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SOME INTERPOLATION THEOREMS FOR PARTITIONS OF GRAPHS

In this paper we consider certain partitions of the set of points
and of the set of lines of a graph and we define for each such partition
a corresponding factor graph. The concepts of a complete P-partition and
a complete P-line partition of order m are then defined for an arbitrary
property P of a graph G. Two results are then obtained which answer the
following questions: for what properties P of a graph G does it follow
that if G has complete P-partitions (P-line partitions) or orders m and n,
then G has complete P-partitions (P-line partitions) of orders k for any
k, m <k <n,

The author wishes to acknowledge that the proof techniques used here
were originally developed by Geert Prins in an unpublished manuscript in
which an Interpolation Theorem was proved for the class of partitions
which correspond to homomorphisms of graphs,

By a graph G we mean a set V = V(G) of Egigii‘together with a set
E = E(G) of unordered pairs (u,v) of distinct elements of V(G), called
lines of G. A graph G' is a subgraph of G, G' C G, if vt C V and E' C E;
G' is an induced subgraph if for every pair of points u, v e V', (u,v) ¢ E

implies (u,v) ¢ E'. The subgraph induced by a set of points S, <$> , is
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the induced subgraph G' for which V(G') = S. The subgraph induced by

a set of lines T, <§> , is the minimal subgraph of G containing all

the lines of T. A graph G is called complete if for every pair of dis-
tinct points u,v & V(G), (u,v) € E(G).

Given two subgraphs G1 and G2 of G, GllJ G2 is the subgraph of G

for which V(G,UG,) = V(G)UV(G,) and E(G,U G;) = E(G)UE(G,). Two sub=

graphs G, and G of G are said to be line adjacent if there exist points

2 e, S S

are point adjacent

u € V(Gl), vV E V(GZJ such that (u,v) £ E(G); Gl and GZ



if there exist points u,v,w such that (u,v} ¢ E(Gl) and (u,w) ¢ h(szf
Any definitions not given here can be found in [2].

Let 7 = {Vl, Vou con Vm} be a partition of the set of points of

2!
a graph G. By the factor graph G/7 we mean the graph for which

VG = WV Ve vm} and (Via‘j) ¢ E(G/m) if and only if f{'vi";-
and <Vj> are line adjacent. A partition 7 of G is complete if G/n is
complete.

Let P denote any property of a graph G. A subset 5 CV(G) is

a P=set if ‘<S> has property P. A P-partition of G of order m is
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a partition 7w = {VI” \% “» Vm} of V(G) such that for every i, 1 s i ¢ m,

2, L)

Vi is a P-set. The P-chromatic number of a graph G, X,(G) , is the mini-

mum order of all complete P-partitions of G. Similarly, the P-achro

numbegﬁgifg, WP(G)‘ is the maximum order of all complete P-partitions of G.

We will be interested in properties I' of a graph C which satisfy the
following two conditions. For any graph G and any subsets Vi’ Vj C V(G):

is a P-set, and (ii) it V, and
3 4

(i) if Vj is a P-set and Vi(: Vi’ then V.

4y

V_i are disjeint Poaets and V.. acl Y.L aueo not ilne adjacenat, ther
H |

V.o %i L5 siso & Poset. We will say that any property P which satisfies
4 R

these two conditions is homogeneous. Examples of homogeneous properties

are numerous. We will mention two exaiples in particular because of their
connections with atb%r established zoncervs in graph theory.

The property PI of being a planzr groph can be seen 0 Lo homegen s,
The Plﬁchr0matic number of a graph G then is the minimum numbeyr 5f planar,
point disjoint, full subgraphs into which G can be decomposed. It wouid
seem that this parameter is closely related to the thickness of a graph,

0(G), i-e., the minimum number of planar subgraphs of G whose union equals G.



The property P2 that a graph can be totally disconnected, i.e,,
contain no lines, is also homogeneous, It can be shown without much

difficulty that the P_-chromatic number is what is traditionally called

2
the chromatic number, X(G).

Consider the following algorithm for obtaining a P-partition of
a given graph G. Let Vl be any maximal P-set of G, i.e., for any point
utg v, <V1\~){u£> does not have property P. Remove the set V, from G
and select a second maximal P-set V2 of G1 = G - V1 = <y(G) - V1:>, Next,
select a third maximal P-set V3 of Gz = G1 - Vz, etc. until we obtain

VZ’ csoy Vm of V(G) such that for every i, 1 s 1 s m, V,

a partition V i

1!
is a P-set. We will say that any P-partition of G which can be obtained
in this way is of type-1.

Lemma 1. If P is a homogeneous property of a graph G, then every

P-partition of G of type-l is complete.

Proof. Let m = {Vl’ '

e

g8 e Vm} be a P-partition of G of type~1l
which is not complete; then there exist two subsets Vj and Vj’ i<ij, such
that Vi and Vj are P-sets and <Vi> and er> are not line adjacent. But
since P is homogeneous, V; WAL is also a P-set, and hence Vi is not
a maximal P-set of G - é;ivkg Therefore m is not of type-l; a contradic-
tion. ||

If P is a homogeneous property of a graph G and = = (Vl, VZ’ SN Vm}
is a P-partition of G which is not complete, it readily follows that we
can obtain from m a P-partition 7' of order m' < m by adding together two
sets Vi and Vj of 7 which are not line adjacent. Thus we obtain the

following,

Lemma 2. For any homogeneous property P and any graph G, if XP(G) = m



then every P-partition of G of order m is complete.
Theorem 1. For any homogeneous property P, if a graph G has a P-
partition of order m, then G has a P-partition of type-1l of order m' s m.
Proof. Let m = {Vl, Vz, seas Vm} be a P-partition of G of order m,

and let u;, Uy, ...y u be an ordering of the points of G such that the

2
points in Vi precede the points in Vj for i < j. Define the set Wi = {ul};

then define w;‘l

. i+l i . .
define W1 = Wi, Define hl ]
Now form W2 in the same way from the set of points V - wl, i.e., set
0 i+l i .

5 = 0 and set WZ = ¥ L){ui+1r it

Y U - .
Wi uy b AE W) L){ui+1} is a P-set, otherwise

= W?; clearly V Q-wl, since P is homogeneous.

A i L ie a Ducepe
W £ W, and W, Lj{ui+1} is a P-set:

1
otherwise set w;*l = w;, Continuing in this way we will obtain partition

i
caey wm}, with the property that Vi C \«)Wi9 which corresponds

s (W, W
1 01

25

to a P-partition of type-l of order m' £ m.

Theorem 2. If property P is homogeneous and a graph G has a (complete)
P-partition of type-1l of orders k and m, then for all ¢, k <% < m, G has
a (complete) P-partition of type-l of order 2.

Proof. _Let T = {Vl’ Vz, bony Vk} and T = {Wla Wop wnes wm} be the
P-partitions of type-1 of orders k and m, respectively, Form the new

;4 * W =W 3 3 g
partition m {Wl. V1 hl, ceey Vk Wl}e Since P is homogeneous, ™ is

also a P-partition. Applying the construction used in Theorem 1 we can
. s - (W , .

obtain a partition ™ {wl, V1,1*‘1,2* Coun Vl,k(l)} from L which

corresponds to a P-partition of type-1 of order k(1) * k + 1. Note that

the first member of L is W1 because v is of type-l. Next we form the

partition n} = (Wl, wz, Vl,l‘wzb Vl,z‘“z’ ety Vlk(l)”WZ}’ and then

= {W,, W,, V

2 10 Mo Vo 30 oo Vg

a P-partition of type-1 of order k(2) < kx + 2. Continuing in this way

the partition = } which corresponds to



we obtain a series of P-partitions of type-1, m, Ty Tgs aeny Ty in
which LI and the order of LI is at most one greater than the order
of M

Theorem 3. For any homogeneous property P and any graph G, if G
has a complete P-partition of order m which is not of type-1, then G has
either a complete P-partition of type-1 of order m or a complete P-parti-
tion of order m - 1.

Proof. Let = = (V,, V,, ..., Vm} be a complete P-partition of G of
order m, If = is not of type-1, let Vi be the first set for which there
exists a point u ¢ Vj’ i < j, such that Vi\J {u} is a P-set. Consider
the partition #' = {Vl’ N Vilv){u}, R ij{u}, Wes s Vm} and note that
if Vj - {u} is empty then we have obtained a complete P-partition of order
m - 1. If on the other hand, Vj - {u} is not empty, then Vj - {u} is
still a P-set, since P is homogeneous. Thus ' is also a P-partition.

If n' is not complete then there exists a set V

k

and <yk>$ not line adjacent. Then since P is homogeneous, the partition

such that <Vj - {up

" o= {Vl, Ce Vi\){u}, Ceay Vja{u}LJVk, cery Vm} is a complete P-parti-
tion of order m = 1. If on the other hand #' is complete, then either it
is of type-1, and the theorem is proved, or it is not of type-1 and we
repeat the above process. Eventually we must find either a P-partition
of type-1 of order m or a complete P-partition of order m - 1.|]|

Finally, we obtain as in immediate consequence of Lemma 2 and
Theorems 2 and 3 the following general Interpolation Theorem for complete
partitions of graphs.

Theorem 4. tor any homogeneous property P, any graph G, and any

integer k. AP(G) s ko2 wP(C), G has a complete P-partition of order k.



Since homomorphisms correspond one~-to-one with Pznpartitions, where
for each subset V., <yi>' is totally disconnected, and since the proper-

ty P, that a graph be totally disconnected is homogeneous, the Homomor-

2

shism iaterpoiation Theovem of 3] is an imsediave coroiiary or lhevrem 4.
We now develop for each of the above concepts and results for par-

titions of the set of points of a graph, corresponding concepts and

results for partitions of the set of lines of a graph. Since proofs of

the corresponding line-vesults are nearly identical to those given already,

they are omitted.

Let © = {El’ EZ’ cey Em} be a partition of the set of Lines of

a graph G. By the factor graph G/v we mean the graph for which

V(G/1) = {E., E,, ... Em}, and (Ei* Ej) ¢ E(G/7) if and only if the sub-

172
graphs <Ei> and <E1.> are puint adjn et cooieion ot oof the lines

Let P denote any property of a graph G. A set of lines E'C E(G) is

a P-line set if the subgraph <ﬁ'> has property P. A P-line partition of
G of order m is a partition * = {El' EZ. sy Em} of E(G) such that for

avery 1, 1 £ 1 2 m, Ei is a P-line set.

The P-line chromatic number of a graph G, xé(G), is the minimum order

of all complete P line partitions of G. The P-line achromatic number,

mé{c}, is the maximum order of all complete P-line partitions of G.

We will be interested in properties P of a graph G which satisfy
the following two conditions. For any graph G and any subsets Ei' EjCﬁE(G):
i1y if Ej is a P-line set and Ei<: Ej then Ei is also a P-line set, and

(ii) if Ei and Ei are disjoint P-line sets and the subgraphs <3%:> and

<?j> are not point adjacent, then Ei\) Ej is also a P-line set.



We will say that any property P which satisfies these two conditions is

line-homogeneous. It’is easy to find line homogeneous properties of

graphs.

The property P. of being a planar graph is also line-homogeneous.

1

The Plnline chromatic number of a graph G is then the minimum number of

planar line disjoint subgraphs whose union is G. This parameter Xé G)
1

is traditionally called the thickness of G, 6(G) (cf. Beineke and Harary [1]).
The property P3 that a graph contain no cycles is homogeneous and
line homogeneous, The P3=line chromatic number of a graph G is the mini-

mum number of line disjoint graphs, each of which contains no cycles,

whose union is G. This parameter xé (G} is traditionally called the
3
arboricity of G, arb(G) (cf. Nash-Williams [ ]).

The property P4 that a graph consist of a set of independent lines,

i.e., no two lines have a point in comnen, 13 alse line-homogeneous.

The Pduline chromatic number is traditionally called simply the line~

chromatic number, x'(Q).

Consider the following algorithm for ohtaining a P-line partition
of a given graph G. Let E1 be any maximal P-line set of G, i.e., for any
line [u,v] ¢ Elg the subgraph <ﬁ1\J {[ugv]}>> does not have property P.

Remove the set E} from G and select a second maximal P-line set Ez from

Gy = G- B Next select a third maximal P-line set }3,5 from G, = Gy - Ezg
etc., until we finally obtain a partition E, ., E,, ..., Em of E(G) such

that for every 1. 1 £ 1 5 m, Ej is a P-iine set. We will say that any
P-line partition of G which can be obtained i1n this way 1s of type-l.
Lemma 1'. If P is a line-homogensous property of a graph G, then

every P-line partition of G of type-1 is complete.



It P is a line-homogeneous property of a graph G and
T = {El, Ez, cers Em} is a P-line partition of G which is not complete,
it readily follows that we can obtain from 7t a P-line partition t' of
order m - 1. Simply select two sets Ei and Ej for which the subgraphs Ei
and Ej are not point adjacent and form the partition
1t o= {El. sy EiL)Ej, R Em} of order m - 1; r' is still a P-line
partition since P is line-homogeneous and Ei\) Ej is still a P=line set.
Thus we obtain

Lemma 2'., For any line-homogeneous property P and any graph G, if
xﬁ(G) = m then every P-line partition of G of order m is complete,

It follows from this lemma, for example, that if the thickness of
a graph G, 6(G), is m, then the factor graph formed from G by any set of
m line disjoint planar subgraphs, whose union equals G, is a complete
graph.

Theorem 1'. For any line-homogeneous property P, if a graph G has
a P-line partition of order m, then G has a P-line partition of type-1
of order m' < m.

It follows from Theorem 1' that if the thickness 6(G) of a given
graph G is m then there will exist a type-1 partition of the set of lines
of G which will produce m planar subgraphs into which G can be decomposed.

Theorem 2'. If property P is line-homogeneous and a graph G has
(complete) P-line partitions of type-1 of orders k and m, then for all
integers 2, K < £ <m, G has a (complete) P-line partition of type-1 of
order %.

Theorem 3'. For any line-homogeneous property P and any graph G,

if G has a complete P-line partition of order m which is not of type-1,



then G has either a complete P-line partition of type-1 of order m or
a complete P-line partition of order m - 1,

Finally, we obtain as an immediate consequence of Lemma 2' and
Theorems 2' and 3' the following general Interpolation Theorem for complete
line partitions of graphs.

Theorem 4', For any line-homogeneous property P, any graph G, and
any integer k, X;(G) s k s Wé(G); G has a complete P-line partition of

order k.
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