performance of the test beams as to their ultimate
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load capacity and ductility after being subjected to 5
million cycles. A summary of the ultimate load and maximum
deflection for the various beams in this test is shown _in
table 3.8. Additional }esults (deflecfﬁon;‘cfack width and
curvature) are summarized (except fdr be?m‘ng) in table%
B1-B8 of Appendix B. Load-deflection curQeg of these'bé;ﬁs
compared with their sister static beams are shown in figéres

AB-Al5 of Appendix A.

‘It can be observed from the data that the static
strength of the fatigue beams (after 5 million cycles) is
. not much different from that of their control ‘static
specimens. However, their ultimate deformation was generally

smaller (except for PP1D2 and PP2D3).
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Beam Deflection Deflection Pu
Designation ‘at P=0 ~at \P=Pu ;o

~ (in) (in) (Kips)
PP2D1 0.13 3.10 '8.06
PP2D2 0.17 1.63 _ 11.25
PP2D3 0.21 1.59 | 10057
PP1D1 0.15 3.26 15.60
PP1D2 0.20 1.80  15.50
PP1D3 4 —— 1.00 21.80
RD1 —— 3.19 11.29
RD2 0.18 1.76 17.20
RD3 0.16 0.85 24.70

Table 3.8 Deflection And Load Characteristics Of Béams Loaded
To Failure After 5 Million Cycles
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CHAPTER IV

OBSERVATIONS AND CONCLUSIONS

4.1 Observations

The following important pobservations were made in this

study:

1.

The rate of increase of deflection, crack width and
curvature was significant in the early stages oi‘load
cycles. A second phase followed in which they rémaiﬁ
essentially the same or increase at a small rate.
Significant reduction in stiffness and rapid increase in
deflection and crack width were observed in the last
phase before failure. This sudden change of behavior is
a result of fracturing of some individual wires in the
strand which increases the stress range in the remaining
tensile reinforcement. This increase in the stress range
leads to a rapid fracturing of other wires and hence a
rapid increase in deflections an crack widths. Failure
of the beams occur shortly thereafter.

Failure of the strands in the three fully prestressed
beams occurred in the constant moment region of the beam
at the location of a crack as expected. Generally
failure starts by fracturing of an external wire. The
stresses and hence the stress ranges in the tension
reinforcement are higher at the crack location than at
any uncracked region in the beam. Therefore stress

conditions at the crack control the fatigue life of the



99

tension reinforcement. The local debonding on either

side of the crack during the cyclic process results in

- fretting and abrasion of the strand due to successive

Y LR

closing and opéhing’of'the cféék undef fluétuéting

load. This phehbmenoq.adds to th% probability of fatigue
fracture in at léast’one of the étréhd‘s exte;néi?wires
in contact with the surrounding concrete.

All prestressed and‘partially prestressed bgams in this
investigaﬁion showed no sign of bond failuré; Therefore
strand slippage did not contribute to the fatigue life
of the specimens.

Fatigue failure in the beams resulted from fatigue
fracturing of the strands. The stress ranges versus
total number of cycles were compared with recently
published data. The result suggest that the fatigue
life of the beams could be predicted reasonably well
from the fatigue life of strand samples tested freely in
air.

The stress ranges observed in the early stages of cycles
in the strands which failed by fatigue were 0.04fpu,
0.07fpu and 0.06fpu. Calculated fictitious nominal
tensile stress in the corresponding fully prestressed
beams were respectively 8.9Vf'c, 15.6;/f'C and
24.1Vf'c. Moreover fictitious nominal tensile stresses
of up to 32.8;/f'c were obtained in PPC beams without

failure. These results suggest that limiting the
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fictitious tensile stress for the design of PC and PPC
beams is not a rational design criterion.

Stresses in the tension reinforcement measured at Pmm

4
7

and‘Pmax increased w1th the numbec of loadlng cycles.
The etress increase was more pronounged for fully
prestressed beams than for either pa;ti;lly prestressed
or fully reinforced specimens. This pﬁenomenon increased

substantially the stress range under load and led to a

reduction in fatigue life.

4.2 Conclusions

The following conclusions could be drawn from this

study:

lO

For approximatly equal reinforcing index w, the rate of
growth of crack width, deflection, and/or curvature
under fatigue loading tends to be higher for beams with
higher partial prestressing ratios. Large areas of non
prestressed tension reinforcement (beams with low PPR)
enhance the overall bond characteristics of the tension
reinforcement and results in lesser stiffness
deterioration with repeated loadings.

For approximately equal partial prestressing ratios and
for equal load ranges expressed in percent of ultimate
load, the reinforcing index appears to have little
influence on the rate of increase of crack width,
deflection and/or curvature with the number of loading

cycles.
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3. Stresses observed in the early cycling stages were
comparable to stresses computed from linear. elastic
cracked section analysis.

4. Beams that sufvivedis million“cycles showed practically
.ﬁo reduction in ultimate load capacity when tesfed to

failure after cycling. However a reduction in ductility

vas generally observed.

In summary, it appears from this investigation that a
reliable evaluation of the fatigue characteristics of
prestressed and partially prestressed beams requires the
development of a general model based on cracked section
analysis to calculate under cyclic loading, stresses and
stress ranges induced in the component materials. This model
should take into account-the progressive time and cyclic
dependent changes that accompany the structure throughout
its design life time such as creep and shrinkage in the
concrete, relaxation and prestress loss in the prestressing

steel.
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Load-Deflection Curves
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APPENDIX B

Data-Tables
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