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Abstract

A new class of switch-level logic circuits intended for modeling digital MOS VLSI
circuits is presented. These circuits, which are called pseudo-Boolean, are composed of a
single (voltage) source, connectors, switches, attenuators and wells. The latter two dev-
ices are digital versions of resistors and capacitors, respectively, and may assume an arbi-
trary but finite number of different sizes. Signals are bidirectional, and are assigned a
finite set of values of the form (v, s), where v corresponds to voltage level, and &
corresponds to electrical current or charge level (logical strength). It is shown that these
signal values and the associated logical operations form a generalization of Boolean alge-
bra called pseudo-Boolean or Heyting algebra. The analysis of pseudo-Boolean circuits
using discrete counterparts of Kirchoff’s Current Law and the Superposition Principle is

discussed, as well as the application of pseudo-Boolean techniques to digital simulation.

Keywords: Digital simulation, logic design, MOS circuits, pseudo-Boolean algebra,

switch-level simulation, switching theory, VLSI design.



1. Introduction

In the design of MOS VLSI circuits, based for example, on the Mead-Conway philo-
sophy [1], a central role is played by CAD programs that can accurately simulate the
behavior and layout of very large logic circuits. Traditional gate-ievel logic simulators
are of limited value for this purpose, since they cannot directly model such MOS logic
elements as transistor switches, pull-up loads, bidirectional buses, and the like [2]. Ana-
log simulators such as SPICE, on the other hand, although capable of modeling all types
of MOS circuits at the electrical level, require too much computation time when applied
to very large digital circuits. To deal with this situation, a new class of simulation pro-
grams called switch-level simulators have recent}y been developed [3,4,5]. These simula-
tors employ transistor-like devices as primitive components, and so can more accurately
model the behavior and layout structure of VLSI circuits than gate-level simulators.
Because they represent circuit behavior by a small set of discrete logic values rather than
a potentially infinite number of analog values, switch-level simulators can also handle

much more complex circuits than analog simulators.

This paper investigates the theoretical basis of switch-level simulation models, with
the goal of better understanding their underlying algebraic structure. Previous work in
this area includes the connector-switch-attenuator (CSA) theory of Hayes (2,5], and the
switch-level model theory of Bryant [4,7]. In the present paper a new and very general
class of CSA switch-level logic circuits is defined which seem especially useful for MOS
VLSI simulation. These circuits encompass most existing types of logic circuits, and
allow the modeling accuracy to be varied systematically by changing the number of logic

values and component parameters used. It is shown that the algebraic structure






underlying these circuits is a generalization of Boolean algebra called pseudo-Boolean or

Heyting algebra (8], hence the logic circuits in question are termed pseudo-Boolean.

Section 2 defines the global structure of pseudo-Boolean logic circnits, and derives
the set L, of static logic values used from discrete current, voltage, and resistance con-
cepts. In Sec. 3 the lattice structure of L, is explored, and is shown to constitute a
pseudo-Boolean algebra. A wide range of both unidirectional and bidirectional primitive
logic elements for pseudo-Boolean circuits are discusseci in Sec. 4. The use of dynamic
logic values and digital charge-storage devices (wells) to modél sequential béhavior is

considered in Sec. 5. Finally, Sec. 6 presents some applications of the proposed theory.

2. Basic Concepts

The logic values of interest are required to rep.resent. the binary electrical signais
employed in real logic circuits. This binary requirement is met by permitting only one
type of source device S for generating the logical constants 0 and 1. S gorrespor_lds to an
electrical voltage source that produces a constant potential difference of V volts across
its terminals. The terminals of S are held at two distinct voltage levels Vi, and

Vy= Vo + V, representing logical 0 and 1, respectively.

To ensure that all normal voltage levels are confined to the binary set {Vy, VL}, we
require that all source devices have one terminal connected to a common point (ground).
This prevents two copies of S from being connected in series to generate a third voltage
level Vi + 2V. We also require all voltage-like measurements to be made relative to
ground. This eliminates the possibility of obtaining another voltage of tile form -V from
S. Thus all copies of the source S are effectively connected in parallel, with one terminal

connected to a common ground that serves as a reference for logic value measurement.



Such a parallel connection of sources is functionally equivalent to a single source. Hence,
without much loss of generality, we only consider logic circuits that contain a single vol-
tage source S corresponding to the main electrical power supply. (Note that a dual

theory can also be developed in which § is a current rather than a voltage source).

The overall structure of a single-source (pseudo-Boolean) logic circuit N is depicted
in Fig. 1. Its purpose is to realize functions of the form f (X), where
X = (z,, 25 - .2,) denotes a set of externally controlled input variables. The func-
tion value £, (X) has a measurable voltage-like component v, € {0,1}. v, is determined
by the connections established between the f; output terminal of N and either the termi-
nals S, and S, of the source S or the primary inputs X. These connections are made or
broken by logic elements such as switches, gates, etc. For example, if switch settings in

N create a path from f, to the constant terminal S, as shown in Fig. 2a, then v, assumes

the value 1. Similarly, a path joining f, to S, makes v, = 0; see Fig. 2b.

In most types of logic circuits, v, is restricted to the set {0, 1}. However, there are
two other possible values that v, can assume, which are also illustrated in Fig. 2. If f, is
simultaneously connected to both sides of S (Fig. 2c), a situation that could result from
a short-circuit fault, then v, assumes a third value denoted U. This logic value can be
thought of as an intermediate voltage level V| lying somewhere between V and Vy, e.g.,
(Vi - V1)/2. f, can also be completely disconnected from the voltage source S, as indi-
cated in Fig. 2d, in which case it is assigned the value Z corresponding to the familiar
high-impedance state. The output condition v, = Z occurs explicitly in tristate logic cir-
cuits; in other logic circuits, Z is only encountered on internal lines. The set
L, = {0, 1, U, Z} constitutes the basis from which all logic values are derived. It is easily

seen that if the circuit N of Fig. 1 is composed of switches that make and break connec-
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tions, any logic function defined on L, or its binary subset B, = {0, 1}, can be realized.

With ideal on-off switches of the type defined in Fig. 3 we can construct
connector-switch (CS) networks (2] to realize any logic function defined on L,. Positive
and negative switches correspond to n-channel and p-channel MOS transistors, respec-
tively. Figure 4, for instance, shows a CS implementation of the Boolean NAND func-
tion z = 7,z defined on By = {0,1}. This circuit closely models the structure and
behavior of a CMOS NAND gate. The logic values Z, U € L,, are useful in analyzing the

behavior of logic circuits of this type under fault conditions [9)].

From an electrical viewpoint, a CS circuit such as that of Fig. 4 is a source-resistor
network [10] in which only two resistance values occur: Ro =0 corresponding to an ideal
conductor or a closed switch, and R, = oo corresponding to an open switch. It is very
aseful to introduce a fixed number n-1 of additional finite nonzero resistance values
R, R, - ,R,, where R4, > R;,. We now have a set R = R, R,, ..., R, of n+1
resistance values from which we get a corresponding set of electric current values

I=1,1, -+ ,1I, viaOhm’s Law

v
L= % (1)

Here V is the (fixed) magnitude of the voltage produced by circuit’s source S.

Suppose now that resistors with values defined in R are introduced into the net-
work N of Fig. 1. Thévenin’s theorem [10] implies that the circuit feeding any output f,
is equivalent to the circuit appearing in Fig. 5. R; is the effective resistance of the
source as seen by f. As discussed later, by suitably defining the rules for combining
discrete resistances, we can ensure that R, € R. We can therefore characterize the sig-
nal appearing at f, by the pair (V;, I;), where V, is the open-circuit voltage at f,, and

v

) =% is the short-circuit current at f;. We could equally well replace (V;, I;) by
J
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(V,, R;) or (V;, G;), where G, = 1/R,; denotes electrical conductance. It is sometimes
convenient to represent each logical signal iralue more abstractly by a pair of the form
(v,, s,), where v; € {0, 1, U, 72} =L; and ¢ € {0, 1, -+, n}=S8,. v, may be called the
signal's level, while s, is its strength. As noted above, s; can be interpreted as current,
resistance, or conductance. Here s; = 0 represents the maximum strength corresponding
to Ro=0 and I, = oo, while s; = n represents the minimum strength corresponding to
R, = oo and I, =0. (Note that a slightly different strength numbering convention is
used in [2,9].) The three levels 0, 1, U can be combined with all members of 8,-{n} to
yield 3n distinct logic values. All values of the form (v;, n) and (Z, s, ) are taken to be
equivalent to the high-impedance state denoted by (Z, n), because the zero current
I, = 0 can only be drawn from an open-circuited source. Hence the n-+1 strength levels
S, give rise to a set L, of 3n+1 distinct signal values. For example, with n=2 we

obtain tile seven values
L. = {(0,0), (0, 1), (1, 0), (1, 1), (U, 0), (U, 1), (Z, 2)}

(v, 0) may be termed the strong [5] or forcing [3] version of v , while (v, 1) is the weak or

non-forcing version.

Resistor-like devices that only assume values from the discrete set R are termed
attenuators [2] and are denoted by the symbol given in Fig. 5b. The attenuator
transforms a strong signal (v, s) to a weaker signal (v, s' ) where s’ >s; note, however,
that it does not change the logical level v of the signal. (A more precise definition of
attenuator behavior is given later). Circuits like that of Fig. 4 that also contain attenua-

tors have been called connector-switch-attenuator (CSA) circuits [2]. For example, if an
attenuator R is placed in series with each switch in Fig. 4, we obtain a CMOS NAND

model in which the source-drain resistance of each transistor in the on state is R rather
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than zero. This switch-attenuator model of. a transistor corresponds to the primitive

switch used in MOSSIM [4].

3. Signal Evaluation

Suppose that T voltage-current signals (vy, i)), (vg ¥2), ..., (v, 4,) from L, are
applied to a connector P as in Fig. 6. P assumes a value S(P) = (v, i) termed the state
of P, which is required to be a member of L, also. Kirchoff's Current Law suggests that
the strength (current) components of the applied signals might be summed to yield the

strength of S(P) thus:
=X (2)

Ordinary summation, however, can lead to values of i that are not in the (n+1)- member

set I of available current values. We therefore replace (2) by the approximation
= Ajlf___lx {ii} (3)

which takes i to be the maximum of the applied current signals, thereby guaranteeing

that i € J. Thus the (current) strength of the output signal (v, i) is that of the strongest
input signal. Equation (3) can be regarded as a discrete version of Kirchoff’s Current

Law appropriate to pseudo-Boolean circuits.

The voltage component v of the connector state S(P) = (v, i) in Fig. 6 may be com-

puted as follows. Let W= {v,, vy, - - ,v,} denote the voltage levels of all applied sig-
nals (v, 4 ) for which i, = Mf;X {i; } = i. There are four possible cases:
e

(a) v=UifUE Wor0,1€ W.
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(b)) v=0if0€ Wand1,U £ W.
(c)v=1if1€ Wand0,U £ W. (4)

(d) v =2if0,1,U ¢ W.

These rules for combining discrete voltages are comsistent with the behavior of analog
voltages. For example, if (0, i) and (1, i) are the only signals applied to P, we would
expect P to assume an intermediate voltage level, represented here by U, that lies

approximately halfway between the 0 and 1 levels.
The foregoing rules for computing (v, i) can be combined into a single operation #
by observing that L, is a lattice. The # operator corresponds to the lattice operator

that is variously called least upper bound, join, and or. Thus for Fig. 6 we can write

(U, i) = #((vl il); (”21 '.2): tee ,(U, ] '.r ))
The lattice structure of L, has been recognized for some time as underlying switch-level

simulators. We now demonstrate that L;, L, --- L, form a class of pseudo-Boolean

algebras, which explains our use of the term pseudo-Boolean logic circuit.

A lattice L is a set with a partial ordering < such that every pair of elements
s, b € L have a least upper bound a U b = #(a, b), and a greatest lower bound ‘a nas.
An element 1 in L with the property s <1 for all s € L is termed a unit element,
while an element O such that O < a for all a € L is a zero element. A finite lattice, but
not necessarily an infinite one, always contains unit and zero elements. An element
¢ € L is called the pseudo-complement of a relative to b, if ¢ is the greatest element
such that a N ¢ < b; following [8] ¢ is denoted by a=>>b. A lattice L is; sai(i to be rela-
tively pseudo-complemented if a=2>>} exists for all 4, b € L. Such a lattice must con-

tain a unit element 1, since for any a €L, a=>a=1. A relatively pseudo-
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complemented lattice with a zero element 0 is called a pseudo-Boolean or Heyting alge-
bra. For every element a in a pseudo-Boolean algebra, there is an element a=>0,
which is called the pseudo-complement of a and is denoted by -a. A pseudo-Boolean
algebra is therefore an abstract algebra L with the binary operations U, N, and ==, the
unary operation -, and the special elements O and 1. This type of algebra was first
defined about 1930 to characterize intuitionistic logic [8]. Boolean algebras form a spe-
cial class of pseudo-Boolean algebras in which the pseudo-complement operator - is
replaced by a stronger complement operator ~ (overbar). Pseudo-Boolean algebras obey
the associative, commutative and distributive laws for N and U. The pseudo-
complement operator obeys such familiar laws as

an—a=0

and
(aUb)=-an-b
However, the idempotence law a =7 of Boolean algebra is replaced by
¢ < --a

in pseudo-Boolean algebra. It follows directly from the foregoing definition that L, is a
pseudo-Boolean algebra with O = (Z, n) and 1 = (U, 0). Values of the form (0, i) and
(1, i) are each other’s pseudo-complement relative to (U, i+1). Only in the case n=1is

L, also a Boolean algebra.

Returning to the general pseudo-Boolean circuit of Fig. 1, we see that the value
assumed by an output signal f; with respect to L, is determined by the effective resis-
tance of the paths linking f, to the source S. Figure 7 shows a representative case; com-

pare Fig. 2. R, and R, model a voltage divider circuit that which is only capable of
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assigning v(f;) to the discrete voltage levels 0,1,U,Z. (Recall that when
I, =1, =0,(U, I,) = (Z, n).) As observed already, f; is usually restricted to the 0 and 1
levels in logic circuits. Consequently, the attenuator circuit of Fig. 7 acts as a threshold
circuit with respect to voltages, only assigning them to the 0 and 1 levels. The existence
of such a strong threshold effect is characteristic of binary circuits. The addition of an
unrestricted number of strength levels allows a much wider range of logic circuit
behavior and structure to be modeled than is possible with conventional Boolean logic

circuits.

As Fig. 7 suggests, an abstract logic signal (v, s) may be assigned a direction indi»
cated by an arrow in much the same way as an electric current. The source S of a cir-
cuit N supplies maximum-strength signals of the form (1,0) and (0,0) from which all
other signals in N are ultimately derived; these signals have a natural direction away
from S. In general, a line L can have two opposing signals (v',8") and (v'",8’ ") associ-

ated with it, as illustrated in Fig. 8a. The resultant state S(L) of L is expressed by

S(L)= (v, s) = #((+', '), (v"", ¢'")) (5)

Equation (5) defines a Superposition Principle analogous to that of electrical network

theory, where summation of voltages and currents is replaced by the lattice operator #.

In general, a pseudo-Boolean circuit can be constructed from any primitive com-
ponents with bidirectional input-output signals defined on L, ; see Fig. 8b. Each output
signal z is typically a function of the input signals z{", 2", - -- z}" and may be
defined by a truth table or an equation. For example, if M in Fig. 8b is a simple connec-

tor, we can define its behavior by the following set of pseudo-Boolean equations:
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z;ut _— #(Ié", 3;", ce, z’:'n)

23 = (at’, 28, -, 2)

out __ mom L, n
Ty ‘—#(317‘27 y Tn-1

The state S(M) of the connector is given by

#(z, 20 = #(28, 258) = -+ = #(a", 2"
Unidirectional lines are represented by setting either z/® or z* to the null signal (2, n).
Thus pseudo-Boolean circuits can be defined which represent any unidirectional com-
ponents such as gates, multiplexers, etc., as well as bidirectional devices such as buses
and transmission gates. Classical Boolean logic circuits, and special circuit types such as
tristate logic, wired logic, and open-collector logic are all examples of pseudo-Boolean cir-

cuits.

4. Component Types

With the foregoing machinery, we can define a powerful set of logic elements to
model many different types of digital circuits. Figure 9 shows an assortment of connec-
tors that transmit signals unchanged in either one or two directions. The triangle sym-
bol can be thought of as a current amplifier (a unidirectional device) with unit gain; it
can also be viewed as an arrowhead denoting signal direction. In the case of Fig. 9¢, for
instance, the signal 6'* applied to b has no affect on s, since by the Superposition Prin-

ciple, S(a) = # (", (Z, n)) = a™.
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16

A positive switch may be represented as shown in Fig. 10. Here the control input ¢
is assumed to be a unidirectional input terminal, while the a and b terminals are bidirec—
tional. The on-off state of the switch can be made any function of
a™, bir, ¢, g, b, ¢ that reflects the underlying device technology. For exam-
ple, if ¢™* = (1, i;) turns the switch on, and ¢™ = (0, {;) turns it off for any i;, we can

specify the corresponding a ot and b signals in the following truth-table form, which

is the usual definition of an ideal switch,

¢’ a %t b out Switch State

. ‘ (6)
i) | s & | Onm
©,4) | (2, n) (Z,n) Off

We can also define more complex behavior where the switch's state depends, say, on the
relative voltage levels of the b and ¢ terminals; this is typical of both bipolar and MOS

transistors. Consider the following partial definition of switch behavior.

S(a) ¢ e bt Switch State

(©,4) (L) | b o™ On

©, ) (0 i) (z,n) (Z,n) Off (7)
L5) ©&) ] @n) (Zn) off

L) (L) | (Zn) () ofr

Let the switch be initially off with S(a) = a™ = (0, i), b = (1,in) and ¢™ = (1, it),
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where i, > i;. According to (7), the switch should immediately turn on, making
S(a) = #(s™, 5™) = (1, in). This new value of S(a) turns the switch off, causing S(a)
to resume its original value (0,i;). Thus a contradictory condition is obtained
corresponding to oscillation in a physical device. An even richer range of switch
behavior, including sequential behavior, becomes possible when the values (U, i;) and

(Z, n) are permitted on the control input c.

As demonstrated by Fig. 5, the function of an attenuator is to reduce the strength
of an input signal. It therefore resembles a current amplifier with a gain less than unity,
as suggested by the reversed amplifier symbol in the attenuator symbol. While an
attenuator is often used only to attenuate unidirectional signals, it most frequently
represents an analog resistor, an inherently bidirectional device. The general behavior of

a bidirectional attenuator, and a more appropriate symmetric circuit symbol for it are

specified in Fig. 11. An attenuator is associated with a current I, determined by its size
(resistance value) R, according to Eq. (1). It transmits an applied signal (v, i) leaving v
unchanged, but reducing i to the lesser of i and I;. This behavior approximates the
current-reducing role of an analog resistor, while ensuring that the resulting current is

confined to the discrete set 1.

The relationship between electrical and pseudo-Boolean models is further illustrated
by the attenuator circuits of Fig. 12. The size r of an attenuator equivalent to the series

connection of k attenuators of size ry, rg, + - ,r as in Fig. 12ais given by
k
= MAX {r,
r 1\;{:1 {r;} (8)

corresponding to the resistor equation
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Fig. 12.  Equivalent circuits for attenuators connected (a) in series; (b) in parallel.
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r=an 9
J=1
The correctness of (8) follows from the fact that a signal (v, i") transmitted through

the chain of resistors is reduced to (v, i'')= (v', MIN {i', iy, 45 -+ ,i}) where

i = Yo = MAX {r,}, then i = -% = MIN {i;}, hence (v", i'")=(v", i), which is
r.
]
the signal produced by r alone. In a similar fashion it can be shown that the parallel
connection of attenuators in Fig. 12b is equivalent to a single attenuator r defined by

the equation

k
r= %lilN {r;}

This corresponds to the analog resistor equation

1 S|
r ]gl Ty
Often when modeling logic circuits, a relatively small number of strength levels or,
equivalently, attenuator sizes, provide a good approximation to analog behavior. MOS
logic circuits, for instance, can be usefully approximated using three attenuation values
specified as follows
R 0= 0
R,=kwhere0 < k < o0
R 2= 00
R, can be used to represent the load or pull-up device normally included in nMOS or
pMOS gates. In CMOS circuits that do not contain load devices, R, may be used to

represent the non-zero source-drain resistance of a switched-on transistor. Better

approximations can be obtained by introducing additional attenuator/strength values.
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Suppose, for example, that we must model circuits with up to k resistors ry, rg, - ,fi
connected in series as in Fig. 12a, where the resistors may assume m < k different
values. It is characteristic of logic circuits that the relevant resistance values are far
apart, i.e.,, Ry >> R, s0 that the voltages and currents they produce can be segregated
into two groups as required for binary behavior. This separation of the resistance values
means, for example, that in series connections like Fig. 12a, the maximum resistance
dominates the others. Hence the pseudo-Boolean attenuator combination rule (8) is a
good approximation to the analog resistor combination rule (9). It is easily shown that if
we have only m attenuator types R =R, R, -+ ,R, defined so that Ry > 2kR;,
then for any series connection of k or fewer attenuators, Eq. (8) yields the equivalent

attenuator size from [ that is as close as possible to the analog value defined by Eq. (9).

Many variants of the foregoing components are possible. The unidirectional con-
nector of Fig. 9c can be generalized to an amplifier that transforms a™ = (v,1) to
bt = (v, MAX{i, I;}); such a device is the inverse of a unidirectional attenuator. A
two-terminal switch can be defined that approximates the behavior of an electronic
diode. Conventional logic devices such as gates, decoders, delay elements, ROM’s, etc.,
can also be included in pseudo-Boolean circuits, pfovided their behavior is defined on an

appropriate subset of L,

5. Dynamic Behavior

The dynamic behavior of integrated circuits is primarily due to resistive-capacitive
effects. It is therefore extremely useful to be able to include in pseudo-Boolean circuits a

digital charge-storage element corresponding to an analog capacitor. Such a device,
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termed a well, has been defined in [2]; similar devices are implicit in the stored-charge

signal state found in some simulators [3,4].

Just as in Sec. 3 we quantized resistance into n+1 discrete values
R =(Ro Ry, -+ ,R,), We now quantize capacitance into p+1 discrete values
C=(Cy Cy, *** ,C,) where Ciyy > Ci. These capacitance values represent the p+1
distinct well sizes that are recognized. A well C; stores a maximum charge @, defined by

the usual capacitor equation

Qi = ClV

Thus charge is also quantized into p+1 discrete values. It is convenient to make
Co= Qo=0and C, = @, =  corresponding to the capacitance of an open circuit and

a conductor (short circuit), respectively.

A well C; charges and discharges in a manner similar to a capacitor. The state of
C, can be measured by the instantaneous voltage level across it, and is confined to the
value set L, = {0,1,U, Z}. The charging and discharging process involves several
discrete steps as indicated in Fig. 13, with the duration of these steps determined by the
well size C; and the size R, of the attenuator through which charging or discharging
occurs. These step sizes may be chosen to approximate the exponential charging and
discharging behavior of an analog capacitor, which is indicated by broken lines in Fig.
13. Thus during charging (Fig. 13a), the voltage v atross the well C; is initially 0. At
time ¢, it changes to U as C; enters a partially charged condition. Finally, at time ¢,,

C, is fully charged and v = 1.

A partially or fully charged well acts as a dynamic voltage source generating a

time-varying output signal of the form (v(¢), i(¢)). To distinguish this from a static sig-
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nal (v, i), we employ the notation <u(t), i(t)> for dynamic signals produced by wells.
The value of the signal generated by well C; at any time can be specified by <v, C; > or
<v, Q,> where v € {0, 1, U, Z}. Note that v = U only when C; is partially charged, and
v = Z only when one or both terminals of C; are disconnected, so that it is incapable of
charging or discharging.

Because wells behave like voltage sources, the problem of creating new undefined
voltage values discussed in Sec. 2 occurs if capacitors can be interconnected in arbitrary
fashion. For instance, k fully-charged wells connected in series produce an effective vol-
tage of kV. As in Sec. 2, we eliminate this possibility by requiring all wells and the
static voltage source to share a common terminal, namely the circuit ground. Note that
it is not necessary to restrict the number of wells appearing in a pseudo-Boolean circuit;
their sizes are restricted to the set C. With these assumptions, every well C; € Cina
pseudo-Boolean circuit has the general behavior shown in Fig. 14. The grounded termi-
nal b has the strongest static 0 signal, namely (0, 0), applied to it, and so is permanently
in the (0,0) state. The remaining terminal outputs a dynamic signal &* which
represents the state of the well. The externally applied input signal ¢™ may be static or

dynamic, or may result from a combination of static and dynamic signals.

First, consider the behavior of well C; in Figs. 13 and 14 when a'™ is static. At
time ¢, let a™ = (dy, i) and ¢® = <d,, j> where d,, d; € {0, 1, U}. After some time

*) ie., on the associated

7 (3, §), whose value depends on the strengths of ¢ and o
R, C, time constant, S(s) and o’ become (d,, i) and <dj, i>, respectively. Thus the

static a™ overrides the dynamic a®* after a delay 7 (i, j). We can therefore specify the

sequential behavior of S(a) = a as follows:
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a(‘ + T(is J)) = #((dlv ")r <d,, ’.>) (10)

In this way discrete delays are introduced into pseudo-Boolean circuits as a consequence
of the interaction between attenuators and wells, i.e., between resistance and capaci-

tance.

If a" = (Z, n) in Fig. 14, then ¢** and $(a) remain indefinitely at <d, j>. Now
suppose that @' = <d,, 1>, which corresponds to connecting the a-terminal of a
second well C; to C;. We must model the resultant charging and discharging behavior
while limiting the well states to the prescribed set of dynamic values. Just as large
attenuators override the effects of smaller ones, we allow the larger well to override the
smaller one. Hence if ¢, > C;, and ¢ = <d;, i> is applied by C; to C; (see Fig. 14),
then S(s) and & both eventually change to 8™ = <d, j>. For example, if
4™ = <1,i> and ¢ = <0, >, then C; effectively discharges C; without itself
becoming charged. Similarly if ¢ = <1,j>, C charges C;, with the size difference
between C, and C, ensuring that C; remains fully charged. In the case where C, = C},
charge sharing occurs between C; and C; Wwhen their states differ. Thus if

8" = <0, i> = <0, j> and a* = <1, 7>, then a"™ and a ™ both become <U, i>.

The foregoing analysis implies that with p+1 dynamic strength levels, i.e., p+1 well
sizes, there are 3p+1 distinct dynamic logic values of the form <v, ¢> which form a
pseudo-Boolean algebra l:, isomorphic to L, , the algebra of static values (v, i) with p+1
attenuator sizes. It is readily seen that when p=1, I:, and L, coincide, so that there is
no distinction between static and dynamic values. The zero elements <Z, p> and (Z, n)
of I:, and L, , respectively are also identical, since each represents the signal produced
by an open circuit, i.e., the high-impedance state. If n+1 attenuator sizes and p+1 well

sizes are permitted in a pseudo-Boolean circuit, then the corresponding algebras L, and
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28

-

L, are merged to form a single [3(n+p-1)-1}-member pseudo-Boolean algebra whose
structure is illustrated in Fig. 15. This algebra, denoted L, ,, is isomorphic to L4,
and may be formed by concatenating the dynamic algebra i,_l to the static algebra L, .
This concatenation reflects the fact that any dynamic signal can eventually be overrid-
den by any static signal. Using the dagger symbol of [11] for lattice concatenation we

can write

Ln, P = Ln T Lp—l

forn>1and p>1; whenp=10L,, reduces to L, = I:l. In general, L, , is used to
analyze the behavior of pseudo-Boolean circuits in which there are up to n-1 finite
nonzero attenuator sizes and p-1 finite nonzero well sizes. In Fig. 15 the strength levels
of I:,_l are numbered n, n+1, ..., n+p-1, to emphasize that f,hey are weaker than the

strength values appearing in L, .

All interactions between signals applied to any connector of a pseudo-Boolean cir-
cuit N are determined by the least upper bound operator # for L, ,. When both static
and dynamic signals are involved, signal transitions are delayed by a appropriate amount
as in Eq. (10). For example, suppose that a connector a has a stable dynanﬁc signal
<1, i> applied to it at time ¢, so that the connector state. a(t) is <1, i>. If the static
signal (0, ) is now applied to s, it remains in state <I, i> for a period 75 and then

changes to (0, j) thus:
a(t) = <1, i>
d(t+Tr) = #(<1’ i>r (01 j) ) = (01 j)

7r can be viewed as the signal (voltage) fall time, and is a function of the signal strength

levels i and j. Similarly, a rise time 7z, not necessarily equal to 75, can be associated
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with the interaction of <0, i> and (1, j). The time delays derived from the interaction
of static and dynamic signals in this manner are more accurate and more natural than
those obtained using unidirectional lumped delay elements of the kind employed by most
logic simulators. Of course, lumped delays can also be included in pseudo-Boolean cir-

cuits, if desired.

6. Applications

Pseudo-Boolean circuits provide a unified framework for the analysis éf many types
of logic circuits [2]. Their practical significance lies in their ability to model the behavior
and, to a lesser extent, the layout structure of MOS circuits of the kind used in VLSI
design. In particular, they constitute the theoretical basis for switch-level simulation
programs, which have become widely used since the early 1980’s for VLSI design verifica-
tion. These simulators can perform more detailed behavioral analysis .than traditional
gate-level simulators, using component and signal types that better reflect the physical
properties of real circuits. By varying the number of strength levels recognized, i.e., the
number of distinct resistance anci capacitance sizes, useful tradeoffs between simulation

accuracy and computational complexity can be made.

Figure 16 shows several pseudo-Boolean approximations to an MOS switching
transistor which is the basic building block of VLSI circuits. The simplest model is the
ideal switch of Fig. 16b, whose behavior is defined in (6) and Fig. 3. The input line ¢
corresponding to the transistor's gate terminal, controls the path between the switch'’s
bidirectional ¢ and & terminals. The behavior of circuits such as that of F ig. 4, which
are composed solely of ideal switches, can be defined using the four-valued signal set L;.

Figure 16c shows a better transistor approximation in which the source-drain resistance
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in the on-state is represented by the attenuator R,. In this case L, is the appropriate
pseudo-Boolean algebra for defining transistor behavior. Note that we can replace the

circuit of Fig. 16b by a primitive switch that has the following behavior, where

e = (v,,14,)and b'" = (v, 1) ); compare (6),

¢ g b ovt Switch State
(L i) | (o, MIN G0, 1Y) (00, MIN {io, 1)) On
©5) (Z, n) (2, n) off

Figure 16d adds a well C, to the preceding model to represent the gate-substrate capaci-
tance of the transistor; this circuit may be analyzed using L, = L.t fq. Note that if
¢ = (Z, n), i.e., the transistor's gate terminal is open-circuited, the well can hold the
switch § in its previous on or off state indefinitely. Much more complex transistor
models are possible, but require increasingly larger pseudo-Boolean algebras to descfibe
them. The circuit of Figure 16e, for instance, includes two additional attenuator sizes
R, and R, representing the off (source-drain) resistance and input (gate-source) resis-
tance of the transistor, respectively. The algebra Lt L, having 16 values would be

necessary to cover this case.

An inverter stage from a two-phase nMOS dynamic shift-register [12] is depicted in
Fig. 17a. Q,, @, and Q, are switching transistors, while Q4 is a clocked load transistor.
C, denotes the gate-substrate capacitance of Q,, which plays a key role as a temporary
data storage device in dynamic circuit operation. An equivalent pseudo-Boolean circuit
for the inverter stage appears in Fig. 17b. Here the switch-attenuator transistor model
of Fig. 16¢ represents Q,, @5 and @, while the switch-attenuator-well model of Fig. 16d

represents Q.. As observed earlier, these transistor models, which are enclosed in broken
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lines in Fig. 17b, can be defined as primitive elements, thus preserving a one-to-one
correspondence between the structure of the pseudo-Boolean circuit model and that of
the electrical circuit (Fig. 17a). The attenuators ry, rp and r, can all be assigned a rela-
tively small resistance value R, while attenuator r, representing a load element is
assigned a much larger value R,. Thus the circuit is characterized by the parameters
R ={R, =0,R,, Ry, Ry = oo} and C={c, =0,C,, Ca=00}, and the 13-member
pseudo-Boolean algebra Ls , = Ly i,l. A weaker, but nevertheless useful, approxima-
tion to this circuit can be obtained by setting r, = r, = r,=0, in which case the ten

values of Ly 2 = Lo t f.l suffice to describe its behavior.

We now briefly illustrate the analysis of pseudo-Boolean circuits using Fig. 17b as
an example. We are primarily interested in determining the states of the connectors
s, b, ¢, and d with respect to L; , ; the other connectors have either constant values
(Vop and ground) or externally controlled clock signals (¢, and ¢,) applied to them. Sup-

pose that the circuit is in the initial state

(¢1, 62 6, b, ¢, d) = ((0, 0), (0, 0), (1, 0), <0, 3>, <Z, 4>, <Z, 4>)

whose strength levels are defined as in Fig. 15. Assume that well C, is discharged, and
all clock signals and switches are initially in the off state. Node b is held at the weakest
0 value <0, 3> by the well, while ¢ and d are disconnected from all signal sources and

thus assume the high-impedance state <Z, 4>.

Now suppose that ¢, changes from (0, 0) to (1, 0). This turns switch S, on, thereby
applying &' = (1, 0) to attenuator r;. This in turn causes b{* to change from <Z, 4>
to (1, 1), and the well C; begins to charge. After some time 7(R,, C,), b reaches the 1

level causing switch S, to turn on, and immediately changing ¢ from <Z, 4> to (0, 1).
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Since S, is still switched off, d remains unchanged. If ¢, now returns to (0, 0), C, holds

S, in the on state, and the signal of interest have the following states.

(¢lv ¢2y a, bv ¢, d) = ((01 0), (01 0); (1; 0)1 <1r 3>1 (01 l)v <Z: 4>)
Next suppose that ¢, becomes (1,0). This causes both S; and S, to switch on. ¢
changes from <Z, 4> to (1,2), and ¢ assumes the state #((1, 2), (0, 1)) = (0, 1). This

state is applied via ¢§* and r, to d causing d® to become (0,1). Thus the circuit is

now in the state

(¢1, ¢2, 8, b, ¢, d) = ((O, 0), (1, 0), (1, 0), <1, 3>, (0, 1), (0, 1))

Most existing switch-level simulators implicitly use subsets of L, , corresponding to
very small values of n and p. The 10-valued pseudo-Boolean algebra L, ;= L, t i;l is
explicitly used by the fault simulator CSASIM [5]. CSASIM recognizes one finite non-
zero attenuator size B, and one finite non-zero well size ¢,. In nMOS or pMOS circuit
analysis, for example, R, is typically equated to the resistance of the load transistor of a
logic gate; C, is equated to the gate-substrate capacitance of a switching transistor.
Essentially the same pseudo-Boolean algebra is used in LOGIS [3], one of the first com-
mercial simulators with comprehensive switch-level simulation capabilities. LOGIS does
not explicitly identify the zero element <Z, 3>, corresponding to the high-impedance
state Z, as a logic value. Hence, it is described as a 9-valued simulator, whose values
consist of all combinations of the three voltage levels {0, 1, U} and thc three strength lev-
els {0, 1, 2}. In LOGIS an attenuator is termed a “resistive gate.” LOGIS has no explicit
digital storage device corresponding to a well; instead a circuit node P is allowed to be in
a “trapped charge” state, which is tantamount to connecting a well of fixed size C,

between P and ground. The following table compares the ways in which the logic values
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of L, , are interpreted by CSASIM and LOGIS.

Value CSASIM LOGIS

(0,0) Strong static 0 Forcing low (unlimited charge sink)

(1,0) Strong static 1 Forcing high (unlimited charge source)

(U,0) Strong static U Forcing indeterminate (short-circuit)

(0,1) Weak static 0 Non-forcing low (restricted charge sink)

(1,1) Weak static 1 Non-forcing high (restricted charge source)
(U,1) Weak static U Non-forcing indeterminate (unknown charge)
<0,2> | Dynamic 0 High-Z low (minimum trapped charge)
<1,2> | Dynamic 1 High-Z low (maximum trapped charge)
<U,2> | Dynamic U High-Z indeterminate (unknown trapped charge)
<Z,3> | High-impedance state

A second version of the CSASIM simulator in which L, , is the logic value set, and n
and p are treated as user-selectable parameters, is currently under development at the

University of Michigan.

7. Discussion

A new class of logic circuits that accurately represent the structure and behavior of
many important types of digital circuits has been presented. It has been shown that the
mathematical structure underlying these circuits is a type of pseudo-Boolean algebra.
The circuits in question can therefore be seen as a generalization of gate-type or
contact-type logic circuits based on Boolean algebra. At the same time, pseudo-Boolean
circuits are discrete approximations to electrical circuits, where parameters like voltage,
current, charge, resistance, and capacitance are confined to finite closed sets. We have
demonstrated that basic electrical properties of signals such as bidirectionality,

Kirchoff's Current Law, and the Superposition Principle, can be rigorously mapped from
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the electrical to the logical plane. Thus it can be concluded that pseudo-Boolean circuits
occupy a well-defined complexity level (the switch level) lying between the classical

electrical and logic circuit levels.

A variety of approaches to the analysis of switch-level circuits have been proposed,
including graph-theoretical methods [4,7] and characteristic functions [6,13]. In this
paper an alternative technique based on the superposition of bidirectional signals has
been described. It has been implemented explicitly in the simulation program CSASIM
[5], and appears to be especially useful for simulating both the normal and the faulty

behavior of complex MOS circuits.
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