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ABSTRACT

The approach to dynamic scene analysis described in this paper is a
qualitative one. It computes relative depths using very general rules. The
depths calculated are qualitative in the sense that the only information
obtained is which object is in front of which others. The motion is qualitative
in the sense that the only required motion data is whether objects are moving
toward or away from the camera. Reasoning, which takes into account the
temporal character of the data and the scene, is qualitative. This approach
to dynamic scene analysis can tolerate imprecise data because in dynamic

scenes the data are redundant.

1We gratefully acknowledge the support of AFOSR F33615-85-C-5105.
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1 Introduction

Interest in computational qualitative approaches has been driven by the
complexity of problem solving in real-world domains. While various physi-
cal systems have received the lion’s share of attention from those interested
in qualitative reasoning, vision, a domain also requiring problem-solving
in complex real world domains, appears to be amenable to qualitative ap-
proaches. For both physical systems and vision problems the representations
are insufficiently rich. Mathematical models are not available for some prob-
lems; for other domains they may be available but analytic solutions are not
feasible for a variety of reasons. Sometimes the problem statement itself is
qualitative (e.g., “will the ball roll over the hump?” or “is region A closer
to the viewer than region B?”), and there is little to be gained by forcing a
quantitative statement of the problem, finding the solution (when possible),
and converting back to a qualitatively expressed answer. Both physical and
visual domains where there are temporal effects are especially recalcitrant

to quantitative approaches.

1.1 The complexities in vision

For many reasons computer vision has proven to be far more difficult than
was originally suspected. The real world is sampled spatially and temporally
and projected onto a time-ordered sequence of frames. The task of computer
vision is to provide a description of objects, relationships and events among
those objects. This is a signal to symbol transformation which requires

the top-down use of knowledge (i.e., an interface to a memory). Because
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the projection process “loses” a dimension, interpretation must be able to

tolerate ambiguous data.

Noise compounds the ambiguity of vision data in the frame sequence.
For most of the areas of vision which can be modelled mathematically, the
equations are non-linear. Solution techniques to non-linear equations are
very brittle, being easily swamped by noise and are highly sensitive to the
starting values used in iterative algorithms. Roberts’ work in this field ( [23])
attempted to compensate for noise using several heuristics for line detection

and a top-down model-fitting approach.

Two approaches to vision have proven to be particularly restrictive. The
first is the focus on single frame analysis. Early researchers felt that it was
necessary to first interpret one single frame. This is a sterile approach be-
cause it avoids all temporally changing scenes (e.g., things like pictures and
maps), including most scenes of interest. The data in a single frame under-
constrains the interpretation, and ambiguity and noise only make matters
worse. Researchers were forced to turn to reliance on model-driven inter-
pretation (e.g., [7]); but such a top-down approach does not work well all

the way down to the data level.

The second approach which has disappointed is the careful computa-
tion of numerical features in a data driven manner. Examples are 3-D po-
sitions of feature points obtained via structure-from-motion or of surface
normals from optical flow, shape from shading, or texture, motion param-
eters: vy, vy, v, and optimization of objective functions (examples of these

various approaches: (1], [20], [22], [26], [29], [34)). Most rely on an inverse
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transformation, from two dimensions to three; that, combined with the noise
inherent in sensor and the sampling and digitizing processes, means that al-
gorithms providing quantitative solution will be inherently very sensitive to

noise.
1.2 Motivations for qualitative approaches to vision

Along with the growing interest in dynamic scenes, has come the realization
that improving accuracy in a restricted set of features does not particularly
help the interpretation process. Some vision researchers [27] are being drawn
to the qualitative approaches being used for common sense reasoning, naive
physics and circuit analysis [6], [13]. Qualitative approaches show that it is
possible to obtain meaningful results when solving problems with uncertain,
approximate or only signs of parameters. Qualitative representations of the
problem domains are an attempt to capture the fundamental nature of the
system, while avoiding the complexity of dynamic equations.

One approach in computer vision for handling the noise in a bottom-up
fashion is to use a variety of window sizes or a collection of band-passed
images. Larger sized operators average over a greater area, and thus, for
reasonably well behaved noise, the noise has less effect on the result. It is
not clear how to combine information among these many channels, partly
because the channels are being used for two different things: detecting (or
measuring) at different scales, and using larger channels to reduce noise
effects at the lower channels. Unfortunately, the larger the window, the more
likely it is computing a single result over two or more qualitatively different

pixel source populations. Event detection, in its most general sense, locates

3 Qualitative Approach for Recovering Relative Depths



RSD-TR-4-87

the interface between qualitatively different sources of pixel population. The
idea of event detection is not to smooth over noise, and thus over different
pixel populations by using an arbitrarily chosen window sizes, but instead to
detect where the pixel population changes and avoid any integration across
that boundary. Using this paradigm are [5], {12], and [14]; also [26], using a

finite element approach, can fracture the surface at appropriate places.

This noise issue has especially frustrated dynamic scene researchers be-
cause it has been shown mathematically that all 3-D information (to a scale
factor) is available in the optical flow field. Attempts to get the information
have been fruitless because even the best obtainable flow fields are too badly
corrupted. Thompson, et al., [28] take the approach that if precise values
are not computable, then compute the qualitative information: which seg-
ment is the occluder and which is the occluded. Jain [15] has also obtained
this information for different sorts of scenes. Both use only a crude, though
computable, approximation to optical flow. The first uses an approximation
to the flow field called a disparity field which requires good feature detection
and correspondence algorithms. The second uses a more qualitative approx-
imation, computing the time history of pixel changes. But in any case it
is clear that useful results are possible, even from the noisy data available,

using and computing qualitative attributes rather than precise, brittle ones.

Qualitative solutions can be used to constrain quantitative equations or
starting points, or as data structures for focus of attention mechanism, or

in planning.

Also, biological vision researchers have long been aware of qualitative
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visual characteristics, perceptual judgements. Color vision has received the
greatest attention and a qualitative approach has been used to drive the
experiments which eventually revealed the opponent process theory of color

vision, [19].

1.3 Qualitative descriptions and processing

Qualitative representations of problem domains attempt to capture the fun-
damental nature of the system avoiding those characterizations which are
brittle. Much of the work done in qualitative physics involves determin-
ing appropriate states and symbols and obtaining an understanding of the
nature of state change. An important qualitative reasoning ability is the
simulation process, allowing for a grasp on causality. The qualitative pa-
rameters thus far attempted have generally included things like signs of
derivatives ([9], [17]) or transitions [11].

When values can be tied to a number line, they are quantitative. Per-
mitting bounds on values, that is, labelling the range to intervals on the
number line, one can still do numerical operations on them [3]. An example
of dividing up the range of a variable into intervals on the number line is

the Sign function:

-1 for ze(—o00,€7)
Sign(z) = 0 for zele,et]
+1 for ze(et,+00).

This Sign function is a typical qualitative parameter. The numerical inter-
vals are given the labels negative, zero and positive, and reasoning is per-

formed using these symbols. One must take care with such a large grain size
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because not much pruning of hypotheses (for those hypothesize-and-test

control paradigms) is possible unless further constraints are included.

Naive physics makes heavy use of the Sign of a derivative: increasing,
decreasing and no change. In the research to be described in a later section

we also use the Sign function as a qualitative parameter.

The number line can be divided into other intervals. For example, a
variable loudness may have intervals labelled piano, mezzo-piano, mezzo-
forte, forte, fortissimo. The problems of effectively dividing up the number
line into labelled intérvals including things like locating endpoints, hysteresis
effects, and “state transitions,” thus far have been addressed only from a
domain dependent viewpoint. The more abstract issues have not yet been

addressed.

In any case, it is clear that this sort of qualitative descriptor, where the
values are tied, at least initially, to a number line, is a subset of the standard

Al symbolic descriptors.

Another sort of qualitative value is a relative statement. For example
x is faster than y, or x is closer than y. This sort of relation constrains the
value of x with respect to y (and vice versa), but does not tie the value to
the number line. Hasse diagrams are a graphical representation describing
such relative statements when the relation provides a partial ordering. The
qualitative example involving partial order is different from commonly used
notions of state and of symbol. It is a comparison. The ordering qualitative
example is also more robust to noise. Shepard’s classic paper [25] makes use

of this ordering information.
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There are other qualitative relations between attributes which are inter-
val in their nature, i.e., which have begin and end points. Vilain [32] and
Allen (4] have developed an interval-based temporal reasoning and labelling
system. Their works, and those of others, are applicable to domains like
story understanding, where there tend to be fixed endpoints to the tempo-
ral intervals. Vere [31] has developed a system which will generate parallel

plans for achieving goals within time constraints.

2 Local Temporal Inferencing

2.1 Constraints on domain and general description

There are many cues which may be exploited to obtain at least apprbximate
distances from the viewer to objects. Among these are various perspective
effects (objects further away are smaller, texture gradients become tighter),
and occlusion. When surface A occludes surface B, A is partially obscuring
B. Unless there is evidence to the contrary, observers will assume that the
occluding surface, A-is closer than the occluded surface B. Determining
occluder-occluded pairs is very difficult for single frame analysis even with
object models because of the ambiguity and the noise in the data. Single
frame analysis is sufficiently challenged with just finding occluding bound-
aries ([8], [18]).

Computer vision researchers have discovered that motion helps an oc-
clusion analysis. An example will demonstrate. In figure 1 alone it is not
possible to determine the order of the occlusion between region A and region

B. (Aside—this is just the famous vases-faces reversal effect) But suppose
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Figure 1: Frame ¢ Figure 2: Frame ¢+ 1

one has both figure 1 and figure 2 where A has moved to the right. ‘We per-
ceive, unless there is strong evidence to counter the effect, that region A is
the occluder, region B the occluded. Thompson, et al. {28] has show how to
obtain occluder-occluded relations for regions with significant texture. Jain

[15] has shown the same for uniform regions.

Figure 3 shows a typical viewer geometry. Imagine the image plane is at
z = 0, that is having zero depth. Increasing depths have increasing 2 values.
For perspective projection the focal point is at some z = —d, d being the
focal length of the imaging system; for orthographic projection, the focal
point is imagined at z = —oo. In both cases, z4 < 2P means the distance
from the viewer to A is less than the distance from the viewer to B. We can

ignore the viewer’s position and concentrate on depths.

Consider obtaining occlusion relations for a fixed time when all objects

are temporarily frozen. The implication A occludes B = z4 < 2B holds

Qualitative Approach for Recovering Relative Depths 8



RSD-TR-4-87

g - erldographic
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b

7

- Figure 3: Projection onto the image plane

for many arrangements of surfaces and viewer. There is one important
situation where it does not hold. The surface of an object is actually a
function z(z,y). If there is significant change in depth across a surface, then
the occlusion to relative depth implication may not hold across the the entire
surface. Thompson calls this the “boxtop” case [27]. For example consider
the sketch in Figure 4. A occludes B on the image. Where the occlusion
occurs the depth relation A is closer than B also holds. But because the
surface of A has significant surface tilt, the surface of A in its entirety is
not closer than the surface of B. We will not discuss this problem further
in the paper. We assume the intra-surface depth change is not significant

with respect to extra-surface depths.
Occlusion data thus places a partial ordering on the depths of surfaces;
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>2

yLX

Figure 4: An arrangement with significant surface tilt

and when frozen in time, transitivity provides all computable depth con-
straints between surface patches. This partial ordering does not change

over time. Thus, for example, given the data set:

zA<zB; zB<zc; zB<zD,

transitivity gives:

zA<zC;zA<zD.

There is no ordering in depth between C and D. By transitivity we ob-
tain relative depths between some surfaces which have not direct occlusion
evidence for depth ordering. See Figure 5.

Now permit objects to move about freely in planes parallel to the image
plane, that is, objects may not move in the z direction. In this case the rule
for combining depth constraints is again transitivity. If there is no change

in depths of objects then the relative depths will not change.
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Figure 5: Directed graph for depth ordering

A more interesting situation occurs when objects are permitted to move
toward or away from the observer. Temporal effects must be considered.
While for a fixed time, the depth ordering obtained from local occlusion
analysis and transitivity is valid, that order may not hold into future times.
Transitivity does not hold into the future when depths change over time.
The depth ordering depends on the motion in depth v. When there is no
acceleration, a depth ordering depends on the sign of v. Sign(v) = -1
means motion is toward the observer. Sign(v) = +1 means motion is away
from the observer. Sign(v) = 0 means there is no significant motion in
depth. |

Consider the problem from the following perspective: what is the relative
depth between two surfaces A and B at future time tx4; if we know the order
at time tx, ¢ > 0. Considering only the sense of the z motion, there are 9
possible velocity combinations v4 € {~1,0,1};vB ¢ {~1,0,+1}. The depth

order at tx4; can be revealed through a case analysis. For example:
2At) < 28(t)

11 Qualitative Approach for Recovering Relative Depths
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B
v
VA -1 0 +1 for
A(i)<B(i);
i<j
-1 A(j)<B(j) | A(j)<B(j)
0 A(j)<B()) | A(j)<B())

Figure 6: Velocity rules
vi=-1; vB=0
2A(tryi) = 22 (t) + 020 z;B(tk‘,.,-) =2B(t) + 0P
2A(tegi) < 24(th) 5 2P(thas) < 2B (k)
2A(tkgs) < 24(th) < 28 (tk) = 25 (thes)
24 (th4i) < 22 (th4s)

There are four cases where predictions can be made about future depth
ordering using only sense of velocity. These are shown in figure 6. The
other 5 cases require more constraints on the velocities than only sense of
motion in depth in order to make statements about future depth order.
These four cases are formulated as rules for combining depth relations and

velocities. Naturally, they are applicable on those temporal intervals where

the velocities do not change. The four rules are:

Qualitative Approach for Recovering Relative Depths 12



RSD-TR-4-87

o rulel: 24(t) < 2B(t); vA(t,t+ Ot =0; vB(t,t + At) =0 =
At + At) < 2Bt + At)

o rule2: 24(t) < ZB(t); vA(t,t+ A1) < 0; VBt + A) =0 =
At + At) < 2B(t + At)

o ruled: 2zA(t) < ZB(t); vA(t,t + At) = 0; vB(t,t + At) > 0=
2A(t + At) < 2B(t + At)

o ruled: 2A(t) < 2B(1); vA(t,t + Ot) < 05 vB(tt + AL) > 0 =
At + At) < 2B(t + AY)

It is interesting that while we require knowledge of motion to and from the
observer for computational reasons, there is considerable biological evidence
for such “detectors,” which are independent of detectors for image plane

motion ([21]).
2.2 Temporally local inferencing on qualitative relations

For the work reported here the data are time-ordered lists of occluder-
occluded pairs and directions of motion in depth of surfaces (toward or
away from camera). We wish the program to provide the relative depths
among surfaces, when computable, and histories of surface to surface re-
lations without recourse to object or scene models, over extended frame
sequences.

Transitivity works on a fixed time instant. The velocity rules project
into the future. The velocity rules are expressed using intervals over which

the velocity direction is fixed. Rather than becoming involved in a calculus

13 Qualitative Approach for Recovering Relative Depths
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over intervals, we take advantage of the nature of the data: data arrives, in
order, at discrete times. We use the velocity rules to make inferences into
the future for one time step only; a time step is the time the next datum
is available. Thus, this system incrementally incorporates the data as it
becomes available. It makes no attempt to predict further into the future
than to the next time step. It is local, temporally speaking. More global
temporal knowledge is kept elsewhere in the system - specifically, in the
object histories.

We have three operations which provide depth ordering relations for a

given time:
1. local occlusion analysis,
2. transitivity on depth relations,
3. velocity rules.

Figure 7 gives a layout of the order in which these operations are applied.

Thus, at time tg, we have a set of depth relations ¥(2p). From these
‘relations we use the velocity rules to derive, for the next time ?, a set
of relations ¥*(t;). This set of relations, ignoring time and labels, will
be a subset of the relations at tg. Incorporating the data at time t; will
add some new relations. This will give rise to the set of relations ¥**(t,).
Now one applies transitivity at this point to obtain the set ¥(¢,), and the
set of relations is ready to project into the future one time step again.
Transitivity is not applied following the velocity rules because it provides

no new relations.

Qualitative Approach for Recovering Relative Depths 14
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velocities
iy >
data

velocit
rules ’ \{/* dote
. - ¥ "

t-1 » ¥ t te t

* transitivity
transitivity /) >

Figure 7: The collections of relations (¥ system)

When an operation derives an order, that order is labelled with the
operation. There may be several relations between a given pair of segments.
That is, each relation has an ordering (i.e., two segments) and a label. For

the segment pair, A and B, we may have, e.g.,

order label
A < 2B 5 rlel
24 < ZB ; data

As long as the data are consistent and correct, these inferences will iter-
atively build a consistent partial order on the segments which is as complete
as is possible for these rules at the current time.

2.2.1 Inconsistencies

What happens when a datum is incorrect? In that case we will have an

inconsistent set of relations. This inconsistency is signalled by a cycle in the

15 Qualitative Approach for Recovering Relative Depths
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directed graph giving the depth ordering. For example, suppose we have the
relation: z4 < 2P :rule 1 for the graph in ¥*(¢t). We then read the datum

B < A. The graph will then contains the cycle 24 = 25,

Because we have labels on relations, we know what gave rise to the
inconsistency. For the above example we know that, because there is a
cycle, the datum B < A is wrong, or the rule 1 applications was wrong
or both. Conceivably, we could trace the cause of the inconsistency back
further into the past. For the above example, if the rule 1 application at time

t — 1 was wrong then either the v was wrong, vB

was wrong, the relation
24 < 2B at time t — 1 was wrong, or any subset of these three was wrong.
For this one inconsistency involving only two objects and two relations we
have already fingered as possible culprits four attributes or relations going
back only one time step. Indeed, if we kept only a slightly more complete
audit trail the relation z4 < 2B at time t — 1 could be further tracked down.

This gives rise to even more possibilities of the source of inconsistency even

more remotely in time.

We are not doing this for a number of reasons. The most impértant of
these is than in a dynamic scene understanding system, one does not have
the resources to spend a lot of time and energy resolving past conflict; data
are continually arriving, and it is better to have the current (and future)
interpretations be correct than those of the past. Secondly, many culprits
are fingered for each inconsistency. This is primarily because transitivity in
this case is too general, it suffers from the same flaws as do weak methods

in Al Because of the large numbers of dubious relations, there is a lot of
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overhead. The inconsistencies cannot be resolved or reduced from the infor-
mation available to the system (unlike e.g., story understanding systems).
For a third reason, resolution is possible only in the future when more data
is available — there is no resolution possible in the past (where the inconsis-
tency arose). Fourth is that we rely on the fact that there are a lot of data.
Even though some are wrong, most will be right; we do not want to devote
much effort to inconsistency resolution because we may expect that future
data will set things right. There is one important consequence of this for
the implementation: we do not keep an extensive audit trail. We label each

arc with only the rule that most recently derived it.

2.2.2 Taking advantage of redundancy

So we do not make any attempt to undo any bad effects from possible bad
data in the past. We want the correct data to eventually outweigh any
incorrect inferences. There are a number of options on how to go about

doing this. Essentially there are two questions:

1. how to propagate, to the next time step a relation which has a con-

tradiction,

2. how to incorporate a contradicting pair of relations into object histo-

ries.

We deal with this difficulty by taking the position that one must trust the
current data at the current time. Any inferences from that data, especially

into the future may be suspect, but the data themselves are assumed to

17 Qualitative Approach for Recovering Relative Depths
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be correct for the time now. We could take the position that any relation
which contradicts data will be deleted immediately, and is not allowed to
propagate into the future. But we still have the problem of contradictory

relations which do not have data on either of the labels.

We are drawn to the use of a certainty factor for each relation in order
to accomodate the possibility of occasionally invalid data. The certainty of
data relations will be highest. As inferences are derived, the certainty factor

of those relations will decrease.

There are a number of technical difficulties involved in dealing with cer-
tainty factors and getting them to be rigorously correct. We avoid these
by relying on the fact of large amounts of mostly right data. To rigorously
derive a calculus of certainty factors, it is necessary to have a sufficiently
deep understanding of the nature of the domain. Such an understanding
includes the nature of the data, noise, and a priori probability values of the
data. Generally restrictive independence or correlations assumptions are re-
quired. In the spirit of qualitative processing, we wish to avoid making such
stringent assumptions until necessary. In this system we are attempting a
qualitative approach in which we know there is noise, though we don’t know

its precise precise properties.

Because of the fortunate choice of using dynamic scenes as data, however,
we can use the fact that the data will be mostly redundant. Thus even
though rigorous derivations for certainties have been done (e.g., [24]), and
may be applicable, we are not currently investigating that direction. We just

want certainty factors to decrease with time and with transitive “distance”
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from data. There are a number of choices on how to combine certainty
factors when making inferences. We are currently experimenting with this.

We deal heuristically with the problem of which of two contradictory
relations to propagate. Relations which are contradictory are not permit-
ted to activate the transitive rule. All other relations may activate both
transitive and velocity rules. We put this restriction on transitive-derived
contradictory rules for computational reasons, because, as mentioned ear-
lier, transitivity is too general. Many relations are derived using transitivity,
and when one of the links is suspect, all links derived from it are suspect.
Inferences whose certainties are decreasing to zero are deleted after a fixed
temporal interval.

There is no normalizing of confidences necessary because aa confidence
on a particular relation can only decrease. A confidence starts at 1.0 for

data relations and decays with each temporally or spatially based inference.

3 Chronologies

3.1 Purpose and use of chronologies

The storage and use of velocities and positions over time is required. It is
not enough to give a simple initial state and equation of motion because
most motions are not describable with simple dynamic equations (consider
hierarchical or non-rigid motions). Such representations also do not incorpo-
rate changes in motion descriptions easily; also, other interesting temporal
characteristics are not included in a natural fashion. Early works in com-

puter vision did not keep chronologies. Instead, in [2] for example, they

19 Qualitative Approach for Recovering Relative Depths
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kept a model of the scene for one time instant only, and used that to predict
the model for the next frame. This implicitly incorporates the initial state
description. Robot planning frequently requires the description of several
actions over an extended period of time. These are generally inspired from

the approach of describing the state of the world and robot at each time

instant ([10]).

Tsotsos [30] made extensive use of chronologies. These were time-ordered
positions of points. They were used to choose among hypotheses for high
level motion descriptions (e.g. expand, sway). His system chose the best hy-
pothesis by examining the time-course of confidences of the possible schemas.
This example exemplifies a major use of chronologies: to disambiguate local
motions into more global, longer term motion descriptions. Other uses of
chronologies are to be able to predict future positions and circumstances,
to identify interesting motions, and to localize events in the motions. In
addition to obtaining long term motion descriptions, a history of events,
motions, and relationships between object parts, is useful. Such a history
is useful on its own merits, as well as for deriving higher level descriptions.
That is, one may be able to describe oscillatory motion as such, rather than

as a repeating sequence of position and velocity.

Chronologies are not really models, however, because they provide nei-
ther a simplified representation for the data, nor an understanding of rela-
tionships. They provide a description. Chronologies also provide a repre-
sentation in which noise tolerance, occlusion and integration of data in a

temporal fashion can be supported, especially under the control of tempo-
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rally dependent operation.
3.2 Representational issue—indexing

In building a chronology of depth-ordered relations among surface patches
for use, either as a descriptive device, or as an intermediate data structure
for further processing, there are two ways of indexing.

The first is to organize the relations temporally. In dynamic scene anal-
ysis the data are arriving in a time-ordered fashion, e.g., in frame i, there
is some set ¥(7) of relations, in frame ¢ 4+ 1 some other set ¥(i + 1). The
chronology of relations when temporally indexed has the same appearance
as the data. In this case it is easy to see what is happening at a particular

time instant, because time is the index into list of relations, e.g.,
time relations
1 (24 < 2P) (24 < 2P)
2 (24 < 2B) (24 < ZP)
3 (24 < 2B) (24 < D)
4 (24 < 2B) (2B < 2€) (4 < 2©)

We see in one indexing step which relations exist at t=3. Given the way
the velocity rules are formulated, it is also easy to make predictions into
the next time step. For example, if the motions in depth of z4, 28, 2C are
negligible, then at time 4 we can make the prediction that at time 5, the
following relations will hold: (24 < 2B),(2B < 2°),(z4 < 2°).

The second indexing method is to organize by relation. For example:
relation temporal intervals
A <28 (1, now)
4 <2 (4, now)
A <P (1,3
B <20 (4, now)
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If relations persist, or are repetitious, then it saves on space to index
by relations rather than by time. This representation trades off relationship
storage for temporal storage space advantageously when relations are long-
lived or recur frequently. To determine at a particular time instant which
relations are active requires inspection of a lot of data. The time course
of relations is easier to access. Event marking makes deriving an interval-
based description easy. And this method of indexing is better for dealing
with noise removal, occlusion and integration over time.

L]

3.3 History and world model of depths

Despite the fact that dynamic vision has a lot of data available, thanks to
its rampant redundancy [33], it is both more efficient as well as satisfying to
keep histories of relations which are indexed by surface. The fact remains,
however, that in order to make derivations (or predictions) using the veloc-
ity rules and to be able to make a computationally fast statement about the
relative depths at time now, we keep the current list of relations, though re-
dundant with histories. That is, for now we have a “temporally indexed” set
of relations. For now as well as all the past we have object-indexed relations.
This means that if relative depths for any past time is desired, though the
information is calculable (indeed, was calculated, then discarded), from the
histories, it is not immediate. Rather, the system will have to step through
the histories, essentially re-creating the world for the desired time. There
are certain similarities with envisioning [9]. For now we can get an ordered

relative depth map by doing a straight-forward topological sort [16].
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4 Experiments

4.1 Notational comments

Relations have attached labels and confidences. A < B is used to describe
the depth ordering z4 < 2B. It is also used to describe the occlusion rela-
tionship A occludes B. This is for the sake of convenience. Confidences are
given as ¢f : ¢ where z is some number, 0 < z < 1.0. Thus the expression

A < B;cf : .82 means the depth order 24 < zB, with confidence .82.

4.2 Restrictions on relations and confidences

The local temporal inferencing system was implemented as described in a
previous section. We made a few adjustments, for pruning purpose, to the

inferencing procedure.

e As mentioned earlier, relations which were contradictory, e.g. A < B
and B < A, were not permitted to participate in any transitivity in-
ferences. This is because the only result from applying transitivity
on contradictory relations is many more contradictory relations. Con-
tradictory relations are allowed to propagate into the future with the

velocity rules.

o Only relations derived from transitivity which had a larger or equal
confidence factors than other relations already present (between the
same nodes) were posted. For example, suppose we have the relation
A < B;ef :.70, then we derive A < B;cf : .35 from transitivity. That

new relation is ignored.
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o Data relations are taken with confidence 1.0 (indicated as c¢f : 1.0),
and other relations already present between the same nodes as the
data relation were deleted. That is, if we have A < B;rulel;cf : .9,
then we read the datum A < B, the previous rule 1 edge is deleted,

only the data edge remains.

Recall that the numerical value of confidences count only in how they
contribute to a decay in order to choose between inconsistent relations and
delete spurious one. We did not perform theoretically rigorous derivations of
confidence factors. Confidences propagated with velocity rules have a “time-
decay” built in. That is, for A < B;cf : z at time fo, with appropriate
velocities, then we can derive A < B;cf : z', for time t;, where 2’ < z.
Confidence factors are combined for transitivity rules by taking the min of
all the relations involved, then applying a decay factor (called a “spatial

decay”) to the resulting number.

4.3 A sequence of data

We present the results of an experiment in the series of figures 8 - 13 ). The
input is echoed in the “input-list” window. The “active-relations” window
contains a list of edges with the label and the confidence.

In figure 8 the data is only the three v motions of the objects A, B, and
C. In figure 9, the data are A < C and B < A, the transitive closure is
performed which derives B < C. Data relations have confidences of 1.0.
Transitive relations, labelled tc, are decayed.

In figure 10, the same three relations remain, because the velocity rule
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rule 1 infer them. The confidences have all decreased because of the “tem-
poral decay” on confidences. Notice the confidence for the relation B < C,
the relation originally derived through transitivity, is less than that of the
other two relations originally derived from data.

In figure 11, we have the new datum D < A; note the new relation has
confidence 1.0. In addition, we have derived through transitivity the new
relation D < C. In this figure notice that B < C actually has two edges.
One is a velocity rule edge with confidence 0.6, derived from previous B < C
edge. The other is a transitivity edge derived from the edges you see present,
B < A;cf : 08 and A < C;cf : 0.8. This did not happen in figure 10 at
time 8 because of the nature of the spatial and temporal decay factors. For
this experiment, the spatial decay is larger than the temporal decay.

Figure 12 has the contradictory relation A < D just read in. In figure 13,
only the maximum relation of the contradictory relations is printed out. The
old A < D because of rule 1 is not drawn, though it will be propagated into
the future. There are other ways of choosing a set of relations without cycles..
For example one may add up the confidences on A < B relations and on

B < A relations, then choose the maximum of the two.

5 Conclusion, consequences and next steps

In this paper we have described a dynamic scene analysis system which
uses qualitative information, available with current computer vision abilities,
to calculate relative depths between surfaces. The qualitative information

required are motion toward or away from observer and occluder-occludee
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ordering. The system derives further relations from the data. Errors and
inconsistencies are tolerated by requiring confidence factors to decay on each
inference step. We have also described in this paper our approach to repre-
senting histories of such qualitative values.

This research has opened a number of questions. Among the more im-
portant is the problem of using such qualitative calculations as control for
other computer vision processes, or as intial estimations for those iterative
algorithms requiring them. We see this qualitative assessment as capable
of providing a focus of attention when resources are limited and for making
real-time dynamic scene analysis possible. The integration of qualitative

procedures with numerical ones is an interesting problem.
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