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ABSTRACT

Many problems in motion can be approached by focusing attention on events
in the motion of objects. Our concept of event is the very general one of any
discontinuity in consistent motion. This paper addresses the use of low-level
events comprising discontinuities in the regular consistent motions of feature
points. For the experiments described here, events are changes in the parameters
for uniformly accelerated motion: acceleration, velocity and initial position. We
then use the detected events and the concept of path coherence to achieve a
correspondence which describes the motion of objects over many frames. The
correspondence mechanism seeks to minimize the number of events.
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1. Introduction

Dynamic scene analysis remains difficult, even after several years of hard
work. Elegant mathematical formulations describing motions of patches of sur-
face Intensities have foundered on the various rocks of imaging noise, instabili-
ties of the solution techniques, and enormous masses of data. To make matters
even worse, frequently solutions are not unique. Heuristic approaches have been
similarly unsatisfying. For example, using a nearest neighbor heuristic to do
correspondence requires careful selection of data. In addition, there is a strong
static bias among many dynamic vision researchers. Perhaps this derives from
the hope of doing inductive processing as follows: find the ‘‘answer” for one
frame, then find the rules for taking the answer from one frame to the succes-
sive frame. Finding the ““answer” for one frame is just the problem of static
scene analysis. But static scene analysis techniques also give ambiguous
answers. The best known reason for this is the many-to-one mapping of the

scene’s projection onto the image.

Dynamic scene analysis, like static scene analysis, seeks answers to such
high-level questions as where and what are the objects in the scene. It is in
order to answer those high level questions that the low-level approaches, e.g.,
edge detection, region growing, segmentation, have been developed. Dynamic
scene analysis has the additional low-level problem of motion detection and

characterization.
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Optical flow, that is the array of instantaneous velocities on the image,
enjoyed a considerable vogue recently, because it can be shown that surface
characteristics (i.e., normals) are derivable from the optical flow vectors. The
problem is in obtaining the optical flow to sufficient accuracy. The correspon-
dence problem can be viewed as a subset of the optical flow problem. Rather
than a dense set of vectors, the correspondence problem is to match a fairly
sparse set of points from frame to frame. The points are all identical, there is no
grey-level information. There is no satisfactory solution to this problem either.
If the new problems of motion characterization make the overall problem
harder, then we haven’t bought much. It is the strong belief of our group that
the appropriate exploitation of dynamism will significantly help the computer
vision task. Indeed, we believe that dynamic scene analysis will be more tract-

able a problem than static vision, once people get away from their static bias.

A cheerful optimism, however, is not sufficient. We need some handles on
the immediate problems. Generally people approach this by simplifying the
motion allowed, e.g., by requiring the motion to be on a plane only, with the
axis of rotation perpendicular to the plane, or by requiring a known ego-motion
and stationary world. We prefer to avoid constraining the motion in such a
fashion. Instead we will consider how far along toward a solution the notion of

an “‘event’ in the trajectory of motion will take us.
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1.1. The importance of events

An event is a discontinuity in the motion of an object or point. At a frame
rate of 30 frames per second, a point’s position will usually be predictable from
its previous motions, discontinuities are rare, even for complex motions. Thus
event detection will not be a particularly time-consuming process. For the pur-
poses of this paper, we rely on the notion of path coherence [10] to define an
event. Path coherence is the property that ‘“‘the motion of an object at any
time instant can not change abruptly”. An event occurs when the path coher-
ence property is violated. It is important to note that this is a filtering, not a
smoothing operation. We do not have points available in advance. Rather, as
each frame arrives we then have a new set of data points which must be han-
dled immediately. Jenkin [11] uses a smoothness assumption for tracking lights
moving in three dimensions. His system does a nice job obtaining correspon-
dence; his goal is not event detection. An event is a discontinuity, but one
that occurs infrequently in the context of many frames. A different definition
of event is used in natural language work (see e.g., [18]). In this domain an
event is an element in a script. The script describes some stereotypical
scenarios. This is a much higher level definition than what we use and is more

remote from the data.

The notion of event is intriguing for many reasons. One is that like seg-
mentation, it is a way of reducing the amount of data in an apparently useful
way. Another is that many motion verbs appear to incorporate a change of

state in their semantics [14]. We feel it worth investigating a possible
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relationship between physical discontinuities and semantic notions of change to

get a handle on the representations of motions.

If events are so rare in continuous motion then why use artificial intelli-
gence techniques to obtain them? Rare events rather imply predictable
motions, at least in most cases. And the mathematics of predicted motions are
relatively well understood and expressed by optimal estimation theory [3]. And
it is indeed true that optimal estimation is very powerful, especially where the
state equations are known, and the noise is appropriately behaved. Howevér,
the point of optimal estimation is to provide an estimate of the state of the
system. Events per se are not accounted for in any sense. If the event is small
enough to be within the noise bounds, then the estimator will smooth over the
event, giving more inaccurate state estimations, because the data around the
event are considered to belong to one data set rather than two distinct sets. If
the event is too large and is not within the bounds of noise, then the estimator
will not work. Depending on the set-up, it may take more or less time to
“recover” from the event, that is until the event is sufficiently outside the win-
dow of observations and until that time, the event is adversely affecting the

estimates.

Computer vision researchers have been regularly coming up against this
problem, in different applications. Consider the static case of edge detection.
The problem is what is an edge point, what is not. Because of noise in the
image it is standard to smooth the image more or less. If the edge is smoothed

out, then the edge will simply not be detected, all the pixels in its area will
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have a slightly increased edginess value (bad state estimates). If the edge is
large enough that smoothing does not get rid of it, then because of the smooth-
ing, the edge cannot be positioned properly. Many researchers ha&e suggested
handling this problem by using different window sizes. A large window size is
used which will smooth over noise and detect gross changes. Smaller windows
are used to detect finer changes. Noise can be ignored by considering results
from all sizes in parallel, or by successively applying smaller windows, remov-
ing some noise at each step. Some progress has been made in dealing with the
edge detection. A second application in which smoothing over the area of
interested (smoothing around the “event’” ) causes problems is in surface-fitting
to depth values. If the area of fitting contains depth discontinuities the surface

fitted will not be correct. Too small an area is adversely affected by noise.

What we are urging here is that whether the discontinuity is in motion
parameters for an event, in intensity greyvalues for edges, or in depth values
for surfaces, any smoothing process for removing noise must not extend across
the discontinuity. Of course, then the problem is how to tell the discontinuity
from noise. They look alike. There are two ways (not exclusive) that spring to
mind for addressing this problem. The first is to choose an algorithm which
can recover from the misclassification between noise and meaningful discon-
tinuity. The second is to choose an algorithm which delays decision making as

long as possible. This property is often called least commitment.
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1.2. Successive refinement

Another technique receiving increasing attention is called ‘“‘successive
refinement”’. The idea behind successive refinement is that the values one
wishes to compute are improved in an iterative fashion as more data is con-
sidered. Thus, the first estimate of the value may be only in the ballpark. As
more data is used the estimate will approach the true value. It is not correct to
assume that successive refinement is just like a gradient descent, or any other
sort of optimization problem. While there may be an error measure associated
with successive refinement, it isn’t always necessary; there is not necessarily
any underlying function being optimized. Even more important than the dis-
tinction between gradient descent and successive refinement is the distinction
between smoothing and successive refinement. Smoothing is just a kind of
averaging. Successive refinement has nothing to do with averaging. It is an
iterative adjustment of the estimate based on new data. In this way successive
refinement has conceptual ties to estimation theory. Smoothing may be
included in the refinement, but it is not an intrinsic part of it. Successive
refinement is particularly attractive in the temporal domain (though it hasn’t
been used there much), because the data is naturally ordered. The new data

used to adjust the estimates is given by the next frame.

Our algorithm for event detection makes heavy use of successive refine-
ment. If the data given by the current frame cannot be used to refine the
motion estimates, that is, if the new data violates a consistency criterion, then

an event is signalled. If the data is useful, then the motion estimates can be

7 Event Detection and Correspondence



RSD-TR-12-85

refined in light of it. Thus, our algorithm provides motion parameters and
event detection at the same time. Contrast this with smoothing which, first,
cannot really handle event detection well, and second, requires the event detec-

tion first, before it can do the parameter estimation.

A first problem in dynamic scenes is to extract the instantaneous motion
parameters from the digitized frame sequence. The usual approach has been to
find the 2-D displacement vectors at some or all points, and then to obtain the
3-D vectors by making assumptions about object rigidity or the nature of the
motions. Finding the 2-D displacement vectors has received a great deal of
attention. When the data are high-interest feature points, this is correspon-
dence. When vectors are obtained at every pixel and integrated to get veloci-
ties, we have a 2-D optical flow field. Two things ma'l.(e finding the 2-D vectors
difficult. One problem is that over only two or three frames there are many
reasonable vector assignments. The other problem is the sensitivity to noise.
Many motion analysis techniques concentrate on what information is available
in as few frames as possible. In a noise-free world, sometimes only two frames
suffice to give 2-D displacement vectors. Because of the loss of 3-D informa-
tion when the scene is projected onto the 2-D image, more than two frames are
required for complete 3-D information. Frequently an algorithm will iterate
over two frames until convergence or termination. There are many examples,
e.g., [7], [13], [17]. Many tracking schemes require a solution or a near solution
to the matching or correspondence problem over two frames. The match is

then used to predict a location in the third frame, which is then used to begin
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again the matching process. See e.g., [8], [21]. A few researchers have con-

sidered the nature of the information in extended frame sequences [9], [20].

2. Doing the event detection and the correspondence

2.1. Event Detection

We solved this problem of event detection by modifying an on-line line fit-
ting algorithm developed by O'Rourke [15]. O'Rourke faced the problem of fit-
ting a line to noisy data. Usually line-fitting algorithms work by minimizing a
distance error from each data point to the fitted line. However, suppose that
at each time instant a new data point arrives and the desired output is a line
fitted to the available data points. Each new data point is either part of the
previous line, or else it begins a new line. In most cases, the line cannot be
known exactly, rather it is constrained by the previous data points and the
amount of noise associated with each data point. Consider Figure 1. Suppose
the data point was part of the previous line. At each ¢; is a measured z; with
a noise range such that the true =z lies in the interval
[z; - @;,2; + w;]; o; ,w; 0. The line must lie within the data ranges for each
time instant. Notice that the data for ¢, through ¢ have several possible lines
which will fit them. A few are drawn in the figure. The data range at ¢4 also
can fit a few of the lines drawn from ¢, through ¢, although some of the lines
possible for the earlier data are filtered out with the new datum. This is a suc-

cessive refinement. Now consider the datum for ¢;. There is no way any of the
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lines fitting ¢, through ¢4 can be extended through ¢,. This signals that a new
line is beginning with ¢;. Clearly an infinite number of lines can fit the data
range ¢; through tg These lines are all represented in the computer in a
straight-forward fashion by constraining the slope and ordinal intercept. The
equation of a line is z = m ¢t + p. Each data point is constrained by the
noise range to [r; — @;, 2; + w;], where z; is the data measurement. Each

data point constrains further the equation of the line to

Z—a; Sm it +p<z +w;.

Note that the unknowns are m: the slope, and p: the ordinal intercept. The
above pair of inequalities can be expressed as two parallel constraint lines in

the two dimensional space (m, p) as follows:

p<-tm + (z; + wi)

-tm + (g - op)<p.

These constraint lines are given by their slopes: -f; and their intercepts:
(z; - o;) and (z; + wi). Recalling that ¢, is ordered, note that at each succes-
sive data point, the slope of constraint lines on the lines being fitted is increas-
ingly negative. In Figure 2 you can see a pair of parallel lines which constrain
m and p. The dotted parallel lines which are obtained from the datum z;
further constrain m and p. O'Rourke proves several things about these con-

straint polygons, especially that they are closed, and that there are two special

vertices of the polygon corresponding to (m ;,,¢ may) and (m .0, ¢ i) Where m
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is the slope and ¢ is the ordinal intercept of the line, and about the order of
the algorithm for line-fitting.

Consider the case where we have ballistic motion. The position, z, of a
particle at time, ¢, is given by the usual

x(t):-éat2+vt+p

where a is acceleration, v is velocity, and p is “initial position. However, z is
never known exactly. For our first experiments we require the point to be
present at time {; and further, that its position is bounded by a noise factor.
So at ¢;, the true z lies in the range

7, —a; <z <7 +w

The data measurement is z; and a; and w; place bounds on the positional

noise. Thus,
1 2
-<-éat,-+vt,~+p<x,-+w,-

Now z;, a;, w; and {; are all known, a, v, p are unknown. So the pair of ine-
qualities describe two parallel constraint planes with normal: (- -; t;%t; 1) and

displacements from origin: z; — a; and z; + w; . These planes constrain the
allowed values of a, v and u. We can show three (or more) planes for dif-

ferent times intersect to form a closed polyhedron and that special vertices

exist.! Suppose we have formed such a polyhedron for t; ot _1,t;. The values

'Thanks to Raymond Tse in our laboratory.
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a, v and p are constrained to lie within the polyhedron. A new z; ., for time
t; 41 provides a new pair of parallel constraint pl'anes. These planes will either

1. Intersect with the polyhedron to form a new polyhedron or
2. Will give a null intersection with the previous polyhedron.

Case (2) is the event detection. This means that the new datum is inconsistent
with the constrained motion parameters, and therefore a new piece of smooth
motion is beginning. Case (1) give a successive refinement of the object’s
motion parameters. The polyhedron for a particular trajectory constrains the
possible positions for the point in later frames only if there is no intervening

event.

Each polyhedron constructed is a hypothesis describing the positional data
as a smooth motion. After an event a new polyhedron must be started to
account for the new incoming data. For two dimensional motion where the
positions are independent of each other, that is, z(¢;) is never dependent on
any y(t;). We use two polyhedra for each trajectory. A null intersection in

either or both polyhedra indicates an event in the particle’s motion.

O’Rourke and Badler [16] use their algorithm to collect movement primi-
tives, i.e., a time indexed list of positions which are can be described by a
linear function of time. The movement primitive is then used to predict the
position of the region of interest in the following frame. Then a simulation of
the object model is run to resolve inconsistencies and to account for uncer-

tainty in prediction and analysis. The images they use indicate the correspon-
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dence problem is not an issue for them. We, on the other hand, assume no a
priors knowledge of object model. We wish to see how far the idea of events

can be carried.

In this paper, an event is the occurrence of a null intersection. When an
event in a particle’s motion occurs it means that the motion had been smooth
enough for a sufficient length of time after which there was a change in the
motion parameters. When an event occurs a new intersection polyhedron must

be obtained to describe the continuing motion.

For these experiments we have assumed nothing except ballistic motion
with occasional discontinuities. The only thing known about the data is the
position. There is no grey-level information. To prime the pump then, we com-
bine all possible data points for the first three frames to obtain an initial con-
straint polyhedion, i.e., for n points, there are n3 possible initial trajectories.
This is, of course, unreasonable. Clearly, a priori knowledge of motions will
reduce this number drastically. Also, there is information available in the
frames themselves which will reduce this. Many researchers have used this; see
e.g., [2], [6], [13], [17]. This information is well known. It is used to derive the
motion constraint equation (7], [13]. Basically, it is that the greylevel differ-
ence over time combined with the spatial greylevel gradient, constrains the
allowable velocities for the points, if the velocities are less than some bound.
There are, in fact, many very reasonable ways of pruning the space of
hypothesized motions. We rely primarily on having a minimum number of

data points to constrain motions.
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2.2. Correspondence

To show the usefulness' of event detection we used it to solve the
correspondence problem. The correspondence problem is the problem of
matching points, frame to frame, when in a single frame all points appear
identical. There have not been many approaches to solving the correspondence
problem. Jain and Sethi [10] seek to optimize path coherence by minimizing a
distance measure. Barnard and Thompson [1] successfully use a constraint
labelling approach which requires a surface coherence: neighboring points will
tend to have similar motion values. O'Rourke and Badler [16] rely on a known
object model and use constraint propagation to obtain correspondence. Struc-
ture from motion researchers assume a correspondence is given as input. Then,
as the points’ positions on the image change over one or two frames, they pro-
vide three dimensional positional values for the points. Most approaches are
exceedingly noise sensitive and require perfect correspondence. A correspon-
dence can also be used to segment the points using motion values as the seg-
mentation criterion. This has not received attention; the structure from
motion researchers generally assume all points given lie on a single rigid, or, at

most articulated, object.

Our solution to the correspondence problem relies on event detection. It is
an artifical intelligence approach in that motions are hypothesized for points;
then the space of hypothesized motions is searched for the correspondence

which minimizes the number of events.

Event Detection and Correspondence 14



RSD-TR-12-85

Suppose we have only two points in the scene. Points a and b move
smoothly for a while, the event detector, as described in the previous section,
builds and refines one constraint polyhedron for each smooth motion. Then,
suddenly both a and b have events in their motions at f; as detected by a
NULL intersection with each constraint polyhedron and new data value.
Before ¢; the motion hypothesis for a was just the constraint polyhedron. How
to continue the motion hypothesis for a at ¢; when both data points give
events? We make {wo motion hypotheses for a, one for each data point. Both
hypotheses indicate an event occurring at ¢;. Both begin a new constraint
polyhedron. Point b is treated similarly. We now have more motion
hypotheses than points being tracked. Some are wrong, but we don't know

which until more data arrives.

If a polyhedron successively predicts a point’s next location, then the
polyhedron is refined using case (1) above. If a polyhedron does not succes-
sively predict a next location (case (2) above), then an event in that motion
trajectory is signalled, and a new polyhedron is initiated using all the available
points to extend the motion. Every time an event is signalled, there is a sudden
explosion in the number of hypothesized trajectories. By requiring a minimum
length of smooth motion, the hypothesis list is pruned. A single motion
hypothesis is essentially a proposed correspondence of a single point over
several frames; it looks at the correspondence problem from one point only.
When the proposed correspondences of other points are considered as well, the

first hypothesis may not be the best or not even a good possibility.
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When a correspondence is needed the complete list of hypothesized trajec-
tories is used to cover the data points, and the partition with the minimum
number of events is chosen as the correspondence. That is, a search is made
over the space of proposed motions to find the set which accounts for all the
data and which minimizes the number of events. We chose the criterion of
minimizing number of events heuristically because of our opinion that events
are rare. It is a global criterion in the sense that we make no attempt to
minimize the number of events in a single particle’s motion description. Thus,
for example, there is no bias for choosing a trajectory with no events if that

means the other particles have very complicated motion.

In the event of two or more correspondences based on minimizing number
of events, all are outputted. A simple event count is not sufficient to distin-

guish among them.

Once a constraint polyhedron has been constructed for a hypothesized tra-
jectory, we then can make predictions about the next location of the point. If
there is a point sufficiently near the predicted frame-location coordinates, we
hypothesize a continuing of the motion. If there is no point sufficiently close,
then either the hypothesized trajectory is false, or we have an event. There is
no rule for immediately differentiating between false trajectory and event.
Instead we allow further data to come in. We have a simple pruning technique
of calling those trajectories false which have smooth motions lasting min-
length number of frames or fewer. For most of our experiments here, min-

length is 4. A motion must be smooth for at least 4 frames.
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The advantages of this method are several. For one thing, the trajectories
are not smoothed over events, events are localized and do not affect motion
parameter assessment. For another, since all the hypotheses are kept around, a
later correspondence will not be adversely affected by the choice of a wrong
correspondence earlier on. For yet another advantage, the pruning method is
very gentle, yet many spurious polyhedra are thrown out as having insufficient
support. For another, the longer the algorithm is allowed to run, the better the
results will be. There are, in fact, many very reasonable ways of pruning the
space of hypothesized motions. Only two have been implemented; we are not
interested in efficiency at this time. One is to disallow branching of
hypothesized motions when a prediction is satisfied by the data. The other is
to require some minimum number of frames of continuous motion before the

occurrence of an event.

3. The Experimental Results

The algorithms were tested on a variety of generated data. We found, as
we expected, that after each event there is an explosion in the number of motion

hypotheses. As time progresses, the number of hypotheses is reduced.

The data is provided to the program in a standard format of time, z posi-
tion, and y position. No datum for ¢, is provided before all the data for ¢; is

read and processed.

Figure 3 shows three correspondences obtained at ¢ = 6, 10, 17. The data

are 5 point positions given for each ¢ = 0,1,..., 17. The lines drawn
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between the points are an aid to the reader, they indicate the correspondence.
The motion parameters are not given by this line. Recall, there are an infinite
number of curves fitting each point correspondence as given by the constraint
polyhedron. The lines drawn satisfy the appropriate polyhedron. At each time
given here, there is only one correspondence which satisfies the minimum event
count heuristic. At ¢ = 6 the cost is 0, there are no events. At ¢{ = 10 the
cost is 5, and at ¢ = 17 the cost is 10. Humans segment these points into one
object. The program does not do this, it “‘sees” 5 points. We propose using the

output of this program to do a segmentation.

In Figure 4 we see another sequence of correspondences for 9 points at
t =6, 10, 15. Again, these are the only correspondences at these times. The
correspondence mechanism has no trouble, even though 5 Eoints have events
when physically near the remaining 4 points. The event count at ¢ = 6 is 0, at

t =10 is 5, and at ¢ = 15 is 5.

Figure 5 indicates a sequence of correspondences of 4 points which have
events at the same time (¢ = 7). The correspondences shown at ¢ = 5, 13, 17
are the only ones at those times. Naturally there are many correspondences

possibie at other times, ¢ = 8 for example.

For Figure 6 we made data consisting of 4 points each having events at
various times. At ¢ = 6 is shown the only correspondences objtained then at
cost 2. Similarly, the correspondence at ¢ = 8 is the only one at that time, its
cost is 3. At ¢ = 16 there are 4 correspondences at cost 7. Two are shown.

(We remind you again the lines are drawn as a visual aid. In the case of the
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“false correspondence” they don’t indicate the motion parameter constraints.)

At t = 19 there is only one correspondence at cost 7.

To test some scenes with accleration we made the sequence of two points
whose correspondences are shown in Figure 7. The two points start at the same
initial position, one was given linear motion, the other parabolic motion, as
shown by the correspondence at ¢ = 5. At ¢ = 6 the linearly moving point was
given an event so that it moved tangentially to the parabolic point. The
correspondences given at ¢ = 9 and at ¢ = 10 indicate the correct motion
assignment. The correspondences shown are the only ones for those times. The

cost at £ = 10 is 1. Only the linearly moving point has an event.

The last sequence given in Figure 8 is for two “bouncing balls”. The
correspondences shown at ¢ = 3,5, 7, 10, and 14 are the only ones for those
times. At ¢ = 7 there has been one event (at ¢ = 5 when the “ball hits bot-
tom” ). At t = 10 there have been two events. At ¢ = 14 there have been

three events.

4. Conclusions and Future Work

One can imagine data which will fool this correspondence mechanism
because it uses only one cue, albeit a good one. In this case one clearly requires

further information to correspond, e.g.,
e  Other point characteristics besides motion, or
¢ A modelling of the collision process so that the rebound positions are in fact

predicted.
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As an initial test of the usefulness of events we applied the concepts to the
problem of motion segmentation and the related problem of correspondence of
particles. We have found it is possible to obtain a reasonable correspondence
which depends on the history of a particle’'s motion. This technique requires an
upper bound on the amount of position noise. We have not yet addressed the
problem of occlusion or of more complicated motion descriptions. These prob-

lems are, however, the reason for doing the research presented here.

We point out that the current motion research indicates that the problems
of occlusion requires good three dimensional modelling and prediction and very
probably also understanding of particle motion. We hope to be able to address
these issues with our use of events and of smooth trajectories. Because motion
events are relatively rare, we can use some simple, gentle and effective pruning
techniques to cut down on the branching of possibilities. Our currently imple-
mented search technique for finding the best correspondences is not sophisti-

cated; there are obvious approaches for improvement there.

The prediction of a point’s next location is an important aspect of this
work which, as we develop improved motion models, will become more influen-

tial in reducing computation.

Finally, we note that points on a rigid object display consistent (allowing
for 3-D differences) paths. Nagel [12] points out that this is a good way to define
an object. We thus look forward to investigating the interaction between an

object segmentation and motion segmentation.
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There are several areas in which we want to extend this work. One is to

minimize the start-up computational burden (O (n%) using local grey-level

information. Another is to loosen the restriction on motion dynamics by using

qualitative descriptions of motion rather than numerical descriptions. But most

importantly, we want to use this concept of events and event detection as a

primitive, as a tool for general motion understanding.
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Figure 1. Fitting lines to data ranges.
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Figure 2. Constraining slope and intercept.
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Figure 3. 5 points with similar motion parameters.
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Figure 4. 9 data points: 5 have one event each, 4 have none.
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Figure 5. Two sets of two points each.
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Figure 8. 4 points with differing motion parameters.
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Figure 7. Parabolic and linear motions.
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Figure 8. Two “bouncing balls”.
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