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PREFACE

The works of Hartmanis and Stearns [10], Krohn and Rhodes [12],

Yoeli and Ginzburg [22], and Zeiger [24] amply demonstrate the usefulness

of homomorphisms in studying decompositions of finite automata. Yoeli and

Ginzburg's approach is slightly different from the others in that it is

more concerned with aspects of the state transition graphs of finite

automata., In their paper, "On Homomorphic Images of Transition Graphs" [22],

they give a complete characterization of the class of homomorphisms of the

graphs which correspond to input-free automata,

This paper was motivated by an interest in extending these results

of Yoeli and Ginzburg in the direction of a characterization of the class

of homomorphisms of graphs which correspond to arbitrary finite automata,

It is a review and a classification of most of the published definitions

and results on mappings of graphs which have been called homomorphisms,

The paper contains, in addition, several new results and several new

definitions of homomorphisms of graphs, which are found primarily in

Sections 1,3 — 1.6, 1.8, and 1.9.



The mappings of graphs which are defined in this paper are
divided into three classes; Homomorphisms, Contractions, and Relational
Homomorphisms. The distinction between the first two classes, while not
very important, is a very natural one to make, and can best be understood
after the class of Homomorphisms has been defined and studied in Section 1.
It is for this reason that the discussion of this distinction is postponed
until Section 2, where Contractions are defined and examined.

It is likely that there are definitions and resulfs on mappings
of graphs which have recently been published but which are not referenced
here., The author would welcome any information concerning such omissions,

For the reader not well versed in the terminology of graph theory,
terms which are undefined in the text are defined in the Appendix,

Proofs of statements which are quite easily constructed have, in
many instances, been omitted, it is hoped without any loss of content or
continuity,

The author is especially indebted to Professor Frank Harary,

of the Mathematics Department, and to Yehoshafat Give'on, of the Logic of
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Computers Group, for their many critical comments, suggestions, and sharp

reading of the manuscript, which greatly improved the organization and

presentation of definitions, results, and proofs,
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NOTATION

0f a graph G = {V,p:

V or V(G) denotes the set of points of G;

p denotes the adjacency relation of G, p ¢ VxV;

p(a,b) or (a,b) means there is a line from point a to point b in G;

p(a,b) means there is no line from point a to point b in G;

p(a) = {b : (a,b)ep};
o"ld) = {a : (a,b)ep);
-1
n(@) = p(ale "(a);

x(G) denotes the chromatic number of G.
Kn denotes the complete graph on the n points, kl' k2, ooy K o
P denotes a cycle; Pn' a cycle of length n with points Py» Pys eees Ppe

C denotes a chain; Cn’ a chain of length n with points Cpso Cor esey Cooge

xi






1, HOMOMORPHISMS

1.1. General Definitions,

A graph G = <V,§> is a relational system whose set is the finite
set V of points of G and whose set of relations consists of one binary
relation pc VxV, the adjacency relation. A graph G' = QLoD is a subgraph
of G, written G'c G, iff V'C V and p' ¢ p; G' is a g_ll subgraph of G
iff for every a,beV', (a,b)ep — (a,b)ep'.1 Let ¢ be a function from V
into V', and define the extension ¢ : VxV — V'xV', by

(a,b)¢ = (ad,bd).
I1f ¢ satisfies the condition
(1) p¢ c p', or equivalently, (a,b)ep => (a¢,b¢)ep’,

then ¢ is a homomorphism of G into G'., If ¢ also satisfies the condition

(2) (a¢,bd)epr' = (Fc)(Fd) [cod = ap A dd = b~ (c,d)ep],
then ¢ is a full homomorphism of G into G'., From the definition of
homomorphism it follows that the product of homomorphisms is itself a

homomorphism, i.e.,, if G, G', and G" are graphs and ¢ : G — G' and

1Subgraphs and full subgraphs correspond in Ore's terminology to subgraphs
and section graphs, and in Berge's terminology to partial subgraphs and
subgraphs, respectively,
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¥ ¢ G' — G" are homomorphisms, then the product mapping ¢y, for which
adh = (a0)y and (a,b)ev = ((a,b)8)¥ = (a0,bo)v = ((36)¥,(bIV) = (a¢y,boy),
is a homomorphism of G into G", It follows also from (1) that if
Go = <N¢,p¢> is the image of G under the homomorphism ¢ then G¢ is a sub-
graph of G', and if ¢ is a full homomorphism then G¢ is a full subgraph of
G'. If, in addition, ¢ maps V onto V' then ¢ is said to be a (full)
homomorphism of G onto G'. Note that if ¢ is a full homomorphism of G onto
G' then p¢ = p',

In the case G' ¢ G and ¢ is a (full) homomorphism of G into G',

¢ is said to be a (full) endomorphism of G; when G¢ = G' = G, ¢ is an

automorphism of G. A full homomorphism ¢ of a graph G onto a graph G' is

an isomorphism when ¢ is 1-1 from V onto V', in which case G and G' are
said to be isomorphic, written G ~ G'.

Figure 1 illustrates some of these definitions. The homomorphisms
¢1 and ¢3 are full endomorphisms of G onto the full subgraphs G1 and GS'

respectively, The endomorphism ¢2 is not full, since G2 is not a full

subgraph of G, Note that 62 and G3 are isomorphic., Note also that
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d
¢ ¢
Gl < 1 G 2 > G2
¢3
Gy
a ::::::1 c
b d
% a,d —d ¢2: a —d ¢3: a-—a
b,c — ¢ b —sc¢ b—b
e —> e c,e —> e c,e —>C
f—f d,f — f d,f —>d
FIG. 1.

G¢1¢1 = G¢l and G¢3¢3 = G¢3, but G¢2¢2 # G¢2.

1,2, Properties Preserved under Homomorphisms,
H. J. Keisler has written a paper [11] which is concerned
essentially with a logical formulation of the properties of a relational

system which are preserved under two classes of homomorphisms, which he
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calls "strong homomorphisms"1 and '"retracts". Using our terminology for
graphs, these 'strong homomorphisms' are full homomorphisms for which the
function is onto, and '"retracts" are endomorphisms which act as the identity
mapping on the image, i.e., G¢ = G' is a subgraph of G and b = b for every
beV', It follows from this definition that "retracts" are those endo-
morphisms which are idempotent, i.e., for which G¢2 = G¢» Two theorems are
stated in the paper, one for each class of mappings, to the effect that

a property of a relational system is preserved if and only if it is logically
equivalent to a sentence of a particular form in the first order predicate
calculus with identity, Although these results obviously can be applied to

homomorphisms of graphs, they have not been as yet,

1.3. Complete Homomorphisms.
An ordinary graph is a graph whose adjacency relation is symmetric
and irreflexive; stated in other words, a graph is ordinary if it is undirected
e m—————

and has no loops or multi-lines. In this section, and in Sections 1.4, 1.5,

1Later in the paper, Section 1,9, we will define a different class of
mappings and call them strong homomorphisms,
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and 1.6, we will consider only full homomorphisms of ordinary graphs onto
ordinary graphs; these mappings ¢ must satisfy the condition

(3) a¢ = b¢ = (a,b)fo,

and we will call them ordinary homomorphisms.1 We will, however, omit
the word "ordinary" when referring to graphs and homomorphisms in these
four sections,

A homomorphism of a graph G onto a graph G' is called complete
iff G' = Kn’ for some n, A complete homomorphism of a graph‘G onto Kn is
said to be of order n., A coloring of a graph G is an assignment of colors
to the points of G such that no two adjacent points are assigned the same
color, More formally, an n-coloring of a graph G = <N,d> is a function n
from V onto N, where N is the set of natural numbers (colors) {1, 2, ..., n},
satisfying the condition that (a,b)ep = an # bn. An n-coloring n is
complete iff for every i,j, i#3j, (Fa)(3bv)[an =iANbn=jA (a,b)ep].

The chromatic number of a graph G is the smallest number n such that G has

an n-coloring,

1Full homomorphisms satisfying this condition are called independent

by Ore, cf, Section 2,2,

-5-



Theorem 1.3.1, If n ¢ V—> N is a (complete) n-coloring of
graph G =<V, 0y, then n determines a (complete) homomorphism ¢n of G
onto K , and conversely.

Proof. Ifan =1, let a¢n = ki . H

The next eight corollaries follow more or less directly from this
theorem; the proofs of these corollaries are quite simple and are omitted,

Corollary 1.3.2, (Ore) If the chromatic number of a graph G
i8 n, then G has a complete homomorphism of order n.

While this corollary defines the order of a particular complete
homomorphism that every graph must have, a given graph may have several
other complete homomorphisms of different orders. Figure 2 illustrates this
possibility; the graph G has complete homomorphisms of orders 2, 3, and 4.

Corollary 1.3.3. (Prins) The smallest number s for which a given

graph G has a complete homomorphism1 of order s is the chromatic number of G.

Corollary 1.3.4. If ¢ ie a homomorphism of a graph G, then X(G) £ x(G$).

1In a manuscript, "Complete Contractions of Graphs,'" dated February 1963,
Prins refers to these mappings as complete contractions,
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8 1 ¢3: a,c,d —k ¢4: a,¢e,g
f ) b,e,g — k b
f —k d

f

FIG. 2.

Corollary 1.3.5. If G is any graph and S is any independent set
of points of G, then Xx(G) <1 + x(G=S).

Corollary 1.3.6. (Dirac)1 If G is a eritical araph and S is

1 c.f. Dirac [4].
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any independent set of points of G, then x(G) =1 + x(G-5).

Corollary 1.3.7. If G i8 any graph having n points and point
independence number %55 then x(G) ¢ 1 +n - %y

It is interesting to note in passing the relationship of this
result to the result stated in Berge [2, p. 37] and Ore [16, p. 225] which
asserts that

n/ao s x(Q).

A graph G is simple iff every homomorphic image of G is isomorphic
to G.

Corollary 1.3.8. A graph G is simplel i1ff G = K , for some n.

A homomorphism € of a graph G is elementary iff for two points
a,beV(G), ae = be and € is 1-1 on V(G) - {a,b},

Lemma 1.3.9. Every ordinary homomorphism of a graph G onto
a graph G' can be expressed as a product of elementary homomorphiems.

As an immediate consequence of Corollary 1.3.5. we have

Corollary 1,3.10, The chromatic number of an elementary homo-

1Simple with respect to ordinary homomorphisms.
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morphic image of G i8 at most one greater than the chromatic number of G.
And because of Corollary 1.3.6 we have
Corollary 1.3.11, Every elementary homomorphic image of a eritical
graph G has the same chromatic number as G.
Theorem 1,3.12. (Prins) If the chromatic number of a graph G
18 8, and G has a complete homomorphism of order t, then for all n,
8 s n <t, Ghas a complete homomorphism of order n.
Proof, The theorem follows directly from Lemma 1.3.9 and
Corollary 1.3.10. Consider any homomorphism ¢ which maps G onto K
By Lemma 1.3.9, ¢ can be expressed as a product E1€p ooe € of elementary

homomorphisms, Let G1 = Gel, G2 = Glez, eeey G =G = K

m n-1%m t*

By Corollary 1,3.10 we know that the chromatic number of G, is at most one
greater than the chromatic number of Gi-l' It follows therefore that

if x(G) = s and s g n < t, then there exists at least one Gi whose chromatic
number is n, By Corollary 1.3.2, this Gi has a complete homomorphism ¢s
onto K . Hence G has a complete homomorphism €,e, ... €4, onto Kn.||

172 '

Prins, in considering complete homomorphisms, made an interesting
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distinction between two types. Type-1 complete homomorphisms of a graph G
are obtained in the following manner, Take any maximal independent set of
points V1 in V(G). Remove the points in V1 from G and take a second maximal
independent set of points V2 in V(G-Vl). Iterate this process until V(G)
has been completely depleted, and has been partitioned into sets

Vl' Vz, coey Vm. This partition defines a complete homomorphism ¢ of G onto
K ; ap = k. iff aeVi. If a complete homomorphism is not of type-1 it is
said to be of type-2,

Prins has shown that the homomorphisms stated in Corollary 1.3.2
and Theorem 1.,3.12 can be required to be of type-1, i.e.,, if the chromatic
number of G is s and if G has a type-l complete homomorphism of order t,
then for every n, s s n < t, G has a type-1 complete homomorphism of order n.
Prins has attempted to characterize the type-2 complete homomorphisms, but
has not yet succeeded.

While Corollary 1,3.3 establishes the minimum order s, it remains
an open question to determine a decent description of the maximum order t of

all complete homomorphisms of a given graph G. The following result, which
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extends Corollary 1.3.7, establishes a bound for this number t,
Theorem 1.3.13, Let G be a graph having n points and point

independence number o,, and let t be the largest order of all complete

0.’
homomorphisms of G. Then x(G) st <n+ 1~ aj
Proof. Let ¢ be a complete homomorphism of G onto Kt’ where t is

maximum, and consider the partition of V(G) determined by the sets

be any maximal independent set of G

¢-1(ki)) i = l, 2. ee ey tu Let Vl

containing % points, and consider where among the sets ¢-1(ki) the points

in V., lie. Three possibilities exists; ¢°1(ki) contains no points of V

1 1

¢'1(ki) contains some points of V, and some points of V-V, or ¢'1(ki)
contains only points of Vl. Note, however, that at most one set ¢'1(ki)

can contain only members of Vl. It follows therefore that we can pick
representatives from at least t-1 of these sets which are not members of Vl,
and therefore the total number of points in G minus these t-1 representatives
leaves at least the o, points of V1 remaining, Thus

n - (t-1)

w
Q

1w
(ad
.

n+1l - ao
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Corollary 1.3.14. t ¢ BO(G) + 1, where BO(G) 18 the point cover
number of G.

Proof. This follows since n = aO(G) + BO(G).1||

Perhaps the most natural bound for the largest order t of all

complete homomorphisms of a given graph G, having q lines, is the largest

e

As one might expect, however, there are cases in which each of

integer r such that

the two bounds, r and n+l-a,, gives a better estimate than the other, as the

examples in Figure 3 illustrate.

FIG, 3.

In Gl‘ n=9,q=38, and 0o = 8, hence r = 4, n+l-ao, = 2, while t = 2,

lcf. Gallai [7] .
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If GZ' n=10,q=09, and o = 5, hence r = 4, n+l-o = 6, while t = 4,

1.4, Type-n Homomorphisms.

An n-basis of a graph G = <y,p> is a subset of points, Vn c v,

satisfying
(1) a,beVn===; d(a,b) > n;
(ii) c¢Vn - d(c,Vn) < n,

A Prins' type-1 complete homomorphism (cf. Section 1,3) can be
described in terms of an iterated subtraction from a graph of maximal
independent sets of points. Since from the definition of an n-basis it
follows that maximal independent sets of points are l-bases, the suggestion
naturally arises of considering complete homomorphisms of type-n, mappings
which can be described in terms of an iterated subtraction from a graph
of n-bases.

Even though the process of obtaining a series of n-bases from
a given graph does not always define a complete homomorphism, the fact that

some complete homomorphisms which are not of Prins' type-1 can be expressed
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as complete homomorphisms of type-n seems to justify the following defini-
tion,

A full homomorphism ¢ of a graph G = <V,p> onto a graph G' =<\/',o>
is of type-n iff there exists an ordering of the sets ¢-1(a'), for a'eV',

say V Vz, AN Vk’ such that

1’

(i) V, is an n-basis of G, and

1
i-1
(ii) for i 2 2, V; is an n-basis of G - U Vj‘
j=1
and for nom, 0 <m < n, is ¢ of type-m,
Note that not every complete homomorphism is of type-n, for some

n. An example of this is the complete homomorphism given in Figure 4; neither

of the sets {a,d}, {c,e} or {b,f} is an n-basis of G, for any n.

c
k1 o2 a,d —>k1
d b, f ——+k2
i E c,e —> k3
[og A —0 k k
a b e f 2 3
¢
G > K3
FIG, 4,
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If a complete homomorphism is not of type-n for any n, it is said to be

of type-e.

An example of a type-4 complete homomorphism is given in Figure 5;

the subset {e,j} is a 4-basis of G; {c,i,1} is a 4-basis of G - {e,j};

{b,d,g} is a 4-basis of G - {e,j} - {c,i,1}; and what remains in

G- {e,j} - {c,i,1} - {b,d,g} are the three isolated points a, f, and h,

1
J 41 a,f,h —» k|
g i bbdtg —’kz
h C,i’l —)ks
e
k k
a b c 2 3
G ¢ > K,
FIG. 5.

1.5, Two Invariants of a Graph.

Two interesting invariants of a graph arise out of considerations

of the following question: Given a graph G, for what graphs H do there exist
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homomorphisms ¢ such that H¢ = G? A partial answer to this question is
given by the following three propositions.,

Proposition 1.5.1. For every comnected graph G there exists a tree
T and a homomorphism ¢ such that T¢ = G,

Proposition 1.5.2. For every connected graph G there exists a
chain C and a homomorphism ¢ such that C¢ = G,

Proposition 1.5.3. For every connected graph G there exists a
eycle P and a homomorphism ¢ such that P¢ = G,
It is natural in view of these last two propositions to make the following
definitions,

The chain length of a connected graph G, ch(G), is the smallest

number k for which there exists a chain C of length k and a homomorphism ¢

such that C¢ = G. Alternatively, ch(G) is the length of the shortest path

which contains all the lines of G.'

The cycle length of a connected graph G, cy(G), is the smallest

number k for which there exists a cycle P of length k and a homomorphism ¢

such that P¢ = G,
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Proposition 1,5.4. For every connected graph G,
en(G) < ey(G) < 2¢h(G).

Proof., Clearly ch(G) g cy(G), for if a1y 8y, weey 3y, is any

1
cycle P of length k which maps onto G under a homomorphism ¢, then a chain
ai, aé, «ee, a', b can be defined of the same length k which maps onto G
under the homomorphism ¢' for which ai¢' = ai¢ and b¢' = a1¢.

To show that y(G) < 2ch(G), let Ck with points €1 Cop ween Oy g

be the shortest chain which maps under a homomorphism ¢ onto G. Then a

cycle ci, cé, N ci+1, dk' dk-l’ ceey dz, ci of length 2k can be defined

which maps under the homomorphism ¢' onto G, where ci¢' = ci¢ and di¢' = c o,
The bounds given in Proposition 1.5.4 are achieved in the following
two cases; ch(Pn) = cy(Pn) = n, and cy(Cn) = 2ch(Cn) = 2n,
Proposition 1,5.5. For every connected graph G with q lines,

(i) q < ch(G) s 2g-1.

A

(11) q < cy(G) s 2q.

Proof. (i) It is obvious that a < ch(G), since the shortest

chain which maps onto G must have at least as many lines as G.

-17-



That ch(G) < 2q is an immediate consequence of the following
theorem, quoted from Ore [16, p. 41]:

"Theorem 3.1.4. In a finite connected graph it is always possible
to construct a cyclic directed path passing through each edge once and only
once in each direction,"

(ii1) The same arguments hold for cy(G).

Proposition 1.5.6. If G is a connected graph having q lines and
in which every point has even degree, then ch(G) = cy(G) = q.

Proof. G is an Euler graph, i.e., a graph in which it is possible
to find a cyclic path of lines such that each line in the graph appears once
and only once.

Theorem 1,5.7. If G is a connected graph having q lines and exactly

two points a,b of odd degree, then

(i) ch(G)

q;

(i1) ey(G) = q + d(a,b).

Proof. (i) See Ore [16, p. 40]. Such a graph has at least one

path which passes through all the lines of G once and only once, which begins

-18~



with point b and ends with point a, Hence, ch(G) = q.

(ii) Clearly, cy(G) < q + d(a,b). A path corresponding to the
one referred to in (i) above can obviously be extended to a cycle by an
additional path, of length d(a,b), from point a back to point b. In order
to show that cy(G) £ q + d(a,b), let Pk with points Pys Pys sees Py be
the smallest cycle which maps onto G under the homomorphism O and let Pn
be a cycle of length n = q + d(a,b) which maps onto G under the homomorphism

o Obviously, k < n, Consider the multi-graph Gk generatéd by P, and the

k
homomorphism ¢k' i.e., V(Gk) = V(G), and there are as many lines between
two points c,d in Gk as there are pairs of adjacent points P;» Pj in Py such
that either Pid = ¢ and pj¢k = d, or pi¢k = d and pj¢k = ¢, It follows that
Gk has k lines, The degree of a point c in Gk equals the sum of the degrees
of the points s for which pi¢k = ¢, Since every point Py has even degree
in Pk, every point c has even degree in Gk'

Consider also the multi-graph G, generated by Pn and the homomorphism
¢n; Gn has n lines, Clearly for every line (c,d) in G there is a line (c,d)

in Gy and a line (c,d) in G Hence, let us remove for each of the q lines

-19-



in G a corresponding line in both Gk and Gn' Denote the resulting graphs

by Gk-G and Gn-G, which have k-q and n-q = d(a,b) lines, respectively, where
k-q s d(a,b). Since the points a,b have even degree in Gk and odd degree in
G, they have odd degree in G

k-G. And since they are the only two points of

odd degree in G, they are the only two points of odd degree in G, -G, It

k
follows, therefore, by Theorem 2,2.2, Ore [16, p. 24], that since a,b are
the only points of odd degree in Gk-G, a and b are connected in Gk-G. Hence
Gk-G has at least d(a,b) lines, i.,e., k-q 2 d(a,b). Hence k;q = d(a,b),
i.e., k = q + d(a,b).
Theorem 1.5.8. If G is a connected graph having q lines and 2n
points of odd degree, n > 2, and diameter 6, then
(1) q + n-1 < ch(G) < q + (n-1)§;
(i11) q +n <ceyl(G) < q + ns.
Proof. (i) That ch(G) < q + (n-1)8 follows by virtue of
Theorem 3,1.2, Ore [16, p. 40]. Such a graph G has a set of n line disjoint

paths which contain all the lines of G once and only once., Let

Wi Wz, ceey Wn represent these n paths, A path which starts with the first

=20«



point of Wl' which ends with the last point of Wn’ and which connects the

last point of Wi with the first point of Wi* by a path of the length less

1
than or equal to the diameter ¢ can always be constructed in G, Such a path
clearly has length less than or equal to q + (n-1)8, It is a simple matter
to construct a chain of the same length which maps onto this path. In order
to demonstrate that q + n-1 < ch(G), let ch(C) = k, let Ck with points

1o Cos evvs Sy be a chain of length k, and let ¢k be a homomorphism which
maps Ck onto G, Let Gk be the multigraph generated by Ck and‘the homomorphism

9y as in the proof of Theorem 1.5.7,

Since only points ¢, and ¢ have odd degrees in C

1 k+1 at most two

K
points have odd degrees in Gk. Obviously, Gk can be obtained from G by
inserting additional lines between various pairs of adjacent points in V(G).
The fewest number of additional lines which could possibly convert G, with
2n points of odd degree, into the multi-graph Gk’ with at most two points of
odd degree, is (2n-2)/2 = n - 1, This can be accomplished (if possible) by

leaving two points of odd degree in G untouched by the addition of new lines,

and by pairing-off the remaining 2n-2 points of odd degree into adjacent pairs
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and adding a new line between each pair, i.e.,, by adding n-1 new lines,

(ii) The proof for cy(G) is very similar to that for ch(G) and
is omitted, ||

it is interesting to compare the upper bounds given in
Proposition 1,5.5, ch(G) < 2q - 1, and in Theorem 1,5.8, ch(G) < q + (n-1)6.
There are cases in which each of the two bounds gives a better estimate

than the other, as the examples in Figure 6 illustrate,

FIG: 6,

In Gl’ q=5,6=3 andn =3, i,e., G1 has 2n = 6 points of
odd degree; hence 2q - 1 = 9, while q + (n-1)6 = 11, Note that ch(Gl) =7,
In Gz, q=17,6=2, and n = 2; hence 2q - 1 = 13, while q + (n-1)8 = 9,
Note that ch(Gz) = 8, The examples in Figure 7 illustrate that the bounds

given in Theorem 1,5.8 can be achieved,
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FIG, 7.
In GS’ q=3,8=2,andn = 2; hence q + n-1 = 4 = Ch(GS)' In G4, q =4,
§ =2, andn = 2; hence q + (n-1)6§ = 6 = ch(G4), and q + n§ = 8 = cy(G4).

In GS’ q=6,8 =3, andn = 3; hence q+n=9 = cy(GS).

. _[on )

Corollary 1.5.9. (1) ch(Kgn) = (2) + n-1;
- _[ent]) .
(i1) ch(K2n+1) = ( 2) = cy(K2n+1),

(3ii) cy(K, ) =(2’;) + 7
Proof, (i) and (iii) follow at once from Theorem 1.,5.8 and the
observation that 6(Kn) =1, for all n > 2,
(ii) follows from Proposition 1.5.6 since every K2n+1 is an Euler

graph,

Lemma 1.5.10. Let ¢ be a homomorphism of a eonnected graph G onto

\"4

a graph G'. Then (i) ch(G) 2 ch(G');

(ii) cy(G) > ey(G').
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Proof, (i) Let ch(G) = k, and 9y be a homomorphism which maps

Ck onto G. Obviously, the product mapping o9 is a mapping of Ck onto G':

b ¢
> G > G', Hence ch(G') < k = ch(G).

(ii) A similar argument also holds for cy(G).

1.6. Endomorphism-free Graphs.,

A graph G is endomorphism-free iff every endomorphic image of

G is isomorphic to G.

Theorem 1.6,1. If ¢ i8 an endomorphism of a graph G, then
the chromatic number of G¢ equals the chromatic number of G.

Proof. OQbviously, x(G¢) < x(G). But by Corollary 1.3.4,

x(G) < x(G¢).

Corollary 1.6.,2, Every critical graph is endomorphism-free.
Inspection of all the graphs with six or fewer points shows that the converse
to this corollary is true for these grapfis,

Proposition 1.6.3., If a graph has at most six points and is
endomorphigm-free, then it is critical.

The graph in Figure 8, which is endomorphism-free and not critical,
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shows that the converse does not hold for all graphs., But Figure 8 has
eight points, leaving the problem of whether there exists a seven point

counter-example,

FIG. 8.

1.7. Homomorphisms for Functional Digraphs.

A functional digraph G = <<V,p> is a graph whose adjacency relation

p is a function from V into V; in other words, the adjacency relation is not
necessarily symmetric and the out degree of every point equals one., In this
section we will consider only full homomorphisms of functional digraphs onto
functional digraphs; these mappings ¢ must satisfy the condition
(4) a¢ = by = p(a)¢ = p(b)¢.

A homomorphism ¢ is prime iff in every expression of ¢ as a product

91955 either ¢, or ¢, is an isomorphism,
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Yoeli and Ginzburg [22] have given a complete characterization of
this class of homomorphismsl, which states that every such homomorphism
(other than an isomorphism) can be expressed as a product over the following
three types of prime2 homomorphisms:

(1) ¢a is a homomorphism which maps a cycle P of length

k onto a cycle P' of length k/p, where p is a prime

divisor of k; for aeV(P), (pi(a))¢a = (pj(a))¢a

L1

iff 1 = j (mod k/p);

(ii) ¢B is a homomorphism which identifies exactly two points
a,b, a¢8 = b¢B, for which p(a) = p(b);

(1ii) ¢Y is a homomorphism which identifies two cycles P and P'
of the same length k, where for arbitrary aeP, a'eP',
(e"@)e, = ("(@D)e, n =0, 1, 2, ., koL

Figures 9 - 11, with mappings marked ¢a, ¢B, and ¢Y’ illustrate respectively

the three types of prime homomorphisms,

llt is interesting to note that Yoeli and Ginzburg have incorporated the two
conditions, (1) and (2),for a full homomorphism,into the one condition
(5) o' =¢ po. Conditions (1) and (2) and condition (5) are clearly equivalent,

2Yoeli and Ginzburg call these elementary homomorphisms.
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a2 o a3 2
¢a: al,a4 — b1
3 3 apdg = by

b1 b3 a,,a, —>b
’ 376 3
&——0
a6 a5 ¢a .
P > P

FIG. 9.

Figure 9 illustrates as well that Lemma 1.3.,9 does not hold for
homomorphisms of functional digraphs; i.,e., the homomorphism ¢a in

Figure 9 cannot be represented as a product of elementary homomorphisms,

1 ¢B: al,d1 —a,
0 0 > b b
a b c 1 2
d 2 2 2 c c
1 1 2
> G,
FIG, 10,
3 b ¢
¢>Y: al,b1 —c
apby —¢,
3, aq b1 b3 3 cq as,b3 —C,
¢
Y
Gy > 6
FIG, 11,
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Yoeli and Ginzburg also show that provided G is a connected functional
digraph, every series of prime homomorphisms of G onto G' has the same

length,

1,8, Pathwise Homomorphisms,
An ordinary homomorphism ¢ of a graph G = {V,p> onto a graph

G' = (V',p') is a pathwise homomorphism iff it satisfies the following

condition
(6) for every path ai R a{ ) seey ai in G' there exists a path
1 2 n

a; 4 8, , +eey 8; in G such that ai.¢ = a{‘, i=1,2, .., n,

2 n j j
Note the similarity of condition (6) to condition (2), when the latter is
rephrased as follows:
(2') for every path a',b' of length one in G' there exists a path a,b in G
such that a¢ = a' and b¢ = b',
Pathwise homomorphisms were first defined by Robert McNaughton [14] for state
transition graphs. The only result he obtained about these mappings was

that the "order" of a pathwise homomorphic image G' of a state transition

graph G cannot be greater than the "order'" of G, The '"order" of a state
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transition graph G will not be defined here; suffice it to say that it is
a measure of the cyclic complexity of G, A notion similar to "order",
which is frequently mentioned in graph theory, is what Ore [16, p. 67]

calls circuit rank, y(G), the number of independent cycles. For any graph

G with p points, q lines, and k connected components, y(G) = q - p + Kk,
It is natural therefore to state the following
Theorem 1.8.1, If ¢ i8 a pathwise homomorphism of a graph
¢ = {V,p> onto a graph G' = {V',p'>, then y(G) > y(G').
Proof. We proceed by induction on the circuit rank of G.
Lemma 1.8.2. If ¢ is a pathwise homomorphism of a graph G =<{V,p>
onto a graph G' = {V',p'> and v(G) = 0, then y(G') = 0 also.
Proof. Suppose y(G') > 1, i.e., G' contains at least one cycle
Pk of length k > 3, Suppose G has p points. Certainly there exists a path
ai , a{ s seey a{ (perhaps several times) around Pk of length p, with
1 2 p+l
p+l points. Since ¢ is a pathwise homomorphism there must exist a path
3, 5 35 5 eeey 3y in G such that ai.¢ = ai'. Any such path in G has

1 b2 p+l it

p+l points and therefore must contain at least one point which occurs twice.
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Such a path therefore must have a sub-path of the form uw = a, a,
j k

But since v(G) = 0, G has no cycles and every path in G of the form w must
be such that a, =a, , and similarly a, = a; » etc., until finally
j k j+1 k-1

the sub-path of the form w must contain a sub-path either of the form a;a,
or aiajai. But it cannot contain a sub-path of the form a.a, since every
two consecutive points of the corresponding path in G' are distinct, Also,
it cannot contain a sub-path of the form aiajai since every three consecu-
tive points of the corresponding path in G' are mutually distinct. Hence
no path can exist in G which maps onto the path of length p in G' around
the cycle Pk' Hence ¢ cannot be a pathwise homomorphism, contrary to hypo-
thesis. The graph G' must therefore contain no cycles, hence y(G') = 0.

Continuing with the proof of Theorem 1.8.1, assume it is true
for all G, with y(G) = n, We will show that it is also true for G with
¥(G) =n + 1. Consider the sets of lines of G defined by ¢~ ((a',b")),
for all (a',b')ep'. Since y(G) = n + 1 > 1, there must be a set
¢_1((a',b')) such that

Y(6 - 71 ((a"b")) < (6.

It can be shown then that ¢ is a pathwise homomorphism of G - ¢'1((a',b'))
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onto G' - (a',b'), and hence, by hypothesis

¥(6 - ¢ (@b 2 v(E' - (a',b"),
But since y(G) 2 (G - ¢ ((a',b")) +1 and v(G' - (a',b')) + 1 2 y(G'),
it follows that y(G) 2 y(G').l]

It is interesting to note that mo analog of Corollary 1.3.2 holds

for pathwise homomorphisms, For example, the pentagon P_, has no nontrivial

5
pathwise homomorphisms; x(Ps) = 3, yet PS does not map under any pathwise
homomorphism onto K3. It remains an open question to determine those graphs
which are simple with respect to pathwise homomorphisms.

One might also note in passing that Lemma 1.3.9 does not hold for
pathwise homomorphisms. The mapping ¢a in Figure 8, is a pathwise

homomorphism which cannot be expressed as a product of elementary pathwise

homomorphisms,

1.9. Strong Homomorphisms.
Let g be the characteristic function of the adjacency relation of

a graph G = {V,0), i.e., g(a,b) = 1 iff (a,b)eo and g(a,b) = 0 iff (a,b)fo.
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A full homomorphism ¢ of a graph G onto a graph G' is a strong homomorphism

iff ¢ satisfies the condition
(7) g(a,b) = g'(a¢,by).

Condition (7) can also be expressed as

7') (a,blep = (a¢,b¢)ep’
(a,b)éo = (as,bo)en’.

In words, condition (7) requires not only that two adjacent points in
G map to two adjacent points in G', but also that two non-adjacent points in
G map to two non-adjacent points in G',

Theorem 1.9.1. If ¢ is a strong homomorphism of a graph G =-<}3§>
onto a graph G' = (?',pf} s then there exists a subgraph H of G such that
H~G',

Proof. Consider the inverse-image sets ¢-1(a'), for a'eV', Pick,
arbitrari;y, a set of representatives, VH' one point from each of these sets,
and consider the full subgraph H = <yH’pH> of G generated by this set of
representatives, The strong homomorphism ¢ when restricted to H is

an isomorphism of H onto G',

-32-



Corollary 1.9.2, If ¢ is a strong ordinary homomorphism of a graph
G onto a graph G', then the chromatic number of G equals the chromatic number
of G'.

Strong homomorphisms were first studied by Culik (3], who gave
the following characterization of those graphs which have no non-trivial
strong homomorphisms.,

Theorem 1,9.3. (Culik) A graph G is simple with respect to strong
homomorphiems iff for every two distinct points a,beV(G) there exists a point
eeV(G) such that

gla,e) # glb,e) or gley,a) # gle,b).
Consider the equivalence relation = defined on V(G) by
a =b iff (Vc)([g(a,c) = g(b,c) Ag(c,a) = g(c,b)],
or alternatively,
a b iff [p(a) = p(b) and o™ (a) = p" (B)].

Lemma 1.9.4. If ¢ is a strong homomorphism of a graph G onto
a graph G', then a¢ = b¢ = a = b,

Lemma 1.9.5. Given a graph G = {V,p) and two points a,beV for

which a = b, a mapping ¢ which identifies a and b (a¢ = b¢) and which is
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1-1 on V = {a,b} determines an elementary strong homomorphism of G,
Theorem 1,9.6. Every strong homomorphism of a graph G onto
a graph G' can be expressed as a product of elementary strong homomorphisms,
Proof, This is a consequence of Lemmas 1,9,4 and 1.9.5,
Theorem 1.9.7. (Cultk) Any given graph G has exactly ome strong
homomorphism ¢ onto a graph Gs‘ such that GS i8 simple.l
Proof. From Theorem 1,9.3, and Lemmas 1.9.4 and 1,9.5, a graph G
is simple iff the equivalence relation = on V(G) is the identity relation,
The strong homomorphism ¢S is that mapping for which a¢ = b¢ iff a = b.
Corollary 1.9.9. (Sabidussi) Either G ~ G, or G contains

a subgraph H such that H ~ Gs.g

Lemma 1.9.4 and the definition of the equivalence relation =
suggest that one define the following two, slightly broader classes of

homomorphisms. A full homomorphism ¢ of a graph G onto a graph G' is

a right homomorphism iff ¢ satisfies the condition

(8) a¢ = b¢ = p(a) = p(b).

1Simple with respect to strong homomorphisms,

2Theorem 1.9.1 was suggested by this result of Sabidussi [18, 19].
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A full homomorphism ¢ of a graph G onto a graph G' is a left homomorphism

iff ¢ satisfies the condition
(9) a¢ =bs = o™ (a) = p” (b).

Right homomorphisms appear to be of special interest in view of
their relation to homomorphisms of finite automata, where for a given
automaton two states a and b are said to be equivalent iff they satisfy
a condition exactly parallel to condition (8).1 Note that conditions (8)
and (9) become identical when the graphs are assumed to be ordinary graphs;
hence left, right and strong homomorphisms are all the same when defined
for ordinary graphs. One might also note in passing the similarity between
right homomorphisms and the prime homomorphisms of type ¢B in Section 1,7,

Lemma 1.9.4 and the definition of the equivalence relation = also
suggest that one define an even broader class of homomorphisms.

A full homomorphism ¢ of a graph G onto a graph G' is semi-strong2
iff ¢ satssfies the condition

(10) a¢ = b¢ = n(a) € n(b) v n(b) < n(a).

loe, 1141, [15].

2Strong homomorphisms satisfy the stronger condition that
a¢ = b¢ = n(a) = n(b).
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Theorem 1,9.9. If ¢ is a semi-strong homomorphism of a graph G
onto a graph G', then there exists a subgraph H of G such that H =~ G',

Proof, From each of the sets ¢'1(a'), a'eV', pick one point
which has maximum degree, The subgraph H generated by this set of
representatives is isomorphic to G'. Obviously, (a,b)ep = (a',b")ep’,
where a¢ = a', b¢ = b', and a and b are the representatives chosen from
¢'1(a') and ¢'1(b'), respectively,

- Also, (a',b'")ep' =2 (a,b)ep, for if (a',b')ep', there must exist
(a",b")ep such that a"¢ = a' and b"¢ = b', Since n(a") ¢ n(a) and b"en(a"),
it follows that b"en(a). By the symmetry of the neighborhood relation,
aen(b"). Since n(b") ¢ n(b) it follows that aen(b). Hence (a,b)ep.

One can show without much difficulty that the results previously
stated for strong homomorphisms can be stated in a very similar way for
semi-strong homomorphisms. In particular, Corollary 1,9,3, Theorem 1,9,6,
Theorem 1.9.7, and Corollary 1.9.,8 all hold when semi-strong is substituted

for stong, In addition, Theorem 1,9,3 can be restated as:



Theorem 1.9.10. A graph G is simple with respect to gemi-strong
homomorphisme iff for every two distinct points a,beV(G), n(a) & n(b) and
n(b) ¢ n(a).

It is natural in view of Theorem 1,9.9, to ask if for a full
homomorphism ¢ of a graph G onto a graph G' there exists a subgraph H of
G such that H2 G', is ¢ necessarily a semi-strong homomorphism? The answer

is no; as shown by Figure 12,

e
f b ¢: c,f —> f!'
f! e' € = ¢!
d c d — d'
d' C' a’b '—,C'
a
¢
N
G > -G_1

FIG, 12,

In Figure 12, a¢ = b¢, yet neither n(a) ¢ n(b) nor n(b) € n(a) holds.
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2. CONTRACTIONS

2.1, General Definition,

A question arises in the literature on homomorphisms of graphs
as to the interpretation of the homomorphic image of a pair of adjacent points
a,beV(G) which map to the same point c'eV(G')., The definition of homomorphism
given in Section 1.1, condition (1) in particular, specifies that the image
is the point c' with a loop attached to it, However, Ore, Dirac, and several
others choose to define homomorphisms for graphs for which the image of two
adjacent points can be one point without a loop, These types of homomorphisms,
which do not necessarily satisfy condition (1), can be defined as mappings ¢
which satisfy the following modification of condition (1):
(Im) (a,b)ep = (a¢,bd)ep' Vv [ad = b A (ad,bd)fp'].
Following thé terminology suggested by Dirac, Harary, and others, we will
call a mapping ¢ of a graph G =<<V,d) into a graph G' = <Y',p€> which is
a function from V into V' satisfying condition (Im) a contraction.

It is this distinction which is the basis for placing homomorphisms,

mappings which satisfy condition (1), in one class, and contractions, mappings
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which do not necessarily satisfy condition (1) but'which do satisfy
condition (lm), in another class.

However, when considering homomorphisms of reflexive graphs,
i.e., graphs whose adjacency relation is reflexive, the distinction we have
made between homomorphisms and contractions disappears. For in considering
reflexive graphs, a point is always considered to be adjacent with itself,
and thus what distinguishes one graph from another is no longer its set of
points and lines but rather the underlying graph, i.,e., its set of points
and lines minus its loops. In diagramming reflexive graphs it would seem
therefore uncecessary to include all the loops. Hence, in Figure 13
for example, the homomorphism ¢ of Glonto G2 could as well be represented by

the homomorphism ¢' of Gi onto Gé.
Q___ @ Q@ — :
4 ®y

FIG, 13.
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Forgetting, for a moment, that the points in Gi and Gé are assumed to be
adjacent with themselves, it would seem that ¢ is a homomorphism, while ¢'
is a contraction, since it fails to satisfy condition (1). But ¢' does

satisfy condition (1) if we assume that the points are adjacent with themselves,

and hence the distinction between the two mappings disappears,

2.2, Connected and Independent Contractions.

Ore [16] makes an interesting distinction between two types of
contractions.1 A contraction ¢ is connected iff the subgraphs of G generated
by the sets of points ¢-1(a'), for a'eV', are connected. A contraction ¢ is
independent iff the subgraphs of G generated by the sets of points ¢'1(a'),

for a'eV', are totally disconnected, Ore's independent contractions coincide

exactly with the ordinary homomorphisms when defined over the class of ordinary

graphs,

Theorem 2.2.1. (Ore) Any contraction ig the product of a connected

and an independent contraction.

1Ore calls these mappings homomorphisms,
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The leaf composition graph of a graph G is the graph whose points

are the leaves of G; two points are adjacent iff the corresponding leaves
are adjacent, Two points a,b belong to the same leaf iff there exists
a sequence of cycles P!, P2, ..., P, acv(Pl), bev(P"), and
veh Vet £ g

Theorem 2,2.2., (Ore) Any graph G has a contraction onto its leaf
composition graph G, such that the inverse image sets are the leaves of G.
The graph G is ecircuit free,

Theorem 2,2.2 implies, among other things, that every graph has
at least one non-trivial tree as a contraction image, It follows also that
since any two adjacent points can map to a single point, without a loop,

every graph has K. as a contraction image, Dirac [5] gives the following

1

definition of a contraction: a graph G = <y,é> can be contracted onto

the graph G' = <y',p'> if there exists a function ¢ of V onto V' such that
(i) (¥a')[a'eV' == G - (G - ¢-1(a')) is conngcted], and

(ii) (va')(¥b')[a',b'eV' A\ (a',b')ep' => G contains

at least one line joining a point of ¢-l(a') to
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a point of ¢'1(b')].1
In words, G = G' or G' can be obtained from G by shrinking each of a set of
connected subgraphs of G into a single point, It is clear from the defini-
tion that the contractions that Dirac considers are all connected. Several
of the papers written about connected contractions, by Dirac [5], Wagner [21],
and Halin [9], are attempts to clarify the following

Conjecture of H, Hadwiger: If the chromatic number of a graph G

in n, then G has a connected contraction onto Kn.z

The conjecture is known to be true for values of n < 4; it has been
shown that a proof for n = 5 would be equivalent to a proof of the famous
Four Color Conjecture., A typical result directed towards this conjecture
is the following: every ordinary graph with n 2 6 points and at least 3n-5
lines has a connected contraction onto KS [6]. One property which is preserved
under connected contractions but not under homomorphisms is planarity, i.e,,
if G is planar and ¢ is a connected contraction of G then G¢ is also planar,

The same cannot be said for ordinary homomorphisms,

lThis is equivalent to condition (2) of Section 1.1,

2Note the similarity of this Conjecture to Corollary 1.3.2.
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2.3, Simplicial Mappings,

In combinatorial topology, see Pontryagin [17] for example,

a class of mappings known as simplicial mappings are defined for complexes
and are shown to be approximations of continuous mappings of polyhedra,
When interpreted for graphs simplicial mappings become, in one sense,
approximations of contractions, Let a point be a 0-simplex, and let two
points a,b and a line (a,b) between them be a l-simplex., A mapping ¢ of
a graph G = {V,p> into a graph G' = {V',p")> is simplicial iff
(i) ¢ is a fgnction from V into V';

(ii) the image of a simplex in G is a simplex in G'.

It can be seen without much difficulty that condition (ii) is
equivalent to condition (Ilm), If one were to extend this definition to get
onto simplicial mappings, perhaps the most natural way would be to require
that ¢ map the simplexes of G onto the simplexes of G'. The definition of

a r~ontraction is exactly this extension,

2.4, Homeomorphisms,

A class of mappings of graphs which closely resembles, but which
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in fact overlaps, the class of contractions are the homeomorphisms,

Two ordinary graphs G and G' are said to be homeomorphic iff one can be

obtained from the other by successive applications of the following two
operations:
(i) replace a line (a,b)ep by two lines (a,c) and (c,b),
¢ being a new point;
(ii) replace two lines (a,c), (c,b)ep, where (a,b)go
and the point c has degree two, by a new line (a,b).
The pairs of graphs in Figure 14 are homeomorphic and serve to

illustrate the difference between homeomorphisms and contractions.

G: o 17 00— 0 PS: ( >p H:
P4: I:::::I

I

FIG. 14
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In Figure 14, Ps can be contracted onto P4, yet no contraction maps H onto

H', or H' onto H, and since K3 can be contracted onto Kl but KS and K1 are

not homeomorphic, it is clear that these two classes of mappings are distinct.
The most notable result concerning homeomorphisms is the now

classical

Theorem of Kuratowski [13]: A graph G is planar iff G does not

contain a subgraph homeomorphic to KS or K33.

2.5, Strong Contractions,

Adam, Culik, and Pollak [1] have defined a class of mappings of
graphs which very closely resembles the strong homomorphisms of Section 1.9;
the definition of this class however contains an added condition which places
the class in the class of contractions.

A mapping ¢ is a strong con'craction1 of an ordinary digraph2

G = <y,d> onto an ordinary digraph G' = {V',p"> iff

(i) ¢ is a function from V onto V';

1Adam, Culik, and Pollak refer to such a mapping as "ein starker homomorphismus''.

2An ordinary digraph,like an ordinary graph, has no loops or multilines.,
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(ii) (a,b)ep (b,a)epe=> a¢p = bop A (a¢,bd)ép';

(iii) (a,b)ep A (b,a)fp == (a¢,bd)ep' A (b9,a¢)fp';

(iv) (a,b)ép A (b,a)ép = (a¢,b¢)ép' ~ (bo,ap)éo'.
It is assumed that points a and b in conditions (ii), (iii), and (iv) are
distinct,

The authors show that an ordinary digraph has at most one strong
contraction, and in the following theorem give a necessary and sufficient
condition for a non-trivial strong contraction to exist.,

Theorem 2.5.1. An ordinary digraph G = <{V,0> has a strong
contraction i1ff for every triple a,b,c of distinet points

(i) (a,b), (bya), and (a,c)ep —=s (b,c)ep;
(i1) (a,b), (bya), and (c,a)ep == (c,b)ep.

Corollary 2.5.2. If ¢ is a strong contraction of an ordinary
digraph G onto an ordinary digraph G', then there exists a subgraph H of G
such that H~ G',

A proof of this corollary can be constructed that is essentially

the same as the proof of Theorem 1.9.1, which is the corresponding statement

for strong homomorphisms,
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3. RELATIONAL HOMOMORPHISMS

3,1, General Definition,
The concept of a homomorphism (and a contraction), of a graph
G = (V,p) into a graph G' = (V',p') , generally speaking, consists of
a function ¢ from V(G) into V(G') which satisfies certain conditions,
These conditions are usually imposed so that certain properties of
the graph G will be preserved in G' by the function ¢.
A natural generalization of this concept is that of a ''relational

homomorphism," between two graphs G and G', in which a binary relation is

defined, ¥ C VxV', which satisfies certain conditions,

The idea of considering relations as homomorphisms between

algebraic systems has occurred to at least two authors, some of whose

definitions and results along this line are summarized in this section,

We will refer, in general, to the mappings defined in this section as

relational homomorphisms.
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3.2. Weak Homomorphisms,

Yoeli and Ginzburg [8] and Yoeli [23] have defined a weak

homomorphism for partial and complete algebras which can, in a natural way,

be rephrased for directed graphs. Once this is done, a development exactly
analogous to that in [23] can be carried out which illustrates the definition
of weak homomorphism and some of its properties for directed graphs, The
remainder of this section is just such a development; it contains nothing
original and is simply a translation of the first part of [23] into graph
theoretical terminology.

Every directed graph G = {V,p), including those with loops and
multi-lines, can be expressed, generally in many ways, as a union of graphs
of the form Gi = <V,pi), where Upi = p. Alternatively, every directed graph
can be put in the form G = <y,{oi]>, where Upi = p, In particular, each h
can be required to be a many-one relation, i.e., a partial function from V to

V. A digraph is out-regular of degree k iff it can be put in the form

G = <y,{pl,oz,...,pk}>, where each Ch is a function from V into V,

Equivalently, a digraph G is out-regular of degree k iff the out-degree
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of every point of G equals k,

A binary relation y € VxV' is a weak homomorphisml of a digraph

G = V,{p; D> into a digraph G' =<V',{p]!-}>, i=1,2, vo., miff y
satisfies the following two conditions
11) v iev') = v, and
(12) w'lpjlg p{w-l, for every i = 1, 2, ..., m; in words, if
aep;l(V) and aya', then a'epql and p, (a)ve}(a").

If in addition the binary relation y is a function from V onto
V' satisfying the condition
(13) wpi = piw, for all i,
then ¢ is a full homomorphism of G onto G'.2

The following three lemmas correspond exactly to Lemmas 1, 2, and 3
of Yoeli [23].

Lerma 3.2.1. If ¥ i8 a weak homomorphism of a digraph G into

a digraph G', and V' is a weak homomorphism of G' into a digraph G", then

1Note that the definition requires that a l1-1 correspondence exist between

{pi} and {p{}.

2Yoeli calls ¢, in this case, a strong homomorphism, It can be seen
however that condition (13) requires that the mapping be a full homomorphism,
as defined in Section 1,1, of the digraph G onto the digraph G'.
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W' is a weak homomorphism of G into G".

Lemma 3.2.2. A mapping ¥ of a digraph G onto a digraph G' is
a full homomorphiem iff both ¢ and w'z are weak homomorphisms.,

Lemma 3.2.3. If ¥ i8 a weak homomorphism of an out-regular digraph
G onto a digraph G', then v1 is a weak homomorphiem of G' onto G. For
additional discussion of weak homomorphisms the reader is referred to Yoeli.

In Figure 15, ¥, is an example of a weak homomorphism of G, onto
1 TP 1

GZ' where “’1 = {(a,c),(a,e),(b,d),(b,f)}.

FIG, 15,

Note also that w;l is a full homomorphism of G2 onto Gl‘
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3.3,

Weak Isomorphism,

A binary relation y ¢ VxV' is a weak full homomorphism of a graph

G = <y,§> onto a graph G' =<:V',pc> iff in addition to satisfying condition

(11) it satisfies conditions

(14)

(15)  ¥(p)

v(V)

V', and

p'.

A weak full homomorphism of a graph G onto a graph G' is a weak

isomorphism iff w'l(p') = p, Consider Figure 16, where

v = {(a,a"),(a,a"),(b,b"),(b,b")} is a full weak homomorphism of G onto G',

a a' a"
b b b"
v
G > g
FIG, 16,

Since w-l(p') = p, it follows that G and G' are weakly isomorphic.

Thatcher [20] has studied both weak full homomorphisms and weak isomorphisms,
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and offers the following explanation for considering intuitively G and G'

to be 'isomorphie.,'

Two graphs G and G' are elementarily equivalent iff they are

indistinguishable using the first-order predicate calculus without equality,
i.e., no sentence in this language is true of G without its also being true
of G', and conversely,

Thatcher states that if two graphs G and G' are weakly isomorphic
then they are elementarily equivalent, He also believes that the converse
is true for finite graphs, i.e., if two finite graphs, G and G', are
elementarily equivalent then they are weakly isomorphic., Since in the first
order predicate calculus without equality one loses the ability to count,
one cannot distinguish whether two graphs have the same number of points,

It follows, therefore, that among other things all complete digraphs are
weakly isomorphic.1 Thatcher suggests as an interesting problem the study
of these weak isomorphism types of graphs, The following results shed some

light on this problem,

1It is not true however that all ordinary complete graphs are weakly
isomorphic,
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Lerma 3.3.1, If ¢ i8 a strong homomorphismg of a graph G onto
. .. -1,

a grapn G', then G and G' are weakly isomorphic, i.e., ¢ 1s a weak
homomorphism of G' onto G.

Proof. Obviously ¢ is a weak homomorphism of G onto G', and as
such ¢(V) = V' and ¢(p) = p'. It follows therefore that ¢'1(V') =V,
It suffices to show that ¢'1(p') = p, First,

\ ' -1, -1, . -1, -1
(a',b"ep' == (¢ "(a'),¢ "(b'))ep, for if ae¢ “(a') and bep "(b'),
then (a,b)ep, since g(a,b) = g'(a¢,bd) = g'(a',b') = 1, Secondly,
-1 -1 .

(a',b")fo' == (¢ "(a"),¢ “(b'))Fp, by the same reasoning,

Theorem 3.3.2. Two graphs G and G' are weakly isomorphic iff
they have isomorphic simple (with respect to strong homomorphisms) images.

Proof, First, suppose that G and G' are weakly isomorphic with

respect to the full weak homomorphism ¢, i.e.,

where ¢S and ¢é are strong homomorphisms of G and G' onto the simple graphs

lcf. Section 1.,9.
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Gy and G;, respectively, It suffices to show that w¢; is a strong homo-
morphism of G onto Gi. The isomorphism of G, and Gg then follows as a result
of Theorem 1,9.7.

We must show that w¢; is a well defined mapping of V(G) onto V(G;),
where ¢ is a full weak homomorphism of G onto G' and ¢; is a strong homo-
morphism of G' onto G; (and G; is simple). We do this by showing that

(1) awai A awaé = n(ai) = n(aé), and

(i1) n(a)) = n(a)) == ajo! = ajé!.
Let us prove, (i) awai n~awaé = n(ai) = n(aé). Suppose n(ai) # n(aé).
Then either o'(aj) # 0'(a}) or o™ (a}) # o' (al). If p'(al) # p'(a}) then
(34 [((a],d"en’ ~ (ah,d")bo") v ((3],d")éo" ~ (a},d")en")].
Suppose (ai,d')ep'lﬂ (aé,d')tp'; then (3Jc) (Ad)[(c,d)ep A cwai;« dyd'],
But since w-l is a full weak homomorphism of G' onto C,
(ai,d')ep'===¢ (a,d)ep == (al},d')ep', hence we have a contradiction,
A similar argument shows that (ai,d')ﬁp' A(az',d')ep' cannot hold either,
hence p'(ai) = p'(az), must hold,

The same argument just used to show that p'(ai) = p'(aé) can be
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used to show that p"l(ai) = p"l(aé). Hence n(a}) = n(a}) must hold.
In order to see that (ii) n(ai) = n(aé):::a ai¢; = aé¢;,one need only refer
back to the definition of the equivalence relation = which determines
the strong homomorphism ¢..

Hence w¢; is a well defined mapping of V(C) onto V(G;); it is
a simple matter to verify that the mapping satisfies the condition

g(a,b) = g!(ave},buoel).

The mapping w¢; is therefore a strong homomorphism of G onto’G;.

Second, suppose that GS and G; are isomorphic,

where for convenience we suppose that ¢s and ¢; are strong homomorphisms
of G and G' onto Gs' It suffices to show that ¢5¢é-l is a full weak homo-
morphism of G onto G', and similarly that ¢;¢S'l is a full weak homomorphism

of G' onto G. But this follows immediately as a result of Lemma 3.3.1 and
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the following
Lemma 3.3.3. If ¢ t& a full weak homomorphism of G onto G',
and y' is a full weak homomorphism of G' onto G", then W' is a full weak

homomorphism of G onto G".
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SUMMARY AND SUGGESTED PROBLEMS

Several definitions have been given of homomorphisms for various

classes of graphs and a few results have been stated or derived for each.

The nature of the results gives an indication of the kinds of properties

of graphs one can effectively study by means of homomorphisms, and gives

an indication of the methods one might use in studying properties of

the homomorphisms themselves,

Several open problems and problem areas have been suggested in

the paper, and several new ones can be stated, among which are the following:

1) How does the set of (elementary) homomorphic images of a given

graph G characterize G? It can be shown, for example, that

the set of all non-trivial homomorphic images of an ordinary

graph G, together with the multiplicities associated with each

image, i.e., the number of distinct ways the particular image

can be formed under a homomorphism, completely characterize

the graphs with five points or less which are not complete graphs.,

2) Of the 52 ordinary graphs with five points or less, 31 have
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3)

one elementary homomorphic image (up to isomorphism), Can
one easily characterize those graphs G such that all of
the elementary homomorphic images of G are isomorphic?

The following five graphs have this property

— 1 0 O W

3 4 5

Geert Prins, in a letter to the author, expressed an interest

in studying homomorphisms of graphs via elementary homomorphisms,
What in general can one say about elementary homomorphisms?

For example, oné could state the following

Proposition: If Ge is that elementary homomorphic image of G
obtained by identifying points a,beV(G), and the chromatic
number of G is n, then the chromatic number of Ge is n iff

points a and b can be colored identically in some n-coloring

of G.
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4)

5)

What sort of graph theoretical results are obtainable from
Keisler's logical formulation of the properties of a graph

which are preserved under full homomorphisms? For example,

a brief explanation of Keisler's formulation by Professor Robert
Ritchie led to the following observation:

Proposition. If ¢ is a full homomorphism of an ordinary graph G
onto a graph G', and G = G1 + GZ’ i.e., G is the join»of G1 and
GZ‘ then G' = G1¢ + Gz¢.

It is believed that almost all of the results derived using
Keisler's formulation could be derived very easily without using
it,

In regard to pre-images of a given graph, how close to a complete
graph, in some sense, can a pre-image of a given graph be?

For example, if an ordinary graph G has p points and q lines,

define its density as q/(g). It would seem, at first glance,

that since every ordinary graph G maps onto a complete graph,
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of density 1, that the density of a given graph G would be

smaller than the density of every homomorphic image of G, But

this is not the case as the following example illustrates:

¢ a —pa'
e f b,e =3 b!
c,f —>c!
& $=d
0—0—0—0
a b ¢ d a' b' ¢
G ¢ > Gl

Note that the density of G is 8/15, while the density of

Go = G' is 3/6.

6) For any class of homomorphisms, what graphs are endomorphism-

free?

7) Which graphs are simple with respect to pathwise homomorphisms?

8) Are all prime homomorphisms of functional digraphs, pathwise

homomorphisms as well? It appears so,

9) Characterize Prins' type-2 complete homomorphisms., This problem

appears to be very difficult,

10) Relative to the study of type-n (complete) homomorphisms several
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problems naturally arise among which are the following:

a) Does there exist for every integer n a type-n (complete)
homomorphism?

b) Is the order of a type-n complete homomorphism greater than
or equal to n?

c) Can one state an Interpolation Theorem for type-n complete
homomorphisms, i.e., given a type-n complete homomorphism
of a graph G, of order m, what can be asserted about type-k
complete homomorphisms of G for k < n.

d) If the length of the longest chain in a graph G is n, it
would seem that G could not have a type-n+l complete
homomorphism, Relate this length n to the maximum type-n
complete homomorphism of G.

11) Any rule for producing a non-identity partition of the points
of an arbitrary graph G determines a full homomorphism in
the following sense:

Let Vl' V2, oo Vm be a partition of V(G), and let x,

-61-



denote the chromatic number of the full subgraph generated
by the subset Vi’ The mapping which maps each subgraph
respectively onto Ki determines a full homomorphism of G.

If we denote the resulting graph in this process by G¢
and apply the same partition-mapping process to G¢, G¢2, etc.,
we might ultimately map G onto a complete graph, It would be
interesting to study those processes which map a given graph G
ultimately onto a complete graph and to examine the relation-
ship between the chromatic numbers of G and the complete graph.

Two such processes have already been mentioned; one, of
taking partitions determined by l-bases, and two, of taking
partitions determined by n-bases, A third process would be
that of considering partitions induced by the associated
numbers of the points of a graph.

12) How can the concept of complete homomorphism be applied to
directed graphs?

13) The homomorphisms of functional digraphs onto functional digraphs
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all satisfy the condition

(1) od(a) = od(ad).

It is suggested therefore that one study full homomorphisms

which satisfy this condition, or the following condition

(ii) id(a) = id(a¢),

or both; in particular, study full homomorphisms of ordinary

graphs which satisfy

(iii) deg(a) = deg(a¢).

Furthermore, functional digraphs are a sub-class of

the class of out-regular digraphs; hence, the suggestion of

studying homomorphisms of out-regular and in-regular digraphs

and regular ordinary graphs, satisfying conditions (i), (ii),

and (iii), respectively, is raised,

14) Y. Give'on has suggested that one study epigenic homomorphisms

of directed graphs; homomorphisms for which the inverse image

of bases (generating sets) are bases. It can be seen, for
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15)

16)

example, that any homomorphism of a weakly connected digraph
onto a strongly connected digraph is not epigenic,

Relative to Proposition 1.5.5, it seems that with the exception
of Kz one can strengthen the inequality to ch(G) s 2q - 2.
Relative to the question raised at the beginning of Section 1,5,
one can ask the following, slightly different, and much more
interesting question: for a given graph G what is the length
of the shortest cycle P for which there exists a homomorphism

¢ which maps P onto G? The homomorphism ¢ need not be a full

homomorphism. Suppose we call this the circuit length of G,
and denote it by ci(G),

The following example illustrates that ci(G) and cy(G)
are, in fact, distinct invariants; a little reflection shows

further that ci(G) < cy(G).

2
3, b,
©1 3
4 a3 1 3 7 €4
ac a, bS b4 C6 s
¢ ]
P > ( <= P,
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¢t a; —b; vi ¢ — by

az--—-)b2 c, ——+b2
a; — b3 Cz1C¢ —-7b3
::\4——-)b4 <4 ——>b4
ac —-)bs CcsCq ——-)bS

The mapping ¢ is a homomorphism of P5 onto G; the mapping ¢
is a full homomorphism of P7 onto G. Hence, ci(G) = 5, while
cy(G) = 7.

It can also be seen that if a graph G has p points then
ci(G) = p iff G is Hamiltonian,

The parameter ci(G) also can be seen to have a lot of
relevance to solutions of the famous Traveling Salesman Problem,
It would be interesting in view of these observations to investi-

gate the extent to which the methods used to study cy(G) can be

used to study ci(G).
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APPENDIX OF DEFINITIONS
In a graph G = (V,p>
+++ the out degree of a point beV, od(b) = |p(b)];
.+. the in degree of a point bev, id(d) = [p"1(b)|;
... the degree of a point beV, deg(b) = |n(b)| = |o(d) U o~ 1(0)|;
see @ Eﬂﬂi?&iﬁl’. is a line of the form (b,b);
«++ @ path of length n from a point a to a point b is a sequence of points

a; , 8, 5 sesp @, such that (a, ,a. Jep, for0<j <n-1,a, =a, and
i)’ iy i lj 1j+1 i,

a. =b;
n

... the distance from point a to point b, d(a,b), is the length of
the shortest path from a to b;

«++ the associated number of a point beV is max d(b,c), for all ceV.

««o the diameter of G, 6(G), is max d(a,b), for a,beV.

++« an independent set of points is a set V1 C V such that for every

a,beVl » (a,b)fo;

«+. a maximal independent set of points is an independent set V, such that
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for no independent set V2 is Vlc: Vz;

is

.+ the point independence number, o (G), is max |Vll, where V,

an independent set of points;

€ V is such that

... the point covering number, 8_(G), is min |V2|, where V,

for every (a,b)ep, either aeV2 or beVz.

.+« the subgraph generated by a set of points V', is the graph G = Vet

where p' = {(a,b) : a,beV' N (a,b)ep}
An ordinary graph G = {V,p)

s+ is a complete graph on n points iff it has the form

V= {kl, kz’ o606y kn}

p = {(ki.kj) tifjh

s+ is a cycle of length n iff it has the form

V = {p1. pzp se0y pn}

A

p ={(p;sPy,1)s(Py,q0P;) + 1 21 <01} U L(ppp)y(ppp) hs

.ss 1S a chain 2£ lenggh_g_iff it has the form

}

v = {Cl' CZ' L) cn+1

p = {(ci'ci+1)'(°i+1'ci) :1<i<n};
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+++ is connected iff for every pair a,b of distinct points there is a path
in G from point a to point b;
.+ is a tree iff it is connected and contains no cycles as subgraphs;
oo is critical of degree k iff X(G) = k and
(V(a,b)ep) [Xx(G-(a,b)) = k - 1]; in words, the chromatic number of any
graph obtained from G by removing any line, or point, of G is less than
the chromatic number of G;
«es is isomorphic to K2z iff it has the form

V= {al'aZ'aS'bl'bz‘bS}

p = {(ai.bj).(bj.ai) 1 1<i, j <3}
«+s has multi-lines iff p is considered to contain at least two occurences
of at least one pair (a,b);
ees is a multi-graph iff it contains multi-lines;
.+« is the join of graphs G, = <V1’pl> and G, = <V2,p2> iff

V=V,0V,, =0V 0, v {(a,b)| aeVy, beV,}
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