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SUMMARY

In my recent paper on combinatorial anatlysis,’iL algorithms were constructed
for counting the number of transitivity sets of Boolean functions under three
groups. The results of this previous paper will be assumed; we shall enlarge
the groups under consideration by allowing complementation of functions as
well as the other group operations. Algorithms are obtained for counting the
number of equivalence classes under the enlarged groups. The results are ap-
plied to simplify a recent result of Elspas.2

The duality group is defined, and the number of classes is shown to be

the same as with the negation group except in one case.
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I. INTRODUCTION

In this paper, we extend the results obtained in reference 4 to the case
where negation of Boolean functions is also allowed. The negation of a Boolean
function is obtained by the action of a negation group to be denoted by /@

ZZ has order two; one element is the identity mapping and the other element

denoted by n has the property:

for any Boolean function T.
— n /’lq ~ .
. ] / /T
The groups to be considered are B7\x 1\‘ s }z,x a , and \X(’x (/éll
' ) o n ' Jn
One can trivially show that if C;Lis any permutation group on the atoms of
the free Boolean algebra, then the (abstract) structure of the group (zz en-
larged by allowing complementation of functions is Bz<x CZZ where the cross
indicates the direct product.
Our results will be obtained by applying a specilal case of a theorem by
De, Bruijn.l De Bruijn's paper states that this theorem is a generalization
of Péiya's famous theorem, but Harary has informed this writer (oral communica-
tion) that De Bruijn's theorem would follow from Péiya's if one could find

Z in terms of Z‘¢7 and Zc£ . Unfortunately the latter result is not

& &

yet known. Cf. HarrisonzL for an example of exponentiation of permutation

groups.



II. DE BRUIJN'S THEOREM

For our purposes we shall need a form of De Bruijn's theorem 2.l The
result to be used is an extremely weak consequence of this general theorem.

Let D be a finite set of d elements and R a finite set of r elements.
Consider the class of functions from D to R. Let ﬁyrand ig denote permuta-
tion groups acting on D and R respectively. Two functions f; and fo are said
to be equivalent if and only if there exist elements O € CZ;, B e {; such that
f£1(d) = B fo(a(d)) for d € D. Since this is a genuine equivalence relation,
the family of functions is decomposed into equivalence classes. PST‘ denotes
the set of all such classes and F will denote an equivalence class of func-
tions from D into R.

Before stating De Bruijn's theorem, we briefly review the concept of the
cycle index polynomial (Zyklenzieger) of a permutation group Q? whose order
is g and whose degree is s. Let f,,...,fg be s indeterminates and let
be the number of permutations of Q} having Jx cycles of length

gleJE:- cesdg

k for k = 1,2,...,s. Naturally

S
Ziji = s (1)

Then we define

7 =

%

where the sum is taken over all partitions of s which satisfy (1).
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We can now state our simplified form of De Bruijn's theorem.

Theorem 1. (De Bruijn) If we let

o~ 00
hy = exp {t m:> ____ 2yt 1 for ¢t = 1,...,r
el —

then

;}w 3 3

) 1 = 2 (=,...,==)Z ¢ (hi,...,0y)

Fg? s 3z, S2g /}/ ’ sy
evaluated at z; = zo = ... = 25 = O.

Thus the counting problem is solved once we know both cycle indices. It
is to be understood that the variables in these polynomials are indeterminates.
Therefore we can differentiate formally and no questions of existence or con-

vergence ever arise,

Lemma 2. A term h%l..ah%r in Z%? gives rise to

( :Ei; Tdpyens > tit)
oy (g e

Z

Proof. We compute 79—(hil.,,th).

This yields
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where 6iiktis the Kronecker delta function, i.e.,

1 if 1 =kt

0 otherwise

Taking all the z's equal to zero gives

J' .
g‘a_ (hll. ,.h}].r) = Z tjt

! t[1

ITI, APPLICATIONS

We now specialize our approach to handle an arbitrary permutation group
O} of degree o™ and order g. For Boolean functions D = {O,l}n sod = 2" and
R = {0,1}. If j} is taken to be the negation group ﬂ, then we note that
the action of the negation group is to permute the elements of the range of
In)
the Boolean functions. So 2[ is really the symmetric group of degree (and

order) two; hence

L. 2
2" 5 (55 + hy)

Using De Bruijn's theorem and the lemma gives

Theorem 3. If 0} 1is any permutation group on the EE min-terms, then the num-

ber of equivalence classes of Boolean functions under XZX @ is

1
5 (Z (2,2,...,2) + Z_ (0,2,0,2,...,0,2))

T 7

We note that 7 (2,2,...,2) is the total number of classes of functions

s

under the group ﬂ?/ Since it is necessary to construct ZO} in order to

i



count the classes under fj,, we see that no additional work is required to count
Yy
the number of classes under X 1¢
n /,)/\ ™
We list the number of classes under th [:q, XZX (dn,) and sz Czjn.
The cycle indices for these groups were constructed in reference 4. The per-

tinent results are listed here without proof.

Theorem L,
n-1
1 2
z = = (f% + (2" - D)fs )
e
2
1 n! oA e(a) Ji
Z = 'r—l""' j ° ] - fd
I () 1 ljl!,..anjnl i=1™\ali
S | N
1 ! d) d 1
Z - o \Tfe( . ‘ ‘ fg( )
@ n12n . Ji. ' Jn. ' R .
n : (J3) 1°97320...n" M50 Ji=IN\4ld ati

dlei

where the last two indices are summed over all partitions of n such that
n
; ij; = n. The functions (x), e, and g are defined in reference k.
i=1

n
e’ A
)\ is the group of complementations of variables; Jrlis the group of

permutations of variables, (%7 is the group of complementations and permuta-
A e
tions of variables. It is shown in reference L that CZZ j:n .  The group
2

( 67 has already been studied by Golom.b3 who did not, however, count
the number of classes.,
Since an explicit formula has been obtained for Z

n » We get the fol-

~

2
lowing result,

\n



n
Theorem 5. The number of classes under 3])( I:g is

1
2n+1

n n-1
(227 + (2" - )22 Tt 1

Y

Theorem 6. The number of classes under 51 X a is

i.e., half the number of classes under &4«.

The rest of the results are tabulated below.

n —_—

%Z J‘A (2,...,2)

Number of Classes Under Groups Without Complementation of Functions

L,

’

9.

n

1 3 L 5
2 7 12 6
3 L6 80 22
L 4,336 3,98k Lo2
5 134,281,216 37,333,248 1,228,158
6 288,230,380,379,570,176 25,626,412,338,274,304 400,507 ,806,843,728

Number of Classes Under Groups With Complementation of Functions
n N

o E =) J n éyn
1 2 2 2
2 5 6 L
3 30 Lo 14
L 2,288 1,992 222
5 67,172,352 18,666,624 616,126
6 11k4,115,192,3%03, 714, 304 12,813,206,169,137,152 200,253,952,527,184




We mey apply theorem 1 to obtain some information about groups without
negation of functions. If %} is taken to be just the identity alone, then
the total number of equivalence classes under QJ is 26} (2,...,2). Comparing
this to theorem 3, we get the following result.

Theorem 7. The number of classes of functions under Q} which are equivalent

to their complements, i.e., self-complementary, is

202,(0,2,0,2,...,0,2).
We compute the following numbers:

Number of Classes of Self-Complementary Functions

o ,
AN L
n I:E Jn é)n
1 1 0 1
2 3 0 2
3 14 0 6
L 240 0 L2
5 63,488 0 4,094
6 4,227,858,43%2 0 98,210,640

The results in the last column (for n < 5) were obtained independently
2
by Elspas by a laborious method, It is easy to show that no function is

—e
equivalent to its negation under Jm;‘directly, Fer 2\ , the number of self-
. 2

! n-1_
complementary classes is (2n - 1)22 o,

IV, THE DUALITY GROUP

We can define a group Zﬁ/having order two whose non-trivial element 8



has the property
D -
O: f(XlJ"')Xn) N (Xl)...,xn> = f(Xl,...,Xn)

for any Boolean function f. One would naturally ask about the number of
i 7 e
classes under say U/ x [:2 and XCZZ . In these cases it is easy to
n
n
prove that we get the same number of classes as with.)f(:{ Z:’ and
2
)/Zx é;;~, by constructing a one-to-one mapping between the classes under
n
1
the different groups. The case of X )ﬂ’ is somewhat special; the dis-
n
cussion of this group is postponed until the sequel.
Recently Toda5 has counted the number of classes under 6;;— which con-
n
sist of only self-dual functions. It is interesting to observe that Toda's
results do not give the number of classes closed under the duality operation;
this latter number is somewhat larger, namely %2; (0,2,0,2,...,0,2). This
n

result may be seen by showing that the equivalence classes of the two groups

are the same.

N Number of Classes Number of Classes Under
Number of Classes Under
n of Self-Dual Func- - Closed Under the
* szh tions Under C;Zh* Duslity Operation
1 2 1 1
2 L 1 2
3 14 3 6
L 222 7 Lo
5 616,126 83 L ook
6 200,25%,952,527,184 109,958 98,210,640

*These results are quoted from Toda's papera5
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