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CONSPECTUS

The Motor Vehicle Manufacturers Association Truck and Tractor-
Trailer Braking and Handling Project was begun at HSRI in mid-1971
with the expressed purpose of establishing a digital computer-based
mathematical method for predicting the longitudinal and directional
response of trucks and tractor-trailers. The work included conversion
of existing HSRI programs to digital computer format and the extension
of these programs to include various problems unique to trucks and
articulated vehicles. In addi*ion, key parameters, including tire
parameters, were measured by HSRI for use in the simulation, and
extensive vehicle testing was done to validate the simulation. A
flow chart of the project is given in Figure A.

The work has been divided into three seqments:

a) Phase I. Empirical and analytical work resulting in a
validated digital computer program to predict braking
performance of trucks and articulated vehicles. The
Phase I work is complete, and the subject of this repotrt.

b) Phase II. Empirical and analytical work resulting in a
validated digital computer program to predict the direc-
tional response of trucks and articulated vehicles. The
empirical work is complete, and the analytical work is
currently in progress.

c) Phase III. Refinement and extension of the previous work
including consideration of:

1) development of a digital computer-based method for
predicting the moments of inertia and center of gravity
locations along the principal axes for various truck,
tractor, and trailer configurations;

2) refinement of tandem suspension models already developed
and formulation of models for three additional sus-
pension types;

3) determination of the longitudinal slip characteristics
of truck tires;

4) development of models for typical truck antilock
systems to be used with Phase I (Braking Performance)
and Phase II (Braking and Handling Performance) simu-
lation programs;

5) extension of the Phase I (Braking Performance) Program
to include provision for simulating a doubles (tractor-
semitrailer-full trailer) combination;

6) development of more complete models of mechanical
friction brakes, which will more accurately predict
the decrease in brake effectiveness as a result of
fade;

7) development of a computer-based mathematical model for
evaluating the acceleration and handling performance
of trucks and tractor-trailer combinations;

8) development of a computer-based mathematical method
to study the dynamics of automotive air brake systems.

Many previous investigators have considered truck and articulated
vehicle braking. (An extensive list of references is given in [1].)
The effect of brake force distribution on braking performance of
trucks and articulated vehicles has been thoroughly investigated
analytically [2-5]. 1In these investigations, steady-state deceleration
levels were assumed and quasi static relations were used to determine
the load transfer from the rear axles onto the front axle, and, in [4],
to determine the inter-axle load transfer for the tandem axles.
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Many important effects which may be observed empirically may only
be modeled by nonlinear equations, and thus do not facilitate analytical
solution. To consider these effects, and, hopefully, to improve in-
sight into the overall braking problem, computer simulations have been
developed in varying degrees of sophistication [6, 7].

In the simulation of trucks and articulated vehicles, however,
only moderate success has been obtained because one or more or the
following factors has, for one reason or another, been subj=ct to
serious compromise in the modeling:

a) tandem axle dynamics

b) the tire model

c) the brake system model

In Phase I, each of these problems has been considered in detail.
However, as is shown in the block diagram in Figure B, the moaular
structure of the program allows convenient modification and extension
of the Phase I work.
TANDEM AXLE DYNAMICS

To allow large payloads without unduly large axle loads, many
trucks and articulated vehicles make use of tandem axle suspensions.
These suspensions commonly have a mechanism for "load levelling,"
i.e., to attempt to maintain equal loading on each of the tandem
axles in the presence of road irreqularities. This mechanism may
also cause unequal load distribution during braking, which may, in
fact, result in so-called "brake hop." Thus, a careful analysis of
tandem suspensions is in order if wheel lockup is to be simulated
accurately.

In the Phase I work, two very common tandem suspensions have been
modeled: the four spring with load leveler and the walking beam.
Experimental results suggest that the four spring suspension tends
to transfer load from the leading tandem to the trailing tandem, while ‘
the walking beam tends to transfer load from the trailing tandem to
the leading tandem. This phenomenon is also predicted by the computer
simulation, as may be seen from the results in Chapter 6 of this
Yeport.

The program structure will allow convenient addition of other
suspension models and refinement of the present models; thus future
work may easily be incorporated into the present program. |
THE TIRE MODEL

In general, the shear force generated at the tire/road interface
is a function of a multiplicity of variables describing (1) the geometric
and material properties of the road surface, (2) the state of interface
contamination, (3) the mechanical properties of the tire, and (4) the
kinematics of the tire's rolling/sliding motion. In the present
analysis, the effects of road variables and interface contamination
are not considered. The tire/road shear force potential is described
in terms of a speed-dependent "friction coefficient." To simulate
a particular road surface it is necessary to empirically determine
the tire/road "friction coefficient" for that surface. The model
formulated to characterize the tire traction mechanics accordingly
represents the shear force components as functions of (1) friction
coefficient, (2) various parameters describing the relevant mechanical
properties of the tire, and (3) the dynamical variables describing
the tire contact patch kinematics.
BRAKE SYSTEM MODEL

?revious truck and articulated vehicle simulations have required
user 1nput of brake forces as a function of time, with the restriction
that the brake force be limited to values less than some percentage
of.the normal force at the tire/road interface. In the present anal-
ysls, pressure at the treadle valve versus time is input by the user;
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the resulting line pressure and brake torque at each axle will then
be computed. These computations depend on user input parameters
descriptive of brake response time and dynamometer curves (line
pressure-brake torque relationships) or on user input brake parameters
chosen to simulate the appropriate brakes at each axle. This system
may be used in the simplified manner of previous systems by choosing
step pressure rise at the treadle valve and linear dynamometer curves.
But the program also facilitates study of the dynamic effects of
brake timing and a variety of separate braking devices. In addition,
it is anticipated that simulation of commonly available antilock
devices will soon be added as program options.

Brake fade is modeled to account for its averaged effect over
the length of the stop, even though experimental results indicate
that brake fade varies with time. A more sophisticated apprcach to
this problem will be developed in Phase III.

Difficulties have, of course, been encountered. Where quick
resolution has been impossible (as in the case of the modeling of
brake fade), the work has been scheduled for further attention in
Phase III. It must, however, be concluded from the validation results
in Chapter 6 that meaningful results may be obtained through the use
of the present model.

SIMULATION APPLICATIONS

The simulation exercises which have been presented in this report
Were undertaken to verify the computer model used and, of course, were
designed to parallel the experimental work performed. However, they
in no way constitute a limit of uses to which the program may be
applied.

For exampie, a variety of parameter studies are possible through
the use of the program. These include, along with many others:

‘the effect of brake response time on stopping distance;

‘maximum vehicle deceleration with or without wheel lock as a

function of wheelbase, center of gravity position, gross vehicle
weilght, tire/road friction, suspension geometry, etc.;

ceffect of brake proportioning on wheels unlocked stopping dis-

tance;

*vehicle pitch angle as a function of deceleration under the

effect of changes in wheelbase, center of gravity position,
gross vehicle weight, etc.;

‘axle loads as a function of wheelbase, center of gravity posi-

tion, or gross vehicle weight at various levels of deceleration
(Note that rough road analysis may be conveniently included.);

‘loading at the fifth wheel as a result of articulated vehicle

braking;

‘effects of the variation of tire characteristics from axle to

axle.

Since the program is quite economical to use (details are in
Chapter 3), it is expected that a properly chosen array of runs may
be used in a cost effective manner to gain insight into a wide range
of truck and articulated-vehicle braking problems.

Xix



1.0 INTRODUCTION

The purpose of the research study reported herein was to esta-
blish a digital computer based mathematical method for predicting
the braking performance of trucks and tractor-trailers. To this end,
the study was directed toward accomplishing the following tasks:

1. Develop mathematical models of trucks and tractor-trailers
which include detailed descriptions of the vehicle dynamics, brakes
and braking systems, suspension systems, and the tire-road interface.

2. Construct programs for the digital computer, utilizing the
mathematical models developed, in order to simulate the dynamic res-
ponse of trucks and tractor-trailers to braking control inputs.

3. Measure the necessary inertial, suspension, tire and brake
system parameters of a typical heavy truck and tractor-trailer for
use in the computer simulation program.

4. Conduct a series of braking tests using the same truck and
tractor-trailer to provide the test data necessary to validate the
computer based simulation programs.

In accordance with the objectives of the study, two simulation
programs were developed, each based on a two-dimensional (vertical
plane) mathematical model, one of which can represent a two- or
three-axle truck, the other a three-, four-, or five-axle tractor-
trailer combination. In each case, the user may specify the vehicle
geometry, brakes, suspension, tire and tire-road interface charac-
teristics, weight, and payload distribution. The user can also intro-
duce road roughness into the program in order to study its effect on
braking performance.

In the next section of this report, detailed descriptions of
the mathematical models of the vehicles, suspension systems, tires,
brakes, and brake systems are given. In Section 3, the digital com-
puter programs for simulating vehicle braking performance are des-
cribed. Section 4 treats vehicle parameters and their measurement.
The dynamic tests on the full scale vehicles are reported in Section
5. Comparison of the results from vehicle simulation and vehicle
tests are made in Section 6, along with a discussion of these results.

Many of the tedious details involved with the descriptions of
the mathematical models and computer programs have been relegated to
the appendices. A table of symbols used in the programs and the re-
port is given in Appendix A. Appendix B contains the equations of
motion for the mathematical models. Appendix C contains the flow
diagrams for the computer programs, while Appendix D contains a list
of detailed instructions for using the computer programs, along with
examples of typical input and output data. A short program to faci-
litate determination of certain tire parameters from test data is
given in Appendix E. Test vehicle data is contained in Appendix F.



2.0 THE MATHEMATICAL MODELS

2.1. INTRODUCTION

Two mathematical models are described herein: one for a two-
or three-axle straight truck and the other for a three-, four-, or
five-axle articulated vehicle. The straight truck model is applica-
ble to both light and heavy trucks, and bobtailed tractors. The
articulated vehicle model is applicable to any combination having a
two~- or three-axle tractor and a semi-trailer with one or two axles.

Brakes in both models may te selected on an axle by axle basis.
For vehicles equipped with hydraulic brakes, "duo servo" drum, two
leading shoe drum, or disc brakes can be specified. Single or double
wedge, or S-cam brakes can be specified for vehicles equipped with
air systems. Provision is made for time delays and lags in brake
response, as well as a gross representation of the effects of brake
fade. Various miscellaneous brake modules can be specified, inclu-
ding spring brakes, engine and exhaust brakes, auxiliary retarders,
and load sensing brake proportioning systems. Provision is also
made for use of tabular "dynamometer curves", and for the inclusion
of a user written subroutine for representing a wheel antilock
system.

For suspension systems, spring rate, viscous damping, and cou-
lomb friction may be specified. The viscous damping may have
different characteristics in jounce and rebound, and the spring rate
may be non-linear. Either walking beam or four elliptic leaf spring
tandem axle suspension types may be used.

Tire-road interface characteristics are very carefully modeled,
with the brake force produced at the wheel being a function of wheel
slip, vehicle velocity, vertical load on the tire, tire longitudinal
stiffness, and pavement surface characteristics.

Diagrams showing the essential features of the model of the two-
axle straight truck and the three-axle tractor-trailer are given in
Figures 2-1 and 2-2.** The equations of motion, based upon the coor-
dinate systems given in these figures, are detailed in Appendix B.
Equations describing the tandem suspensions shown in Figures 2-3 and
2-4, however, are given in Section 2.3.

The remainder of this section is devoted to detailed descrip-
tions of the various components and modules of the mathematical mo-
dels.

2.2. STATIC CONSIDERATIONS

The calculation of frequently used constants, including the
static loadings, the effects of added payload, and certain othars,
must be accomplished before the actual simulation process begins.t*
The characteristics of the empty vehicle may be specified separately
from those of the payload, in which case the program calculates the
proper combined loads, the C.G. locations, and moment of inertia of
the loaded vehicle. For this discussion-an empty straight truck
configuration is used as an example; the mathematics for the articu-
lated vehicle are analogous. The empty truck and the payload to be
added are shown in Figure 2-5. The empty truck has sprung weight W
positioned at a point Al inches behind the front axle as shown, and
pitch moment of inertia J about that point. The payload has weight
PW and moment of inertia PJ about its center of gravity. If the

combined weight and C.G. locations are designated with barred varia-
bles:

*The bulk of these calculations are in the initial stages of sub-
routine FCT1.

**Notee indicates center of gravity lecation.

Preceding page blank
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X,2,0,2S1 and ZS2 are displacements
measured from the static equilibrium
position. The dimensions are measured
at static equilibrium.

A4

%
Y

X~ Y

ZS3

KT3

Figure 2-2. Articulated vehicle, braking performance model
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Figure 2-3. Walking beam suspension

~—

Figure 2-4. Four spring suspension
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Figure 2-5. Sprung weight and payload

W=W+PW (2-1)
The summation of moments yields

(PW) (PX) + W(A2) (2-2) &

57 - }
W |

W(DELTAl + ALPHAl) + PW(PZ)
W

DELTAL = - ALPHAl (2-3)

The new configuration is shown in Figure 2-6.
The distances a, b, ¢, and d are found using the empty vehicle
information and equations 2-2 and 2-3.

a = Al - Al (2-4a)
b = A2 - PX i (2-4b)
c = DELTAL - DELTAl (2-4c)
d = PZ - ALPHAl - DELTAL (2-44)

The parallel axis theorem is applied to find the pitch moment
of inertia of the combination of the empty truck plus the payload:

T=J+ g(a2+c2) + PJ 4+ gg(b2+d2) (2-5)

For the remainder of this report, the moment of inertia and mass
center location parameters will appear without bars, with the under-
standing that the calculations given in Equations 2-1 through 2-5
have been completed, and the unbarred variables now refer to the
loaded vehicle.
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Figure 2-6. Combined sprung weight and payload

The calculation of the static load is, like the calculations
given above, straightforward. The calculations become more compli-
cated, however, with the introduction of tandem suspensions. In the
following example, calculations to determine the static loads at
various points on an articulated vehicle are shown. The calculations
for the straight truck can be accomplished using the same equations
by simply setting the term VS, which represents the vertical force
at the fifth wheel, to zero. For this example, we have assumed tan-
dem axles on the tractor and trailer; the static.loading for a single
axle tractor can be determined by using the walking beam suspension
with the appropriate dimensions set to zero.

The trailer shown in Figure 2-7 is equipped with a walking beam
suspension. Summing moments at the sprung mass connection to the
suspension yeilds

_ W1l(a4) _
VS = R3AT (2-6)
and
TXX = Wl - VS (2=7
For the walking beam:
_ TXX (AAl0) -
NS4 = WS4 + m (2-8a)
NS5 = WS4 + WS5 + TXXX - NS4 (2-8b)

The calculations for the trailer equipped with four spring suspen=-
sion, shown in Figure 2-8, are more complicated.
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Figure 2-7. Static loading of a trailer equipped with a walking

beam suspension
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Figure 2-8. Static loading of a trailer equipped with a four spring

suspension



By summing moments about the axles and the load leveler:

Fl = F2(AA10)/AA9 (2-9a)
F3 = F2(AAl12)/AAl3 (2-9b)
p4 - F2(BR9) (AA12)

AA10) (AAL3 (2-9c)
The static axle loads are given by:

AAlO

TXN2 = F1 + F2 = F2(1 + Kig_) (2-10a)
. _ o AAL2 AA9

Summing moments about the kingpin then yields
Wi(A3) = TXN2(ARMS + A3) + TXN3(ARM6 + A3) (2-11)
Substitution of equation 2-10 in equation 2-11 gives:

(W1) (A3)

TXN3 = (2-12a)
AAl3, ,1 + AA10/AA9
A3 + ARM6 + (5373 (7% AA9/AA10)(A3 + ARM5)
TXN3(1 + %%%9
TXN2 = AA12(1 TAAD ) (2-12b)
AAl3 AAlQD
The static loads NS and the king pin force VS are given by:
NS4 = TXN2 + WS4 (2-13a)
NS5 = TXN3 + WS5 (2-13b)
VS = W1 - TXN2 - TXN3 (2-13c)

Calculation of the static loads on the tractor is considered
next. The tractor shown in Figure 2-9 is equipped with walking beam
rear suspension. Summing moments about the front suspension, the
load on the walking beam is given by:

W(aAl) + VS(Al+A2-BB)

For the static loads:
_ (XXX) (AA2) )
NS2 = m + WS2 (2-15a)
NS3 = XXX + WS2 + WS3 - NS2 (2-15Db)
NS1 = W + VS + WS1 - XXX (2-15c¢)

The tractor equipped with a four spring configuration is shown in
Figure 2-10.
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Figure 2-9. tatic loading of a tractor with a walking beam
suspension
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Figure 2-10. Static Loading of a tractor with a four spring
suspension
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Since the calculations for this case are directly analogous to
those performed for the trailer, only the results are given:

XN3 = W(Al) + VS(Al+A2-BB) (2-16a)
AAS, 1 + AA2/AAL
Al + ARM3 + (AA4)(1 = AM/Mz)(m + ARM2)
N2 = §§%(1 + AA2/AAL) (2-16b)
m(l + AAl/AR2)
NS3 = XN3 + WS3 (2-16c)
NS2 = XN2 + WS2 (2-16d)
NSl = VS + W + WS1 - XN2 - XN3 (2-16e)

2.3. SUSPENSION SYSTEMS

This section includes a detailed discussion of the suspension
models along with the assumptions made in developing the models and
some inherent limitations of the models.

2.3.1. ASSUMPTIONS. 1In deriving the equations for the suspen-
sion models, the following assumptions were made: (1) The force in
the suspension is the sum of the forces due to coulomb friction,
viscous friction, and the spring force. (2) The suspension forces
are always in the "z" direction. The differences between results
derived using this assumption and results derived assuming that the
forces are perpendicular to the frame of the vehicle are negligible
for small pitch angles.

2.3.2, THE COULOMB FRICTION. The classic expression usually
denoted by the term "coulomb friction" is

£ < uN (2-17)

where f is the force of friction,
U is an experimentally derived parameter,
N is the contact "normal force" between two sliding surfaces.

Equation 2-17 is empirical in nature, and describes approxima-
tely an observed phenomenon. To illustrate this point, consider the
simple system shown in Figure 2-11.

The equation of motion of the mass M shown is

CF = Mg + F(t) - Kz (2-18a)
for . —
z=0, |CF|<CF
otherwise,

Mi + Kz + C3 + CFLZl = Mg + F (2-18b)
4

(t)

where CF is the maximum allowable magnitude of the coulomb friction
force CF, F(t) is the driving force on the system, K is the spring

rate, C is the viscous damping coefficient, z is the displacement of
the mass M (z=0 at the free length of the spring), and g is the gra-
vity constant.

12



K CF

Fit)

Figure 2-11. Mass spring system with viscous damping and coulomb
friction

From equation 2-18a, it can be seen that no motion is possib}e
for the system initially at rest until the magnitude of the qgantlty
Mg + F(t) - Kz becomes greater than |CF|. At this point, motion en-

sues, which is described by equation 2-18b. The motion of the mass
will continue to be described by equation 2-18b, until the system
again meets the conditions of equation 2-18a.

In developing a digital simulation of a system with coulomb
friction, equations 2-18a and 2-18b present special problems. Since

the velocity z is known only at discrete points, the time when z
equals zero cannot easily be found. Thus, the actual time to switch
from solution of equation 2-18b to solution of equation 2-18c is not
known. There are a variety of ways to circumvent this problem, some
of which are considered below:
(a) Continuously solve equation 2-18b. This method is unsatis-
factory (especially for large amounts of coulomb friction)
since the system will "chatter" around the static equili-

brium position. A slightly negative z produces large cou-
lomb friction, which causes large positive Z. When the
large positive Z is integrated over a short time, positive

z results. The cyole then repeats with opposite signs. The
period of this "chatter" is twice the integration time step.

(b) Use an "equivalent viscous damping”. By this method an
increased value of C is chosen to compensate for the elimi-
nation of coulomb friction. This method can be useful when
the coulomb friction forces are small compared to the velo-
city sensitive forces, but, in general, it cannot yeild

13



satisfactory results in truck dynamics since the forces of
coulomb friction are normally much larger than those of
viscous friction.

(c) Introduce a "dead zone" around static equilibrium. This
method is shown schematically in Figure 2-12. This method
has proven quite satisfactory for suspensions in which both
viscous and coulomb friction are present. In the event
that the viscous coefficient C is zero, however, the simu-

lation allows velocity up to |é]=6 with no energy loss. In
digital computation this can cause the same type of chatter
described in (b) above.

(d) Use a limiting (saturation) function. A schematic diagram

showing the function used in the simulation is given in
Figure 2-13. This function effectively eliminates the
problems with the methods described in (a), (b), and (c).

There is no free zone around static equilibrium. Thus, given
large enough &, all chatter is eliminated. The value of & should be
small enough, however, to preserve the character of coulomb friction.
A method for the computation of § is given below:

§ should be large enough so that if the coulomb friction were
the only force applied to the unsprung mass and the sprung mass, the
velocity in the suspension could not change from § to a negative
value in one integration time step. This precludes the onset of
chatter.

The free body diagram of a system of sprung and unsprung masses,
which can represent a truck or a tractor, is shown in Fiqure 2-14. The
relative velocity between the sprung mass and the un sprung mass may
be written:

Coulomb Friction
TF+

No

= -5

No

Figure 2-12. Coulomb friction with dead zone
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Coulomb Friction
CF(I)4$---

No

Figure 2-13. Coulomb friction represented by limiting (saturation)
functions

~—A1 A2—
zv—@;e

M,J

zm Yer2

4
751 F—— MS1 752 rMSZ

Figure 2-14. System used in sample calculations of §
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SDl = 281 + Al - 2 (2-19)
sp2 = 282 - A28 - 7 (2-20)
Thus:

lz| < %(CF1+CF2) (2-21)
le| < %(CFI(A1)+CF2(A2)) (2-22)

- CFl
IZS].| iﬁ_s—i. (2-23)

" CF2
|Z52l _<_M—S§' (2-24)

During a time interval At, the changes in suspension velocities are

2

1,1, Al 1, (A2)Al ) o
|AS1D| < O[CFl(ggy + 5 + —F) + CFl(z + )] (2-25)
2
|as2p| < atlcr2(ghs + 5 + 22+ crah + BHAZ) 1 (5 5

The coulomb friction break points, *#6(I) in figure 2-13, for
suspensions 1 and 2 are set at

DEL1

|aS1D| (2-27)

DEL2

|as2D | (2-28)

In a similar manner, it can be shown that, for a trailer sus-
pension

as?

)] (2-29)

DEL3 < At[CF3(gr +

Since, in the program, the integration time step At is always
.0025 seconds, calculations lead to typical values for the break
points in the neighborhood of 3 inches/second. Thus, the simulated
"frozen" suspension will allow small relative velocities (less than,
say, 3 inches/second) rather than holding relative velocity to zero,
and the possibility of numerical instability due to the coulomb
friction is thereby eliminated.

2.3.3. VISCOUS FRICTION. The viscous friction coefficient is
the slope of the force-velocity curve for the shock absorber. The
user may select the slope in rebound and compression as is shown in
Figure 2-15%.

Viscous friction is available at all axle locations; this will,
in many cases, require the user to set the C values to zero in all
but the front suspension. If the viscous friction is considered to

¥To conform with popular shock absorber test practice, compression
is shown positive.
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Velocity

Compression
Slope C(I)

Force
(compression)

Rebound Slope
C(I+1)

Figure 2-15. Force-velocity characteristic of shock absorbers

have an important effect (this will be unlikely in the presence of
large amounts of coulomb friction), the user should carefully assess
the effect of the shock absorber orientation. To determine the
effective value of C for solid axles, the coefficients C(I) are
multiplied by the square of the cosine of the angle between the cen-
terline of the shock absorber and the vertical. Other suspension
geometries will require individual analysis by the user.

2.3.4. SPRING FORCES. The spring force at axle I may be deno-
ted by a linear relationship

F(I) = K(I) * S(I) (2-30)

where K(I) is the slope of the force deflection curve in pounds/
inch,

S(I) is the suspension deflection from its static length in
inches.

Alternatively, a nonlinear force deflection relationship may be used*.

An example is shown in Figure 2-16, in which four points are used.
The force in the spring will then be found through linear interpo-
lation. (Note the table lookup "squares off" the spring force at the
first and last points.)

2,3.5. SINGLE AXLE SUSPENSION MODEL. A schematic diagram of a
single axle is given in Figure 2-17. The equations of motion are
written in terms of the variables given in Table 2-1.

—_ \ . .
*To specify a nonlinear spring rate, the user enters any negative

number for spring constant K(I). This sets a flag which causes the
program to read as input a set of tabulated force-deflection points.
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leer Entered Points

Deflection
(in. compression)

Figure 2-16. Nonlinear spring force-deflection characteristics

Sprung Mass

qo 2
-

Figure 2-17. Single axle suspension model
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TABLE 2-1
Variables in the Equations for the Single Axle Suspension

C Viscous damping coefficient

CF Coulomb friction

K Spring rate

N Normal force on the tire

NS Static normal load on the tire

MS Unsprung nass

S Distance suspension has
extended

SD Veloci?y of suspension
extension

VA Position of unsprung mass,

25=0 for static equilibrium

The parameters C and K may be a function of 7S and 2S respec-

tively, and the dependence of CF on ZS is taken from a functional
relationship analogous to that shown in Figure 2-13.

The equation of motion is determined by summing the vertical
forces acting on the unsprung mass*:

MS(ZS8) + C(2ZS) + K(ZS) + CF = NS - N (2-31)

2.3.6. WALKING BEAM SUSPENSION MODEL. A diagram of the walking
beam is shown in Figure 2-18. Nomenclature is listed in Table 2-2.
It should be noted that the torque rods are assumed to remain hori-
zontal and the center of mass of the tandem assembly is assumed to
be on the line of wheel centers. The analysis given here is for the
suspension mounted on a tractor; application to a trailer is analo-

gous. Applying Newton's second law in the "ZT" direction yields:
NS2 + NS3 - N2 - N3 - SF2 = [MS(2) + MS(3)](ZT) (2-32)

The moment of momentum about the point P is defined as

=2 T, x dn.¥, (2-33)
all
particles

where

;i is the vector from point P to the ith particle,

dmi is the mass of the ith particle,
Vi is the velocity vector of the ith particle.

The point P is'chosen as the mass center of the walking beam
suspension. From Figure 2-18, note that the velocity of the ith
particle on the front axle assembly is

*Note that (Ms)g has been eliminated from the equation by setting
2S=0 at static equilibrium.
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TABLE 2-2
Nomenclature for Walking Beam Suspension

AAl Horizontal distance from walking
beam pin to front axle

AA2 Horizontal distance from walking
beam pin to rear axle

AA3 Horizontal distance from walking
beam pin to suspension CM (computed)

AN Vertical distance from axle to
walking beam

AAS Vertical distance from axle to
torque rod

AAG6 Horizontal distance from front
tandem axle to CM (computed)

AA7 Horizontal distance from rear
tandem axle to CM (computed)

PERCNT Number between 0 and 100 describing

the effectiveness of the torque rods.
User choice of 0 signifies no torque
rods; choice of 100 signifies 100
percent effective torque rods and
hence no inter-axle load transfer
due to brake torque.

U, = Izt2 - an6 (8m) )k + |p|(92)&F (2-34)

where the second term applies only to those particles following Q2.

Using equations 2-33 and 2-34, the moment of momentum for the front
axle assembly is:

ﬁFA =§dmj_(AA61 + |p|er) x [(2T2-AA66T)k + pR2ed)  (2-35)

Completing the cross product and noting that

Ldnm, = Ms2, (2-36a)
i
er = -cos¢i - singk, (2-36b)
ed = -cospk + sindi, (2-36c)

the angular momentum for the front axle about the mass center is:
Hp, = [Ms2(aal) 28T - ¢/]0) 2aml; (2-37)
But flplzdm is the polar moment of inertia of wheel 2;

o) %dam = Js2 (2-38)
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Using equations 2-37 and 2-38, and performing similar operations
to include the rear axle, leads to

H = {[M52(nA6)% + MS3(AA7)218T - Js2(R2) - JS3(R3)}5 (2-39)
Summing moments around the mass center:

(W2-WS2) (AA6) - (N3-NS1) (AA7) + SF2(AA3) + L2 (AA4)

+ (TR2+TR3) (AA5) + FX2(R2) + FX3(R3) = [MS2 (AAG)>

+ MS3(AAT) 28T - JS2(02) - JS3(R3) (2-40)
Figure 2-19 is a free body diagram of the various parts of the

assembly. Applying Newton's second law in the "X" direction, the
following eguations are obtained:

FX2 - FAX2 = (Mw2)§ (2-41)
H2 - TR2 + FAX2 = (MAXZ)% (2-42)

Summing equations 2-41 and 2-42:
FX2 + H2 - TR2 = (MSZ)Q (2-43)

In the same manner, it can be shown that
FX3 + H3 - TR3 = (MS3)X (2-44)

Summing moments about the center of axles shown in figure 2-19
yielids:

(H2 + V202)AA4 + TR2(AA5) = T2 (2-45)
(H3 + V303)AA4 + TR3(AA5) = T3 (2-46)

But from figure 2-19:
H3 + H2 = L2 (2-47)

Using equations 2-45 and 2-46 in equation 2-47 yields:
L2(AA4) = T2 + T3 - (TR2+TR3)AA5 = (V2a2+V3a3)AAd (2-48)

Using equation 2-48 in equation 2-40 yields:

(N2-NS2) (AA6) - (N3-NS3) (AA7) + SF2(AA3) - V2a2+V3a3)AAd
+ [T2 + (FX2)RR2 _ (JS2)Q2] + [T3 + (FX3)RR3 + (JS3)03]
= [MS3(AA6)% + MS3(AA7) ]8T (2-49)

An examination of the rotational equations for the wheels shows
that the terms in brackets on the left-hand side of equation 2-49
are identically zero. Thus, V2a2 and V303 need to be determined to
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