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ABSTRACT

In this thesis the following problems are solved: the homogeneous Laplace
equation, with boundary conditions given on a radially finite wedge; the
Helmholtz equation, both homogeneous and inhomogeneous, satisfied inside a
radially infinite wedge; a half-space problem for the elastic wave equation;
several infinite space, half-space, and slab problems, with point sources, in
linear transport theory; an integral equation arising from the theory of
Mathematical Statistics; and certain generalized wave equations from quantum
field theory.

Essential use is made throughout of the Fourier and related transforms,
especially in combination with methods based on the theory of Cauchy integrals
(including the Wiener-Hopf technique), and certain, usually elementary proper-

ties of generalized functions.






I. INTRODUCTION

The elementary theory of the Fourier transformation, depending as it does
upon translation invariance, is not obviously applicable to problems involving
boundaries. This report, in which a number of boundary value problems from var-
ious areas of Mathematical Physics are solved, illustrates several of the means
by which the theory can be applied to such problems.

Specifically, we obtain by the Fourier and related transforms the solutions
to: wedge problems for the Laplace and Helmholtz equations (Section II); a
half-space problem for the elastic wave equation (Section III); several infinite-
space, half-space, and slab problems, with point sources, in linear transport
theory (Section IV); an integral equation arising from the theory of Mathemati-
cal Statistics (Section V); and certain generalized wave equations from quantum
field theory (Section VI).

The specific technique used to solve each problem is briefly discussed st
the beginning of the appropriate section. Here, it is convenient to summarize
the notation and basic mathematical tools which will be generally relevant be-

low.

The Fourier transform of f(x) will be denoted by (k) and defined by

£(x)dx (1)

= f(x) = é]-;_f: e % T yax

We will often have occasion to use a conventional decomposition of ;(k):



F(x) = T, (k) + T (k) (2)
700 = F e snax 5 F(0) = ] ™ s(a)ax

If f(x) has at most polynomial growth at infinity, we have the important fact

that

= . L 'upper
f (k 1yt the ( hal -
+( ) is analytic in the {lower} alf k-plane

~

The f+(k) may have singularities on the real axis; for example, if

f(x) =1 -0<x<ow

then

£ (k) = = (3)
where the infinitesimal imaginary part specifies the interpretation of the pole

in the usual way. Alternatively, we may consider equation (%) as defining the

generalized function

1
k+io

= Pil ins(k) (4)

where P denotes "principal value."

The above remarks can easily be made rigorous by requiring f(x) to be a

(1)

generalized function in the space S'of Gel'fand. Then E(k) is also in §'

and the %+(k) always exist. On the occasions when we must assume f£(x) to be

in a different generalized function space, we will draw attention to the fact,

although generally such matters will not be of crucial interest.

Whenever %(k) = o(k ) for k ~» we can easily deduce the useful formulae



1 fﬂ?(k')dk'
k'-k-io
+

(k) =+ (5)

+ — 2ni

-0
In general, subscripts will be used to denote functions which are defined
and analytic in appropriate half-planes[the functions need not be Fourier trans-
forms of any f(x)]. Superscripts, on the other hand, will denote the boundary
values along the cuts of functions which are sectionally holomorphic in the

(2)

sense of Muskhelishvili. In particular, if { is any sufficiently smooth arc

(or union of arcs) and

1 o(t")at’
o) =
el
. (2)
then for each t e¢ [, we define
* left of {
= 1im @ f t
o (t) = 1im @ (z) as z > t from the {}ight of } (6)

+
If o(t) satisfies a H&lder condition, the @ (t) can be shown to exist, and the

following useful formulae of Plemelj(a) hold:

\
- - 1 (P(t'> '
o (t) +0 (t) = — P £ L At
? (7)
+ -
o (t) -0 (t) = o(t) )
As an example, observe that equation (5) could be stated as
+ ~
Fr(k) =%f(k) (Im(x) = o) (8)
where, for Im(k) # o,
_LorRk)
F(k) - O5i _.{okl_k dk (9)



and %(k) is suitably behaved. The second Plemelj formula, applied to %(k), is

now merely the statement of (2).



II. CRASSICAL WEDGE PROBLEMS

Two planes, intersecting along and terminating at the z-axis, constitute
what we will call a wedge. In this section we solve some classical two-dimen-
sional differential equations with simple boundary conditions specified on
wedges.

In Part 1 we find that solution of Laplace's equation which attains a giv-
en, constant value on a wedge of finite "width" (width is measured in the radial
direction—see Figure l), by the Wiener-Hopf technique. It is found that, in
a space of generalized functions, an infinite set of solutions exists; of these,
only the "least singular" solution is uniquely determined by the classical
boundary conditions. The special case of the strip is also discussed in some

detail.

8= a

———— - §

r=0

0]

Figure 1. The wedge of Section IT.1.

Part 2 is concerned with the Helmholtsz equation, satisfied inside a radi-

ally infinite wedge. The particular problems considered, which already have



known solutions,( were chosen so as to clearly illustrate the main features

(5)

of our method; this involves a modification of the Fourier transformation.

1. THE IAPLACE EQUATION

We want to find 9(r,0) where, for each (r,9) not on the wedge,

2
10 ., 1 00
== r<=+-==L=9 (1)
r or  or r2 592
and
o(r,a) = o(r,-a) = P for r <1 (2)

Here the wedge subtends an angle 20, and we have conveniently assumed it to
have unit width. With the orientation indicated in Figure 1, it is clear from
symmetry that we can restrict our attention to the region 0 < © < n, and that

(assuming o # 0,n),

Cpl(r}@)g—a—(%g—’-@—) = 0on O0=0a3and @ = x (5)

For a unique solution, an additional boundary condition must be specified: the
total charge per unit length on the wedge. (Since the wedge looks asymptotically
like a line of charge, we could equivalently specify the behavior of ¢ for large
r. The fact that both @O and the charge must be given is essentially due to

the fact that the wedge extends to infinity in the z-direction.) If we define

Dlf], = Lim [f(o+e) - £(6-€)] = f(o+) - f(o-)

then the charge density, q(r), on the wedge is clearly given by



-3

Finally, we remark that with the exception of ¢ cn @ =q, 0 <r<1,

¢ and @' are continucus for all © ¢ (O,n). In particular,

o' (r,at) = ¢'(r,a0-) for r>1 (6)

Equations (2) and (6) together constitute "mixed boundary conditions" and

6
suggest use of the method of Wiener and Hopf.( )

Trhe Least Singular Scluticn

Our procedure for finding tre ¢(r,0) satisfying (1) — (6) may be summarized
in two steps:

(i) a change of variable rsu = -In r, followed by Fourier transforming with
respect to u*; solution of the resulting ordinary differential equation to ob-
tain the O-dependencs,

(ii) use of the mixed Foundary conditions to obtain a Wiener-Hop? equation
Tor the transform variable dependence; solution of the Wiener-Hopf equation and
inversion of the transformation of (i).

Step (i): the angular dependence

In terms of the variable u = -1n r, our differential equaticn (1) takes

. u . )
the form [we write (e ~,0) = 9{u,0) for convenience]

*Equivalently, we could have taken the Mellin transform with respect to r.



) )
Lo, 2, m

ou 00

with boundary conditions

o(u,0) =9 0<u<e (8)
D[@’]a =0 -=»<u<o (9)
¢'(1,0) = 0'(u,1) = 0 -»<u <o (10)
-2 J Dlo']) du = q (11)

Using the convention specified in Section I, we take the Fourier transform

of (7) to obtain

2~ .
2eln0) 2 o) 2o (12)
592

Recalling the continuity conditions discussed above, and using equation (10)

)
b4

it is a simple matter to solve (12):

cosh k©

~ cosh ko Ozecsa
o(k,0) = A(k) ' (13)
cosh k(n-90) Q<6< x
cosh k(n-q) - =
where A(k) is to be determined.
Step (ii): the Wiener-Hopf equation
With the definitions of 5i(k,©) from Section I, and equation (8), we
observe that
i@o
9, (k,0) = —— (14)



while from (9) we have

~

o' (k,ot) = ¢'(k,0-) (15)

Now note from equation (k4) that

~

a, (<) = 9! (k,0-) - §!(k,0¢)

is the transform of the charge density. Using (13) and (15) we find

sinh k(n-a)  sinh ko sinh kx
k) = kKA(k + =
(k) (k) cosh k(n-0¢) cosh ka kA (k) [cosh k(m-a)cosh kq}
(

16)

On the other hand, equation (13) implies that

~ ~

Alk) = o(k,0) = o, (k,0) + 3 _(k,a)

Substituting this into (16), and using (1L), we finally obtain the desired
Wiener-Hopf equation:

ip

Q2
—
=
S—
I

H(k) [o_(k,0) + =

where

k sinh kn
H(k) = 18
() cosh ko cosh k(mn-o) (18)

Because of their known analyticity properties (cf.,Section I), both of the
unknown functions a+ and 5 can be determined from equation (17)* by the Wiener-
Hopf technique, as follows:

Suppose we can find functions h+(k) and h (k) such that

*In deriving (17) from (7)-(11) we followed what is called, in Reference 6, Jones
Method.



10

>
(v) h+(k) is analytic and non-zero for Im(k) < 0

(c) h+(k) has at most polynomial growth at o

Then equation (17) implies that

q,. (k) ~
h e K b_(k)lio + kp_(k,0)] (19)
The function F(k) defined by
q, (k)
h, (k) Im(k) > O (20)
P(x) = kh_(k)[ip_+ k9 (k,0)] Im(k) < 0 (21)

is easily seen to be entire: it is analytic for Im(k) # 0O and, by (19), con-
tinuous across the real axis. Now assuming E+ and 5_ to be generalized func-
tions in the space S', and noting condition (c) above on the h+(k), we see that
F(k) is bcunded by a polyncmial at infinity. Hence, by the "extended" Liouville
(7)

theorem, F(k) must itself be a polynomial:

P(k) =B+ B k+ ..+ Bnkn (22)

Assuming, for the present, the Bi to be known, equations (20)—(22) provide the
desired solution to (19).

Thus, the problem reduces to finding functions h, (k) which satisfy condi-
tions (a), (b), and (c). For the H(k) of equation (18), this is not difficult.

Using known<7 representations of the hyperbolic functions, we have

-0 1 (01 1
- ik —Z S R =+ 3
ik - )F(2 ik jT)I‘(2 ik

n I(1-ik)P(1+ik)

2.1 .a -0
k r(2 - ik ﬁ)r( —)

N f

H(k) =
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Noting that I'(z) (which is nowhere zero), is analytic except for simple poles
at z = o, -1, -2, ..., we can immediately exhibit functions satisfying con-

ditions (a) and (b):

1 o 1 -0
I'= - ik =)r(= - ik —)
0, () =3 —F—T e e (25)
r(= + 1k9)I“(i + ik E:g)
2 I 2 L 1
n () = r(1+ik) x(k,0) (2)

where the x(k,x) factors are to be chosen according to condition (¢). Using

Stirling's formula we find

a (07 - 1
- — —_— — - —
1n h+(k) £:;> 1ny 1k[JT 1n — 1n ” ] 5 1n k

so that h+(k) will have exponential growth at infinity unless
04

ik = w-o. ik
(=) =

x(k,a) = (;%;) = x(k,m-a) (25)

i
This choice of y insures the proper asympotic behavior of h_(k) also. In fact,

it follows from (2%3)—(25) that

lowe

1
h, (k) ~ k 2 for K ~w in the {?ppeé} half plane (26)
We can determine the Bi’ which fix the behavior of 5 and a+ near kK = o
only by appropriately restricting the class of functions which will be consid-

ered acceptable solutions. For the present, let us require, in the "classical"

manner, that 5_(k,a) be square-integrable, i.e.,
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The ¢(u,9) which results from this requirement will be square-integrable except
for the trivial singularity unavoidably associated with equation (8) and will

4] . 1" . . (8) . N .
be the "least singular” solution in the sense of Case. Postponing discussion

of the more singular solutions, we observe that (27) implies

Bi =0 fori>0 (28)

since, from (21) we have

ig
9 (k,0) = P(k) .=
- (k-i0)%n (k) K°1°

which, with (26) and (27), gives (28). The remaining constant, Bo’ is deter-

mined from the final boundary condition, equation (11):

[+9]

= - 4)[®'(u,04) - @'(u,a_)]du = a+(0) (30)

n o

From (20), (22), and (23) we have

so that

Now it follows from (14) and (28)—(31) that

Alk) = plk,q) = —2 g (—— - =L

] +i -
2(k-io)2 h (k) 0 kt+io k-io

which equation, combined with (13), determines 5(k,9):



135

| cosh kO
~ ) 1 cosh ko 0<oe<q
?(k,0) = Qg T (k+- T k-3 ) Osh k(n-0) - (32)
Ale-io)n (k) 7 T I SBLEEA g <o
- cosh k(n-a) - -

Similarly [from (20)],

2,00 = T n (1) (33)

a, > By

where the h (k) are given by equations (23)—(25). our problem in k-space is
solved.
As is clear from (23)—(25), the right-hand sides of (32) and (33) are

meromorphic and well-behaved at infinity. Thus the inverse transform integral,

involves only an elementary computation of residues (i.e., the contour can be
closed by a semi-circle in the half-plane appropriate to the sign of u). »In
terms of the physical variable r = e_u, the results of this computation can be
given in the following form:

For O < g < T,

T 1, =« i
@ 20 = (-1)° [0+ 3) Shlk o) 1,70, "o
#(r,0) = CPo T2 g n=o n! 1 1 n-¢ cos[(n + —)7;]r
Tzt (ot 2)=—T1(n + S)r
2" o
for 0<0<a, 0<r<1 (34)

- Q {? t21ln2+1nr

0] 1

no
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! ; (-1)" cos[(n+l)©]r-n
r n=o | 2 1l Q I _ o
n!(n+1) cos[(n+l)a]F[E - ;(n+l)]?[5 - —;—(n+1)]x(tn,a)
for 0<0<n, 1<r<w (35)
. Lo x o o _a o
Here, k = -i(n+ 5) o by = i(n+l), x is given by (25) and v =5 n—+1n
I-c
T

Fora<o<x, 0<r<1, o(r,0) is clearly given by (34) with 9,a replaced

by n-9, n-a, respectively. The charge density can be computed either from (55),

or (%4) with (L). By either method, the result is, for 0 < @ < 7 and o # g,

1,7 (n + )
o = 1)+ 2 k(e ,0)r X
a(r) = o L = . ——
arls + (o + 2)(75)]
1, =«
L= (n + _)—"—
) Mo+ 2 —1Ix(q_,a)r*" = 2'x- -
(n-a)F[} + (n + é)(;%é)]

The Strip

As we have implied, the cases @ = 0, a = n, and, for q(r), o= —, are

nela

somewhat exceptional [this is clear from equation (32); note that for all three
of these angles, the wedge reduces to a strip]. Nonetheless, the inverse trans-
form can be found in essentially the same way as for the unexceptional . We

only give the result for o = O, which is typical.

e 3 D™ rn v sge)

0 n=o n! 1,2 3/2 cos[(n + é)(ﬂ-@)]rn
' ( o)

o(r,0) = ¢
n +
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fora=0<0<m 0<r<1 (37)

% (-l)n cos[(nt1)o]r 0

1 1
N Cpo - [n(2 In2+Inr)+ r n=o n! 1/2 1 (38)
T (- = -n)
2
fora=0<0<n 1<r<o
Q 1
q(r) == 0<r<i1 (39)
7 r1/2(l_r)1/2
where we have used the fact that
. RN n )
R i RN PRV (40)
n=o n.

wLm+§n

Note that the factor of 2 in equation (5) is erroneous in the case a = 0 since
the wedge is "closed," the integral of (5) automatically includes the charge
on both wedge-planes. We have accounted for this in (37)-(38) and it is easily

checked that (39) indeed satisfies

1
[oalr)ar = q (a=0) (41)

The closed form of (39) suggests that we might have solved the strip prob-
lem in a much simpler way. That this is indeed the case can be seen in the

following digression.

The equations

1
®»(r,0) = (constant) fo q(r')1n[?-7'|ar’ (ko)
and

kel _
ar'@ =q=0"70 (43)
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imply

O(z) = - I q(rj) dr'’ (45)

We note that (3)

(i) ©(z) is analytic everywhere except on the line (0,1).
. 1
(ii) o(z) ~ = for z ~ «
7

+
(iii) @7(r) exists [cf. equation (I.6)] for 0 < r < 1. Near the endpoints,

constant

o(z) <
(z-c)P

where O0< B < landc = 0or 1.

(iv) By the Plemelj formulae and equation (L4),

+ -
®(r)+¢ (r)=0 O0<r<1.
The task of finding a ®(z) which satisfies (i)—(iv) constitutes a "Hilbert

n(3)

Problem. Since the equation of statement (iv) is in this case particularly
simple, the general method for sclving such problems (which mettod we will use

in later sections) is not needed here; it suffices to observe that the function
P(z) Vz(1-z), where the br~~~1 cut extends along the real axis from O to 1 and

P(z) is any function continuous across this cut, satisfies (iv). By (i) and

(iii), P(z) can have no singularities in the finite plane except possibly sim-

ple poles at 0 and 1, i.e.,
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where Q(z) is an entire function. By (ii), Q(z) = constant, so we have

constant
(z) = (46)
1 1
z /2(1_2) /2
and, again using the Plemelj formulae,
constant
a(r) = (%7)

r1/2(l_r)1/2

as in equation (39).
We remark that a generalization of this method can be effectively applied
to the case of several strips aligned, say, along the real axis, with varying,

given potentials on each strip.

Behavior of q(r) Near the Endpoints

When the wedge is not a strip, we cannot express q(r) in closed form. How-
ever, it is easy to obtain such expressions for qlr) valid near the extremities
of the wedge.

From equation (36) it is clear that near the vertex,

T n
] -1
200 -
a(r) ~ (constant) Max|r , r2(jT )
forr~0, 0<a< = (48)
For r ~ 1 (near the edge), we use a well known(g) Tauberian theorem: for

-1 < <0,
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[T,() ~ k17 for k ~w] D[e(u) ~ v for u ~ 0] (49)

Applying this to a+(k), by (33) and (26) we have

-1
g(u) ~u /2 for u~0
i.e.,
-1/2
a(r) ~ (-10 1)
constant)
~ JE:ET___—_ forr~1 (50)

So that near the edge, the charge distribution of the wedge is asymptotic to

that of the strip, as we would expect.

More Singular Solutions

If we relax the requirement of equation (27), and thus allow F(k) to be
a polynomial of degree greater than zero, the resulting 5(k,®) no longer
possesses an inverse Fourier transform in the ordinary, classical sense. How-
ever, we may still obtain useful solutions, provided we allow them to be gen-
eralized functions in the sense of Gel’fand.(l)

Let us restrict our attention to the charge distribution. From (20) and

(22) we have

1 7 -iku n
= — +Bk+...+ Bk
alu) =2~ [ e (B, +B Bk Th (k)dk (51)

Of course the integral does not exist, but in the generalized function space S,
which we now explicitly use, the inverse Fourier transform always exists, and

we have in general
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_l ~ d _l ~
=4i—F
F [kf] = 1 ™ [£]

-] ~ ~
where F "[f] denotes the inverse Fourier transform of f(k). Thus

-1 n
a{u) = F [(BO + Blk .4 Bnk )h+(k)]
= [B + B % t..+ B (1 ;i%)n]qo(u) (52)

where qo(u) is the least singular charge distribution obtained above (except
Q . e . .

that the constant > is mo longer significant); qo(u) is a regular generalized

function in that all its singularities are integrable. Equation (52) is typ-

(8)

ical: the general solution is a linear combination of the least singular
solution and its derivatives.

For clarity we specialize to the case of the strip (o = 0) and rewrite

(52) in terms of r:

A
o) - iy ST A R D)
r(l-r rlr(l-r 3 r dr r(l-r
+ (53)

Two remarks are in order:
(i) The above q(r) is not a regular generalized function, since the sing-
ularity at r = 1 is not integrable. Thus the derivatives with respect to r

must be interpreted in the usual generalized function sense; e.g.,

dq

[ x5 wnar = ()(x), x¥(x)) = ~(q_,[x¥]") (54)

where V(r) is one of an appropriately restricted class of test functions.

(ii) The boundary conditions used to determine the least singular solution
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are not sufficient—nor even applicable, since the integral of (5) no longer
exists—to determine the more general solution of equation (53). Instead, some
sort of "edge conditions" would seem to be called for.

This concludes our discussion of Laplace's equation.

2. THE HELMHOLTZ EQUATION

The Fourier transform, of course, owes its usefulness to the relation

[eikx] - ik [eikX]

4
dx

The observation that

. . 2 . .
r2{l 9 . 9 R2} [elRTSlnhT] _9 [elmr51nhT] (1)
r or = Or 32

suggests(5) a new transform; this will simplify the Helmholtz operator in polar
coordinates, much as the Fourier transform simplifies the differential operator
in Cartesian coordinates.

For ¢(r,0), defined for all r ¢ [-», o] (and sufficiently well-behaved ),

we define the "r-transform," ¥(7,0), of ¢(r,0), by

Qo ikrsinh«r

¥(7,0) = cosh 7 [ dr ¢(r,0)e (2)
The inverse transform is given by
1 ® ~ikrsinhT
o(r,0) = = [ ar ¥(r,0)e (3)

as can easily be seen by making the substitution k = k sinh T: we see that

~

¥(1,0) is simply cosh T+ [@(ksinhT,0)]

Our purpose here is to examine the properties and usefulness of this trans-
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formation by means of a few examples.

The Homogeneous Helmholtz Equation Inside a Wedge

We find ¢(r,0) such that

2
19 ) 1 9 2
{r o or ¥ > _o°F Jo(r,0) = 0 (4)
r 30
for 0K 0 KL a, 0<r<ow
and
o(r,0) = o(r,a) = 0 (0< a< 2x) for 0< r < o (5)

(Note that here the wedge is radially infinite and has a different angle and
orientation from that used in the previous problem.) We first assume (4) and
(5) to hold for all r, and formally apply the transformation (2). Using (1)

we find that

62 2
(S5 + =50 w(r,0) = 0 (6)
oT 99
¥(7,0) = ¥(r,a) = 0 (7)
Clearly
nn ngu
o T T o T nm
¥(7,0) = [ Ae + Be sin o © n=1,2,... (8)

We will see [cf., equation (11)] that both terms in (8) give the same result.

Hence we choose B = 0 and apply the inverse transform (3) to obtain

nmn

nw % a i ~-ikrsinhT
®(r,0) = A sin o © [ dr e e
—00

With the change of variable 1 —> 1 + i g,
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m—ig nmn (41 n)
- = (Tti =
ni o 2 =-Krcoshr
®»(r,0) = A sin o ) fﬂe e dt (10)
—o0=i—
. . ) . -krcoshT .
In view of the rapidly decreasing behavicr of e for large [T’, it is

clear from Cauchy's theorem that the integration path in (10) is equivalent to

one along the real axis. That is

ny
. nn © T g T -KkrcoshT
®(r,0) = (constant) sin > ) &)e e ar (11)

10
In this form, we recognize< ) the integral and conclude

o(r,0) = (constant) sin %f oK (kr) n=1,2,... (12)

a
which 1s the familiar solution obtained by separation of variables.

This simple example demonstrates the essential features of the T-trans-
form:

(i) It transforms the Helmholtz operator in polar coordinates into the ILa-
place operator in Cartesian coordinates [equation (6)].

(ii) Tt transforms a wedge into a strip [equation (7)].

(iii) It is not one-one; this is clear from equation (11). 1In general we
can say that whenever the transformed function ¥ is such that the manipulationsg
of equations (10) and (11) are permissible, then the odd part of ¥ will have

vanishing inverse transform (since cosh T is even).

The Inhomogeneous Equation
In the above example no difficulties associated with the unphysical domain

of r occurred. The necessity of allowing r to be negative does, however, re-
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quire us to exercise some care in dealing with inhomogeneous problems.

this, consider the equation

Multiplying by r2 and taking the transform we find

2 2
© . inh
ELE + §—§ V(7,0) = cosh 1 [ ar r2 q(?)elKrSln T

or 09 -
where we have implicitly assumed (13) to hold for all r €[-w,0]. The
icance of this assumption can be seen in the case of a point source.

this source at (x = r, V= 0) for convenience, we have

The point is that

In fact

a(7) = q d(r cos O—ro)6(r sin )

1 1
- - [ s F o——
q 5(r cos © ro)L n 5(sin 0) Toin o]

To see

(14)

signif-

Placing

(15)

The 8(r) term evidently gives no contribution to the integral in equation (14),

(11)

while

1I~8

8(sin 0) = 8(0-nn)

N==0c0
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so that (since r > 0)

0

a(¥) = q 8(r cos @-ro) T%T ngzwa(@-nn) = ﬁi {;jim6(9-2nﬂ)6(r-ro)

+ HEWS[O-(Eml)n]ﬁ(NrOﬁ (19)

which provides the correct source function to be inserted into equation (1k).

More generally, for a point source at (xo,y ) = (ro cos 6 ,r_sin @ ), we have
o o

5(P-7 ) = ri{ oi 6(@-@0—2nn) 8(r-r )

o} N=-co0 e}
o}

+ n__fi_ma[g-eo-(zml)n] ‘6(r+ro)} (20)

If we restrict out attention to the region 0 < 0 < 2n, this reduces to

6(?—?0) = T_t {8(9-90) 5(r-r0) + 5(@-901 ) 6(r+ro)}

>
for 0 <, 0<0<2n (21)

With these remarks we can find the Green's function for an infinite wedge( )

This satisfies

with the boundary condition

?,(r,0) = @G(r,a) =0 (23)

Transforming these equations according to (2), and using equations (14) and (21),

we obtain
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VEWG(T,Q) = £(r) 5(@-@0) + £(-7) a(e-oo-n) 0<o<aqa (2k)

¥e(r,0) = Vo(m,@) =0 0<a<ox

where (choosing q = n k for convenience)

ikr_sinh 7
f(t) = n k r_cosh T e °

d inrosinh T

ar (25)

-in

and we have assumed @O < m, the modification for @o > 7t being trivial [equation
(21)].
Our task is to solve the equations (24); the solution to (22)—(23) will

then be given by (3). The solution to (24) can clearly be written in the form

WG(T,Q;QO) = Wl(T,G;OO) + Wl(-T,O;90+n) (26)

where wl satisfies

ngl(T,@) = £(1) 5(@-@0) 0<e<a

V. (1,0) = v (7,0) = 0 (27)

1 1

We find Wl by first determining the Green's function G satisfying
VG(r,05710") = 8(r-1') 5(6-0") (28)

G(7,9;7.0") = G(T,a;7}0') = 0 (29)

By Green's identity we have
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oy
. . N . N 1 p
| af 6(@-90)d7d9-w1(7;@‘) = [ (G al %%)df =0 (30)

Vv 7 r
where V is the strip 0 < © < ¢ and T its boundary (G and wl must of course be
suitably behaved for large 7). Renaming variables we have [since G(TO,QO;T,@)
- ol oir o

G(T,@,Tovo)}

(o]

vy (r,0) = J Glr,e3m ,0 ) £(r )ar (31)

so that the problem is sclved if we can find a G satisfying (28) and (29). But
this is elementary: G is clearly the electrostatic potential due to a point
charge between parallel conducting plates, and can be constructed in a well-

known way from an infinite sequence of "image" charges:

on G(T,@;TO,@O) = Re {F(z;zo)} (32)
where
z=T+ 10, z =71 + i0
o o) o)
and
o z2 -2 + 1i2no
F<Z’Zo) - ng;wLn z - 7z + i2nu (35)

Each term in (33) represents of course the field due to a point charge; the

(7)

charges are positioned so as to satisfy (29). It is not hard to show that
z -2
i Zo — L1 i2no
F(z;z ) = 1n — || PR (3k)
0 z -7 0
0 n#o 1+




27

= 1n (35)

Hence

sinh — (z-zo)

o)

cosh g (T—To)-cos g (9—@0)

= o, » » (37)
cosh = (71-7 )-cos = (6+0 )
(0 o] (04 0

Substituting this expression into (31), and, as suggested by equation (25),

integrating by parts, we obtain

T
inh = (T-T
f>einrosinhTo S (v o)
—00

1
v (7,0) = =
1 a1 cosh = (1-7 )-cos = (-0 )

a o] (6 0

sinh = (t-7 )
o 0

- ar (38>

cosh = (T-7 )-cos Z (eto ) ©
(04 0 (07 0

or, with the change of variable ¢ = i(T—TO),

R
. B X
1 -ie ikr sinh(r+i) sin o ¢
V. (1,0) == [ e
1 21 Joo

T 7
— - —_— 9_9
cos — t-cos 5 ( o)

sin g 13
- de (39)

cos < t-cos = (e+0 )
(0 (04 e}

where the integration path must be understood as infinitesimally displaced to

the right of the imaginary axis. In the corresponding expression for wl(-T,@;
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eo+n), it is convenient to make the further substitution £+ -¢ +n, yielding

1 detw 4y sinh(r+it)
-T.0:0 + = — o
Wl( TaT5E, ™) 21 -ik+x

sin g (&-7) sin g (e-7)
- de (L40)

T x x 7
= ) I (g-0 - -7 )= - (e+0 +
cos (&-7)-cos z ( A 1)  cos 5 (t-n)-cos . ( 5 1)

Here, the integration path is such that Re (&) is infinitesimally less than x.
Equations (39) and (40) provide, with (26), the solution to the problem
(24) in T-space. Our prescription is to substitute this solution into (3); i.e.,

the Green's function for the wedge is

1 2 -ikrsinhT
CPG(T)Q) = E _4 Hfl('l‘,@;@o) + Wl(—T,@;90+T[)]e art (hl)
Now for & €(0,n), it can be shown (cf., Appendix) that
0 4 oms . . s
f e‘lnr51nhTelnros1nh(T 1§)dT - oK (x| 7T | ) (42)
<00 o] o'E
where
—p ~—y 2] c l
- = + -
|7 rolg Jr r 2rrocos £ (43)

Hence, combining equations (39)—(41), and inverting orders of integration, we

finally obtain

T b4
. sin — ¢ sin — ¢
1 ~ix a 0
%lr,0) =55 . Ko(Klr'rolg) n il ag

7 T o
= E- — (B-9 8§ — E-cos — (O+©
cos = E-cos 5 ( o) cos E-cos 5 ( o)



7
. sin = (&-n)
1 letx —
" ETT i +nKo(K|?:ro,§) Tt 2 7
i -i%
. cos = (&-m)-cos — (0-9 -x)
07 (07 o]
Lo,
sin 2 (&-n)

- de (4k)

T T
— - - -— 9+9 +
cos = (t-1t)-cos 5 ( 5 1)

Equation (4k) provides a solution to the problem for arbitrary wedge angle
a € [O,En]. Its form is such that it is easily checked in the particular case
o= g, n=1,2,..., since for such o the two expressions in braces in (4h) are

identical. Thus

1 sin g 3
9.(r,0) = = [ K (x[F-7 | )
G el o ot cos = t-cos = (-0 )
x (04 o}
.nﬂg
sin —
- & ae
7T 7
cos = E-cos — (0+6 )
a a o]
7T
for ~=mn=1,2,... (45)

where I' is the path indicated in Figure 2. It is easily seen that I' can be de-
formed into the path I'' as shown; thus we can evaluate the integral in (45) by
residues. For definiteness, say o = n/3. Then the relevant poles of the first

term in braces occur at

21 21
- - = O- + = = - - + =
£, =¢© S £, 90 3 Eg (o 90) 3
and the residue at € (n=o0,1,2) is Ko(mlr—r | ); similarly for the second term

Ogn
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(with its minus sign). Thus equation (45) gives the well-known solution by

images.

& - Plane

Figure 2. Integration paths for Section II.2.

Note that since the homogeneous equation, (4), possesses (an infinite set
of ) nontrivial solutions, we cannot expect the solution to (22) obtained above
to be unique. In particular, for o < n, the inverse T-transform of Wl(T,Q), by
itself, is a solution; this is already clear from equation (24). We do not
pursue this point, but merely emphasize the fact that for o > 1, and for other
problems (such as the infinite space Green's function—see the Appendix ), the

inclusion of sources at negative r is essential.



III. A HALF-SPACE GREEN'S FUNCTION FOR ELASTIC WAVES

A method for computing the elastic radiation from a small source in the
earth's interior has been presented by Case and Colwell.(l5) This method,
which assumes fhe earth to be an infinite medium, could be modified to include
effects due to the earth's surface simply by replacing the (known) infinite
space Green's function which is used, by an appropriate half-space Green's
function. It is the purpose of this section to derive a representation for the
latter function.

Our method is straightforward. We first formulate the problem in terms of
an integral equation (following Case and Colwell), and then solve the integral
equation by Fourier transforms. The only complication lies in the fact that,
once we choose a definite orientation for our half-space, the matrices which
occur are not teusors, i.e., not rotation invariant. Hence tensor theory argu-
ments, with the computational simplifications they often afford, are not avail-
able to us.

This section will consistently use the summation convention

and, augmenting the definitions of Section I, the notations

-
% = > % !
1 1
g = (al)ag) Si = (g)a5)

51
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We also define two- and three-dimensional Fourier transforms, by trivial exten-

sion of (I.1):

1. INTEGRAL FORMULATION

We consider first a general region V of r-space, and seek the solution

r,r eV
NMO
with the boundary condition
D = 2
"y ikm(~) mg(gs’£b) 0 (2)
r e ov
~g

Here n, is (the ith component of ) the inward normal to the region V and
= + +
Dol &) 5 25,9, *uley 3 ®en®s) (3)

The infinite space Green's function Gij satisfies (1) with V equal to all

space:
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We now proceed in a standard way to multiply (L) by fij’ (1) by G, , and sub-

i
tract. Using the easily verified identity,

=3, [¢ 1 (5)

D, £ - T°f D f . -f D
Gilak ikm mj lJak 1km m{ kl ikm mj kJ ikaml

we find

G ,(xr') ® JS(;, -x,) - flJ( ) B Bz o (¢, (z,£") o, () fmj(,g,}:o)
- fkj(};,}:o) Divn(Q ()] =0 (6)

We now integrate (6) over V, apply the divergence theorem, and note equation

(2). Upon renaming variables (and indices), and using the facts that

and

1 - - 1 1 8
e ) Gs(zx) D, (") Gjm(}; 59, (8)

we obtain the desired equation
£i5mks) = 6 (zz ) + 8;5(pz.) (9)

where

. L) = év a° ron (r') 03(‘,; £ Dy, (8 G . (x,x) (10)

Here, of course
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Doyn(Q) G (xlsr) = D, (2) 6 .(r'x) ]1"'13 L€ (11)

A method for determining fij(ffzo) is clear from equation (9). Indeed,
our problem clearly reduces to finding fzjﬁgéhgb); and, by taking the limit of
(9) as r » L, we obtain an integral equation which may be solved for fz.(gf,r ).
~ J ~s’~o

Specializing to the case in which V is the half-space x > 0, we denote the

half-space Green's function by gij:

(12)

A certain amount of care is required in taking the limit x3 +~ 0 of (12), since

the integrand is singular on &V. In fact, if we define

L (B2) =Dy () 6 (rr)) (13)

Im ~ 1

then it easily follows from the differential equation for Gij’ (4), that
%li(?,o+;F',o) - Z}H(r,o-;?',o) = - 6“6(F -TF') (1k)

Thus, in close analogy to (I.k4), we define

NINER LD

s 210 (F0nT,0) + 3, (F,057,0)] (15)

Now we let Xy > 0 in (12). Using (14) and (15), the result may be written

as

2843 %o ij 7o i3 %
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where

O v d — y = . O ar =
Sij(r”l‘:o) = [ aF glj(r ;Oa,\l;'O) Z}li(r ,T) (17)

(12) and (16) are the basic equations by means of which our problem is to be

solved.

2. SOLUTION OF THE INTEGRAL EQUATION (16)

We define
-ik_x
-7 1l 33 -iker' Y ,
k = — dk -~ A~ k 18
Fli( :XB) o IOO 3 € € 2511("’”") ( )
. (13) .
Using the known fact that
elk'gf k. k kd,. -k
~r 1 1 1
G Bx) == 7 Ay > (19)
J oo [k - K K= -k
where
2 2
2 ' 2 ¢ ,
K =Bt o208 (20)
2 N+ 2 t W

1t requires only a straightforward computation to obtain

li
>
w
(o4

—
N
=

1
oy

Al
N

2 2 2 ]
2ria Qij KB, [k, th5 I, + 553112] + u{?(kz kt)[(kk 63kk5)

)

Il

- k )T k -8 I +(k -~ k)® T 5 B
x (kg = Bk )T, + (K, T R AL L

5 k
3 372 J 33 3

-+

k

- O

[6,.(k -8 k)I o I

350k T O3 oy T 65k65311t 'S 1t]} (21)
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where
-k x|
-7 b JZ- 5
I z(k,x ) =—=e °
o. 2
t t
-k, |x, |
T (E ) n t >
X )=+1 0
lﬂ Xy ne x5 z
t
_, T A BN
k = -
TR = e : )
{ t
-5, x| -5 [x_ |
= n I3 t 3
k = -
15( ’X5) 2 2(Rge ke )
K = K
4 t
- i 2 Rl e dxl >
Iu(k,x5) = KE ] Ke(n e - ke ) s x3 <0 (22)
) t
In (22), we have introduced the abbreviations
2 =2
=k -k 2
‘, z (23)
t t
Note that in(z,x5) is independent of x':
1w '1k5X5 iKF
Kx,) == [ dk i 7
Fplioxg) =20 [ dige e 2gy; (F"50) (2k)
Hence 1if we let
O ,= 1 =7 7
F k) = =[F k,0+) + F k,0O-
1) = 20, (00 + 7, (%,0-)] (25)

then the two-dimensional Fourier transform of (16) clearly takes the form

[cf., equation (8)]
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and we need merely find the inverse of the matrix “A”, where

S
+ k
Oy FFp ()

1

1]
N [+

lall,, )

Now it follows from (21) and (22) that

o, =7 _a(k) b(k ") .
Fli(k) 5 63£(ki - 65ik5) = 65i(kz bBlkB)

where

M, = (N + 2u)k

)+ )

A - + 2u)k
ke (™ u)Kl

)+ )

b(k) = i

whence

and we eagily find

2
1 - abk bk.k ~ak
N , abky, o abxy 2, ]

Al = —=——| abk k 1 - abk. -ak
2 172 2

1 - aﬁﬁ .

-bk -
b 1 bk2 1

Now

(30)
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and, since the two-dimensional Fourier transform of equation (12) is

(K,x.) & (¥,05r ) (3k)

A
our problem is solved [cf., equations (21) and (33)]. The function Gij occurring

in (33) and (3L4) is, of course, obtained from (19):

2
-ik_x_ ik. k. k. k8, . - k.k,
a(gx'r)=—l'oodke 5 e ~%o td o, _ti] £
s\ B A s L Lo
iJ 3'~0 2% 3 a?p k2 ) k2 k2 _ k2
o 1 t |
iker -k lx -X
= = 2 O{Pf Kf) I1 (I{,’XB) ) k§61 - JCBI»:5 3} (35)
wp J J t
Here, Iij = ”IHiJ_, with
[k & k_k ik <2
11 12 1 ax5
_ . 3 =
1|l = ko, kK ik, 3, J(kyXB) (36)
3 3 2 3
ik, —™— ik — =
1 ox 2 ox 2
L~ 3 &
)
where
-Kl’X —x05[ —Kt,X -XOBI
> 1 Kte nle
J(k,x_ )= = (37)
3 2 . (Rz i Ke)
ALY

The inverse transform with respect to k of (3L) is obviously tedious and
will not be discussed here (Ig\ij may be directly useful for certain applications;
cf., for example, Part 6 of Section IV). We merely draw attention to the fact
that there is no suggestion, in equation (34), of an "image" source at %, In
fact, it is not hard to show from the differential equations (1) and (L), that

no solution of (1) by images is possible.



IV, LINEAR TRANSPORT THEORY

1. INTRODUCTION

In this section we solve a number of simple boundary value problems asso-
ciated with the time-independent, one-speed transport equation with isotropic
scattering [equation (2.1)]. One-dimensional solutions to this equation are

(14)

already well-known ; the extension here lies in the fact that although we do
not consider boundary surfaces any more complicated than parallel planes, our
boundary conditions will be such that the full three-dimensional form of the
equation must be used. Essentially, we deal with point sources rather than plane
sources.

As in previous sections, the method used here relies on the Fourier trans-
formation. We first obtain two basic equations which are valid for any configura-
tion of boundaries and sources. The first of these, equation (2.6), gives the
Fourier traﬂsform of the angular density in terms of a certain quantity in
transform space, a§(k), where the subscript V refers to the region enclosed by
the boundary surfaces; the second equation, (2.10), can, at least for the simple
geometries considered here, be sclved for E&(k). Thus (2.6) and (2.10) provide
a general formulation by means of which the Fourier transforms of the solutions
of all the problems considered can be found.

The form of equation (2.10) obviously depends upon the particular region
V, and on the boundary and/or external source contributions. Thus for the in-

finite medium the equation is trivial; for half-space problems we must use the

Wiener-Hopf and related techniques; and for slab problems we must combine the

59
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Wiener-Hopf technique with a Fredholm-like iterative procedure.

It is not possible to express the inverse Fourier transform integrals in
closed form; in particular, the dependence of the transformed solutions on the
"transverse" transform,variables,.z, is very complicated. (Of course, by setting
‘Z = 0, we obtain the known one-dimensionai‘solutions, although, since our method
1s not the standard one, in somewhat uncon%entional form.) It is nonetheless
found possible to express various significant physical quantities in fairly
tractable form, generally by means of approximation techniques; these points
are briefly discussed at the end of the section,

We note here some notations which, in addition to those defined in Section
I, will be used in this section:

.7

1 o —ikx ~ iKer
e

Bx,8) == | Bx)ax = [ e

27 =00

f(r)ar (1.1)

is the two-dimensional Fourier transform of f(x), the latter being defined for

all r in three-dimensional space. Here
"'I_ _.7_-
k = (ky)kz) 5 = (.V;Z) (102)

andlg(g) 1s the three-dimensional transform, defined by trivial extension of
(1.1).

We will also use the function w, defined by

o) = -;i(l - 1K) (1.3)

Vad

wherela refers to the y and z components of the three-dimensional, normalized,

velocity vector, and p = §
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2 2
ﬁ:ﬁz(uy \]l-u cos cp,\}l-u sin ) (1.4)

(¢ is measured counter-clockwise from the positive y-axis). Note that
1 - ik = -tu(k - o) (1.5)

2. GENERAL FORMULATION

Let V be some (bounded or unbounded) region of three-dimensional space,

with boundary S. Our problem is to find the function ®(£J~) for‘s eV, lﬁ, =1,
which satisfies
(@Y +1) o2 =1 o(z) +az,Q) zrev
Wz, = o (z Q) L, €8, £ invard (2.1)
Here
o(x) = /] 48 o(x,0) (2.2)
while q(ggg) for r € V and @8(5852) for’gs € 8, Q inward to V, are assumed to

be given.

To express (2.1) as an integral equation, let G(r - r',0), defined for all

Lad

Vs
Iy £, satisfy

(-2v+1) 6z - z£',0 =58z -

r-x'0 H) (2.3)

r
~

Then, by the conventional argument* (2,1), and (2.3) imply

*cf,, Section IIT.



Cp(r,Q :f av' CT(I'Y - r:Q)[— p(r’) +Q(r')Q)] +Qj1€1\.d8' G(r' - I’,Q) CP(I")Q)
~ v ~ A Mg DA ~g t ~s A Tgtag
(2.1)

A
where ni 1s the inward normal to V. Note we have put the known function

@S(£S,Q) in the integrand, instead of @(rS,Q); this is justified by the easily
verified fact that
C-(£S - }f/,@ =0 forr eV, 0 outward (2.5)

Equation (2.4) holds of course only for r € V, the domain of definition of
¢(r,Q). We now extend this domain by assuming equation (2.4) to hold for all r,
so that we may take its three-dimensional Fourier transform. [Note that it is

not obvious how to extend the original differential equation (2.1) without con-

tradicting the boundary conditions.] This takes the form

A
~ 'k. 1
Mo - ) vl 8 e BRI g

Al by 1 - ikeQ TV 1-1ik.Q 1 - ik.Q i s ™
N At ~ - g S
(2.6)
Where
-~ iker'
(k) = [ avie~~ o(r') (2.7)
Vv
In deriving (2.6), we used the representation
-ike(r-r")
l 5 e N A
- ! =
&(r - x50 5fdk T (2.8)
(2]-[) Aw -

which follows easily from (2.3), and made the convenient definition
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Upon integrating (2.6) over all directionsi@, we obtain our basic equation

Blx) = [1- Kk E(K) + Blk) +Fx)

k
~ VN P P

(2.10)

wWhere

o o dg, |
Ak) =1 - I I 1_—%5 (2.11)

S

1s the three-dimensional dispersion function and

ik.p'
~ N/\I;S

0 (z',0) (2.12)

(2.13)

result of course from the (given) boundary and source contributions, respectively.
We see from (2.6) that our problem in k-space is solved once we find the
function E;(k); this function will be determined from (2.10).

Our method of solving (2.10) consists essentially in the observation that

By = [ A Bk )a (k- &) (2.1%)
where
sl k) = —s [ aptER) L (2.15)
(2n)” Vv

so that (2.10) can be written, in general, as an integral equation for Eﬁkﬁ.
The geometry of a particular problem enters solely through the kernel, Av(ﬁ);
this will be, for the simple problems we consider, highly singular, i.e., a
generalized function [when V = all space, for example, Av(kg =:6(5)£§)], with

the result that our solutions of (2.10) will depend more on analyticity argu-
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ments than on the Fredholm theory. Therefore, before proceeding further, we

~
briefly examine the properties of A(E) as an analytic function of, say, kX.

The Dispersion Function

The definition (2.11) may be written

~ c .1 2n 1
Mg =1 - b [1 % é o 1- iqu - iB cos (9 - &) (2.16)
where
B =[] = le e (2.17)
y Z
and
k
A= tan -k—z (2.18)
y

The integrals are known* and we find, for real kX and B,

~
A(}é) = AB(kX,B) Im(kx) =0 (2.19)
where
2 2
: 1+ in + B
A(k ,B) :l+——2C———21n }2‘ - (2.20)
5 X 2lk" + B 1-ilk" + B
X \ x

Note that for Im( kX) sufficiently large,

W) / a(k,8)

Ve'd
AQ%) 1s in fact quite pathological as a function of kx outside a certain neigh-

borhood of the real k_ axis; since our "basic" equations are true for real k,
X X

*See, for example, Dwight No. LL6 and No. 380.001.



we always can, and will, use AB(kx’B)’ which can be taken to be defined by
(2.20) for complex kx also,

We will use the notation

where

A_(k) has failrly simple analytic properties: 1its only singularities are

5

branch points at

where

and we will take the branch cuts, £+, as exterding to + iw along the imaginery

axis (cf., Figure %), Thus A3(k) is aralytic in the plane cut along !, and

14 ; C o o . .
Using well—known( ) properties cf the one-dimensicnal dispersion function,

il

A (%)

AB(k,B=O) (2.22)

it is easy to show that AB(k) has only two simple zeroes. If we define vy in

the conventional way*
Ai(i i/vo) =0 (2.23)

*Note Al(i/v) = A(v), where A(v) is the function defined by case. (1Y)
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then the roots of AB(k) are clearly given by

where

k = \IB2 + 1/1;5 (2.2L)

0]

It also follows from the one-dimensional theory that
(1) c<l$f|&of > B and Im(no) =0
(ii) ¢ >1 and [B] > ,l/vol=$lmol < B and Im(mo) =0
(iii) ¢ >1 and B < fl/vol=%>lnof < B and Re(KO) =0
From the known fact that ]vol > 1 for any c, we may conclude that the roots of

A5(k) are never located on its cuts, i.e.,
Im(k ) = oélnol <P (2.25)

The only other properties of AB(k) which we will need are both evident from

(2.20):
Aa(k) = _/\5(-k) (2.26)
and
Ay(k) —!—]—% 1 (2.27)
k |+

Factorization of A5(k)

In Part 1 of Section II, we performed on the function H(k) a factorization
appropriate to the Wiener-Hopf technique, essentially by inspection. Here we
obtain an analagous representation feor A3(k) by a more complicated but conven-

(12)

tional method,



by

It is clear that (any branch of) the function

2 2
A(B)(k + B7)
L(k) = 1n (2.28)
(k2 + nz)
o)
1s analytic in the region R, as shown in Figure 3, and that
L(k)?“?o (2.29)
keR
Hence, by Cauchy's theorem,
L(k) = L (k) + L (k) k € R (2.30)
where
1 (k")
k) = ' :
+

Here the contours y_ are close to, but not coincident with, the cuts I_ [see

+ +
Figure 3; with this definition, the L+(k) are well defined even for k ¢ L % R].
- +
Equations (2.28) and {2.3%0) imply that
2 2
k te L+(k)+L_(k)
A5<k> = ‘2——2 e k € R (2.32)
k +B
s0 that we may write
A (k)
A(k) = — k ¢ R (2.33)
3 A (k) |
where the A+(k) are given by
k + ik L (k)
A(k) =—20c " (2.3L)
+ k + 1B o
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wipy)
R
{0
0
-iﬁ/’ﬁ —Y
k-Plane

Figure 3. The region R of Section IV.2. The region R includes the entire
plane except for the small neighborhoods of l+ enclosed by Y

A (k) = £ 1B L (K) (2.35)

k - ik
o}

and clearly have the analyticity properties implied by the subscripts; equation
(2.33) comprises a Wiener-Hopf factorization of A5(k)'

Note that

A(K)—31 (2.36)
and, as follows easily from (2.26),

A(-k) = = (lk) (2.37)
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Except for the path 7_ [on which L+(k) 1s not defined] and the obvious
+ —
poles, A+(k) is defined by equations (2.3L4) and (2.3%5) for all complex k. We

now derive representations which are valid only in specified regions, but which
we will eventually find useful. The argument consists wholly of applications

of Cauchy's theorem,

For k € R, it is evident that

2 2
lt{k_@—-}_—%] dk'
1 kK + kg N
2ni i_ k' - k -0 (2.3)
+
whence
L (k) =r (k) k € R (2.39)
where
r(k) === | T A5 ak ' (2.40)
+ S ’
+.

L (k) +L (k) =0 k ¢ R (2.41)
Afk) o |
O k2 - 52 k £ R (2.42)

In particular,

L (k) = -L (k) = F+(k) for k e 2 (2.43)



while

2 2
1 k + B
I+(k) - 1n[= 5 | for ke (2.L4k4)
k + KO

(e
N
o
e
i
}
=
—~
=
S~—
Il

From (2.40) through (2.44) we deduce the relations

k + ik P+(k)

A (¥) = TR ke d (2.15)
k + iwo F+(k)

A+(k) :E—:_iﬁ—e kelZ+ (2.46)

Incidentally and finally, we note the identities

A+(—i/z)e_r+(o)

(B

I
O
S—r”

(2.47)

>
N
N
~
I
<

@)

JT+(-1/v,)-T(0)
x(v ) = (B = 0) (2.18)

o 1-v
o)

(14)

where X(z) is the function defined by Case.
We are now prepared to apply our general method to the solution of specific

transport problems, the simplest of which is clearly

5. THE INFINITE SPACE GREEN'S FUNCTION
Here, the region V includes all space; there is a point source at’go with

direction Q ,
~0

and no bcundary contributiocn. Our basic equation (2.10) thus takes the form

ik.

[ g

O

k-Q
MI\/O

~

Bell) = [1 - A®)1 B (k) + =

e



or

so that, from (2.6),

(

and we have merely (
present, we examine

Using the notations

.7 7
A elk-ro
—
@G(X’k"@ - o
where

This integral is easily reduced to a useful form.

o) :f—n (
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ik.r
~ 1 e ~A0
o.(k) == (3.1)
G Ak) 1 - 1/13-9/0
e
iker, e X050 - )
e~ N ~ 2)
1-ik-@)(1 - ik-9 ) Ak) (1 - ik.Q ) (5.
A/ fDNO ~ %4
') to perform the inverse Fourier transformation. For the
only the inverse transformation with respect to kX = Kk,
discussed in III.1, and equation (2.19), we have
-ik( x- Q) -
foo dk 1 (X XO) {i 1 . 6(,,, ,‘on)}
=0 M bn (k - w)(k - d)o) AB(R) k - (DO
(3.3)
o =) (3.4)

C o}

Assuming for definiteness

that x > XOy we close the contour in the lower half plane by means of a path

which excludes the cut L (ef., Figure L), and apply Cauchy's theorem. By the

-1
relation (2.25), our path will always enclose the pole of [AB(k)] at —ino;

we may have additional pole contributions from a{ag), depending upon the sign

of u(uo), since
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0
~- - =
\ /
\ /
\ /
\ /
\ Q- /’
* /
\ ? /
\ ? / ()
7
N . P
N -
> | 1 -
~ <J -

Figure L, An inverse Fourier transform integration contour for Section IV.

as 1s clear from (1.3), and provided that w(wo) £ 1.

.7 7
KT, le e—no(x—xo)
by A

(ino + w)(ino o)

e—lk(x—xo)

- @)k - 0 )A(K)

-
2

-Jr'lo

dk
]

-1 x-xg

+[@(u)l&n(w-w)A(w) @(U-)
N @ (“o) . 6(9‘ _ ﬂo)e-iwo(x-xo)}

for x >x , w, ® ¢R.
0 o

The resuvlt is that

-1wo(x-xo) :'
) /XB(CD )
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We remark that
(1) ii‘axag) € I_, which occurs, in particular, when k = 0, the only

change in the above expression is that the first (second) term in
brackets does not appear.

(ii) the last term represents merely the uncollided source cont.ibution
and is of little interest while

(iii) the first and second terms give the so—called(lh) discrete and con-
tinuum "modes," respectively. Note that, by (2.25), the former al-
ways dominate for large x. Hence, for an asymptotic approximation,
we could ignore the unwieldy integral term.

(iv) we can most easily compute an analagous representation for BG(X,£3,
not from the definition (2.2), but directly from equation (3.1).
In fact the integrals over i of our solutions 6 will in general be
rather complicated, but it is an obvious feature of the present method

that such integrals need never be explicitly evaluated.

L. HALF-SPACE PROBLEMS
If the region V is the half-space lying to the right of the x = O plane,

then*

-7 -
-7 'k‘ ! ~ ~
af' e F(x,E) = o, (k) (L.1)

1 i kyx'
5 [ e
(en)” ©
*Note that equation (L.1) could also have been obtained by noting that, for the
half-
alf-space, 5(k - k') 8(k - k')
N N 4 4

vV~ ~ 2ni(k' - k- 10)
X X

>
N
=
1
o
—
1l

and using equation (I.5).
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-
where k = kx and we omit reference to the transverse variables k. (Throughout
this section subscripts will refer to regions of analyticity with respect to
the kx = k variable; ky and kz are always assumed to be real.) Our basic equa-

tion (2.10) becomes in this case
Bk) = [1 - A0 )T +B(K) +Fk)  (k rea1) (k.2)

Decomposing p (k) according to (I.2), and using the factorization of A3<k>

provided by equations (2.3L) ang (2.35), we can write (L.2) in the form

L

B,(k) A (k) + B (k) A(K) = [B(k) +Q(x)] A(K)  (k real)  (4.3)

~ ~ .
Assuming that B and Q satisfy a HOlder condition, equations of the form of
(4.3) can always be solved by a well—known<5) generalization of the Wiener-Hopf

technique. We let

p+(k) A+(k) for Im(k) > 0
(k) = (4. 4)
-6 (k) A (k) for Im(k) < 0
so that (L.3) is the statement
(k) - (k) = [B(k) + G ] A(K)  (x real) (4.5)

where we use the notation of (I.6). We see that f{k) is analytic in the plane
cut along the real axis, and has a discontinuity across the cut given by (4,5),

It follows that

(k) = == [ ax’ A [Im(k) £0]  (L.6)
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where the constant A is arbitrary. From (L4.4) we have

w0 [B(k') + YxDTA(x)

[ dk’ + (4.7)

B, (k) = 5= A,(K) 2 k' - k - 10 A (k)

+

and the general half-space problem is solved.
Note, from equation (2.36), that'E;(m) = A. Hence, for nonzero A, the

density'%(x,g) will have a ®-function singularity at x = 0, and the choice
A=0 (L4.8)

clearly corresponds to taking the least singular solution as discussed in Sec-
~ A
tion IT.1. Aside from remarking that for B = @ = O there is no (nontrivial)

least singular solution, we will generally confine out attention below to the

case of equation (4.8),

The Half-Space Albedo Problem

The above remarks have their simplest application to the albedo problem,

in which
a(r,9) =0 =>Q(x) =0
and
7,(0,7,2,8) = 8(y) 8(z) B(2 - 8) w0, u_ >0
~ -1
= B(k) = T (4.9)

where @ 1s defined by (3.4). Note that

b, >0 = Im(coo) <0 (4.10)
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We now have merely to substitute (L4.9) into the formula (L.7), and perform an
elementary integral. However, in this case it is perhaps more instructive to

work directly from equation (4.3), which can here be written as

(@ = ¥) B, (k) A (k) = -A(K)[(@ - k) B_(K) +1] (k.11)

This equation, each side of which is analytic in an appropriate half-plane, is
of the same form as (II.1.19). By precisely the same argument as was used in
Section II, we conclude that both sides must equal a constant; and by setting

k = @, and noting relation (4.10), we see that the constant is ‘14;(“5)' Thus,

-1A (w)
5 (k) = L,12
oa+( ) (w - k) A (k) ( )
0 +
as we obviously would also have obtained from (4.7).
With (4.12) and (2.34), we can now compute, for example
i L.(k
A (x E) _ ii\—_(g foo e-ikX (k + iB)e +{(¥) dk (4.1%)
Pat ™’ on e (k + ik )(X - o) '
o) o
A
By means of the same argument as was applied to @G, above, we find
a S -P+(—imo) -k X
k) = iA -
B.(x,F) = 14 (0 )(8 - x )e .
in (o) -lex
= -ik'x (k' +iB)  -Ly(k'
-——Qﬂof,elx(k,+,iﬁ)e+( )dk'+e(w) x>0
7_ s AB o
(h.1L)

where, again, the term in brackets does not occur when w € £ . o' refers to
a path just outside the path y s across which L+(k) is discontinuous.

Similarly, by (2.6),
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B (05,9) =e (g g)
oy ~Lt(k) -ikx
1 c o (k + 1iB)e e
"2 M) T Lo T @ )(x - @)k + in) (.15)

and the integral can clearly be reduced to discrete and continuum modes, etc.,

in the usual manner. We will discuss the content of (4.15) in Part 6.

A Half-Space Green's Function

With the boundary condition of zeroc incidence at x = 0,

9(0,7,0) = 0> F(k) =0 (14.16)

and an isotropic point source at (xo,0,0j,

-9 s _
A(z,Q) = - 8(x - x) 8(y) 8(z)
1 A(k)
~ ikx b ]
= k) =g 0 ——=— (4.17)
our general half-space formula (L.7) yields
ik'xo
" o- k' k i kx
< - . ] fw N e [A (k') A+( )] g el X 9 el X
Pert™ 7 Sric A (k) 2 k' - k - 10 c c A, ()
- 'k'
Qe " %o A+(im0) g 1 1 el %5
+ = - - - — [ &' ————— A (k")
c Ay A+(k)(1no - k) ¢ A+(k) 2ri o1 k' - k - 10 -
ok lik
(0]

(4.18)
where we have closed the contour in the upper half-plane [y; refers, of course,
to a path bordering on Y. analagously to yi; by affixing appropriate super-

scripts on L+(k), we could use the path y_ 1tself'], and used the identity
- +



/ A (ik )
Res[A (k)] = Res[A“LZB] = a; ° (4.19)
ino ik AB 2
© ok imo

The inverse transform of (4.18) contains little that is new: the first two
terms are essentlally the isotropic form of (3.1) and the third term is very

_BXO)

similar to (4.12). The remaining integral term is clearly o(e and, in
the important case of large Xo’ comparatively insignificant. We now consider

this case in detail.

The Milne Problem
Here, we have the same boundary condition as above, but the source has

been displaced to infinity, in such a way that the quantity

qoE lim qe © (4.20)

is finite and nonzero.

Using a certain amount of care with regard to the first two terms, we
could read off the solution directly from (4.18); but it is somewhat more instruc-
tive to approach the problem from a different point of view, as follows.

We replace the source at « by the requirement that our solution, pn££),

be O(eKOX) for large x. This suggests the decomposition

e (z) =o(r) +o (r) (4.21)
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Here

-7)e|£OX

o (r) = f(r (4.22)

where f(;), which could be determined, for example, from the infinite space

Green's function, is independent of X, and
p(z) 20 (4.23)
Our basic equation, (2.10), now may be written

Bl + B0 = [ - A0 IF,(6) + B, ()] (.28)

In view of the definition (4.22), the quantities 5;(}) and.B;+QE) are'not ob-
viously meaningful; indeed, in the generalized function space S' which we have
hither-to implicitly used, they do not exist. But pm(x;;) is locally summable

in x, and hence a well-defined generalized function in the space K' of Gel'fandﬁlj

It follows [assuming f(;) i1s sultably behaved] that the Fourier transform

B;(k) exists as a generalized function in the space Z', and in fact
A

P

(k) = 2n T(K) 8(k - ir ) (k = k) (k,25)

GO "~ (@] X

Note that not only is the usual formula (I.1) meaningless here, but that the

inverse transform

L7 TTEE) sk - i ) dk (4.26)

might seem to give zero, since the "integral" is over real k, and ik is not
o
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(in general) real*. The correct formulae are, of course, obtained from the

definition

(0,%) = Z=(3,7) (k.27)

~A

where Y(V) is a test function in X(Z).

It happens in our case that B;_Qg) exlists in the classical sense:

e i(k-ik )x ~ >
=D e % ax- 1—({1% (1.28)
(0]

S0 we may conclude that

B (B) = HE) [2n 8k - tx ) + ot (14.29)

Now (L.2L4) may be written in the form

[,,,(1) + B,(6)) (k) = - A(K)[3 (k) *+ (k)] (1.30)
or, using (k4.29),
(e = 1k ) B00) + 58(EK) ] A(K) = = A () [(k - 15 ) F(x) - 15(D)]
(L.31)
= i7(%) A (ix ) (4.32)

*The point here is that Do(k) is an analytic generalized function, the "sup-
port" of which is ambiguous. For example, it can be shown(1 that
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where we have obtained (4.32) by precisely the same Wiener-Hopf argument as was

applied to (4.,11). The result is

A (imo) - A+(k)

—~ ,N_-’ +
p+(k) = if(k) (5 - iKo) A+(k) (L.33)
whence
~ e . .
pm+(k) = lf(k)[kk - ino) A#(k) - 2ni 8(k - 1&05] (4.3k)

~ =

To find f(k), we note from (4.18) that, for x < X s

S 0o K X -K X -Bx
sg(x,k)=:i%'%xg——*— e % |+ O(e ° ) + 0(e o) (k4.35)
7&: ik
o)

~7 iqo 1
f(k) “—C— aA (Ll.56)
2
Xk ik
a , A (ik )
~ 7 _ _O 1 + 0 _ . s
épm(,f) = oYY (5= ir ) A (D) 2ni 8(k mo) (4.37)
3 o’ T+
ok ik

0

~r =7,
Note that we could just as easily have obtained the above expression for f(k)

from the infinite space, isotropic source, Green's function; the method used

above for finding B;n 1s actually independent of that used for ‘p’g.

From (4.37), we find, in the usual way,

. _Kox
A -
(X‘Z) __o 1 +(Mo)(B Ro)e Jfox oL !
n c aA5 L+<-iKo) 2n o,
ok lik 2Koe
0
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It is clear that there exists a point xmrsuch that

B (x ,8) = o(e™) (4.59)

m m

l.e., the asymptotically dominant component of pm vanishes at x = Xm._ The

) .
definition (L.39) actually yields x <05 it is conventionally( k) denoted by
x ==z 5,2 >0 (k. 50)

(zO is called the extrapolated end-point.) Note that'Bg_(k), with which one
wculd ordinarily compute gm for x < 0, is not relevant here; since our original
differential equation (2.1) holds only in V, only E& = B; has physical signi-
ficance. We have, from (4.3%8) through (L.40),

-2k z A4(ino)<6 -k )eL+(_iKo)

oo o
e = Zry (L.h1)

which, with-gv= 0, 1s equivalent to the known(lu) one-dimensional formula,

5. SLAB PROBLEMS

When the region V is the slab defined by

I
o
—~
il

I
-

- ei(k'-k)l -i(k'-k)2
k —-—[ _ S ] (5.2)



63

where the equivalence of (5.1) and (5.2) is clear from (I.L)

We restrict our attention to the case in which the inhomogeneous term,

~/ ~

B(x) = B(x) + q(k)

satisfies

o~
q( -

S(x) =F(-x) (5.3)

so that [cf., equation (2.26)] it is permissible to assume

(k) = B(-k) (5.4)

P
Since, of course, any S(k) can be decomposed into odd and even parts, and the

problem solved for each part in essentially the same way, (5.3) is not a serious
restriction.
Substituting this p(k) into (2.14), we find, from (5.2) and a few manipu-

lations using (I.L4), that
o (k) ="0(k) - e J (k) - e J(-k) (5.5)

where

-ik'¢

1 = Pa(k')e
—_— dk'
2ri Iw k' - k - io

3 (k) = (5.6)

The form of equation (5.5) suggests the following decomposition of plk):

) = e p(x) + M g(y) (5.7)
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and similarly

T = e o) v ™ o) (5.8)

[Note that (5.8) is automatic whenever any sources present are concentrated at

the boundaries.] We easily find

-2ik'4
1 .00 . f+(k')e
I0) = £(-0) o [0 DS (5.9)

s0 that our basic equation (2.10) can be written in the form

. i ; y_-2ik'
2(k)e ™ v p(x)e™ = 1 - (k)]glkz[ﬂ(k) L g DR T ]

b) 2ni towo k' + k - io
1y ~-21ik!
. eikf ; ( ) _L foo f+(k )e ik'g
+ 271 = k' - k - 1o
-ik ik
v e ™ gy e ok (5.10)

iki ik{
By considering the coefficients of e - and e “°° ip (5.10), we conclude that

if f(k) satisfies

' -2ik 'y
1 o f.(k")e

2(k) = [1 - A3<k>1[f+(k> o L e ] o(k)  (5.11)

then a solution to the symmetric slab problem is given by (5.7).
Equation (5.11) is similar in form to (4.2); the ansatz (5.7) has, not
surprisingly, reduced the slab problem to a half-space problem., We could solve

(5.11) by our general half-space formula (k.7),

(') - [1 - A (x')]T (x
£ (k) = == [ ax’ {? L ) - :}ﬁi(k')

+ 2ni A+(k) o0 k' - k - io

A (k') o(k') + A (k') T(k")
"2 Ao do TTr 1 (5.12)
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where

] f+(k,)e-2ik'/e
[ ke (5.13)

- 2nl tow k' + k - io

except, of course, for the fact that I (k') is not a known function. On the
other hand, whenever f+(k) is analytic in a region {Im(k) > - a; a > 0) it is

2
evident that I (k) is O(e o

), i.e., small for large {. [We remark that the
only important problem in which f+(k) does nct have this property is the so-
called critical problem; that the method to be cutlined is applicable even to
this "worst case" is demonstrated explicitly belcw. ] What is clearly called

for is a perturbation expansion of f+(k), the zercth approximation being given

=2
by (5.12) with I = 0, and the nth correction term being O(e nOUZ). Thus we

set
£ () = 2 M) (5.14)
n=0
where
f—(FO)(k) " 2ni i\ (k) I, li(‘k-)kAt“;o) (5.15)
and
(n) 1 oo Ign-l)(ki) A+(K')
£ (k) D) [oo dk ' e n>1 (5.16)
Where
fin 1)(k,)e-2ik'/z

(l’l—l) 9 = L o 1
I (k') = e [ dk n>1 (5.17)
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and, assuming the series (5.14) converges, the symmetric slab problem is solved,
The iterative procedure of (5.1L) through (5.17) is not as formidable as
it may appear. In fact, the representation (5.14) can easily be reduced, in
good appreximation, to a simple power series, provided we stipulate
(1) reasonably well behaved o(k); for example, the "symmetric slab albedo”
problem, for which o(k) is given by (4.9), is easily tractable,
(ii) a wide slab; explicitly, the power series obtained is correct to

o(e™ P

» the means of obtaining greater accuracy being clear in theory
but cumbersome in practice.

We illustrate these remarks by solving a problem the formulation of which

is only slightly different.

The Critical Problem

Here we assume there is neither source nor boundary contribution,

~

S(k) =0

and seek that value of [ such that there is a nonzero solution to the slab
problem,

The prescription of (5.14) through (5.17) is evidently not directly appli-
cable; in order to obtain a nontrivial solution for g = O, we must choose the
constant A of equation (4.7) unequal to zero. With this minor modification, we

have
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where,

£ y - (5.18)

and the f&n)(k) are given by (5.16) and (5.17).
Note that fio)(k) is analytic for Im(k) > -p except for a pole at —iKOo

[We anticipate that for criticality, ¢ > 1, so that Ko may be pure imaginery.

Note that in this case the pole of (5.18) is to be interpreted as lying just

below the real axis, as discussed in Section I.]. By induction, we assume that
n-1
fin )(k) also has this property, whence
(n-1)
R (k)
(n-1) o) —QKOE -2B1
- - + .
LK) =- e ofe ) (5.19)
where
-1 n-1
R(® )(KO)E Res f(+n )(k) (5.20)
-ik
o)
Now, from (5.16),
-1) -2k 1
(n) R(n /(Ko)e © -2B4
! - r - i + 21
L) Ty A A - A )T ol (s
2B

)s

and we observe that: (a), the induction hypothesis is fulfilled to o(e

and (b), the error term for each Ign) will be of the same form as that for

I(O>:

-2ik'y

(o) __A .
L= 2ﬂifdk1\+(k’)(k' -k - io)

(5.22)

Hence a systematic means of obtaining more accurate solutions to our problem

clearly lies in an appropriate asymptotic expansion of the integral (5.22).
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With the abbreviation

R(KO) = R.es[A (lk)] = i(B - rco)e " °

it follows from (5.21) that

-2k L A (1
%o +(1Ko)

(n) _ (n-1)
R (Ko) = - e 2in R(KO) R (KO)
(n-1)
=rR (KO)
=" R( )(K ) = ar” R(Ko)
where
(n) mek ot A (ik )
r =2 = - o R(k )
- ' o
R(n 1) 21KO
-2B1 . . .
so that, to O(e )5 (5.14) is the power series given by

A (k) - A4'ixo)

__(0) _ (o) e-2K 1]
f+(k) = f+ (k) R (KO) © A+(k)(k _ iKO)
-2¢ 1 .
A AR( o)e o A+(k) - A+(1KO)
- A (k) 1-r A+(k)(k - iKO)

)
m
X or

m=0

(5.23)

(5.2L4)

(5.25)

(5.27)

(5.28)

(5.29)

Of course (5.29) follows from (5.28) in general only for |r| < 1., However, it

1s not hard to verify by direct substitution that the f+(k) of (5.29) is in

fact an appropriately approximate solution to (5.11) for any r % 1 [of course

r must be given by (5.27)].

It is convenient to choose A = (1 - r), so that

-2k L|A (k) - A+(ino)

_(1-7 o |+
£,(x) = A (k) T R(k,) e A (6)(k - e )

(5.30)
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It 1s now clear [cf., our discussion of equation (L4.7) above] that the density

obtained from (5.30) and (5.7) must have the form
Dlx,k) = (1 - ) [8(x + £) + d(x - £)] + regular terms (5.31)

and we conclude that the only nontrivial solutions to the homogeneous slab
problem are singular, unless r = 1.

We now consider this last case, which is the critical case, 1in detail.
When r = 1 we have the (nonsingular) critical solution given by (5.7) and*

A+(k) - A4(iKo)

f (k) = (const.) (5.32)

o+ A (k) (k - ino)

+
Keeping in mind the fact that both multiplicative constants and, in our approxi-
. -pl . L . .
maticn, terms of O(e ) are irrelevant, it is a simple matter to obtain the

inverse (kX = k) Fourier transform of the density as given by (5.7) and (5.32):

1 @ -ikx, -iki Rty Y } .
= Iw e [e fc+(k)]dk « e + 0(e 77) (x >-12) (5.33)
and
L e g 0 o) (xen) (s
whence
pc(x,k) = (const.) cos]wolx (5.35)

*Cf., equation (L4.33).
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The somewhat more interesting criticality condition on / is obtained of

course from (5.23) and (5.27):

-EROE
NN e A+(ino)(6 - Ko) _, (5.56)
T i L (-ix ) ) 0+
+ 0
2k e
o
Using (L.L41), this can be written as

-QKO(£+ZO)

e = -1 (5.37)

50 that KO must be pure imaginery, as we have assumed, and the critical value of

I is

14)
Both the results (5.35) and (5.38) are well—known,( /

6. THE K-DEPENDENCE

We have always been able, abo&e, to bring the inverse Fourier transform
with respect to kX of our solutions into fairly workable form [cf., for example,
equations (3.6) and (4.38)]. On the other hand, the dependence upon ¥ = (ky,kz)
of such functions as A4 is evidently too complicated for the inverse transforms
with respect to i?to be performed by any simple analytical procedure. The
fact that useful information can be nonetheless obtained, without récourse to
numerical techniques, from the solutions given above in (X;K) space, 1s here
briefly illustrated.

Our remarks are based on the identity
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- o (ik )(ix )" .

F= 7 L2 a7y £(r) (6.1)
n,mZO n. m,

A
from which it follows that an expansion of the (known) function f in powers of
ky and kZ ilmmediately yields the moments of f with respect to y and z. These
moments, which uniquely determine f(r), are generally of physical interest. 1In

particular, for n = m = O we have

A 4 -

£(x,0) = £(x) (6.2)
where

£(x) = [ dF £(x,7) (6.3)

. -7
is the average of f over r,

Of course the relation "inverse" to (6.1),

L (-ik )ik )"
£(r) = DIl 14 L2 F(x,X) (6.4)
- (27[)2 n,m=0 e e

would analagously furnish a power series for f({), if we could compute the mo-

4 A . o
ments with respect to k of f. Since, however, the latter computation is apparently
no easier than computing f(ﬁ) directly, we do not pursue this point.,

The formula (6.2) can be immediately applied, for example, to equation
(4.15). After some routine calculations [as in the derivation of equation (3.6)7,
we find that the ;Zaverage of the albedo angular density is asymptotically given

by

il (v - 1) o7 (ko)-7(v) “x/v
?(x,0) =8(0 -0)e %4+ 2 2 e “+o(e)  (6.5)

a’ T~ ~ 7o e (1= )y - )




T2

Where»vO is defined by (2.23), and

r(w) =1 (-1/u) - r (0) (B =0) (6.6)

The emergent angular density, 5;(01Q), 1s even easier to compute, since for
x = 0 we may clcse the contour of (4,15) in the upper half k-plane, with the

(exac*t) result that

(:)(-u) olng = v ) - 1)e
-C-D(O}Q) = 6(9" "QO) = 1%; )(H - v ) (6'7)
0

s

Here we have used the representations (2..45) and (2.146). (Note that

0<u <1 = -i/uo € {_.) The corresponding density is given by

o0 = 8 (0)] (6.8)
ho ™ Vs r(-i/u)
= Vo(p,o . l) e (B = O) (6-9)

Using (2.6) and (4.37) we similarly find, for the Milne problem

iq v2 7(vo)-7(u)( Z
- _ ooﬂé)gm e wo- 1
e I R [ (A Y (6.20)
Tﬁ: i/vo
and
. eF+(i/VO)
p(0) =1 :f aAl -Y:ZZi:jfi (6.11)
Ei/v




The Emergent Current

We define

JI(r)

The total emergent current for

JX(O) where

5

)

~s

I d,v,@/@(,{) (6.12)

a half-space problem is clearly given by

Jx(x) = | JX(,{)dr (6.13)
and is very simple to compute. From the easlly verified continuity equation
V-d(zr) = (¢ - 1) p(r) (6.14)
we find that
= T(x) = (e - 1) B(x) (6.15)
= Ox X) =(c - olx .15
i.e.,
I(x) = (e - 1) [FB(x)ax (6.16)
= (e - 1) e G 7 ak TN (a3 (6.17)
~r d —.k_'x:
e =1 o(k,0)e”t
- [-oo dk k - io (6.18)
whence
7(0) = (1-¢) T (0) (6.19)
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Using (6.19), we find, for the half-space albedo,
- 0 © 0 0
J(0) =(1-c)—F———c¢ 6.20
(0) = ( )<l-uo> (6.20)

and for the Milire problem

_ i(1 - c)voqo ey(—vo)
JX(O) = - - aAl ;;—:—I- (6.21)

ok 1/vO
All the above results are equivalent to those obtained from the one-dimensional

theory., [WNote that
- = - iv %A ;v o= -i/k (6.22)

1k
where A(v) is the function defined by Case.( )] Scmewhat more interesting,

therefore, are

The Higher Moments
For B > O but still small, we could proceed as follows. A general half-

space equation can be written as

p+(k) AB(k) +7 (k) = s(k) (6.23)
We expand the unknown functions
~ 2
o, (k) = Po (k) + B o (k) + B o, (k) + ... (6.2k)

N )
A3(k) /Ll(k, + B Xz(k) + B Xu(k) + ..,
S(k) = 8,(k) + B S (k) + B 5,(k) + ... (6.25)



5

and find, by equating powers of B,

oo+(k) Al(k) + po_(k) = SO<k)
oy, (k) A () + p (k) = 8, (k)
05, (K) A, (6) + 0, (k) = 8.(k) = o (%) X (K) (6.26)
ete. In general, we must solve
P, (k) A (k) + o (k) = Rn(k) (6.27)
where Rn(k) is known in terms of SO,...,Sn,po+,.,.,p<n_2)+ and xg,...,xn. of

course (6.27) is of a familiar form and its solution presents no difficulties:

) . R(K) A(x)
P (k) = 2 600 e (8 = 0) (6.28)

To obtain the X » We begin with (2.16),

( - k!
AB‘k) =l-n iki - OB

where

o= iJl - ug cos(p - ) (6.29)

[ef., equation (2,18)]. TFor real k and B <1, [1 - iku| > joB| so that we may

expand

—— T (=) (6.30)
n
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The @-integral is trivial and we find that (6.25) holds, with

2,m
(x) = (_l)m+l em - lc (1 a (1 -u)

2
. Pl (1 - k)

X (6.31)

2m+1

The procedure of (6.24) through (6.31) may be applied, for example, to the

half-space albedo problem., Here

V)
2

(k) = T 5 9, = i\‘l - u cos(o_ - ) (6.32)

Q (@]

wherce
al’l
U
5 (k) = ——2 (6.33)
n (1 - 1kuo)n+l

Using the further result that

1 C
X (k) = ———[% - A (k) - ] (6.3L4)
2 2k2 . 1+ k2
we find
2
,ﬁ - cos(@o - 1) 1
R (k) = -1 > (6.35)
"o (k + 1i/u)
i(1 ) cosg(w Iy o (k)
-l - by 3
RQ(K) _ 5 o] 1 ; __of _ [} ) Al(k> _ ¢ {]
by (k + i/uo) 2k~ 1+ k-
(6.36)

(6.37)



T

) 2
—1\1 - B cos(cpO - A) 3

pl+(k) B uo(k + i/uo) A+(k) 3k k=-i/uo (6.38)
. 2 2 . .
o (k) - i(1 - HO) cos (QPO - 4) 1 BA_ ) 1 1.\‘_(‘1/“0) foo aK’ g(k'?
2+ “i A+(k)(k s i/uo) 2 akg oty 2ni A+(k) o k' - k - io
o)
(6.29)
where
2
gli) = == )

2
(6% + 1) & (x)
and, of course, the A+ functions are to be evaluated at B = 0. Note that, be-
cause of the cosine factors in (6.38) and (6.39), the expansion (6.24) is of

the same form as (6.1).

In order to extend the half-space procedure of (6.24) through (6.31), it

1L
1s most convenient to return to the differential equation (2.1)0( ) Let
_ = 1
\l’n(X;E) =[drz QD(E_;;(Q
£.(x) =] a2 v (x,9) (6.10)

Similar functions could obviously be defined for the other types of moments;
n
we consider only (6.40) for simplicity. By multiplying (2.1) by z  and inte-

-
grating over all r,* we obtain (assuming, for convenience, q = 0),

d
(g * D v (@) =1 (%) +n0 v (%9  xev

v (x59)

N Wns(xshg) £ inward (6.41)

*We must assume that the boundary of V is independent of T
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where, of ccurse,

(6.42)

Hence, for each n we have orly to solve a one-dimensional problem; this can

te done by our general method of Part 2, with B = 0. Considering once again

the example of the half-space albedo, we find

o ad®) e (k,0)

(s Q) = +
lVn(k’~) be 1 - ikp 1 - iky
where
§ (69 =———38(a-2)
o+~ k + i/uo ~  ~0
k,Q) = nQ Q 1
Qn+( &) = n z 1Jj(n-l)+(k’f~.—) "2
and
= o - 1 e dk'A (k') fan qQ (k',9)
n+ 21 A+(k) o k' - k - io ~1 - ik'y

which formulae are completely equivalent to (6.37) through (6.39),

(6.43)

(6.44)

(6.15)

(6.46)



V. A CONJECTURE OF KAC
Let

p(x) = — Z e e dk (1)

where O is any positive number. For T < «, the integral equation

Ao(x) = f: p(x-x")o(x")dx' (0 <A < 1) (2)

possesses discrete eigenvalues Xn and eigenfunctions @n(x). It has been con-

1
jectured( 2 that, for T large,

) (3)

where b is independent of T. The purpose of this section is to prove the

stronger result

(07

nm
= - —_— +
xn 1 (QT) o(T

—a—l) + O(T-Qa)

-0-1

and also to obtain the eigenfunctions @n(x) to O(T ).

The similarity between (2) and the critical problem of section IV is ev-
ident, and will be exploited below. The differences between these two problems,
therefore, might well be made explicit here:

(a) The function V(k) [equation (6)] which plays a role here corresponding
to that of K(k) in Section IV, has, unlike X(k), both zeroes and branch points

on the real axis, with the result that the Wiener-Hopf factorization of V(k)

proceeds somewhat differently from Section IV. 1.

9
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(b) We seek here, not just one critical width T, but an infinite sequence
of eigenvalues Xn. Since the validity of a Neumann series does not in general
extend beyond the first eigenvalue, the argument of Section IV. 6 is no longer
convincing and we must determine our eigenvalues by a different procedure.

With these two qualifications, the method of Section IV may be applied to
the eigenvalue problem (2). For purposes of orientation, it is convenient first

to briefly consider

l. THE T = » CASE

When T = o, the Fourier transform of (2) may be written in the form

where

V(k) = A - p(k) = A - e (6)

V(k), which need not be defined for other than real k, has two real zeroes:

where

N
g
~

k = Limdlm
o]

It follows that the two linearly independent solutions to (2) may be chosen as

(kjo0) = A{S(k-ko) + 6(k+ko>} )

S 2
=
8
]

B'8(k-k ) - 8(k+k ))
@] 6]
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These satisfy the requirement

o(-k) = = (k) (9)
which may clearly be imposed for finite T also.

The inverse transform of (8) yields

¢ (x300)

L (constant) cos ko x

) (10)

@2<x;w)

tant in k
(constant) sin o X J‘

Note that there exist solutions for each ko of (7); the T = » case is character-

ized by a continuous spectrum:

2. FACTORIZATION OF V(k)

We now return our attention to the case of finite T, for the solution of
which a Wiener-Hopf factorization of V(k) [equation (6)] is crucial.

Observe that the function

v (k) (55+8°)

2

B(x) = 1n -
¢ Z
-k )

O

(1

N>
~—

Ak

where £ is any real number, is continuous on the real k axis, and vanishes at

«, Thus

1
omi - k'-k (13)

is analytic in the plane cut along the real axis, and its boundary values

satisfy



B (k) - B7(x) = B(x) k real (1k)
(14) is equivalent to
B+(
V(k)(k2+f52) e k)
2 2 ~ B (k) (15)
AMET-k"7) e
0
so that with the choice
2 2
(k7-k") o+
o B (k)
V(%) = o (16)
-
v (k) = (k-ip)ed (F) (17)
we have
v, (k)
V(k) = A T (18)
where the V_ (k) are analytic in appropriate half-planes, and
V. (k) ~k ko (19)

+
Note @fﬁ, our discussion in Section I. ) that the superscripts in the defini-
tions (16), (17) are relevant only when k is real.
It is convenient to derive here three properties of B+(k) which will be
required below.
+

(i) B (k) can be analytically continued into a function cut. not alon the
’ g

real axis, but along the path I, below it (see Figure 5).
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k-Plane

+
Figure 5. Integration contour for B (k), Section V. © = max(n/2, n/a).

+
We show that B (k) can be considered analytic above Fa

as follows.

o
§ () = 1o | QzeT 2050
1 >\(1{2_1{2)
O
Then
B (k) = B (k) + B (k)
where
B (k")
+ 1 o 71
B, (k) = o b & T,
B (x')
B (k) = == Fax' —=

Let

(e1)



8k

+
It is clear that the integration path for Bl(k) can be deformed down to the line

1 +
Fa( ) of Figure 5, by Cauchy's theorem. Similarly, that for Bg(k) can be de-
formed up to (-Pa(g)). Thus the two functions are cut along Pa(l) and Pa(g),
(1) (2)
tively (I =T + T .
respectively (I g 5 )

(ii) a) If o is an integer, B+(k) and its first a derivatives are finite
near k = 0,
b) Ifa=n+p, 0<p< 1, n a positive integer, then B+(k) and its
iﬁ%gé%S B+(k) ~ P ear k = 0.

Since property (a) is fairly self-evident, we prove only (b). Here, the

first n derivatives are finite at k = 0, while

general statement becomes clear upon consideration of the case n = O. From

(22) and property (i),

+.
aB
1 -1 8 d 1 :
—_— ') — ( —— 2
dk oni £ (1) 1(k ) dk ' ( k’-k) (24)
(07
We integrate by parts
dﬁl(k')
= + k' ————
dk omi k ori £ (1)d k'-k (25)
(07
Similarly
dﬁl(k')
dB ﬁl(o) . —
= . + f \dk' ] (26)
dk onik ori T (2) k'+k

whence



B
, el ®
dB 1 dk' 1 dk'
—_— e — dk! o — 1
dk oni £ (1) k'-k  oni £ (2)dk k'+k (27)
a a
dﬁl
Now (for n = 0) T is singular at k = O:
af
1 a-1
_Nk ~
™ (k ~ 0) (28)
from which it follows by a well-known(B) theorem that
dB+ 1
Qf-
— ~ k ~
™ k~0 (29)

For n > 1, we can continue to integrate by parts so long as the boundary (k=0)
contribution is finite and then proceed just as in equations (28), (29).

(iii) If b(ko) is defined by

2ib(k_) = B (-k ) - B (k ) (30)

then b(ko) is real,

We have

1 1 ;
k'+k -io k'-k -io
o o

Using equation (I.L) and the fact that

Br ) = B(-x ) (32)
we find
+ " _E‘” C B 1 ’
B k) - BTk ) = 5= Jraw' B(') P|—=—| (k#0) (33)
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so that the reality of b(ko) follows from that of ﬁ(k).

Note also that b(ko) = O(ko) for ko ~ 0, as is evident from the definition.

5. THE EIGENVALUE PROBLEM
We begin our solution of (2) by closely following the argument of Section

IV. Assume

o(k) = (k) (34)

in which case the Fourier transform of (2) takes the form

~ ikT

~ SKT
(k) = (k) (p(k) - e 3, (k) - €3 (-k)) (35)
where
~ ik'T
L e (ke
7, (k) = pwry [ ak TR (36)
and the ansatgz
~ -ikT ikT ;o
o(k) = e (k) + e y(-k) (37)
yields for ¥y(k) the integral equation
M) = (k) (v, (k) - I (x)) (38)
where
-Dik'T
L. w+(k')e 2ik
I (k) === [ ak' . : (39)
- 2ni -6 k'+k-io
Equation (38) may be written in the form
V() v, (k) = A v (k) - [n - V(k)IT (k) (k real) (40)

+



87

or, using equation (18),

£(k) - £ (k) =V,(k) I (k) (43)
whence
P(k) = 0+ == [ ax! G L ) Ink 4 0 (b4)
ol - kK'-k-io
provided the integral exists. Now
+ o v (k)T (k')
v, (k) = £+EE§ - V+?k) * 2ﬂi$+(k) ey (45)

provides a relatively simple integral equation for W+(k). This is to be solved

in the familiar way. Let

v (k) = gzowin)(k) (4€)
where, choosing C = 1,
I G (17)

and
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(n) 1 % v (k')IEn—l)(k')
Yok = oy (k) A k'-k-1o (48)
where
(n) -2ik'T
o s (k")e
100 = 5 Jae S ()

We will carry out the program of 46 )-(19.) below; but first it is necessary to

determine

L. THE EIGENVALUES(16)

It follows from (19) that the integral of (L4) will exist only if

1

I (k)=o(k") (50)
which implies
0 -2ikT
ot L dk v (ke =0 (51)

Equation (51) is our eigenvalue equation. Since it must hold independently of

T, we have, for each n,

1 0® (n) -2ikT
o 4 v, (ke =0 (52)
so that (48) is meaningful. In particular,
| m  -IKT
- dk =0
omi -£ V+(k) (55)

where the zeroes of V;(k) are to be considered as lying just below the real
axis in the usual way. Because of property (i) noted above, (53) may be written

in the form



2ik T 2ik T
-R(k ) (-k )
1 e-2ikT

+ — dk =0

2ni £ V;( ) (54)
07
where
R(tk ) = Res [—— ] (55)
o 3K V+(k)

Now it follows easily from property (ii) that the integral term in the

—a—l)'

(exact) eigenvalue equation (54) is O(T For example, in the case of prop-

erty (ii b), we can integrate by parts n+l times, obtaining

——f -

oni V (k)
Oé [0

] (56)

-1
Now the integrand is singular at k=0, where it behaves like kB B =qa- n).

(1) (2)

Considering the contributions from Pa and Fa separately, and using a well-

(9)

known "Tauberian” theorem, we see that the integral behaves for large T like
T_B} so that
-21kT
L T RS (57)
oni r V+(k) -

Hence for large T we have the eigenvalue equation

-2ik T ik T
R(ko)e ikt R(—ko)egl ©

= 0 (58)

-0-1y

which is correct to O(T Using (16), it can be written as
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k +1 + +
JREES I P B (k) + B (-ko)

% - © (59)
O

It is clear from our discussion of the T = « case that, for large T, the first

(i.e., largest) eigenvalues will be close to 1. Now

_ (s 1. L1/
k = (+ 1n x>

l/a 1l/o+1
= (1) 4 o @) MO (60)
so that for sufficiently large T, k<< P. Using also property (iii) we find,
from (59)
bik T = 2i b(ko) + 2inm (61)

But since b(ko) is O(ko) for small ko’ we have, for large T,

Kon = o0 o(T ) n=1,2,.. (62)
Equation (60) now gives
_ nr\o -0-1 -2a
N o=l -(ET) +0o(T 7 7) + o(T™) (63)

the desired formula.

5. THE EIGENFUNCTIONS

We find the eigenfunctions in the same approximation by the prescription

(o)

of (46)—(49). First note that v,

k) is analytic above qm except for poles

at iko. By induction, we assume this is also true for wim_l)(k) and let

(sk_) = Fes v\™ ) (62)

)

g(m-1)
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With the observation that

_ 1 1.k _ 1 (65)
k'+k-io k k k'+k-io 65
and equation (52) we find
-1 -2ik'T - -2i
k,w(m )(k')e 21 . R(m l)(k e 2ik,T
I(m-l)(k) I oodk' + vl o 0
- orik b k'+k-i0 Tk k+k -0
-1, ikT
kOR(m )(-k )e2l ©
0
) k-k -io (66)
o
Here the integral along I' , which is easily seen to be at most O(T-akl), has
07
been dropped. Another application of (52) yields
-1 -4
(m-1) gkoR(m )(ko)e St
I" (k) = > 5 (67)
(k-7 )-

where the subscript in the denominator reminds us that the poles are to be in-
terpreted as lying just above the real axis. Now (48) gives

2KOR(m-1)(k Jom2LEoT

m 0 T
v () = 2niV, (k) fax

v, (k")

(k'-k-io)(k'g-ki)_

- (68)

as is clear from equation (16). We observe that (a) the induction hypoth-

(m)

+

(m)

esis is fulfilled for ¥, ’, and (b) ¥, * is corsistent with equations (52) and

(62). It is, however, clear from (68), and not surprising, that the series

(46) will not converge for every eigenvalue:
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-Dik.T -
k)= e 2ik, R(m 1) .

2k R(k ) .
1 o 0 L -2imk T
= II1+(k) - V;(k) ¥ (kg_k2> m§1e © (71)
0

Restricting ourselves therefore to the first eigenvalue [n=1 in equation (62)],

~
we have "convergence" in the sense of Cesaro:

e n 1
(-1 = 3 (72)
and the eigenfunction is
k R(k )
1 O " ©
v, (k) = - . (73)
+ V+(k) (kg—ki)

It is now a simple matter to verify that this solution satisfies (51) [with

—a-1
the usual error of O(T “

)] for each ko given by equation (62), and not merely
the first one. Furthermore, it is easy to check that, to O(T-OFl), the ¢+(k)
of (753) is indeed a solution to equation (38), again for each ko of (62), thus
Justifying the use of (72).

Having ¢+(k) [v (k) is of course not needed for |x| < T], we may take the
inverse Fourier transform of equation (37) to find the even eigenfunctions of

( T"a"‘ l

(2). Dropping as usual contributions of 0 ), we easily find

@n(x) = sin kT cos k ox (7h)

i.e., the only nontrivial solutions obtained in this way are for odd n. The

solutions with n even are found by replacing equation (34) by



¢(k) = -0(-k) (75)
and proceeding analagously to equations (34)—(38). (The only changes are sign

changes in these equations). The result is not surprising:

®n(x) * cos kon T sin kon X (76)

which vanishes for odd n.
We conclude that the normalized eigenfunctions of equation (2) are approxi-

mately given by

9, () = 25 cos EL 1y (77)
2n+1 q T 2T
0 (x) = = sin 25 x (78)
2n QT T

-a-1
where the error is O(T o ). Note that these have the form of the T = w solu-

tions, except that ko is chosen such that

¢ (£T) = 0 . (80)

1
We remark finally that another conjecture,( 5) related to (5), is false.

With ¢  given by (77) and (78), we define the functions

f.() =9 (x3T = 1) (81)
and the notation
1
(£ ,g) = _{ f (x)g(x)ax (82)

Then the conjecture we wish to consider may be written in the form



oL

o, &
k= (5) (84)
Since
(f )fm) - Smn (85)
(83) is equivalent to
(f ,1), a/
2 c(@)(e, (1-x%) (86)
1L
m
Of course both sides vanish when m is even. For m = entl, a trivial calucla-
tion yields
(f 1)
2n+1’ 1, -o-1
= = 2(-1)" [(n+ =)x] (87)
Pon+1
But it is known( ) that
5 a/2 1 5 /2 i(n + =)nx
(f ,(1-x7) = [ (1-x%) e dx
) _ ot
(n+2)2]
=7 12+ 1) [ — Tguy L * ] (8)
2

whence the invalidity of (8%) is evident.

special case a = 2.

In fact (83) is true only in the



VI. SOME QUANTUM FIELD THEORY PROPAGATORS

We derive below generalized function representations for certain prop-

agators of quantum field theory. Since most of our results have already been

(17)

obtained by Gorgé and Jauch, the significance of this section lies mainly
in the method used. This consists of a systematic application of techniques
(1)

due to Gel'fand.

It is well-known that the generalized function definitions

(xt10) = X + Y (4 4 ) (1)
. n-1
(xti0)™ = x™7 ; iﬂ%i%%ST— 5Ny (me1 2, ) (2)

can be extended to the case in which x is replaced by a quadratic form in more

than one variable. Consider the Lorentz invariant form

2 _ 2
p +tm =p'p-p +m
The generalized functions
~t 2 2 . N
u (p) = (p" + m 2 ic) (3)

exist in 8', and we have, in analogy to (1),

(6% " 2 50)" = 0F + wd )y TR 4 u?) ()
for N # -k, and, corresponding to (2),
k-1
~t _ 2\-k - in(-1) (k-1), 2 = 2
u, (p) = (" +m%) "+ TE (p™ + ") (5)

95
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We will use in particular the functionals

L) =2 ) A (0] = (08 a7 (6)

) = 1L ) - T 0] = B 6B 4 ) ()
where the right-hand-sides are given by

(i, 9 =1n a'p (%) () (8)

T p2n?| > e

and

A

(GO CP) = (‘l>k_l 702(1() 6(k-l) ﬂp3 * Jpg+m2‘Q) (9)
-k o} aQ(k-l) Ipé+m§-Q| Q=0

Here p = IE’ and

.
(o, \Iogﬂng—Q = fan olp, +\o2l-a) (10)

The definition (8) is an obvious four-dimensional extension of the ordinary

principal value, while (9) results from the change of variable

whence

fdhp 6(k>(p2+m2)@(g,po)

pgddedQ
~ 5 (K)
EJ p +m -Q

This is easily seen to reduce to (9).

- J (@)p(p, 2, ton°-q) (11)
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Now consider the differential equations

@- 0" £(x) = (-1) 5, (x) (12)
(O- %) £°(x) = 0 (13)
Here
_ 3
0=vv- g;g )

and we abbreviate

The generalized functions discussed above lead naturally to particular,
Lorentz invariant solutions of (12) and (13); these "canonical" solubions are
precisely the propagators of quantum field theory.

(12) and (13) have the Fourier Transforms [defined by four-dimensional ex-

tension of (Iol), with transform variables R, poj

(%2 F(p) = 1 (14)
Ek"‘ ¢
(p%+05)5 F2(p) = 0 (15)

~

It is clear that the generalized functions Efk’ u_y [equations (5), (6)] are
solutions to (14), while the E?k of (7) is a solution to (15). The H"fk can be
expressed as linear combinations of E_k and E?k’ to which we therefore restrict
ocur attention.

We compute the inverse Fourier transforms of



and

by means of the known fact that, for Re(A) > 1,

2., \1/2
el o QA x> fon L %10) & (16)
M (en)ze'(K+l)r(-x) (><2iio)l/2(2+>‘>
2
where x° = XX - x° . (16) can be written in a more useful form by using the
identity
-y LY
K (-iz) = iz e 2 H(l)(Z)
v 2 -V
and equation (1). We find
/ Ezg /
2.1/2 1 2,.1/2
K [m(x“tio)] = faa 00 )y ) 3 iz " gy 0 ) (17)
DN (Xg)i/z(mz) 2 (Xe)%/z(mz)
whence
2,1/2
u (x) = 1 [u+ +u ] =1 m2+x _ X J_(x+2)[m(x )- : (18)
A 2N A (gn)zg-(Ml)F(_M 2 (Xg)%/z(mz)
: 2,1/2
) = 1O 2 - 2 -1 Ko, [mO)]
A AN (27()22_‘(}\4-2)1—'(—7\.) (xg)i/e(eﬂ)
2,1/2
o= N-(2+x)[m<X ) ]] (19)
2 (Xz)%/e(zw)
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Equations (18) and (19) were derived by assuming Re(\) > -1, in which case
the transform can be computed by éctually performing the integrals. However,

by considering the usual series expansions of the Bessel functions, and the

A

known analytic properties of (x2)+ ,

it is not hard to see that the expressions
on the right-hand-sides are entire functions of M. Thus, by analytic continua-

tion, we may take (18) and (19) to be true for all A. In particular, letting

A+ -k, we have our desired propagators:

1
5 .5, 2 2-k - =(2-k)
() =), m ) 2 o Y3 (20)
-k i b (x-1) - k-2 -
u’ (x) = (-1) S Kk-z[m(xg>i/2] o X Nkrz[m(xg>}/2] (21)
P | AYRER 2 (Ayl/ee)

[The reason for the extra term in u l(x) is as follows. Upon expanding

the Bessel function in (20) in a power series, we find

s =(\t2)
(x7)
=N —_— £ ) .
UX(X) ™) (L) regular terms (22)
2.-(n+2) . 4 : .
Both (x7) and T'(-A-1) have simple poles at A = -1, with known residues.

The first term of (20) results from an application of L'hopital's rule.]
The case in which m = o is perhaps more interesting. We wish to find the

canonical solutions to
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We denote these by v(;)

(P))

and require them to correspond in some natural way to the u(i)(x) found above.

Observing that, from (21), %ig uok(x) does not exist in any ordinary sense

0

0
for k > 1, we might conclude that the v o1 v 57 e

te., cannot be defined. 1In

p-space, however, the situation appears somewhat differently. The limit

. 2 2 1 2 1!
1 +m”) =
Hm 3(p™m”) = "5(p")

does exist, in the sense that there are well-defined generalized functions

~

go(p) which satisfy

2~0
pg(p) =0

In fact, there are two (linearly independent) such functions, which differ by

(constant)[j(k-g)

8(p). Thus the difficulty is actually one of uniqueness; we
muist insure that our solutions to (23) and (24) are the canonical ones.

This difficulty is easily surmounted. We require first that Re(\) > -2,

and define

N - ,
VX(X) = %ﬁg uk(x) Re(A) > - 2 (25)
The limit exists and we find
2N+2
vi(x) =+ i —=— F(X+2)(x2;io)_(2+x) (26)
A 2
(27)7T(-\)
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It is clear that the prescription

v ) 2 Jim v () (21)
v () =2 v 60+ v ()] (28)
Vi) 2 108 v () - v ()] (29)
-k -k -k

o)
would yield the m = o analogues of u K and u " and thus the desired canonical

solutions to (2%) and (24), provided the limit (27) exists. The fact that, for
1

k > 1, this limit does not exist, requires only a slight and conventional( )

modification of (27).

(M+2)

Specifically, it is known that (xa;io)- and I'(A+2) have their only
singularities—poles—at A = 0,1,2,..., and A = -2, =5,..., respectively. Thus

+
v{ is well-behaved at A = -1, and we have, from (26),

* - 1 -, -1
v (x)=+1 (x"+10) (30)
-1 2
(2n)
For A = -2, -3,..., the formula (27) is useless and we use instead
* o - g (
= lim — [+ >
0 =t L om0 0] ks 51)

+ . v +
Thus defined, v . is the so-called "regular part" of v, at A = -k. It is

+
clearly the constant term in the Laurent series for Vk near \» = -k.
. : 2,. y-(n+2) : .
Using (26), and the known Laurent series for (x +io) , we easily find

(%) [la|x®[2im0(-x2)] (32)
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Equations (28)—(32) furnish the desired propagators:

2
_5(x7)
v, (x) = =2 (33)
Ak-2 -2k
, (-1) 2 2.k-2 2
{ = - >
V-k\ ) ﬂ(k—l)f(k—E)'. ( ) ®( x") k>2 (BM)
1 2.-1
v (x) = =5 (x) (35)
2n
-2k
K-
v?k(k) =3 2 (X2) 2 ln,x2| k> 2 (36)
n (k-1)!(k-2)!
We remark that
v_, () e )
o = lim (37)
(x) u (%)
Vo1 -1
while for v?k(x), k > 2, we have only the correspondence of our definition:
V?K(x) = Regular part at A = -k of %ig u;(x) k> 2 (38)

A >=2



APPENDIX

We show that, for 0 < & < =,

© _1kpsinheti N .
_i SikrsinhTHicr sin (1 1§)dT _ QKO(Klftro'g) (4.1)

as claimed in Section II.2 [equation (II.2.Lk2)]. Beginning with the representa-

tion

( 1 ©® o e
K - = - k dk .
. k| roﬂ) p _é d é (A.2)

which follows directly from the fact that Ko(n}r-rol) is the infinite space

(12)

Green's function for the two dimension Helmholtz equation,

(P-k2)K (6|F-F|) = -2n 5(%T ) (A.3)
0 0 o
we "rotate" the integration variables: <kx’ ky)==e><kl,k2) where
k =k cos © - k sin ©
X 1 2
k =k sin © + k cos ©
vy 1 2

so that, in polar coordinates, the exponent is
-- . - = -uk + -k s @_ + 3 . - .‘
ik (2 ro) ikr + i lrocos( @O) 1k2r051n(90 9) (A. L)

We now perform the integral over k2}

. . .l 2 2 .
e—lklr + 1klrocos(90-@) + iykytk r0|31n(90—©)]

1 2!
k. +
1 K

103
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and let kl = K sinh T

o -ikr sinh T + ikr sinh T cos(6 -9)
iﬁT e © o}

N

Ko(n|?5?;|) =

. Hrrocosh T|5in(6,-9)] (A.6)

The desired equation (A.l) now follows from the identity

sinh(T+it) = sinh T cos & + i cosh T sin ¢
the definition of I?lfglg [equation (II.2.43)], and the fact that for ¢ ¢ (o,n),
sin & = ]sin gl.
We incidentally observe that according to equation (A.6), the T-transform

£ K (k|7-7 |) is, f 1 6-0
o O(K’r ro’) is, for genera o

v (1,0) = einrosinh['r + ig(@-@o)] (A.7)

where

a
It

= sgn[sin(@-@o)]

Taking the t-transform of equation (A.B), we see that wo should satisfy

52 52 ikr.sinh T
— + = WO(T,Q) = -2kr cosh T \e ° 2. 5(e-2nn)
n

5T2 09
+ o eTosinh T 5 6[@-(2n+l)rc} (.8)
n

provided equation (II.2.20) is correct; but the formula (A.8) is easily veri-

fied by performing the differentiations.
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