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FINITE DIFFERENCE COMPUTATION CF NATURAL
CONVECTION HEAT TRANSFER

Jesse David Hellums

ABETRACT

The use of finite difference methods for the solution of the
partial differential equations describing the conservation of mass, energy
and momentum in natural convection was investigated. The great advantage
of the finite difference approach is that the idealizations required to
obtain analytical solutions are not necessary. The main problems associated
with the method are the stability and convergence of the difference equations
and the amount of computation required. These problems have retarded the
widespread use of difference methods in convection problems which would
seem 10 be warranted by the great advances in computer technology of the
last few years.

Explicit difference equations were devised that are stable and
that require only moderate amounts of computer time and storage by modern
standards. The equations are written in time dependent form and treated
as an initial value problem. Starting from a motionless, isothermal
initial condition, the velocity and temperature distributions are comput-d
as functions of space and time. The complete transient solution, including
the steady state as a limiting condition, is obtained. This time-dependent
approach is indicated to be preferable to methods in which steady state is
assumed at the outset even if the steady state solution is of primary

interest.
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The infinite, ilsothsrmal, flat plats; and the region insids an
infinite, horizomtal cylindsr witr tha ical kalyes of ths wall maine
tained at diffarent wniforrs tapparaturss wars crossn for illustratlvse
calculations on an ISM=70k Lecause of the availarility of experimental
data and analytical solutiosns as a refzrarce and hast for convergsnces,

The flat plats solubion was ortainsd for a Prandtl numbsr of

0.733. The solution is comparsd with the short time solutiorn for conduc-
tion alone, and witk Ostrach's solution for the stsady stats. The resﬁlﬁs
are in good agreement in both casss, In the Inbermediate tims range th=
problem has not been solved before so the rasulits results repressnt ﬁéw
information.,

The cylinder problsm was solved for a Prandtl number of 0.7 and
three different values of the Grashof number, An additional solutionfwa%
obtained for a Prardtl number of 10, The resulds are brought ﬁogethe% oy
dimensional analysis so that +h- four solutioms pawrmit prediction of L-av
transfer rates in the cylind=y over wids rarges of hoth paramsters, 7
results are shown %0 be in good agrasmert with +tha =yperimental msagur-:=
of Martini and Churchill.

A discussion is givern on th= application of finite differ-ne-

methods to other problems, Tne m-thod ussd in tZis work applizs practi-all.

without change +o any problem iz fluid motion in which th=s presgur- aicsw

tion is specified or can be salculath=d from perfect fluld theory. Evambaaily
the most difficult problems in fluid mechanics and heat trazsfzr will alzos?
certainly be solvad by the finite differsnes approach, This work conshitut-:

a significant step in that diractlon,
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NOMENCLATURE

Rayleigh Number, {Gr Pr)

constants appearing ir Equations 40 and 41

427%¢AY)2 as used in Equation 5L.

AT/(AR)2 as used in Equation 63

heat capacity, Btu/lb=CF

diameter of the cylinder, f%

ZYt/(RAﬁS)g as used in Equation 63

total differential operator

divergence operator

acceleration due to gravity, ft/sec2

Grashof Number: ggaTx3/v2 for the flat plate
g€<ﬁTf03/V2 for the cylinder

heat transfer coefficient = heat flux divided by overall temperature
drop

integer denoting grid position in the direction parallel to the
boundeary

thermal conductivity, Btu/lb-ft-OF

k,ky,kp integers in a term in a Fourier Series

" Nu

Pr

integer denoting grid position normsl to the boundary
integer denoting time increment
Nusselt Number: hx/k for the plate
: hD/k for the cylinder
the Prandtl number, 7"/ .

pressure, 1bs/ft-cec®

excess in pressure above the initial conditionm, lbs/ft-se02

dimensionless excess pressure as defined in Equation 8 or 25

radial position, ft



r_  radius of the boundary, ft

R dimensionless radial position = r/r,.

R the gas law constant in Equation 71

T temperature, °R

t time, sec

u  velocity parallel to the boundary, ft/sec

U dimensionless velocity parallel to the boundary as defined in
Equations 52 or Bquations 26.

v velocity normal to the boundary, ft/sec

Vv dimensionless velocity normal to the boundary as defined in Equations
52 or Equations 26.

? the velocity vector, ft/sec

x distance, parallel to the plate, ft

X dimensionless distance as defined in Equations 52
y  distance normal to the plate, ft

Y dimensionless distance as defined in Equations 52

Greek Letters

o< thermal diffusivity, £t2/sec
€ coefficient in Equation 2, °R™!

B either [U[AT/(RAO) or [U]AT/AX vhen used in discussions of
stability

he eitheer/éﬁC/AXR or/V/&ft/zXY when used in discussions of stability

AT overall temperature drop = Ty-T; for the plate and Ty-To for the
cylinder, OF

?,g amplification factors in a Fourier Series

viscosity, lb(mass)/ft-sec

)~  kinematic viscosity, ftg/sec
=) engle as indicated in Figure 1

dimensionless temperature = (T-T;)/AT

xi



T dimensionless time as defined in Equation 26 or Equation 52
™~ an eigenvalue

2 density, 1bs (mass ) /ft3

Subscripts
C denotes the cold side of the cylinder
H denotes the hot side of the cylinder
i  denotes the initial condition
j,ﬂ_ denotes position in the space grid
m denotes a mean value
o denotes a reference quantity

w  denotes the condition at the flat plate

Superscript

(n) denotes the time increment

xii






I. INTRODUCTION

Numerical finite difference methods for solving partial differ-
ential equations are of increasing interest and importance since the advent
of high speed digital computers. The methods have been employed extensively
in heat conduction (diffusion) problems. However, heat convection, which
involves conduction plus fluid motion, has received very little attention.

The principal attraction of the finite difference approach to
partial différential equations lies in the fact that the methods should
yield solutions to the great class of problems which resist ordinary meth-
ods of analysis. In actual practice there are some difficulties associated
with convergence and stability of the difference equations and with the
relatively large amount of computation required. These difficulties have
retarded the widespread application of the methods which would seem to be
warranted by the great advances in computer technology of the last few
years. However, the promise is there, and it seems almost certain that
the methods will eventually be used for solving the most difficult prob-
lems in fluid mechanics and heat convection.

The purpose of this work is to investigate the solution of
natural convection problems by difference methods. Methods and problems
associated with the methods afe studied, and two conditions are selected
for illustrative calculations: the isothermal, vertical flat plate, and

the region confined by an infinite, horizontal cylinder with the vertical

halves of the walls at different uniform temperatures. These conditions



D
are chosen because of the availability of analytical solutions and experi-
mental measurements to compare with the results.

In problems of the type considered in this thesis, there are two
basic and difficult questions. First, does the system of equations under
consideration adequately describe the actual physical phenomenon over the
ranges of interest of the variables? Secondly, does the finite difference
method of computation give the solution to the system of equations or an
adequate approximation of the solution? The first question theoretically
can be answered without ever solving the system of equations if the required
derivatives are measured or obtained from measured quantities. Unfortun-
ately, the precision of the measurements required to test the equatiorns in
this way is usually prohibitively high so that it is usually necessary to
solve the equations and compare the sclution with measurements. The second
question in many cases can be answered by analysis. However, the mathe-
matical theory is often inadequate and it is necessary to compare the ap-
proximate solution either with an exact solution or with measurements. The
question of stability in initial value problems is a crucial part of the
second basic question in that no meaningful results can be expected unless
stable difference equations are used.

The flat plate problem was chosen for calculation because the
results of the calculations could be compared with a solution which may
be regarded as exact. Such a solution exists for very small time where
conduction alone prevails and for very large time where the steady state
is reached. The cylinder problem was selected as a more difficult problem
for which an analytical solution is not available, but for which experi-

mental date exist. The calculations would be of little value if it were
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always necessary to have solutions or measurements by which to verify the
calculations. Such verification is essential in exploratory investigations
such as the present work, but once the validity of the result is established,
the methods can be used to provide new information and to solve new problems.

This thesis is divided into seven parts:

1. Introduction.

2. Review of prior work and theoretical background.

3. A discussion of finite difference methods.

4. Results for the flat plate.

5. Results for the cylinder.

6. Discussion of related problems.

7. Summary of results.



ITI. REVIEW OF PRIOR WORK AND THEORETICAL BACKGROUND

A. The Mathematical Model

Conservation of mass, energy, and momentum are described by the
eguations given below. The thermal conductivity, viscosity and heat
capacity are assumed to be constant, and viscous dissipation and work of

compression are neglected.

iggl = @ dvV (1a)
LT K gl ,
oE (;—@-\7 T (10)
L - 23k L M2 _LLC/IVVJ .
S ¢ T €[v“ MY (1c)
b v - | }SP AL 2 _Lg JIVVJ (ld)
— z A= AV v

o7 Ry 0 [‘7 30y

The force of gravity is taken to be in the negative x direction. For
three-dimensional or turbulent motion a third momentum balance should be
included. However, for the purpose of dimensional analysis, it can be
omitted since it is of the same form as Equation 1ld. Associated with
Equations 1 are boundary and initial conditions. In this work the ini-
tial condition is that the velocity i1s zero and the temperature is some
constant, Tio On the boundary the velocity is zero and the temperature is

prescribed as elther a constant or a function of position.
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If density variations due to pressure are negligible, the follow=
ing equation of state is a gcod approximastion for most gases and liquids.

= i (2)

;4 6(T-7d)

For ideal gases the coefficient,€ , equals 1/T,.

The initial components of the pressure gradient are:

o _g

ty 15 (3)
and

h -0 )

23
In natural convection it may be expected that the pressure gradient will
depart very little from the initial, static pressure gradient. ©So it is
desirable to divide the pressure into two parts: pi, the initial pres-
sure and p' the increase in pressure due to motion and variations in

density. Later on it will be assumed that in some cases p ' = O.

ot

P:

po_dk L3 - _ge 4 A

=y TS g8 %}7 (5a)
_ 3P

po_d L = ot

%‘ﬁ”‘ag] Y (50)

The expressions for the components of the pressure gradient

given by Equations 5 may be substituted into equations lc and 14 to give:



D € NP 2 vV

,(7'1:..: Z(_(’L__Z)—elgﬁ +.’(67°_[V(.( _,Lg/)%\’ J (6a)
Ealai LA e +‘§$C"VV] (60)
Ok f ¢

Now the density may be eliminated from all the conservation equations by

use of the equation of state to give

Eletwrem = = reaemy "

g}:z- = c}%[/+(§(7'7;ﬂ VT (7o)
_ (-7 bP -\ 2

a‘m = 96(TT})- f’*‘gl 57 +4§£_/+\5(T-LXVU+3’§%//V] (7e)

v o— ’*é’gu) 3” AL[/M(T— ]y‘lﬂ-j)?‘(/v/] (7d)

Equations T may be considered as a general model for natural
convection. The only assumption made to this point which seems subject
to serious challenge is the assumption of constant viscosity which will
not be a good approximation for viscous flulds under large temperature
difference. However, Sparrow and Gregg (39) have investigated the effect
of variable viscosity and their results tend to support the present prac-
tice among engineers of using a constant viscosity evaluated at a mean
temperature.

It should be mentioned that there is some confusion in the

literature regarding Equations 7. Many books and papers introduce the
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term gé((&/e - 1) by reference to "Archimedes' law of buoyancy'" without
noting that p' differs from p. Hermann (12) discusses this point and em-
phasizes that Archimedes' law applies only for a particle of a given den-
sity immersed in a fluid of uniform density, which is certainly not the
case in natural convection. It is also a common practice to start with a
system of equations like Equations 7 except that the terms 1 ¢ ﬁ(T - Ti)
are omitted along with the terms div Y. These simplifications will be used
later in this work, but it should be noted that such simplifications imply
that (T - Ti)‘4<1/é. That is to say, the maximum overall temperature dif-

ference must be small relative to 145 (T; for gases).

B. The Flat Plate

Consider an isothermal, vertical plate of infinite width, extend-
ing from = 0 to A= 0 immersed in a Newtonian fluid of infinite extent,
initially at a uniform temperature, T;, and at rest. At some time, t = O,

the plate instantaneously takes on a temperature T, different from the

initial fluid temperhture, T;. Let u u(x,y,t), then the boundary and

initial conditions may be written

u(x,0,t) = u(x,0,t) = u(x,y,0) = 0
v(x,0,t) = v(x,0,t) = v(x,y,0) = 0
T(x,0,t) = Ty, T(x,2t) = T(x,y,0) = Tj

Notice that only two parameters, Ty, and T;, appear in these equations. If
the variable T is replaced with a new variable,gﬁ, such that Q‘: (T-T5)/A T
where AT = Ty - T4, the two parameters are eliminated and the conditions

{
on a are:

d(voz)=1, P(xy 1) = ?{(X’j/oj =0
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Now if any of the variables u, v, X, y, or t Uuﬁ:¢) is replaced by a new
variable differing from the old by only a constant multiplier, the boundary
and initial conditions using the new variable will be the same as before.
This fact gives one the freedom to choose new, dimensionless: variables
without introducing parameters into the boundary and initial conditions,

1. A General Model

A systematic technique for choosing dimensioniess. variables so
that the number of parameters and independent variables in the problem is
reduced to a minimum has been given by Hellums and Churchill (10), and the
technique is discussed and illustrated later on & simple system of equa-
tions. For Equations T the dimensionless variables wmay be shown by this

technique to be:

/ P/

Lol w v . P = 77
/A 7’,7

73
and the equations become

f‘t-{/fézxm) b /ﬂmrys ( ) (8a)
f’%—: /:(5/4\7;7)())(14 3¢) (8b)
2= gslresrl-35 < LY S g fY g ) (8)
%—% = (117947¢5)( Yt %ZYVL + %i)‘,/z +3i.3_LY_VZ_ +3—’ %) (84)

Equations 8 with the boundary and initial conditions contain

only two parameters: éulT and’Tﬁﬁ, the Prandtl number. That is to say U,
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V, and ? depend on these two parameters in addition to X, Y and 7, The
seven parameters which appeared in the original problem, Ty, Tiﬂ/L’ 63’
63 g, and & have been combined or included in the new variables such that
only two parameters remain. Such a reduction in the number of parameters
is of great value if the equations are to be solved numerically or if ex-
perimental data are to be correlated.

From these equations it is apparent that (T - T;)/AT,
'u/(vg‘iAT)]-B, v/b/gﬁAT)l/?) and p'/@_(‘VgﬂAT)g/:)) are functions only of
x(ged TR)L/3, ylgpar/y2)M3, t(gfA 1)2/3/743, AT, and V[,

The local heat transfer coefficient can be introduced and evalu-

ated as follows:

RV Y
/747:—%(7?,., ﬂﬁgg’b (’T)r 0 (9)

|
/3=

hence

\/
2 ?FAT/3 sz/ ZL&/& /“ y /j’A/j (10)

Equation (10) is a very general result. No assumption was
made either explicitly or implicitly relative to the type of flow, and
this functional relationship is presumed to hold for both laminar and
turbulent flow. For a steady state, the time group may be dropped. For
turbulent conditions the heat transfer coefficient then becomes the time
mean value over a sufficient interval of time to dampen out the turbu-
lent fluctuations.

The parameter’fﬂﬁT is observed to occur only in the form

14 ('AT¢ in Equations 8. Since 0 & 7’2 1.0, ‘ﬂAT may be dropped out of
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the functional relationships if ;FI(<:149. The simplified result for

s teady state is

2 1;
;g (?ééfr—} = /i/jz /’ /4647 |7 7ViJ7 (11)

The Prandtl number;W(ﬁX, is the only parameter remaining in
Equation 11. Therefore a single experiment or numerical calculation in
which h is determined as a function of x should be sufficient to define
the problem for a given Prandtl number if AT 1/F.

Equations 8 have been useful in the past only for dimensional
analysis. The equations have never been solved in such a general form.

2. The Schmidt-Beckmann Model

Schmidt and Beckmann aided by a mathematician, Pohlhausen (31),
made a number of simplifications of Equations 8 and obtained an asnalyti-
cal solution to the simplified equations. The simplifications, which are
of the type now often referred to as of the boundary layer type, consist
of dropping;&lg/&xg, 32T/8x2, 5p7dx and the entire momentum balance in the
y direction, and again assuming AAT to be negligible with respect to
unity. Ostrach (26) gives a detailed discussion of the implications of
the assumptions. The resulting equations are given below except that

here the time derivatives are included. ©Schmidt and Beckmann worked only

with the steady-state case.

e
ok 4

g _ )
5} - a(}?i‘; (12b)
P2
BE

(12¢)
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The boundary and initial conditions for this system of equations have some
implications which should be discussed. First, the velocity normal to the
plats, v, canrot te restrained to zero for large y. At y = 0 v is zero
but v aﬁproacheé some non-2ero function of xas y inéfeases, Secondiy;
along the leading edge of the plate (x = 0) u % 0 and v = =), The behav-
ior of v does not correspond to that of a real fluld except at positions
which in some sense are near the plate and far from the leading edge‘° The
solution to the system of equations cannot be expected to be valid near the
leading edge.

Dimensional analysis of this system of equations will be carried
out in detall as an iliustration of the technique mentioned before. A new
set of variables will be adopted: U = u/ug, V = v/vg, X = x/x0, Y = y/y0
and .z t/to, where ug, Vo, Xg, and yp are constants or parameters. The
variable/f will be left unaltered since any multiplier would introduce s
parameter into the btoundary conditions as was mentiored above. It is impor-
tant to rote that the quantities ugy, v, %o, yo and tp are entirely arbi-
trary and can be chosen in such a way that the problem is simplified. That
is to say the objective of the analysis is to eliminate as many as possible
of the parameters and independent variables from the problem by appropriate
choice of values for the arbitrary quantities. The equations in terms of
the new variables are given below.

oo (s |V
X sl

I
o
-
(W8]
3]
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Now it is desired to eliminate as many as possible of the dimensionless groups
in the equations. Each group can be equated to unity which gives a system
of eight equations (not all independent) in the five arbitrary quantities
Ug, Vo, X0s Yos and tg. These equations can be solved to give the arbi-
trary quantities in terms of the parameters of the original problem O
7, & fand AT. If all of the eight equations can be satisfied, all of
the parameters can be eliminated from the partial differential equations,
In the case at hand, the two equations &ty/y,2 = 1 and Vtg/yo® = 1 cannot
both be satisfied so one parameter will remain. The solution to the alge-

braic problem for the arbitrary quantities is

U = (7‘0]@”)//& ) v = (7/}/;47/%0)/’{

b= (/) g = () ()

x, = arb fVﬂ"y

All the parameters in the problem except one can be eliminated without
specifying xg, and the equations are not affected by the choice of a
value for xq.

Substitution of the quantities of Equations 14 into Equations 13

gives

?r% * 3)-\7/ =0 (15a)
09\?7;_5 = i‘?l (150)
=9+ ¥ (15¢)

in which‘770§ the Prandtl number, is the only parameter. So it is con-

cluded that u/xogﬁAT)l/z? 5 v(xo/ygg(ng)l/u and(T - TiY(fW - Ti) depend on
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x/xg, v(ge4T/7Pxq) YL/4, ( gfA T/x0) )1/2 and /<. The system of differential
equations with the boundary and initial conditions is independent of the
choice of xj. So it must be concluded that the solution is also independent
of the choice of xp. A new set of variables which does not contain Xy can
be formed by multiplying each old variable by x/xo raised to an appropriate
power. Birkhoff (2) has given a formal justification to such a procedure
by much the same line of reasoning as given here. The revised conclusion is
that u/(xg;&jT)l/E, v(x/VEgﬁer)l/u and(T - TiM&w - Ti)depend on ... /
y(gﬁé&T/72X)l/h, t(gﬁélT/x)l/e and Y& The validity of the new choice of
variables can always be checked by computing the required derivatives and
substituting them into the original system of equations.

The local heat transfer coefficient can be introduced in the

same way as before to give
/
N AL r4—7>"“ s (16)
)

If attention is restricted to steady state, the terms involving
time may be dropped; a single independent variable remains, and the partial
differential equations can be reduced to ordinary differential equations.
The system of ordinary differential equations was first developed and solved
for a Prandtl number of Q.733 by Schmidt, Beckmann and Pohlhausen (31).

The solution was found to agree well with the experimental data of Schmidt
and Beckmann. The original solution was by series. Since that time others
have solved the equations for a variety of conditions using numerical meth-
ods. References T, 26, 30, 31, 33, 35, 36, 37, 38, 39 and 40 all pertain

to solutions of this system of equations.
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Transient free convection has been studied by Illingworth (13),
Sugawara and Michiyoshi (Y41) and, most recently, Siegel (34). None of
these workers obtained a solution which is valid over the whole range of
time out to the steady state condition. Siegel used the KérménmPohlhausen
approximation method in attacking the problem. He did not compute heat
transfer coefficientsbeyond the short time when conduction alone prevails.
However, he did produce an estimate of the time required to reach steady
state.

3. A Highly Simplified Model

As a final case the further simplification of steady state and
very slow motion such that the inertial terms in the womentum equations can
be dropped will be examined. Morgan and Warner (23) indicate that this
latter idealization is justifiable for fluids with large Prandtl numbers.

The resulting equations are

L + E = O (]-73-)
oF Z
YA T - °T
‘it g T & 372 (170)
(7-7) + vive = 0O .
96 (7°1) e (17c)

Proceeding as before reveals that (T = Ti)/AST, u(?Vngﬁij)l/E and

v(x?%dsgfkaT)l/h are functions only of y(g(sz/VVk)l/u and hence that

/%( v L) - (18)

FEAT]

where C is an unknown constant,
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This result is practically as useful as a complete solution
since a single experimental or computed value for the heat transfer coef-
ficient defines the coefficient for all other positions and conditions
within the range of the applicability of Equations 1T7. Equation 18 can be

rearranged in the more familiar but less explicit form
V%
M, = C (Glr/jf‘) (19)

This relationship, including the a value fgr C was first derived by
Lorenz (19). However, Lorenz made more simélifications than were neces-
sary in the analysis presented above. Moféan and Warner apparently were
the first to derive Equation 19 from Equations 17.

k. Comparison of Models

It is interesting to compare the different functional represen-
tations obtained for the local, steady state, heat transfer coefficient
for the successive idealizations. ZEquation 19 should be regarded as a
first order approximation and would be expected to become a poorer repre-
sentation as the Prandtl number is decreased. Equations 16, 11, and 10
should be successively better approximations. The dimensionless. heat
transfer groups on the left side of Equations 16, 11, and 10 can be
changed to the same form as the heat transfer group on the left side of
Equation 19 by multiplying through by the dimensionless groups on the

right side to the appropriate powers, thus obtaining
b lov V- /:[74 ’ZP’AT/'/} Vi, PAT (21)
#5227 S/ T
/ Y
XY 7 [, /484715 5, (22)
L(eEF) A

i
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and
%(?%g " F[V/dj (23)

respectively. Thus the dimensionless heat transfer group h(avk/gpAST)l/h/k
can be regarded as invariant as a first approximation, as a function of'V/oa
as a better approximation, and as a function of the dimensionless position
x(g@zﬁT/72)1/3 and ﬁz;T in the more general case. This suggests plotting
data in the form of h@(‘vx/gﬁAT)l/“/k versus &/ or if necessary as

hvx/g [j’AT)l/)"'/k versus x(g(eAT)/VE)l/3 with A/7and EAT as parameters.
It should be remembered that the variation o?/L, k and CP with temperature
and of e with pressure were neglected in all of the analyses. Analytical
expressions for these variations would introduce additional dimensionless

groups .

C. Confined Fluids = The Horizontal Cylinder

A large part of the prior work on natural convection has been
on the flat plate problem discussed above. The flat plate is the simplest
condition of practical importance from both the theoretical and experimen-
tal standpoints. A larger and more important class of conditions are those
associated with confined fluids. Specific examples include air spaces
within the walls and rooms of buildings, and within many refrigerators
and heaters of both household and industrial use. Practically all prob-
lems in heating, cooling, boiling and insulating involve natural convec-
tion of confined fluids to some degree.

Analytical or numerical solutions to convection problems almost
invariably are approximate solutions to simplified models so that it is

highly desirable to compare the solution with experimental data. If the
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solution agrees with experimental data, the inference is that the solution
will provide information on conditions for which no experimental data exist.
Comparison of heat transfer rates is necessary but such a comparison does
not provide a critical test of the method. A critical test is provided by
comparison of local velocity and temperature distributions.

1. Previous Experimental Measurements

The only experimental measurements of local velocities and tem-
peratures for natural convection in an enclosed region seem to be those of
Martini and Churchill (21). In the great majority of investigations only
the overall rate of heat transfer or only the temperature distribution is
measured.

Martini and Churchill studied natural convection of air inside a
horizontal cylinder 36 inches long by k.3 inches diameter. The cylinder
was divided longitudinally at the vertical diameter and a small layer of
insulation was inserted between the two halves so that the two sides of the
cylinder could be maintained at different temperatures (see Figure 1).

The length of the cylinder was sufficient so that near the center the
motion of the alr was considered to be

two dimensional. Local air temperatures

were measured directly by thermocouple s
traverses. Velocity data were obtained T=T ,\\

by taking multiple exposure pictures of ie—rb——guK
small dust particles suspended in the |
air. This method of determining veloc-
ities gives both the flow lines and the
magnitude of the velocity. The results

Figure 1. The Horizontal Cylinder
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will be discussed in comparison with the calculations of the present
work.

It should be mentioned that accurate measurement of local veloc-
ities is extremely difficult--which undoubtedly accounts for the dearth
of such messurements. The problems of measurement are more difficult for
confined fluids than for unconfined fluids, and the comparatively low ve-
locities associated with natural convection pose more problems than cases
of high velocity forced convection. Martini and Churchill considered
their work to be exploratory in that they were seeking an effective method
to make such measurements. The technique was only partly successful and
they do not claim a high accuracy of measurement. Unfortunately, the dif-
ficulties of measurement by any technique are multiplied near the boundary
where the results are of most interest.

Ostroumov (25) studied natural convection in a horizontal cylin-
der by an optical method. His discussion is limited for the most part to
a description of the method. No data are reported except photographs
showing lines of constant components of the temperature gradient. Natural
convection in rectangular regions has been investigated by several workers.
Jakob (14), Globe and Dropkin (8), Schmidt and Silveston (32), and de
Graff and van der Held (3) give discussions and correlations. Natural
convection in vertical tubes closed at one end has been studied by Hart-
nett and Welsh (9), Eckert and Diagula (5), Foster (6), and Martin (20).
As was mentioned above, none of these workers measured local velocities.

2. Analytical Solutions

All efforts toward solving the confined fluid problem have been

restricted to the case of steady, two dimensional, laminar flow.
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Batchelor (1) considers a rectangular region such as an air
space in the wall of a house with the two vertical walls at different tem-
peratures. A single solution to the system of equations is not given as °
such, but three solutions each of which 1is expected to be a valid approxi-
mation for a limited range of the parameters. Working with the parameters'
Rayleigh number, A (product of Grashof and Prandtl numbers), and aspect
ratio, L/D (ratio of height to thickness of the air layer), solutions are
developed for three limiting cases: (a) very small A, L/D not restricted;
(b) very large A, L/D not restricted; and (c) L/D very large, A not re-
stricted. The three solutions give a fairly complete overall qualitative
view of the phenomenon, although the heat transfer coefficients so pre-
dicted are about 50 to lOO% higher than those measured by Mull and Reiher
(2k4).

Zhukhovitski (L2) considers an infinitely long cylindrical cav-
ity in a solid medium having a horizontal temperature gradient perpendicu-
lar to the axis of the cylinder. A solution is sought in terms of powers
series in a modified Rayleigh number. The coefficients are determined by
a method of successive approximation. The results of the calculations
are compared with the measurements of Ostroumov and are found to be in
qualitative agreement for a Rayleigh number of 500. Zhukhovitski indi-
cates that there is no certainty that the method will apply to large Ray-
leigh numbers. The series may not converge for Rayleigh numbers greater
than unity although it is asserted that calculations indicate convergence
at least up to a Rayleigh number of 1,000. Batchelor (1) uses the power
series approach in his solution for small Rayleigh numbers and gives an
argument that 1,000 is the highest value of Rayleigh number for which the

power series is useful. Unfortunately Rayleigh numbers of 1,000 or less
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are of no practical interest in Batchelor's problem since most of the heat
transfer is by conduction in this range. It can be concluded that
Zhukhovitski's solution shows some promise, but more work is needed to de-
termine the value of the method over wide ranges of the parameters and on
conditions other than those of the original investigation.

Poots (27) gives a solution to the same problem considered by
Batchelor--the rectangular region. The temperature and the stream function
are expressed as double series of orthogonal functions of the space variables.
By means of Fourier transforms the equations for the coefficients are reduced
to two infinite sets of coupled simultaneous algebraic equations., An itera-
tive method for solving the algebraic equations is outlined and numerical
values of the coefficients are given for a Prandtl number of 0.73, aspect
ratio of unity (a square region), and several Rayleigh numbers between 500
and 10,000. The calculations become more difficult with increasing Rayleigh
number, and the number of coefficients required in the series also increases.
It is indicated that the determination of the coefficients is impractically
laborious for Rayleigh numbers greater than 10,000 or aspect ratios greater
than 4. There are no data on square regions to compare with Poots' solution,
However, for a Rayleigh number of 10,000, Poots' solution agrees with Jakob's
(14) empirdcal formula for the overall heat transfer coefficient. Pdots'
method of solution seems to hold promise. However, more work is needed to
determine if it can be adapted to larger values of the parameters Rayleigh
number and aspect ratio.

Lighthill (18) has analyzed the case of natural convection in
heated vertical tubes closed at the lower end and opening into a reservoir
of cool fluid at the top. The Kérmén-Pohlhausen integral approximation

method is used on a syétem of equations in which it is assumed that the
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Prandtl number is large so that the non-linear terms can be omitted from the
momentum balance. In this method the shape of the velocity and temperature
profiled must be assumed or deduced in advance by physical considerations.

It can be concluded that the methods of attack used to date on
the equations governing natural convection in enclosed regions have had
only limited success and that each method appears to be severely limited in
its range of applicability.

3. A General Model

Equations 1 with appropriate boundary conditions apply to confined
fluids as well as unconfined fluids. The calculations to be described later
on were performed for a cylindrical region so it is desirable to consider
the equations in cylindrical coordinates. The angle & is measured clockwise
from the vertical such that the force of gravity is in the radial direction
where ©= 0. The motion is assumed to be two dimensional so that all grad-
ients in the z or axial direction are zero. The equations are given below
where u is the velocity component in the & direction and v is the velocity

component in the radial direction.
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The boundary and initial conditions for the problem are as indicated below

and in Figure 1 where u = u(r, & , t).

u(r,@, 0) =0

5i

u(::‘d9 o, t)

v(ro, e, t) =v(r,8, 0) =0

T(rg, ©, t) = Tg if 0<OLK T
T(rg, ©®, t) = Tp if 7LOL2M
T(r, &, 0) = T3

In the cases for which calculations were performed, the initial temperature
T; was taken to be (Ty + Tc)/2.

Equations 24 can be simplified somewhat if attention is restricted
to cases of small temperature differences (see the discussion just after
Equations 7 in Part II). Making this assumption, dividing pressure into two
components in the same way as was done in obtaining Equations 7, and putting

the equations into dimensionless form gives
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(f ¢ \¢ _ 2 z |
o vyt L g _i[;/j& +-/ég—%-+k/?_v—3i] (25¢)
Y(rv) . X =D

z[ﬁ ;Y (254)

where the dimensionless variables are as indicated below
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The two parameters are Gr, ro3g@zST/72, a Grashof number based on the radius <
of the cylinder, and ¥/, the Prandtl number. In the case of the unconfined
fluid the corresponding set of equations contain only a single parameter.
Here, the boundary conditions are slightly more complex and two parameters
are required. For a still more complicated boundary such as a rectangle,

a third parameter involving the ratio of the two dimensions of the rectangle
is required.

L, A Simplified Model

The variable P' in Ecuations 25 represents the deviation of the
pressufe from the initial hydrostatic pressure distribution and the gradient
Qf Pf shqplq be‘ip some sense smalli Equat;on 25a is_a momentum balance in
the & direction, the direction of principal motion, and U and the derivatives
of U with respect to R should be large compared to V and the defivatives of
V which appear in Equation 25b. If it is assumed that )P'/ge is negligible

compared to the largest terms of Equation 25a, Equations 25a, 25c, and 254
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are sufficient for the determination of U, V, and ¢, Equation 25b could
then be used to determine P' if desired. As a second simplification the
Coriolis force term, UV/R, will be neglected in Equation 25a along with
the term(é/Rg)(sv/bGD)to give the system of equations which were used in

the computation part of this work.

2
R R R e L E A
g L v)f Yé . 1 Ly
B+ his vk - %[ra ﬁif ﬁiépz] (26b)

g{%ﬁ+%‘é=0 (26¢)

The boundary conditions aré now that at R = 1: U and V are zero, ¢$= 1/2
for 0« © ¢, and ¢= - 1/2 for Tr<eo< 275 Initially U, V, and ¢are
Zero.

The implications of the idealizations given above deserve some
discussion. Dropping the terms UV/R and(é/R?%}VﬂK» can be Jjustified very
simply by estimating the magnitude of the terms in relation to other
terms in the equation by use of Martini's data and by use of solutions of
Equations 26. Neglecting )P'/}© in Equation 25a leads to anomalies which
are analogous to those of the flat plate, Eouations 12. The radial veloc-
ity, V, is that velocity required to satisfy the continuity equation with=-
out regard to momentum changes in the radial direction. Outside the bound-
ary layer where U and its derivatives are small, the quantity RV becomes
a non-zero function of &, and at the center V is infinite. This behavior
of V away from the boundary, as in the case of the flat plate, need not

prevent the model from being useful. It is postulated that BU/JR,
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YU/)R2, )¢VZR and 82¢76R2 are large near the boundary and U approaches zero
with increasing distance from the boundary after going through a maximum.
Beyond the point where U is small, values of V predicted by Equations 26 are
meaningless, but they are of no interest. Values of U, V, and ¢ from the
equations should be valid in the region near the boundary where U and % dif-
fer appreciably from zero. In the central region values of U andfﬁ should
be valid (approximately zero) and values of V are meaningless.

The idealization required to simplify Equation 26 to the form of
Equations 25 are discussed in more detail in Appendix A. It is shown there
that the validity of the idealizations dependson the Grashof number. The
model should approximate the actual behavior of fluids more closely as the
Grashof number increases. For very small Grashof numbers the model should
be expected to be inadequate.

5. A Highly Simplified Model

It is instructive to consider a highly simplified model from
which a first approximation of the effect of the parameters 1is obtained.
Suppose that the motion is in some sense slow such that the inertial terms
in Equations 26 may be neglected and that U and.ﬁ are different from zero
only in a narrow region near the boundary so that rd@:x:rodé‘wnere ro is
the radius of the boundary. As additional simplifications, suppose that
1/r2 d2u/}eP and l/rE)(f¢/g@ 2)are negligible compared to )2u/4r2 and
52¢Vgr2. The resulting simplified equations are given below for steady

state.

Z(QATQSMG + ‘V{% =0 (27a)
¥ > 5

AV %7: 4 f%;-zg§ = X pya (27v)

QL4 L = (27e)
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If the variable r is replaced by y = r, - r, the distance from the boundary,
the equations are unchanged except that some terms change sign. By fthe pos-
tulation of narrow boundary layer 1t is possible to neglect the curvature of
the wall when thinking of the bourndary conditions associated with y. For ex-
ample one condition where U = 0, is at y = O and the other condition where

= 0 may be taken to be at y = © . Multiplying y by any constant will not
alter the two conditions so a new dimensionless variable, y/yo, may be chosen
in which yg is completely arbitrary. Using this freedom and carrying out
dimensional analysis in the manner illustrated before leads to the result that

(‘V/rogﬁATtX)%, v (ro‘{//gﬁATOQ)%, and ¢ depend on © and (1 - r/rq)
(g@ANTrO3/Va)%; and h/k CWXPO/gﬁzﬁTj%-depends only on @ , This result can
be rearranged in terms of the Grashof, Nusselt and Prandtl numbers and in

terms of the variables of Equations 26 as indicated below

/e
Yds < /@r /L/_ (1= 474)( Grt) /7] (28)
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I

(%//4/2[@ - [/ﬁ)(éf’af)w (29)
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Equations 28 through 31 are extremely useful in predicting the

< 9
Iy

qualitative effect of the Grashof and Prandtl parameters. As will be
shown in the discussion of results the simple model agrees well with the

computations based on a more complex model. The equations can even serve
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in a limited way to establish the conditions under which the simplifying
assumptions by which the equations were devised may be expected to be valid.
Such a procedure admittedly involves circuitous reasoning. However, the
procedure seems to give the right answers so it will be outlined.

For simplicity in the notation, let Z be the second argument of
f, in Equation 28 and let U = ury/y; V = vro/y/, and R = r/ro as in Equa-
tions 26. As a first example, consider the assumption of a thin boundary
layer. This assumption tends to fail as the Rayleigh number decreases since
for Z to have a fixed value 1 - r/ro must increase as the Rayleigh number
decreases. The boundary layer thickness is proportional to (GrPr)‘l/u. As
s second example consider the assumption that(i/R?)()gU/}é)2>may be neglected

compared to ¥U/)R®. From Equation 28

2
Yu oo - Cyr') J
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-2 2 /
oY 41
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which shows that the maximum radial derivative increases with the Grashof
number whereas the azimuthal derivative does not. The assumption then
tends to fail as the Grashof number decreases. By a similar argument it
can be shown that other of the idealizations tend to fail for small Prandtl
numbers. Thése conclusions must be tempered by the knowledge that if the
Grashof number is very large, turbulent flow occurs and the model also
fails. Herman (11,12) Merk and Prins (22), and Morgan and Warner (23) give
other discussions of the idealizations used here.

In the analysis given here the effects of both the Grashof and
Prandtl numbers are taken into account. By Equation 31 the Nusselt number

is proportional to the product of the two numbers to the one-quarter power.
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In Appendix A the analysis is given in more detail. The analysis given
there shows:

1. The dependence of the solution on the Grashof number can be
established by assuming only a large Grashof number-~it is not necessary
to neélect the inertial terms. In other words the asymptotic solution for
large Grashof numbers. is that Nuo(Gr%.

2. The,iﬁertial terms in the momentum balance become less and
less important relative to the other terms as the Prandtl number increases.
In other words the analysis given above in which Nu x(GrPr)t is the asymp-

totic solution for both large Gr and large Pr.



ITI. FINITE DIFFERENCE METHODS

It has been mentioned that finite difference methods hold promise
for solution of problems which are too difficult for ordinary methods of
analysis. In this section the methods will be discussed in some detail. It
should be mentioned at the outset that basic questions of convergence and
stability can not be resolved with mathematical rigor because the theory is
génerally inadequate. Nevertheless it is possible to cope with the msjor
difficulties and produce an apperently satisfactory solution for the system
of equations under consideration.

The basic idea of finite difference approximastion comes directly
from the definition of the derivative. Suppose u = f(x,y,t) and its first
derivatives are continuous; then the definition of the partial derivative

with respect to x may be written in three different ways:

L(L_()to/ ‘7», fa) = Im ‘F(."o‘fh,l ‘fo/f? }_ 7C(yo/%"’/ f°) = //m 'F("‘o/ ¥, 1‘3} - f(yb'/h‘j"/ 7‘3)
Y% 2 #>0 h )

h>o0

= fm fOuth g o) - (b, 4o, £)
h>0 2h

in which the alternate definitions are identical. If the limit process is
not carried out, h is finite and the result is called a divided difference

approximation to the derivative:

29
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in which the alternate forms may not be expected to be the same. The three
differences in the numerator of the equatiomare called forward, backward and
central differences, respectively. From Paylor's formula the central 4if-
ference would be expected to be the best of the three from the standpoint of
accuracy. However, there are other factors to consider in selecting the
form of the difference as will be discussed later. The error in the approxi-
mation clearly depends on the size of the increment, h, as well as on the
behavior of the function.

An approximation to the second derivative can be obtained by re-
peating the process whereby the first derivative was approximated. A dif-

ferent method which illustrates the use of Taylor's formula is outlined

below

./\/X»-H’u[’ ,;" = .64,,7 f) + H{’(k /) /;/ a

Where Xq £ xt ¢ Xy + h and xo—h L x7< X5 (the values x* and x~ are

chosen to satisfy the equality). Adding the two formulas and rearranging

gives:
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The first term on the right hand side of Equation 32 is called a central
difference approximation of the second derivative, and the other term rep-
resents the truncation error incurred by replacing the derivative by the
divided difference. The truncation error vanishes as h > 0 and is zero
for any h if the third derivative is identically zero.

The basic concept of the finite difference approach can be
stated in vefy simple terms. The derivatives in a system of equations
are replaced by divided differences giving a system of algebraic equations
which presumably can be solved by some method. The solution to the dif-
ference equations is expected to approximate the soluticn to the differen-
tial equations. In actual practice there are some difficulties which are
to be discussed below. It is clear that if the increment size is in some
sense large the solution to the difference equations might be a very poor

approximation to the solution to the original problem.

A, Methods of Attack

In the problems under consideration there are two space variables,
x and y; a time variable, t, and three dependent variables u, v, and T,
If it is supposed that at large times a steady state is reached such that
u, v, and T no longer depend on time and that this steady state solution is
of primary interest, then there are two alternate methods of attacking the

problem: the steady state approach ard the unsteady state approach.



1, The Steady State Approach

In the steady state approach the derivatives with respect to time
in the equations are dropped reducing the number of independent variables
from three to two. If the x and y dimensions of the region of interest anﬁ
divided into M -« 1 and N = 1 increments, respectively, therg will be MN
"grid points.” At each grid point there are ‘the three independent varisbles
80 tha% there are 3MN algébraic equations to be solved. As an indication
of the enormity of the task, the number 3MN was as high as 6,000 in this work.
The‘algebraic equations are not linear. Methoés of solving non=linear al-
gebraic equations, in contrast to those for linear equations, are not highly
developed.

Théfe is a stability problem associated with unsteady state cale
culations which is not present in the steady state approach. It might
therefore be expected thaﬁithe,steady state approach is preferable.if only
the steady séate golution is desired. . However, the system of algebraiclequaav
tions -will almost certainly have to be solved by some iterative procedure,
and the probléms agssociated with fipding a method of iteration ﬁhich converges
with some rapidity are considerable. Douglas and Peaceman (4) indieate that,
even for conduction problems which involve only linear equations, the unsteady
state approach is prefersble to the steady state approach. In view qf‘the
difficulties involved in solving non-linear algebraic equations and for the
reasons given below, the unsteady state approach was used throughbuﬁ this
work.,

2, The Unsteady State Approach

In the unsteady state approach, the equations are written as an
initial value problem in which the velocities and the temperéture are com-
puted as functions of space and time starting from some initial condition.

There are several advantages to this method of attack:
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1. Both the transient and steady state solutions are obtained;
the steady state solution being the 1limiting value of the transient
solution.

2. The unsteady state calculations may be thought of as an itera-
tive method of solving the steady state problem in which the intermediate
values of the dependent variables have physical significance. If the
transient solution is not desired, the initial condition can be replaced by
an estimate of the steady state solution thereby reducing the amount of com-
putation required. The steady state solution is independent of the choice
of initial conditions.

3. No direct assumption of laminar flow is required. The steady
state approach is clearly limited to laminar flow. In the unsteady state
approach the time dependent form of the equations 1s preserved along with
the intriguing possibility of actually computing the fluctuations which
characterize turbulent flow. The direct calculation of turbulent flow is
very likely more difficult than laminar flow by orders of magnitude and
even may be essentially impossible. However, it is a matter of such in-
terest and importance that it 1s desirable to learn as much as possible
about the behavior of the difference equations with respect to time in the
hope that the work may constitute a step in the direction of computing
turbulence.

The main difficulty in the unsteady state method is that the d4dif-
ference equations may be unstable unless care is taken in selecting the

form of the differences and the size of the time step.

B. ©Stability and Convergence

The remainder of this section 1s based for the most part on

Richtmyer's book on difference methods (28) in which work by Lax, von
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Neumann and others is presented along with a number of examples. The reader
is referred to this book for an excellent discussion of the theory and praé-
tice. Richtmyer gives the development of the theory for a class of linear’
equations with constant coefficients, but points out that the theory is in-
adequate for complicated problems of the most interésto He then shows that
the von Neumann method of stability analysis can ﬁe applied successfully to
problems'for which a rigorous stability analysis 1s unknﬁwn. The stability
criterion so predicted is shown to be an excellent approximation of the nec-
essary condition fof stability in several cases by actually perfofming ex~
perimental calculations and observing the behavior of the solution.

Stability is a necessary condition for the solution of the différ—
~ence problem to converge to solution of ﬁhe differentiai preble& as the gize
of the increments, Ax, Ay and At tend to zero. Convergence 1s essential
for the results to be ﬁeaningful in thﬁt the fundamental idea of én approxi-
mation ié that the error can be made as small as one wishes, In fractice
an unstable scheme of calculation usuélly yields meaningless numbers which
overflov the accumuxatdr of the computer aftéf a relatively few time steps.
The essense of stabllity is that there should be & limit to the extent to
wvhich any par£ of the’ initial data can be amplified in the numerical procé.
'dure.

Suppoée the x and y dimensions of the region of interest are di~-
vided iﬁto incrémeﬁts‘ of size Ax and Ay respectively such that x = JAx.
and yz }Ay where Jj and / are integers'.‘\-. Let n, an. integev, demt.,e, the.
number of time steps starting from the initial condition such that t =
n At. Let uSﬁ} be an independent variable associated with the nth tiu@
sfep (n here is a superscript not an exponent) and the position denoted by

the subscripts. Now in the scheme of calculations a new set of the variables,
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g?}l), is somehow calculated from the old, ugn), perhaps using values
of other dependent variables and perhaps using values of the variables at
other time levels (for example, ugiﬁl)), However the calculations are

carried out the scheme will be said to be stable if the follow1ng 1nequal-

ity holds for any choice of initial data:

(nt) ()
14 T ,
W)/ 7/2/ (/ w4l + Pet) + reat (33)

for some M 20, M, 2 0.

The numerical procedure should be thought of as one of a sequence
in which Ax, Ay, and At are made smaller and smaller with the expecta-
tion of convergence. For stability it is required that the values of u at
some time, t, be bounded independent of the increment sizes. By repeated

application of the inequality, ugég can be bounded in terms of the initial
)

data u(o) and the.time, t as indicated below:
Jds

o 0 //

ol i<l % (Mﬂjwﬁﬂ// phay + Kot

(3/ ,s

é[/‘lg-x Ny +/v afffiendd) wlrematf s+ - ’+/H“'Aj)
l Wil

; (D
{— / 7//) ” .
é;/’w’"”] [//;;/0//‘; +/; /M]? /f/%i [/Var 1 +/f/‘15]

Using the fact that (1 ¢ My At)P 4 ePIB(LMLAY) 51g that 1n(1 4 My AY) &

M) At gives

4 tMI ;
Mas, ;/W/ e //{?//(;// f” (34)
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which is the desired resulf. For a fixed t as At » O the number of time
steps, n, becomes infinite, but the solution is bounded independent of +t.

In problems for which the theory is well developed stability im-
plies convergence under fairly general circumstances if the truncation er-
ror incurred by replacing derivatives by divided differences vanishes as
AX, Ay, and At 9 0. It should be mentioned that stability is ‘defined
in different ways by some workers. The definition given above is essen-
tially the same as that originated by Fritz John (16) ana used by

Richtmyer (28).

C. OStability Analysis

The importance of the concept of stability has been indicated
above. In this section methods of stability analysis will be discussed
in association with some examples. It will be shown that the choice of
the form of the differences used to approximate the derivatives is of
crucial importance. Some choices lead to schemes which are uncondition~
ally unstable. As a general rule a stability criterion involves a re-
striction on At in terms of AxX, Ay and the parameters of the system of
equations. However, there are schemes which are unconditionally stable
or unconditionally unstable. In the case of non~linear problems the
stability criterion may also involve the dependent variables.

As a very simple example of a non=linear problem, consider the
equation given below in which only the leading terms of a momentum bal=-

ance are ineluded,

%}i - -u%’é (35)
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In association with Equation 35 it is supposed that u is specified on a
boundary and initially although it is not necessary to think of the equa-
tion as representing a physical situation.
Consider three different approximations to Equation 35 in which
bu/at is replaced by a forward divided difference and )u/&x is replaced

by a forward, central or backward divided difference.

m+1) ) ) ) //r)

A Y .
el Ai & -— /‘ A—)(- (3 )
{ /f‘ 1“’) {L( ”’/ o / (,(‘( m ) ; Z f/./j

s e R e v =t (37)
Q”*Q ('?7 () () , ()

Uy A; - - {[;/« U & AXM =/ (38)

The three schemes are called explicit since the values of u at the
n + 1th time level can be solved for directly from those at the ntP time
level. It will be shown that Equation 37 is unconditionally umstable;

that Equation 36 can be stable only if u £ 0, and that Equation 38 can be

[

stable only if u 2 0. In the stable cases it is required that

u(n)j A&t/zsx £1. It is interesting to notice that Equation 37 which

would intuitively be expected to be preferred is completely useless be-
cause of instability.

1. Positive Type Difference Equations

A useful method of stability analysis is based on the use of
difference equations in which all the coefficients are positive. In such
cases a sufficient condition for stability can often be established by

inspection. By way of illustration Equation 36 can be rearranged to give
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m#l) (m) (m) (’"/ A]" ()
(l; (/ 7 A% 7 ) 71‘/ /

from which no conclusions are obvious unless u(n)t<,0, Considering

J

u(3> < 0 the equation can be rewritten
(’ﬂﬂ) [m) /m)) ) S |

Now the sum of coefficients of dg)and J%Ll is unity and each coefficient

(N1

is positive or zero providing AAt/zxx ld?’ L. Then u(ﬁ*l) always falls
between u(ﬁ) and uéi%, Hence. Equation 36 is stable if u% £ 0 and
At/zsx ,dgy £ 1. Notice that the stability criterion depends on the solu~

tion 80 that it is not generally possible to select a time step in advance
Whlch will insure stability. The computer must test the criterion and
alter the time step as necessary to maintain stability.

The simple way of looking at the stability problem outlined
above is useful for only a small class of problems. There is a much more

general method of stability analysis due to von Neumann.

2. The von Neumann Method of Stability Analysis

The von Neumasnn method of stability analysis employing Fourier
series can be applied to a great variety of problems. Theoretically the
method only applies to a small class of linear equations with constant
coefficilents. In practice it has been found to give a good apbfoximation
to the stability criterion even for non-linear problems. The method can
be applied to explicit or implicit schemes irvolving any number of time
levels and any number of variables. By way of introduction the method

will be used to show that Equation 37 is unstable as previously asserted.
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(m) w)
(/L(MH)‘ (/{({V) B ~ d(m) - U .
—_1:5€——4_ = 4 2N (37)

-]

The equation could be made linear by writing u + U in place u, where u
is a small quantity of the first order, and dropping quantities of the
second and higher order. For Equation 37 this only amounts to thinking of
the coefficient of the derivative as a constant, so the notation of the
equation will be retained except the subscript and superscript on the coef-

ficient will be dropped. By rearrangement
(m1) _ (r) ) _ (M)

where § = u At/2 Ax.
Now it is assumed that the solution of the equation can be written

in the form

By the assumption of separation of variables each term in the series grows
or decays independently and a general term of the series can be considered.

Substitution of §neikj4x into equation gives
Ntk qlr m ikpar m Lk Cge)AY YU ORILY
e’ =f5e’ —¢5(eTT - @
which can be solved for ¢ .
koY —akd¥ .
§= /-2 ) = /= 2upamkay) (39)

The absolute value of § determines the rate of growth of u with
time: [$/ < 1 corresponds to no growth and /§/ £1 4+ MAt (M not depen=-

dent on k) corresponds to exponential growth which is permissible by the
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definition of stability. Hovever, by Equation 39, [§]> 1 without regard
to At for all values of k except those where sin kAx = 0. In other
words at a fixed t, as At » 0 and n 3o with g fixed, some terms of the
serles are amplified without bound. Therefore, the scheme is ;hstable.
The technique is easily adapted to systems of equations in sev-
eral gpace variables. Consider a simple example to illustrate the method.

The example is too simple to represent a physical situation, but contains

terms of the type of interest.

¥ - -alyg + of (i0)
¥ - -a-}é + “;Z (31)

In this example u is taken to be positive and the difference equ'atibns"{’m
given below in which u is treated as a constant where it is a coefficient

in t.hg manner of the first example

(%) ) .

. (m) (n) B .
>0 (o
w!e“_(;e - ‘L(M—A—)Z-”l‘i n 5‘1@1

w ~ W e .
mv) () ¢ \ ) ' ) L
o~ -y S = Y4 § bo 20, + D
¢z pdt ¢z!1 -_ (L 1 ; y + é 4?

It .will‘be supposed ‘that the generel terms of the geriles for u and"_ ¢aa:|.'e
of the form §ﬂeik5 jax oikp fAY and [Lneikljf-\?‘ elke fAy, respectively,

Substitution and rearrangement gives

oy ' -4k &) m
§ = 5’"/;_;(/-6 /] VA 7 an (ha)
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vhere @= u At/ Ax and ¥=1b at/(ay)2.
In a more general problem 1t would not be possible to solve the

equations directly. The system of equations might be of the form

RN A

AV = BY,
or

A - =

v, = ABY,

- =

where Vy is the vector with components Sn"]- and ?n*'l and V, is the vector
with components Sn and /Zn Let G = A=1B; G is called the amplification

matrix and it plays the part of S in the first example. From Equation 42

and 43 for this example
G ast

G =
O ¢

where Cl =1 - é)(l - eiklAX) and C2 = X[eiszy -2 4 €1k2 Ay] -

2 Y[cos kpay - 1] .
The von Neumann necessary condition for stability is that /7~/
£ 1 + MAt for some M % 0, where X is the largest eigenvalue of G. The

eigenvalues of G in the example are
—Akax
h= G = /-6(-@

-1k, 8%
e

Nz GG = /—(3(/—— + 23‘(606’16247 ‘1)

If B+ 2Y £ 1 both the eigenvalues lie within or on the unit circle

(620, ¥2 0). The stability requirement then is that u at/ax ¢ 2bat/

2

(ay)c &£ 1, where u £ 0. If u ( O the equations are unconditionally unstable.



4o

It should be mentioned that known sufficient conditions for sta-
bility may be more stringent than necessary conditions. However, Richtmyer
asserts that the von Neumann condition has always been found to be both
necessary and gufficient in those cases where the gap between the two has
been narrowed.

Almost every step in the procedure of stability analysis given
above is unsatisfactory from the mathematical standpoint. Nevertheless
the procedure has been found to give the correct answers to the stability
question in many cases. Richtmyer (28) gives a number of examples wherein
the st&biliﬁ} cfiterion is determined by experiment and found to agree with
that predicted by the procedure given above.

Round off error has not been mentioned at all in this section
despite the fact that many workers define stability in terms of round off
error. It can be shown that the alternate definitions of stability are
essentially the same for linear equations as well as non-linear equations
in those cases for which the theory is well developed. Richtmyer states

that in his opinion round off error is generally not of much importance.



IV. THE FLAT PLATE

The flat plate problem was selected for finite difference cal-
culations partially because a solution to the problem exists both for small
time where practically all the heat transfer is by conduction and for
large time where steady state is reached. The results of the calculations
will be compared with the existing solutions at both ends of the time scale.
In the intermediate time range the problem has never been solved before so
the results represent new information. The existing solutions will be re-
v iewed very briefly before discussion of the finite difference solution.

Initially in the flat plate problem there is no fluid motion,
and after the motion starts for some time the motion 1s essentially one
dimensional. During this initial interval the heat transfer is almost en-

tirely by conduction for which the classical solution is

¢ =/ - er/C%{ (50)

where ¢ is the dimensionless temperature as before. By differentiating

Equation 50 the heat transfer coefficient is found to be

whiéh will be used later in a comparison of results.

At very large times the steady state solution of Schmidt, Beck-
mann and Pohlhausen which was discussed earlier appldes. The original
solution was by series in which the coefficients were determined numeri-

cally by iteration. More recent solutions have been by numerical integration.

L3
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Numerical methods of solving ordinary differential equations yield accurate
results with very liﬁtle computation so such a solution will be regarded
here as exact. Ostrach’s solution (26) will be used in the comparison with
results., Ostrach gives a comparison of the solution with the measiurements
of Schmidt and Beékmann. Excluding points near the leading edge and those
where turbulent flow may be starting, the agreement is good. The veloci-
ties and temperatures agree remarkably well near the plate where they are
of the most interest. The deviatior in the velocity increases with dise
tance from the plate., The velocity of the solutdion seems to approach zero

more quickly with distance than the measured velocity,

A, The Differential Problem

The equations of the Schmidt-Beckmann model used in the finite

difference calculations are given below in dimensionless form.
%%-/—U%‘/'V%%:;é'/‘%l}% (52a)
g_%fu%g +VSIS7‘L: %)7’ (52t)
)}%’“%7:0 (52¢)

The boundary and initial conditions are:

O
o, ¢=/
)ﬂz a L= »/:? ¢§ = 0

X=0: u=¢
Y=o: uy=v

[

T:::C) . L/_: L/ =-¢? = C?
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and the dimensionless varisbles are:

_ , | 5
A ' . P —_ Z@AT
('V 7«(347.-)(/3. J / T (77‘;;7- )’/3. /. Xv". 7(‘(_‘/& v )

g o PR
Y:_ %(i&&? /. ’C—___ x_ (—5,73-)

B, The Difference Problem

It is possible to approximate Equations 52 by a system of explicit
difference equations. The difference equations will be stable for suf=
ficienﬁly small time steps only if certain types of differences are used
for the nou-linear terms. The terms U 3U/3%X , V d3U/)Y , Il\b¢/bX , and
v 25¢/6Y must be approximsted using either a forward or backward differ-
erce depending on the sign of U or V, whichever appears as a coeffiéient
of the derivative., A forward difference is used where the coefficlent
veiceity is negative ard a backward difference is used where the coeffi-
clent velocity is positive. Thds method of dealing with terms of this type %,
is due to Lelevier according to Richtmyer (28). In general the velocities
mey be expected to change sign in the space-time region of interest so
that four different sets of equations are required and the machine must
determine the signs of U and V at each point ard select the equations to
be used. However, the flat plate problem is somewhat simpler than the
most . general problem in that U is always positive or zero and V is always
neéative Oor Zero, Aé a result a single system of difference equations
can be-uéed, | | |

1. The Space Grid

The space grid used for the problem is shown in Figure 2. The

point § = 1, /= 1 corresponds to the origin, X = (j = 1)AX and Y =
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(- 1) AY. The line Y = O cor-

responds to the plate with X & 0O $\\\ *//’ W
_ —

being the leading edge. The plate 43

is of infinite extent in the X 1 //

direction and the fluid is of in- 16

finite extent in the Y direction. 175

It is also assumed here that the ,)\( 7t \

plate is of infinite extent in the 773

direction normal to the X - Y plane. {2 \\\

In the numerical procedure it is F”# =2 3 7 055 g6

necessary to work with a finite region. S T

In this work the X dimension of the
region was 100 which corresponds to a Figure 2. The Space Grid.
Grashof number of 1.06¢ The choice
of the X dimension is somewhat arbitrary since the solution can be rear-
ranged into a form valid for all X, The integers J ranged up to 40, That
is J = 4O corresponds to X = 100 so that A X = 100/39.

In the Y direction there are conditions that U and.¢ are zero at
Y =0 so that some finite Y dimension which can be regarded as infinite
must be used. An infinite distance may be thought of as some distance so
large that it no longer matters how large it is. The problem was first
solved forecing U and.¢ to be zero at Y = 25 corresponding to //s 40 so
that AY = 25/39° To determine the effect of the choice of the Y dimen-
sion the problem was reworked forcing U and § to be zero at Y = (25)(49)/39
which corresponds to f: 50 using the same AY. It was found that the

velocitles and temperatures near the plate were the same in the two cases
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to at least four significant figures. It is concluded that either case is

a satisfactory solution with respect to the infinite condition.

2, The Difference Equations

The difference equations corresponding to Equations 52 are given

below,
Uvge - U U Yo~ Loy — Ly
_J/_At_jp_? * j/gi"/LX—HLA ' 14/1 I

= o L Y (532)

¢/, -4 // ¢4¢2- ﬁ'—nQ A,
AT s o aX * 1{/1 7 AY 7
- oA gjﬁ “Zﬁéf,p ‘/‘¢1_p_/
7 KAY)JQ 7 (53p)

(53c)

The primed veriables are at the time level 7+4AT and the unprimed varilables
are at the time 7"« The procedure of calculation using the equations is

very simple. Starting from the initial condition, values of U' and ¢‘ are
computed using Equatdons 53a and 53b, respectively for the whole grid ex-
cluding the boundary. Then the corresponding values of V are computed from
Equation 53c, working from the boundary, where V = O, outward. The proce-
dure is repeated over and over giving the velocity and temperature distribu-
tion for increasing values of time.

3. The Stability Criterion

The criterion for stebility of Equations 53 can be obtained by

either of the methods described earlier. The simple approach using a positive
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type of difference equation applies here and gives the same results as the
von Neumann method. First consider the energy balance, Equation 53b, which

can be rearranged to give:
/= -p-Y - , X8
By = Gpll-e-¥-2) 1t $y€ + Hu T

+ Gy (1) (54)

where _ AT _ T — AT
¢= Uy s 0= Mﬂ/ZAr— nd B= e

The absolute value of V is used where V is a coefficient so that é)’ 4 and
B all exceed or equal zero. The coefficients of Equation 54 add up to
unity and the coefficients are all positive or zero if (9+ ¥+ Bpsl,
in which case gé, ) is always between the extreme of 7%, y and three neigh=-
boring temperatures at the previous time. Initially, all the temperatures
are zero except those on the boundary which are unity. Then ;15 at any point
at any time cannot exceed unity nor be less than zero, and stability is as-

sured. The stability requirement for the energy equation is then

us + At L, AT < (55)
ax ar VA = /
The momentum balance can be treated in exactly the same way. It
is found that Uj,ﬂ cannot exceed A’qﬁj’f, plus the largest of Uj,[ and

neighboring values of U providing

LA 77X 24¢ £ 6
AR -l / (56)
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If inequalities 55 and 56 are both satisfied, O & 75 £1and 0 £ U & Twhich
assures stability. Inequality 55 1s more resitrictive for Prandtl numbers of
less than unity, whereas inequalily 56 is more restrictive for Prandtl num-
bers greater than unity.

4k, The Calculations

Equations 53 were solved or ar IBM TO4 computer for a Prandtl
number of 0.733. This Prandtl nurber was selected since it was used by
Schmidt and Beckmann (31) as well as by Ostrach (26), and one purpose of
the flat plate work was to provide e comparison of a finite difference so-
lution with exact solutdons. The maximum values of U and V to be expected
were estimated and on this basis a time step of 4T = 0.1 was used. It
will be shown in the discussion of results that steady state was reached
after about 40O time steps although the calculations were carried out for
680 time steps to be sure that no further change occurred. For the first
ten time steps all the Ilndependent variables which differed from zero were
printed by the machine; then selected values were printed after 20, L0, 80,
120 . + » time steps. A total of about six million values of the indepen-
dent varisbles were calculated during the work so it was not practical to
print them all.

The "Fortran" language was used for all the programs in this
work. The procedure of calculation for the flat plate is very simple rela-
tive to that for the cylinder problem. The basic procedure was given in
the discussion of the difference equations. It should be mentioned that in
the calculations numbers smaller than 1038 were encountered since U and f‘
tend to zero at large Y. Such numbers are below the capacity of the machine
used so that an error is incurred unless some corrective action is taken.

A1l numbers less than 10=10 were set identically equal to zero. By this
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procedure the generation in the calculation of numbers between 10-38 and
zero was avoided.

The first solution using the 40 by 4O space grid was terminated
after 680 time steps. Then the Y dimension corresponding to Y = &0 was ex-
t ended by 25 per cent as indicated in the discussion of the space grid. The
calculations'were then continued for 240 time steps using the extended (40 by
50) space grid. The calculations on the extended grid were for the purpose
of determining if the choice of the Y dimension influenced the solution near
the plate. As indicated earlier there was no significant difference in the
results. Tabular results are given in the appendix for both cases.

It is highly significant that by modern standards very little cal=
culation was required to obtain an excellent solution to the system of equa-
tions. The solution was essentially complete after less than two hours of
computing time. Much more than two hours computer time was actually used
in investigating the effect of the conditions at ¥ = © and in continuing
the calculations past the time where steady state was reached. By making
use of the knowledge gained in this work the steady state solution of a
problem of similar difficulty could probably be obtained in about one hour
of calculation on the IBM TO4 or some similar machine. The amount of cal=-
culation could be reduced by using a more course grid at large distances
from the boundary where derivatives are small. Also, the size of the time
step could be increased by about 50% if the derivatives U dU/)}X, U 3P/d%,

V YU/ end V38/dY were approximated using implicit differences., This
procedure will be discussed in a later section of this thesis where it
will be shown that using implicit differences for these terms does not
complicate the calculations. The larger time step was not used in the

calculations since it would presumably reduce the accuracy of the transient
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solution. The transient solution was considered to be of particular impor-

tance in this work since such a solution has not been obtained before.

C. Results

The direct results of the calculetions are values of U, V, and %
as functions of X, Y, and %, the dimensionless varisbles of Equations 52.
The results can be placed in a more compact form by use of the analysis pre-
viously given in Part II. In terms of the dimensionless variables of Equa-
t1ion 52 for a fixed Prandtl number U/XL/2 | vxL/* | and ¢ depend on y/x1/4
and ZVXl/e or, in terms of the varisbles of the original problem
u/ (xggaT)l/2 , v (x/vzggAT)l/lL and (T-T;)(Ty-T1) depend on v(geaT//2x)L/H
and t(ggAT/x)l/%- and h/k ('\/gx/g(S*AT)]-/LL depends on t (ggAT/x)l/z.

The heat transfer coefficient, h, was defined as follows

o~

o

h(t-7) = - m;’)‘;r-} = - f(7.-7 al (57)
o /0y ;4=0

The derivative in Equation 57 was evaluated by simply taking a straight line
through the point corresponding to the plate and the point nearest the plate.
Inspection of the computed temperatures subsequently confirms that the tem-
perature does vary almost linearly with distance near the plate. A parabola
passed through three points instead of the straight line through two points,
yields values of h differing only about 0.2%, providing the points under
consideration are not near the leading edge. The effect of the leading

edge is discussed below.

1. The Leading Edge

It hes been mentioned before that Equations 52 cannot be expected
to describe the actual behavior of flulds near the leading edge of the

plate. Nevertheless there is a solution to Equations 52 near the leading
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edge whether 1t is physically meaningful or not. There is some difficulty
in approximating this solution at the leading edge by finite difference
methods. The solution to the difference problem will depart from the solu~-
tion to the differential problem more and more as the leading edge of the
plate is approached from values of x above the leading edge. The reason
for this departure is that v and h are infinite at the leading edge in the
true solution. This behavior of v and h causes no difficqlty in a solution
where one works with quantities of the form vxl/% and hxl/% vhich are bound-
ed at x = 0. In the numerical procedure where v and h are computed directly,
the variasbles cannot be obtained at all at the leading edge of the plate,
and the variables have some large but finite value at the level of the
first x increment above the leading edge.

The departure of the solution of difference problem from the so=-
lution of the difference problem near the leading edge is not of conse-
quence providing the final solution is taken at some distance from the lead-
ing edge. In terms of the variables used in the calculations the space-~time
grid is three dimensional. However, according to the analysis given earlier,
the number of independent variables can be reduced from three to two.
Therefore, the solution along any line X = constant must be the same as
that along any other line X = constant providing the solutions are expressed
in terms of the composite variables. Deviatlions from the analysis can only
be due to error. If there were no error the values of the dependent varia-
bles taken along any line of constant X would constitute a complete solu-
tion valid for all X, Figure 3 shows steady state values of h/k (‘)/23(/g€.¢1'].‘)]-/’+
versus position. The group h/k (‘Vgx/gpzs"l‘)l/h would be a constant at steady
state if there were no error and its deviation at small j represents the de-

parture mentioned above. Figure 4 shows steady state velocity profiles at
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Figure 4, Effect of Leading Edge Error on Velocity Profile.



various positions. The profilse would all he the same if fthere were no
errcr and the deviatious ab swmall values of ; also represent the departure

rentioned gbove, I can be ssen in bodh figares thst the error due to the

leading edge s confined to 5281l walues of . The resulis to be presented
berceforth are all at lLargs [ whers the resulis are independent of J.

It should be meritlioued “hat the lLeading edge error is easily
avolded only because *the wuaber f depsndent variables can be reduced from
three o %two in this pariicular proulex. OJtherwise it would be necessary to
gubdivide the grid near the leading edge to cbtain a better approximation to
the soiution. However, the fuicticn v could never be approximated at ﬁhe
Leading edge in & provlem such as the‘aae at hand since the function is not

defired there. In problems of more .

i3

early complete physical significance

(33

tlhe velocity would be everywhsre firite.

sults

nisss condibicn the veloclty at a given

vime untii a maximom ils resched, and then de-
creages slightly to its steedy state walie. The ftriangulasr pcints were
taken Trom Ostrach's sheady sbate eolution {26j. I% can be seen that the
agreexent betweer the zcalculablong and Cshrach's work is excellent. The
largest difference tetween the two iz about 2%.

Figurevé ghows the temperature profile &t various times., Starting
from an initial value of zero, the tempersture at a given point increases
with time, goes through a maximum, and then decreases slightly to a steady

state value. The triangular poirnts agsin are from Ostrach's solution for

steady state and the agreement can e seen 1o be excellent.
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Figures 7 and 8 show more clearly the variation of velocity and
temperature with time. In these figures the points given at intervals of
time represent one fortieth of the points actually calculated. The time
scale on the figures terminates where the time group equals 4.0 since
there are essentially no changes in the variables beyond this point. The
calculations were actually carried out to a value of the time group of 6.8.
Each curve may be thought of as showing the variation of velocity or tem-
perature at a fixed point with time although in this and the other figures
the composite variables are used for compact presentation of the results.
Figure 8 alsc gives the most important part of the results from an engineer-
ing standpoint: the variation of the heat transfer group with time. The
heat transfer group is infinite initially since the wall temperature
changes discontinuously at time zero. The group then decreases with time,
goes through a minimum, and finally increases to a steady state value.
Ostrach's steady state value is denoted in Figure 8 by a triangle. The
difference between this work and Ostrach's is about 2% which again con-
stitutes excellent agreement. The cause of the 2% difference is not clear.
It might be due to the influence of the leading edge error discussed
earlier or it might be due to the size of the increments used in the finite
difference method of calculations. There is of course no assurance that
Ostrach's solution is more accurate than the solution presented here. How-
ever, it seems likely that finite difference method is the less accurate.

The heat transfer coefficient for the initial interval was pre-

viously given from the analytical solution to be
b= K
V it
which can be put into the form of the variables of this work to give:
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5 @_ V74 ) %7% 4 j&_
FGH ] 11 ] = 07‘*30[;‘@552’9] (58)

Equation 58 which is expected to hold for small times is represented in
Figure 8 as a dashed curve. The dashed curve departs from the full curve
representing the numerical solution for values of the time group greater
than 2.k, For times below this value of 2.4 the two curves are indistin-
gulshable., It is remarkable that the sclution for conduction alone holds
for times up to fairly near the time at which steady state is reached.
Siegel (34) studied the transient convection problem using the
Kermen-Pohlhausen approximation method, and developed expressions for the
time at which steady state is reached and for the time at which the ini-
tial interval ends. Equation 59 is Siegel's formula for the end of the
initial interval and Equation 60 is his formula for the time to reach

steady state.

/f(Jiir)l/z - @@05 +1,°,~)Vl + @,4)(0,( H.’—)I/Z (59)

% l A
KA =)ot a)r Gsstestre ) (60)

According to Equation 59 the initial interval should end when the time
group equals 2.7 as cqmpared to & value cf about 2.4 from inspection of
Figure 8, According to Equation 60 steady state should be reached when
the time group equals T.l, as compared to a value of about 3.5 or 4.0 from
inspection of Figure 8. Siegel'’s estimate of the time at which the initial
interval ends must be considered as good. His estimate of the time to

reach steady state is high but even here the estimate is of the right order
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and could be considered to be good depending on how one wishes to define
the time at which steady state is reached. Siegel did not obtain a direc
solution for the transient problem. He estimated the times at which the
two existing solutions should be valid as outlined above, and then simply
interpolated between the two limiting solutions.

The confirmation of the existence of a minimum with respect to
time in the heat transfer group and corresponding maximums in the tempera-
ture and velocity are of particular interest. The only experimental work on
transient natural convection seems to be the limited work of Klei (17) in
which such a minimum in the heat transfer coefficient was found. Klei’s
measurements were for s plate with constant energy input rather than constant
temperature so his results are not comparable on a quantitative basis with
those of this work. The existence of the minimum was also predicted by

Siegel dn his analysis.



V., THE HORIZONTAL CYLINDER

The horizontal cylinder protlem was selected for finite differ-
ence calculations as a problem for which no solution is available, but for
which experimental data exist. The measurements of Martini and Churchill
(21) which were discussed earlier will be compared with the results of the
~ calculations., In the case of the flat plate the finite difference solution
was compared with a more exact solution and the validity of the finite dif-
ference calculatiqns was immediately evident. Comparing a finite difference
solution with experimental data is less conclusive verification of the method
of calculation because there are several additional uncertainties:

1. The results of the numerical procedure will always deviate
from the exact solution of the difference problem because of rounding
error, and because the calculations may not be continued until steady
state 1s reached.

2. The exact solution *to the difference problem will differ
from the solution to the differential probiem because of truncation error.

3. The exact solution of the differential problem may not ade-
quately describe the physical situation. This remark applies to the con-
servation equations even ir their most general form since they have never
been tested critically; extemsive simplifications of the equations have
always been required to obtain a solufion.

4. The mathematical model selected for the calculations wmay

differ from the physical situation. Fcr example, in the cylinder model

62
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the wall temperature change discontinuously at two points, whereas the wall
temperature changes continuously in the physical situation. The discontin-
uous change can only be approximated in the physical situation.

5. There is always an unknown experimental error.

In this section the method of calculation and the results for the
horizontal cylinder will be discussed and compared with measurements. The
results will be shown to be in general good agreement with the measurements.
There are deviations for some ranges of the Grashof number which seem to be

due mostly to the model rather than to the finite difference method of cal-

culation or to experimental errors.

A, The Differential Problem

The differential equations used in the calculations are Equations

26 which were discussed in Part IIC. The equations are repeated below in

dimensionless form.

W+ G VY = Grpans ¢ YL A K f"%i_‘;;_/,_ (26a)

Y Y BN R Y

Yo T R *V(T - 3 R TRk /?137?1_,/ (26v)
Y(RV) P17 (26¢)
T O

The boundary and initial conditions are:
R=1,0C0< 7 . w=v=0, = V2
R=1, < e2r © f=v= o, ¢:—’/2_
= O . U=y g=0
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and the dimensionless variables and parameters are:

L/ = 641@76/'/ V = \fﬂg/i/ ) T = ‘}f7CZ231

3
ﬁ:/f///é/ G = —Zé%/%’L y, % is the Prandtl number.

The angle, ©, 1s measured from the vertical.

Equations 26 are symmetrical in a certain sense and this syumetry
can be used to reduce the amount of calculation required to solve the equa-
tions. The functions U and V are periodic with period 775 and the function

ﬁat a glven angle is the negative of‘% at some angle different by 77:

U(R,©,%) = UR, © +7T, ) (6la)
V(R,©, T) = VR, &-41, L) (61p)
$(R,0,T) =0 (R, © +7, T) (61c)

Equations 61 are satisfied initially by the choice of initial conditions,
and they can be shown to hold for subsequent times by formally integrating
Equations 26 with respect to time. The impoftant result or Equations 61
is that only half of the cylinder need be considered in the calculations.
In a more general problem in which physical properties of the fluid vary,

the equations would not be symmetrical.

B, The Difference Problem.

Equations 26 can be approximated using explicit difference equa-
tions providing care is used in selecting the form of the difference.

However, 1t does not seem to be possible to use a single system of explicit
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equations over the whole space-time region of interest. Four separate sys-
tems of equations were used in this work corresponding to the combinations
of signs of the velocity components: U ) O, V.>0; U> 0, VL 05 UL O,
V ) 0; and U < 0, V< O. The use of several alternate sets of equations
causes no particular difficulty although the calculations are complicated
very slightly by the fact that the machine must determine which equations
are to be used at every stage in the process. The equations and their ap-
plication will be discussed after the space grid is described.

1. The Space Grid

The space grid used in the calculations is shown in Figures 9
and 10. As indicated in Figure 9 the integers f denote radial position
with f= 1 being the origin and f= 26 being the boundary such that AR
is 1/25. The integers j denote angle with j = 2 corresponding to © = 0
and j = 10 corresponding to & =7 such that a9= 77"/8. Near the boundary
the radial increments are smaller than the angular increments: (R)(a®)
is about ten times AR. The increments were so selected in expectation
of radial gradients being much 1arger than aximuthal gradients in which
case the finer divisions are reqﬁired to maintain accuracy.

The half cylinder J ? 2 through j = 10 was used in the calcula-
tions. From the symmetry U, V, and ¢ at a given radius on the ray j =1
are always equal to U, V, and.n-%, respectively, at the same radius on the
ray j = 9. Values of the variables along the ray j = 1l are related to
those along j = 3 in the same way. The rays j = 1 and 1l serve the same
purpose as a boundary in providing exterior points where the values of the
independent variables are always known. The use of these rays in the cal=-

culations will be explained later.
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Subdivision of Outer Grid.

Figure 10,



68 -

The solution to the system of equations using the space grid of
Figure 9 was considered to be a first approximation and the outer part of
the grid was subdivided ir most cases to obtain a better approximation.
Subdividion of the grid in this way not only gives an improved solution but
gives an indication of the truncation error. Figure 10 is a fragment of the
grid showing how the subdivision was carried out. The full lines are those
from the first grid and the broken lines are those added in subdivision.
The increment sizes for the outer third of the cylinder were cut in half.
The unsubdivided solution to the temperature and velocity distributions in
the inner region was accepted as valid when the grid was subdivided. That
is to say U and ¢ were held constant at the inner boundary of the subdivided
region using the values from the first approximastion. This procedure is
acceptable since U and ¢ and their derivatives are small in the inner region
and a first approximation to the values here should suffice.

In the differential problem the temperature on the boundary
changes discontiruously at @ = O from the vaiue - 1/2 to the value + 1/2
and the temperature at © = 0 is not defined. Similarly there is a discon-
tinuity at ©=7. In the difference problem the temperature is specified
only at discrete points and, since any number of functions could be passed
through these points, the function being described by the discrete values
of the variable is somewhat arbitrary. The method by which the grid is
subdivided determines which wall temperature distribution is being approxi-
mated. By way of illustration, Figure 11 gives the values of the wall tem-
perature near © = O for the two grids in comparison with the wall tempera-
ture distribution of the differential problem. If one looks at the grids
individuslly, a function with two discontinuities (the full line), or a con-

tinuous function (the broken line) are among the many which could be thought
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of as the function being approximated. However, in the problem at hand
the grids should be thought of as two of a sequence of smaller and smaller
increment sizes such that the single discontinuity of the differential prob-
lem is approached. As would be expected from inspection of Figure 11 the
subdivision of the grid makes a difference in the solution near the discon=-
tinuity since the boundary conditions are actually different after the grid
is subdivided.

2. The Difference Equations

The difference equations corresponding to Equations 26 are given
in this section for the case where U 2 0 and V 2 0. In this case the terms
where U and V appear as coefficients are approximated using backward dif-
ferences. The equations used in the other cases are obtained by simply
replacing the backward difference by a forward difference whenever the
coefficient velocity is less than zero.

Three of the terms in the momentum balance, Equation 26a, can be

combined into a single term as indicated below.

YU/ ¢ oo oo - ¢ /_ )&/K)
N Y

Then the single term can be approximated:

s LA o (G YRRl WglR) (eig)ff) =% )7 -47)
af\\_"\ h"_’ (/\+ ,{‘_/: _A'\’V (/? AK/Z }(Aﬁ)

[

Al AR Y 1y, ~AR [ R i
{A&TT%V /A»rﬂﬁb) ‘ \/‘(/)(ﬁ ~4R/z ) ﬂ%ﬂjff Yz = 2K42)

Two of the terms in the energy balance, Equation 26b, can be

combined into a single term as indicated below.

o v/ N LT
_g\g“gﬁ + ~—~Q[) = LR
k< X 13"\—. f‘ ZIEL
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Then the single term can be approximated

%%T? [R %%J ~ (RbaR/e) Yy - ¢¢7<o)(A— R( ;A%)( S48~ Pyt

=GRy M}M ) Z¢1}f; * 551)11#] * Z%R [‘#Mﬂ - %;_]

The complete difference equations are given below where A denotes
the approximation of 9 )R[l/R }(UP) /3R] and B denotes the approximation of

(1/8) {33 [R Y¢/3R] }.

U ~ Ll . e . s — -
Bk tn 4 g Lotk 4 Vi Ml e

_ ’ 4 Hug =245 *F Yy (62s.)
—6/1“%/@41«@ +/4 7‘ 2 7 /A@)L
/
1=~ g Y- 4 | -y
MAT v g Y-gir 4oy, by Gt
- = Bing -2y + B0 621
—}/‘B + 'if%% 7 ST (62p)

(k18R (V4zrs) = (RN Vis) + Yelay Lyl e X - Uy R (62¢)
AR +40 -

The primed variables are at the time level & +47% as before and
the unprimed variables are at the time = The procedure of calculation
using the equations is much the same as for the flat plate problem: the
energy equation is used to determine values of % at a new time level over
the whole grid; the momentum balance is then used to similarly advance the

values of U, Finally, the corresponding values of V are computed using
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Equation 62c, working from the boundary in toward the center. The procedure
is repeated over and over again giving values of U, V, and ¢ for increasing
values of time. The use of the equatiors will be given in more detail after
the stability requirement is discussed.

3. The Stability Criterion

Sufficient conditions for stability of Equations 62 can be estab-
lished by either of the methods described earlier. In the case of the energy
equation, the two methods give the same conditior. However, in the case of
the momentum equation, the results are slightly different. As would be ex-
pected, the von Neumann method of analysis permits a slightly larger time
step. The von Neumann condition is supposed here to be necessary and suffi-
cient for stability* whereas the condition from the simple analysis using a
positive type difference equation is only sufficient for stability.

The stability analysis using a positive type difference equation
will be omitted since such an aralysis involves only rearranging the equa~-
tion and inspeciing the coefficients as was 1llustrated in the flat plate
problem. From the analysis of the energy equation, it can be shown that
the temperature will always fall between the extremes of the boundary tem~
perature (- 1/2 &£ ¢ & 1/2) providing

w

Ju/a% v/aT 2AT X 24T X < (63)

ka6 T AR TR (RaOF ]

It will be shown that the stability requirement for the mementum

equation is the same as inequality 63 except that OVV is replaced by unity.

Equations 62a and 62b can be rearranged to give

*The conditiorn actually 1ls known to be sufficient only for a small
class of problems as indicated in Part III.
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The superscripts in the equations denote time level to be consistent with

the notation of Part III. The coefficients ay and bi are

. [~ - Ex \ Y ﬁ R _7
da, = /- é’——Y—BC-?/' b, = /—,c‘"-/*ZL"Z(ﬁ_Mﬁ/& I E_VAWJ’
a_: pT +f ' b = D+E
- v J 2 = DFE
= o . - R+4R
4 & / b 2 CTZ‘Z)
4. = r== . = / _A’_ AL
“ HY b = ((HA) + X
- U/,Atm_ /= / At - At L // ) = At
were  g= MEE-, Y= Mgr (= AL 07 25

Now the amplification matrix can be formed in exactly the same

way as in the example of Part III and the eigenvalues are, by inspection

‘_‘:'.,';, o /'I./ Vs ‘247/ -/ kgAT K f; A .\/
Nz gl rne - 48+ &L (66)
X kel Ay 14k (67)
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The coefficlents are all real and they are all positive except aj and by
which may be either positive or negative., Therefore the largest absolute

values of 7, and 7, will occur when all the terms in Equations 66 and 67 are

real. That is to say when ki AX = ko AY = 27~ or when ky AX = ks, AY =77

Consider the maximum real value of /o:

é\/,mgy) = 0// 7L é}_ + ¢/73 7"!% + [/J:

Substituting the definitions of the coefficients and simplifying gives

\ af_ 4k
Btwar) = /1 C[nﬂ AD—ARQ]

Since R is never less than AR (the equations are notused at the origin) it

is concluded that the largest real value of Qg cannot exceed unity. If there

is to be a stability restriction, it will be to prevent /, from being less

than ~<l. To examine this possibility, consider: .the minimum real value of“ﬂ2.
%bmv fooTEL e

Substituting for the coefficients and simplifying gives

= /—csFg=2y-1tC - 7*D

Il‘(m"”»,
which will be less than -1 unless

{bi A X A :_ ( + : L/;‘

HiN

! (68)

Inequality 68 is the condition for stability.

By applying the same technique to 7y, the condition is fourd to
be Equation 63 as was asserted previously.

In summary, the results of the stability analysis are that the
following inequality must be satisfied if the Prandtl number.(77m) is less

than unity.
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If the Prandtl number exceeds unity,‘ﬁ/mxin the inequality should be re-
placed by unity.

The analysis given above was for the case of U2 0, V & 0. The
stability criterion so obtained holds irrespective of the sign of U or V
providing the absolute values of U and V are used in the inequalities as
indicated, and providing the difference equations are changed according

to the sign of U or. V as prescriibed in Section 2, above.

4, The Calculations

Equations 62 were first solved for a Prandtl number of 0.70 and
a Grashof number (based on radius) of 6.15 x 10°, These conditions were
selected to correspond to the conditions of the experiment which Martini
and Churchill presented in most detail so that a direct comparison with the
measurements could be made. The equations were then solved for the same
Prandtl number and two additional values of the Grashof number. Finally,
the equations were solved for a Prandtl number of 10 and the original
value of the Grashof number. Transient results were obtained in the first
solution. For subsequent solutions the velocity and temperature distribu-
tions were estimated by use of the highly simplified model discussed
earlier so that the amount of computation was reduced. In all cases ex-
cept that of the lowest Grashof number, the grid was subdivided to im-
prove on the solution obtained by the first grid. The incentive for sub-
dividing the grid decreases with decreasing Grashof number as will be seen

later.
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A summary of the calculations is given in Table I. Solutions 1,
2, 3, 4 are the solutions mentioned above. Solution 1A is the same as
solution 1 except that certain terms were omitted from the equations as
will be discussed later on. The machine time required for most sclutions
was between one and two hours which is swrprisingly small cornsidering the
complexity of the problem. A machine time requirement of 3.5 hours is shown
in Table I for Solution 4., Tris larger amount of machine time was used in
Solution L because the behavior of the solution in this case was somewhat
different from the others as will be discussed later.

The procedure for computing U, V, and ¢ at time T+ aw from the
variables at time T is given below.

(L) The values of U, V, and 75 along the rays J = 1 and j = 11
are established from those along j = 9 and j = 3/respectively in the way
indicated in the discussion on the symmetry of the equations. The varisbles
are specified on the boundary and U and ¢ are equal to zero at the origin.by
symmetry. Hence values of U and é at points exterior to the part of the

s

7
grid to be advanced (j = 2 thrcugh 10 and = 2 through 25, inclusive) are

L~

now fixed.

(2) Thne quantity [UjAT/Ra® & [V]at/AR ¢ azx;m/v(rme)g +
2“477W(R139)2 is calculated for the irtericr veoints, the largest value of
the quantity is found, and the tize loerement is altered as necessary to
assure: stability., This step would 1ot we needed 1f a very gocd estimate
of U and V could be made in advance. However, the extra work involved in
the step is well spent and actua_ly saves compuber time in most cases., A

conservatively small value of o - would have U0 be used if the criterion

were not tested.
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TABLE I

SUMMARY OF CALCULATIONS FOR THE CYLINDER

Solution Solution Solution Solution Solution
1 1A 2 3 4
Grashof Number 6.15 x 10° 6.15 x 105 4.5 x 1ok 107 6.15 x 107
Prandtl Number 0.7 0.7 0.7 0.7 10.0
First Grid
Number of time
steps 960 400 800 480 1280
Time increment
at end of cal-
culations 3.4 x 107 2.8 x 109 7.k x 10-5 2.7 x 1075 L.1 x 10-5
Elagsed time,
tro /wf 0.047 0.0121 0.030 0.0125 0.070
Machine time,
hours 1.5 0.5 1.0 0.5 1.5
Subdivided Grid
Number of time
steps 480 -— - 480 1920
Time increment,
tr2/v 6.0 x 10-5 ——- --- 3.0 x 102 5.0 x 10-5
Elapsed time,
tro®/y 0.029 --- - 0.01Lk 0.096
Machine time,
hOUI'S 005 .- - 005 2.0

Total

Machine time,
hours 2.0 0.5 1.0 1.0 3.5
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(3) The new values of ¢ and U are computed at each interior point
using Equations 62a and 62b., The values of ? are computed first sirce U
appears in the sitability ecritericn ard an ircrease in U would make the energy
equation unstable. The calculations troceed one ray at a time and the values
calculated are not substibtuted directly into the ray where they belong until
after the next ray in the sequence is completed. This "holding out"” of the
values is required so that all of the values used in computing a given differ-
ence are from the same time level, Before advancing any given point the ma-
chine must determine the sign of U and V ard select the equations to be used
accordingly.

(4) The new values of V are computed from Equation 62c. V is
specified as zero on the boundary and starting here the new values of V
are computed working in toward the crigin.

(5) The procedure starting with item 1 above is repeated. The
calculations were continued as long as any of the independent variables
changed appreciably with time.

It will be recalled Zrom the discussion of the stability require-
ment that the time step depends ox botn U ard Ve Iz the central region of
the cylinder U ard its derivatives are small ard RV is a constant at any
fixed angle, At the origir V would be infinite but since U and ¢ were

specified as equal to zero at the ori

5]

in the equations are not applied here

I3

and the value of V at the origin is not needed in the caleulations, How=
ever, the values of V uear the crigir are large and these values contribute
heavily to the restrictior on the time step Ilmposed by tre stability cri-
terior. For example ir the first solution at R 8 0,08 the largest value

of IV}A?T/AKR is about 0.83 whizh indicates that the allowable time step

is almost directly proportional to V. There Is nc point iz carrying out
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the calculations very near the origin tecause no information is gained and
the time step is restricted. In this work the smallest value of R for
whicﬁ the calculations were carried out was 0.03 in every solution except
solution 3; the case ¢f the largest Grashof number. In the case of solu-
tion 3 the smallest value of R was selected as 0,16 based on the analysis
given before which indicated that the toundary layer thicknéss is propor-
tional to Gr%} The ratic. of Gr% in this case to Gr%’of solution 1 is about
two, Use of a larger minimum radius for the larger Grashof number compen-
sates for the fact that the velccities increase with Grashof number which
reduces the allowable time step.

After the solution using the first grid was completed the solu-
tion was used as input for the caleculations using the subdivided grid.
The calculations using the subdivided grid were carried out in the same
way ag those using the first grid with two exceptions: the minimum radius
was much larger as indicated before, and the time step was held constant
since the I'lrst solution gave excellert estimates of the maximum magni-

tudes of U and V for use in determining the allowable time step.

C. Results

The direct results of the calculiations are values of U, V, and
v as functions of R, €, and =, the dimensicnless variables of Equations 62.
The heat transfer coefficient is calculated from the tewperature distribu-
tion in the same way as for the flat plate.

In the.first parts of this section the resuiits of the calcula-

tions will be presented in terms of U, V, and p. In the final part of

this section in which the effects of the Grashof and Prandtl parameters

. 1
are discussed, different variables will bte used: (ury/y)(Pr/Gr)% ,
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vro/y) (:PTB/GI“} and ¢ are expressed as function of © and (1 - r/ry)
L )

{GrPr)u, These variables from the analysis of a highly simplified model

of Part ITIC are expected to take the parameters into account to a first

approximation so that the results can be presented in compact form.

1. The Transient Solution

The transient solution for the cylinder problem was obtained for
a Grashof number, (g@ATrOB/VE), of 6,15 x 10° and a Prandtl number of 0.7.
The initial condition was that of a motionless isothermal cylinder in which
one half of the wall suddenly assumes a high temperature (76==+ 1/2) and
the other half assumes a low temperature (¢ = - 1/2}, After the change in
temperature of the boundary the fluid near the hotter part of the boundary
tends %o rise and that near the colder part tends to fall. Eventually a
steady state is reached where, accordigg to the observations of Martini and
Churchill (21), as well as the results to be presented here, a narrow layer
of fluid near the boundary circulates while the inner part of the fluid is
practically isothermal and motionless, The steady state solution is of
priméry interest and is independent of the choice of initial conditionms.,
The transient solution obviously depends on the choice of inial conditions,
The initial conditions wused in the cylinder problem were chosen primarily
to facilitate obtaining the steady state solution rather than to corres-
pond to any condition of actual engineering importancs, For this reason
only the most important results of the transient solution will be given here,

Figure 12 shows the velocity as a function of time as various
positions., The points shown are for every foritieth time step as in the
case of the flat plate, The ecalculations were carried out using the space

grid shown in Figure 9. The first and most important conelusion from
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inspection of Figure 12 is that steady state was reached at a value of the
time group of about 0.04.

The somewhat erratic behavior with time of the velocity at vari-
ous points as shown in Figure 12 is interesting. The system seems to al-
most reach a steady state early in the calculations while the velocity at
= 0 (and & =7") is practically zero. Ther the velocity at - = O (and
&= ﬁ?) increases and adjusts to its equilibrium value causing adjustments
in the velocities elsewhere. This behavior can be explained by the fact that
the fluid on the rays = 0 and = =/ near the boundary has no incentive to
move. That is to say the "buoyant force" on these rays acts perpendicular
to the boundary. Eventually the fluid motion elsewhere is carried across
the rays - = 0 and =.. by momentum.

Figure 13 gives the most important resuits of the transient solu-
tion: the variation of the Nusselt number at various positions with time.
Notice that the Nusselt number appears to reach steady state somewhat
earlier than the velocity as given irn Figure 12. This behavior is char-
acteristic of all the calculations: the Nusselt number depends on the
velocity distribution, but is insensitive to small variations in the ve.oc-
ity distribution. For this reason the approach to steady state is best
judged by observing the variation of velocity with time. Wher the velociuy
becomes steady, the temperature distribution and the Nusselt number cer-
tainly also will be steady.

The Nusselt numbers vary less with time than the velocities ex-
cept at small times. The boundary temperature changes discontinuously

when 77= O everywhere except at 693 0 and ﬂ =ZZ; at these two points the
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Nusselt number is zero at TE 0. Elsewhere the Nusselt number is infinite
at T= 0.

2. Comparison of Two Models

It will be recalled that in the development of Equations 26 it
was postulated that radial gradients are large relative to azimuthal
gradients so it might be expected that the terms }/R2 ?2,/592 and l/Ref
QzU/";e'as well as U/R2 are negligible. This expectation was investigated
by solving the equations with and without these terms. There is no diffi-
culty associated with the terms in finite difference calculations--as op-
posed to other methods of attack in which retaining the terms is often not
possible if a solution is to be obtained. Finite difference methods are
thus well suited for testing the validity of the idealizations which are
often used in fluid mechanics.

Figure 14 gives a comparison of velocity and temperature pro-
files at various positions obtained by solving Equations 62 with and with-
out the terms mentioned above. The solution of the simpler equations is
denoted by broken curves and the solution of the more general equations by
full curves. Near the boundary the two solutions are virtually indistin-
guishable and the deviations in the central region are slight. Hence, the
expectation is confirmed.

The comparison of Figure 14 is based on solutions using the
first (unsubdivided) space grid. At some positions, especially near = =
0, there are relatively few points near the boundary where the temperature
changes rapidly with position so the need for subdivision of the space is
evident. However, it will be shown in the next section that' the results
of Figure 14 constitute a surprisingly good solution despite the apparently
coarse space grid used. The solution of Figure 14 is for the same values

of the Grashof and Prandtl numbers as the transient solution.



~85-

0.5 +
©
L f
400 _Q.4_ 8=0 8=%/8
'E;‘: — +== MORE GENERAL EQUATIONS = == MORE GENERAL EQUATIONS
? o --O--- SIMPLER EQUATIONS --=O--—SIMPLER EQUATIONS
5300|-%0.3
§ g ,
et
s
gxn_gaz- |
§ |* ’ i
o , 1y
: |8 s '. '
gwo-301— uy ”
w A
1l :
F -+ |
5 'ﬁ' W \
" °+:‘§§?-"9‘$ ¢
- _..!.,- - # ,
*\\J{ a2 **‘*wf )
-0.1- N oo, S
*\%\» ]
oo/
-0.2 ts
-0} + +
e
k
00> 0a} L=xsd S-7vs +
N E o= <4--= MORE GENERAL EQUATIONS === MORE GENERAL EQUATIONS
3 < --<O-- SIMPLER EQUATIONS -=<O--- SINPLER EQUATIONS
® 300}~ ;03| +
> g /
+
g E /3
gum~§az— 5o
ﬁ \
G AP
& )
o ﬁ . . / //
2 y
2100|-5 0.1} ¥ ] 4/ /7
= 2 ury #
o - ¢ - +/ M/
(=] ,b-
ol of 4,2F3A5 i 2l
§E5<
Rbaa T A
-o.l
-o0.2l1 l l | | I | | | | 1 |
04 05 06 07 Q8 09 o4 05 06 07 08 09 10
v/, r/vg

Figwe 1k, Yeloscity and Temperstare Profiles frcm Pirst Orid.



-86.-

The temperature profile at various positions is interesting. Con-
sider the fluid moving near the boundary in the direction of increasing .
Just before the fluid gets to the bottom of the cylinder (. = 0) the fluid
has passed the entire cold side of the cylinder and the temperature profile
is "well developed;" it is monotone decreasing from the center (ﬁﬁ: 0) out
to the boundary (/= - 1/2). The profile at == - /8 is the reflection
across the line .'= 0 of the profile at = 77/8. At = 0 the boundary
temperature abruptly changes from 2= - 1/2 to / = 0, then at < = 7/8 the
boundary changes temperature abruptly again to §§= 1/2. T he fluid heats
as it passes up the hot side of the cylinder until, near the top, the tem-
perature is monotone increasing with radius. At ='="the same sequence of
changes starts only in the opposite direction.

3. Effect of Subdivision of the Grid

It has been mentioned before that subdivision of the space grid
is expected to give an improved solution, and also to give an indication
of the error involved in the approximation. This later expectation deserves
some discussion. Suppose some function, f, satisfies a differential problem.
This function in general will not satisfy the difference equations used to
approximate the differential problems. By use of Taylor's formula as was
illustrated before, it is possible o compute differences in f, substitute
them into the difference equations and find an expression for the trunca-
tion error. For any consistent approximation the truncation error must
vanish as the increment sizes approach zero. In the problems of thiswork
the truncation error varies linearly with increment size from which it is
inferred that the change in the solution on subdividing the grid by half
is of the same order as the error in the resulting solution. This approach

gives some indication of the error in the finite difference approximation
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despite its obvious weaknesses. There is no other general method of esti-
mating the error for complicated problems of the most interest.

There is some difficulty in considering the temperature profile
near the boundary at © = 0. It will be recalled that here the temperature
varies discontinuously with both R and © at the boundary in the differen-
tial problem. There is no reason to try to approximate a function where
the function is not defined and it must be concluded that the heat transfer
coefficients computed at © = O are meaningless. It is instructive to con-
sider the behavior of the solution near the discontinuity, however, since
the approximation is intended to be useful everywhere except at ©=0
(and ©=7).

The results of Figure 14 for ©= 0, 7v/8, and 7-/4 are shown
again in Figure 15 in comparison with the solution to the same problem
after subdivision of the grid. The fluid is generally colder after the
grid is subdivided than before. This difference comes about because the
boundary conditions on the difference problem were altered on subdivision
as indicated earlier. The fraction of the boundary surface at the mean
temperature (# = Q) is 1/16 as opposed to 1/8 before swdivision. Con-
sequently the fluid passes by more cold surface in traversing the cold
side and more hot surface in traversing the hot side. The result is that
the minimum and maximum temperatures in the fluid are both increased in
magnitude. The effect of subdivision on the solution 1s seen to be small
even along the ray © = 77/8 which is the ray nearest the discontinuity
which is common to both grids. The effect of the subdivision is less for
rays farther removed from the discontinuity. For values of © greater than
TT/h the solutions are practically indistinguishable. The subdivision has

very little effect on the velocity profile. Only two points from the
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subdivided solution are given along the ray 69=‘?/h because the points are
coincident to the points from the first grid.

The effect of subdivision would have been much less if the boundary
conditions on temperature had been treated differently. An alternate way of
treating the conditions would involve avoiding placing a grid point at the
discontinuity. Suppose the first grid contained points to the left and
right of the discontinuity but not at the discontinuity. Then it could be
supposed that the temperature changes discontinuously half way between two
points. The angular increments should not be subdivided in half in this
case because this would entall specification of the temperature at the dis-
continuity. However, the angular increments could be subdivided by one
third and the discontinuity would again fall half way between two points.
This procedure is preferable to the one used in this work. The procedure
used in this work is sound and the difference between the two procedures
dimininishes with diminishing increment size. However, the alternate pro-
cedure outlined above is superior for large increment sizes.

The effect of the subdivision on the heat transfer coefficient
is shown in Figure 16. In drawing Figure 16 the Nusselt number at & =
0 and ©= 7 was taken to be unbounded as in the differential problem de-
spite the fact that finite heat transfer coefficients are actually calcu-
lated in the difference problem as indicated on the figure. It was men-

t ioned earlier that the interpretation of the results near discontinuities
is somewhat arbitrary. From inspection of Figure 16 it is concluded that
the subdivision of the grid has practically no influence on the solution
which in turn indicates that there is little error in the approximate

solution.
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The necessity for subdividing the grid depends on the Grashof
and Prandtl parameters. An increase in either of these parameters results
in a decrease in the boundary layer thickness so that a finer mesh size
is desired near the boundary to maintain accuracy. For this reason the
subdivided grid was used in the calculations for the cases to be described
in which either of the parameters‘ekceeded the values in the solution of
Figure 16 (Gr = 6.15 x 10, Pr = 0.7).

The subdivision of the space grid should be most important for
solutions of the largest Grashof number. Not only does the boundary layer
thickness decrease, but the maximum velocity increases with increasing
Grashof number. The effect of subdivision on Solution 3 (Gr = 107) is
shown in Figures 17 and 18.

The velocity and temperature profiles given in Figure 17 are
very similar in appearance to those discussed earlier from Solution 1
(Gr = 6.15 x 105). This similarity is not due to coincidence: the
ratio of the Grashof numbers for the two cases is about 16 to 1 from
which it is to be expected that the boundary layer would be one half as
thick and the maximum velocity would be four times as great. The distance
scale in Figure 17 is twice that of Figure 15 and the velocity scale is
four times as great. As a result the two figures look much alike. The
effect of the Grashof number will be discussed in more detail later on.

The comments given earlier on the subdivision of Solution 1
apply to Solution 3 except that the subdivision alters the large Grashof
solution slightly more as was expected. The difference between the first
grid solution and the subdivided solution 1s given in Figure 18 in terus
of the Nusselt number. Here, in contrast to Solution 1, there is a dis-

cernable difference in the Nusselt number near the discontinuity. At
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€%=7?/8, the point nearest the discontinuity and common to both grids, the
first grid solution gives a Nusselt number 3 per cent lower than that from
the subdivided solution. The difference between the two solutions is less
and less farther from the discontinuity. At the discontinuity there is a
larger difference between the two solutions; but, as indicated earlier, the
results here are meaningless or open to interpretation. It is concluded
that even in the large Grashof number solution the difference equations and
the space grid used give a good approximation to the solution to the differ-
ential problem.

L4 Direct Comparison with Experiment

In this section the results of the calculations for the case of
Grashof number of 6.15 x ]_O5 and Prandtl number of 0.7 will be compared
with the measurements of Martini and Churchill (21). The values of the
parameters were selected to correspond to Martini and Churchill's experi-
ment number 4 for which experimental results were presented in most de-
tail. Some additional comparisons with the experiments will be given in
the next section.

Figure 19 shows calculated velocity profiles in comparison with
the measurements. The points are calculated and the curves without points
are from Martini and Churchill. The broken parts of the experimental
curves are estimated and are uncertain. The overall agreement is good
considering the great difficulty encountered in measuring velocities in
natural convection in enclosed spaces. The largest deviation near the
maximum velocity is about 30%. Martini and Churchill's results are the
most certain on the ray ©= 3ﬁ/2: in the middle of the cold side. It
is satisfying to notice that the measured velocity profile is in the best

agreement with the calculations on this ray.
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A comparison of temperature distributions is given in Figure 20.
Martini and Churchill measured temperatures along horizontal and vertical
lines rather than along radial lines. The calculations were carried out
in cylindrical coordinates so it was necessary to interpolate between cal-
culated values to give temperature distributions along horizontal lines as
shown in the figure. From Figure 20 it is seen that the agreement is ex-
cellent near the boundary where the results are of most interest. The agree-
ment in the central region is not as good as it is near the boundary although
the overall agreement is good. The calculations: show a more nearly isothermal
central region than was measured. The difference is probably due in part to
a deficiency in the model which has been mentioned before: the radial ve-
locity is that velocity required to satisfy the continuity equation-without
regard to radial momentum changes. The radial fluid motion in the central
region in the calculations is large which tends to make the central region
isothermal.

Figure 21 gives a comparison of the calculated and measured
Nusselt numbers. Here the agreement 1s remarkably good. The only devia-
tions which are not within the accuracy of the measurements occur near the
discontinuities in the boundary temperature, and, at these points, the
mathematical model was different from the physical situation. In the phy-
sical situation the boundary temperature changes continucusly at =/ = O
and the Nusselt number 1s a smooth function of @ . Martini and Churchill’s
measurements for both sides of the cylinder are given on Figure 21 to show
that the physical situation is symmetrical in the same way as the mathemat-
ical model. As indicated before, only one half of the cylinder need be

considered, although more than one half is given in the figure for clarity.
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It is concluded that the calculations and the measurements of
Martini and Churchill's experiment number 4 are in good agreement.

In the next section it will be shown that the calculations do
not agree with all the measurements because the idealizations of the mathe-
matical model are not valid under all conditions.

5. Variation of Parameters and Additional Comparisons with
Experiment

The cylinder problem was solved for two additional values of the
Grashof number and one additional value of the Prandtl number. The results
are sufficient to allow prediction of heat transfer rates in the clinder
over wide ranges of both parameters. In this section most of the results
will be presented in terms of "the variables from the simple analysis as
mentioned before. A summary of the cases solved is given in Table II along

with the principal results.

TABLE II

SUMMARY OF SOLUTIONS

Solution 1 Solution 2 Solution 3 Solution 4
Grashof Number, )
geaTrydfy2 6.15 x 105 k.5 x 10 107" 6.15 x 102
Prandtl Number,
V/e< 0.7 0.7 0.7 10.0

Rayleigh Number, 6
(gATr,3)/(ve)  14.3050 x 105 3.1500 x 10%  7.0000 x 10°  6.1500 x 106

g(;’ATrO3 i
h,D/k 9.3k L.562 18.338 16.291

1
by ﬂl)“ 0.1841 0.1712 0.1782 0.1629
kK (ggAT
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The results of most interest were congidered to be those for gases
so a wide range of the Grashof group was covered in three solutions for a
fixed Prandtl number of 0.7. Then a solutdon for a Prarndtl number of 10 was
developed to give an indication of how well the simple analysis predizts
the effect of the Prandtl number.,

Figures 22 and 23 give velocity and temperature profiles for +he
four solutions at various positions. Where the points are coincident only
the point for Solution 1 is given. It is seen that the profiles for the three
solutions of Pr = 0.7 are brought together remarkably well by use of the com-
posite variables. Solutions 1 and 3 are very nearly indistinguishable and
Solution 2 deviates from the others by no more than 15 per cent near the max-
imum velocity. The deviation is much less near the boundary. The deviation
is undoubtedly due in large part to the fact that Solution 2 wag not subdi-
vided whereas all other solutions were.

The solution for Pr = 10, Solution L, deviates considerably from
the other solutdons especially in the velocity profile. AlL the velocity
profiles show that the fluid accelerates while traversing the hot (o7 cold:

Y

side of the cylinder. Then on passing the top (or bottcm, of the cyliagar,

the fluid decelerates before once agairn picking up speed. The large

Prandtl number fluid is much more prone to accelerate and decelarate thau

the other fluid. Orn starting up the hot side the fluld practically =tons;

Y

yet by the time the fluid has completed a traverse of a side of ke cylindesr,
it has accelerated relatively more than the fluid of Pr = 0.7, When the
fluid first starts up the hot side (or down the coid side) of the ay.inder,
the "buoyant force" as well as drag opposes the motion. Tris oppositio:

must be overcome by the inertia of the fluid if the motion is to conhtinie.

Therefore, the behavior of the large Prandtl rurker fluld ig ir azcowdarces
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with the analysis given earlier (also see Appendix A) which showed that the
relative importance of the inertial forces is inversely proportiornal Tc the
Prandtl number. The large Prandtl number fluid has relatively little inertia
or felatively little resistance to acceleration and deceleration in compari-
son to the viscous and buoyant force terms.

The temperature: profiles for the fluids of different Prandtl num-
ber are in better agreement than the velocity profiles. Along the ray
e ='7018 the profiles almost coincide. However, there are appreciable dif-
ferences close to the bottom of the cylinder.

The heat transfer results for all four solutions are given in
Figure 24. Notice that the heat transfer group from the simple analysis
serves to bring all the results together. The three solutions for Pr =
0.7 are brought together remarkably well, and the solution for a Prarndtl
number of 10 deviates from the others only near the discontinuity. At © =
TT/16 the large Prandtl number solution is about 32 per cent below the other
solutions.

The results of Solution 4 have an interesting property tha?t has
not been mentioned: in contrast to the other solutions, fluctuations cc-
curred in a part of the space grid after the grid was subdivided. Ihe xe-
sults presented heretofore did not show the fluctuations because the ampli-
tude is practically too small to be distinguished on the graphs excepn In cre
small part of the space grid. The calculations were continued much longer
than in the other solutions to study the behavior of several cylces of fluc-
tuation. It was established that the fluctuations were decaying and that
they were restricted in area and amplitude. The fluctuations were not de-
caying very rapidly, however, so the calculations were discontinued before

steady state was reached.
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Figure 25 gives velocity and temperature profiles near ©= 0
for Solution 4. The crosses represent the profiles at dimensionless time
of 0,068, and the circular points represent the profiles at a dimension=
less time of 0.084 where the time is measured starting from the subdivision
of the grid. The difference between the profiles represents the maximum
amplitude of the last cycle of fluctuations in the calculations. Where
only crosses are given on the figure, such as at ©= _ﬂ/l6, the fluctua-
tions are too small to show on the graph. Notice that the fluctuation in
the velocity along the ray 69=7?716 is pronounced, but it does not carry
over to adjacent rays to any appreciable degree. The fluctuation in the
temperature profile is much less than that of the velocity profile.

The velocity at the point of maximum fluctuation is shown versus
time in Figure 26 for the three rays where the fluctuations are the largest.
The scale of Figure 26 is enlarged and the maximum and minimum values of the
velocity on the ray C>=7>/l6 are indicated on the figure. The maximum am-
plitudes of the first three cycles are 87.7, 62.6, and 59.6, respectively.
Hence it is clear that the fluctuation is decayirg such that steady state
would be reached if the calculations were continued. It is equally clear
that steady state is being approached only very slowly. The points of
Figure 26 represent 1920 time steps which took two hours of computer %ime.
Only one out of forty of the poiunts are showz ou the graph.

The influence of the fluctuations on the heat transfer coeffi-
cient is indicated in Table III. The heat transfer coefficient fluectuates
by as much as * 2.4 per cent at ome point, tut the mean fluctuation ia only

+ 0.8 per cent.
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TABLE IiT

FLUCTUATIONS IN THE HEAT TRANSFER RESULTS OF SOLUTION L4

ot /k

Angle, maximum minimum deviation from
the mean, %

0 15.728 15,508 0.7
716 28.040 26,736 2.4
27/16 22,263 21.555 1.6
37/16 20.498 20.019 1.2
L 7+/16 19.578 19.229 0.9
5 7/16 18.907 18.643 0.7
61/16 18.317 18,113 0.6
T1/16 17.741 17.581 0.5
8 ™/16 17.143 17,017 0.4
9 Tr/16 16.497 16.398 0.3
10 /16 15.777 15,700 0.2
117716 14.933 14,87k 0,2
12 71716 13.925 13.880 0.2
137716 12.692 12.662 0.1
4 /16 11.092 11.073 0.1
15 7116 8,716 8.69L 0.1
1677/16 ;1,5.727 -15.508 0.7

Overall 16.423 16,158 0.8
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It is interesting to consider the cause of the fluctuation. No
direct assumption of laminar flow has been made in this work and the time
dependent form of the basic differential equations has been preserved. How-
ever, the basic equations were simplified to such a degree that it seems
highly unlikely that the simplified equations are capable of describing
turbulent flow. The fluctuations almost certainly do not correspond to the
actual behavior of the fluid, but were induced by the particular method by
which the grid was subdivided. This expectation is supported by the fact
that no fluctuations occurred prior to subdivision of the grid. The large
Prandtl number fluid practically stops near the bottom (and top) of the
cylinder as indicated before. 1In doing so the fluid which was moving rela-
tively rapidly near the boundary is forced out into the central region
causing the boundary layer to thicken as shown earlier in Figures 22, 23,
and 25. On subdivision of the grid it was assumed that the boundary layer
was thin such that the result from the first grid served as an adequate ap-
proximation to the solution in the central region. This assumptioz is less
satisfactory for the large Prandtl number solution than for fthe other soiu-
tions. The main difficulty is associated with the fact that *the rays added
on subdivision do not have a direct connection with the central region of
the first grid. The connecting points of the added rays were establisned
by linear interpolation using the values orn adjacent rays. This procedire
was adequate in all solutions except Solution i because the aximuthal grad-

ients were relatively small. In Solution 4 the azimuthal gradients are

accurate. Refer back to Figure 25. The two rays ©= 117/16 were added
on subdivision. The points are those from the gubdivided grid and the

dotted lines in the central region were found by linear interpolation.
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Notice that the velocity profile at 6=40716 seems to tend to collapse much
like the profile at & =Z”/8. However, the velocity at the connection to %the
central region is artificially prevented from decreasing and is held con-
stant at the value found by linear interpolation. This artificial restraint
on the velocity at 69=7T/16 probably induced the fluctuation. The error due
to this restraint is difficult to assess. It seems likely that the velocity
profile at ©=7"/16 would be considerably different were it not restrained.
However, the fluctuation has only a small influence on the temperature pro-
file, and the fluctuation is confined to a small part of the grid. There-
fore it seems likely that there is little error in the solution considered
as a whole.

It should be mentioned that the fluctuation does notseem to be
caused by instability of the difference equations as previously defined.
The magnitudes of the independent variables are bounded and they seem to be
approaching values independent of time.

It has been shown that the results of all the calculations for
a Prandtl number of 0.7 are brought together by a choice of varigbles
from analysis of a simplified model. As = final part of this sectior trz
generalized results will be compared with Martini and Churchill's [21)
measurements. Martini and Churchill treated the two sides of the cylirder
separately. That is, they calculated Nusselt, Grashof, and Frandtl groups
based on the overall temperature drop and the fiuid properties evaluzted
at the temperature of the side of the cylinder in question. Tzere ig s

substantial difference in the Grashof numbers for the two sides of the oyw

Y e
L€,

linder in the experiments at large temperature differences. For examp

in Martini and Churchill's experiment 15 the Grashof number on the ccld
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side is 19 times as large as that on the hot side. The model for this work
is based on an assumption of a constant Grashof number as well as a small
overall temperature drop so that it is expected that the agreement with ex-
periment will decrease with increasing tewperature difference. It has been
pointed out before that the model is theoretically restricted to large
Grashof numbers so agreement with experiment cannot be expected for very
small temperature differences. It will be shown that these expectations are
confirmed by comparison with the experiments insofar as the veloclty pro-
files are concerned. However, the heat transfer results agree with the ex-
periments more closely than might te expected.

Martini and Churchill's results were recalculated to conform to
the model used in this work. The viscosity and the Prandtl nunber were
taken as the average of the values at the hot and cold sides of the cylinder.
The heat transfer coefficient was taken to be that reported by Martini and
Churchill as the mean value for the hot side. Martini and Churchill fournd
the mean heat transfer coefficient on the cold side to be consigtently
lower than that from the hot side by twe to twenty per zeat., This differ-
ence must be due to heat losses since from the derinition the twe mean valies
must be equal. The recalculated results are given in Table IV. It is ine
teresting to notice that increasing the temperature difference for alr doss
not necessarily produce an increase in the Grashof number as calculated

~
'l

here. For example, compare experiments 5 and 15. The overall tempersiure

drop is increased from 20°C to 200°C yet the Grashof rumber ig prsctically
unchanged because the viscosity of the air and the mean temperature boto
increase.

A comparison of the calculations with the four experiments Tor

which Martini and Churchill measured ve-ccity profiles wifth the mos®
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TABLE IV

PARAMETERS FROM THE RESULTS OF MARTINI AND CHURCHILL

Brgeri- AT T [jec. b ()} (nesn- ) M (u_v;%)%:
ment K oK tavg,) <10 (hot side) K \864

3 2k, 0 326.7 2.03 33.1 0.701L 22.0 747 0.1700

b 38.9 317.2  1.93  61l.5 0,702 25.6 8.7k 0,1705

5 25.7 302.6 1.78 49,7 0.707 24.3 6.83 0.14k05

6 20.7 303.1  1.78  Lo0.2 0,706 23.1 6.13 0.1325

T N5IT2  293.2 1.67 12,89 0.705  17:3k 3.95 0.11L40

8 11.93 290.k4 1.66 k.50 0;710 13.38 6,85 0.2550

9 51.9 319.7 1.97 78.0 0.699 27.2 7.06 0.1300
10 90.5  34k.6 2.37  86.7 0.697 27.9 8.13 0.1L55
11 75.2 335.8  2.15  90.0 0.698 28,1 8.41 0,195
12 110.5 365.3 2.81 Tl.1 0.693 26.5 7,0k 0.1330
13 111.2  364.3 2.80 72.3 0.695 26.6 7.33 00,1375
1k 17kl ho6.L 3.98 50.3 0.7i16 2.5 7.26 0,1482
15 203.7 425.5 4,55 43,1 0.720 23.6 7232 0.1552
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confidence is given in Figure 27 and Table V. The comparison is along
the ray ©= 3772 (in the middle of the cold side). On this ray thé illumi-
nation of Martini and Churchill's dust particles was the most intense so
the measurements should be the most accurate. Martini and Churchill made
one experiment, experiment 8, at a very small Grashof number, The agree-
ment between this work and that experiment as shown in Figure 27 is poor
as expected. It should be mentioned that the measurement of the velocity
profile by Martini and Churchill's method should be more accurate for
small Grashof numbers than for large Grashof numbers because the boundary
layer is thicker and the most lmportant measurements are made at a greater
distance from the wall. Glare from reflection of light at the boundary
caused difficulty in Martini and Churchill's work. Since this difficulty
should be the least pronounced for small Grashof numbers it seems unlikely
that the deviation between experiment 8 and this work is due to experimen-
tal error. The deviation is due to inadequacy of the model as indicated
earlier. The deviationsibetween experiments L4, 9, and 10 (which are at
larger Grashof numbers) and this work are muzh less, ard *he trend of increas-
ing deviation with increasing temperature difference is followed as expected.

The temperature profiles of Figure 27 are all in good agreement
with this work. It should be pointed out, however, that the agreement in
the case of experiment 8 on the ray &= 30/2 is not typical of the other
rays. In experiment 8 the overall temperature drop was less than 2°C ard
Martini and Churchill obtained their heat transfer coefficients by measur-
ing gradients in temperature near the toundary. ©Since they were meaguring
such small differences in the case of experiment 8, the data scatter more
then in the other experiments, and the resultis are presumably somewhat less

accurate.
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TABLE V

COMPARISON WITH THE RESULTS OF MARTINI AND CHURCHILL

Experiment Experiment Experiment Experiment
L 8 9 10
Grashof Number
g gaTrg3 6.15 x 105  L4.50 x 10*  7.80 x 105  B8.67 x 10°
V2
Prandtl Number 0.702 0.710 0.699 0.697
Rayleigh Number  4.32 x 105  3.20 x 10%  5.45 x 10° 6.0k x 10°
AT, °c 38.9 1.93 51.85 90.50
/Ty 0.123 0,066 0.162 0.262
Agreement with
velocity of this Excellent Very Poor Fair Poor
work
The h Group,
1 0.1705 0.255 0.1300 0.1455
hm O(VI'O>“
X ggAT
Deviation in the
heat transfer -3% L% =26% -18%

group from

0.178
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Figure 27. Comparison of Solution with Experiments for

Several Grashof Numbers.
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The final results of this work in terms of the mean heat transfer
coefficient are presented in Figure 28 in comparison with all of Martini
and Churchill's resuits. The mean heat transfer coefficients were calcu-
lated using Simpson's rule, Two lines are shown on the figure: the full
line representing the results of thiswork for a Prandtl number of 0.7, and
the dotted line representing Martini and Churchill's results. The results

of this work for P, = 0.7 can be expressed in a very concise form:

el o g5 (2eATH G )"
& Ve *

or, the equivalent form:

k, V N u
[ XV o = 017
y’ ;@AT) ¢

For a Prandtl number of 10 the constant 0,178 should be replaced by
0.163, a change in the constant of only 8.5 per cent.

Martini and Churchill's results seem to be in good agreement with
this work although there are insufficient data at low Grashof numbers. to
establish the trend of their results there with certainty. The dotted line
through Martini and Churchill's results falls 16 per cent lower than the
results of this work. The physical situation is expected to give lower heat
transfer results than the mathematical model. In the physical situation
the wall temperature varies continuously between the two extremes. That
is to say.the discontinuous change in wall temperature of the mathematical
model is only approximately realized in the physical situation. As a re-
sult the difference between the wall temperatures in the physical situation
tends to be somewhat less than that of the mathematical model near the top
and bottom of the cylinder.

The results are given in tabular form in Appendix C.
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hm D/k
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O THIS WORK Pr =07
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Figure 28. Comparison of Overall Heat Transfer Results.,



VI. DISCUSSION OF APPLICATIONS TO RELATED PROBLEMS

The main difficulties in problems of the type considered in this
work are associated with stability of the difference equations. It has teen
shown that difference equations which irntuitively appear to be the best
choice and which give the lowest truncation error are often useless because
of instability. There are many possible choices of difference approxima-
tions to a given differential problem and finding a stable choice may be
difficult. In seeking a useful system of difference equations the following
comments may be helpful,

l, Stability criteria may bve additive in a certain sense. In
first attacking a complicated protlem it is advisable to work with one
term (other than the time derivative) at a time, If a stable scheme is
found using a single term then other terms can be considered and the sta-
bility criteria may be additive in a certain semse. For example, three
equations and their stability criteria are given below for differences of

the types used in this work:
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There is no assurance in general that the criteria will add as indicated
above But this was found to be true in all cases of this work. An analysis
of the complete equations should always be made but the simple approach is
useful for eliminating differences which lead to unconditional instabiiity.

2. It may be necessary to use different formulas in the approxi-
mation according to the sign of the coefficient of the derivative in the
non-linear terms. This point wag discussed irn connection with the approxi-
mgtions used in this work.

3. Implicit schemes are ordinarily more strongly stable than
expliclt schemes. A partly impliclt scheme is not necessarily difficult
to solve at each time step. As an example consider the leading terms in

the flat plate momentum balance using implicit differences:

/ / 4 /
79 ~ L <L (Hyg L2 (U -~ U
ﬁ%: Uﬂ%ﬂ_\@g L Foece (70)

In the explicit scheme of calculation the stability depended on velocity

as indicated by the terms |U[AT/AX and [V[AT/AY in the criterion.
However, if implicit differences such as those of Equation 70 are used,

the terms involving velocity no longer appear in the stability criteriozn.
Equation TO can be solved directly. At X = 0 and ¥ =@ there is a
"corner" of the boundary (Y = 0 is actually approximated by Y = constant
in the calculations by finite differences in accordance with the discussion
given<§arlier)¢ U is always known on the bourdary so that Uj,ﬁ for the
interdor point nearest the corner can be computed directly using UéaL,p
and U3,1+l which are on the toundary. The other values of U then can be

calculated in a sequence of decreasing/[ ard ircreasing j since the U!

values needed will be known. The same remarks apply to the energy equations.
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L. The conduction terms of the energy equation probably should
be approximated using implicit differences for very low Prandtl number
fluids. The conduction terms in the erergy equation as treated in the cy-
linder problem contributed the terms 247%/(Pz)(RA®)2 and 2AT/(Pr)( AR)2
to the stabillty criterion. For very small Prandtl numbers a correspondingly
small time step would be required to assure stability. If the conduction
terms are approximated using implicit differences the time step 1s indepen-
dent of the Prandtl number. Use of implicit differences here need not cause
undue difficulty because methods of direct solution of the equations are
highly developed. For example, Douglas and Peaceman (4) give a direct, partly
implicit scheme in which the time step limitation is avoided.

5. In applying finite difference methods to the most general prob-
lems in fluid mechanics, there may be stability problems associated with the
pressure or with the way the momentum and continuity equations are coupled.
In this work the pressure distribution was known and assumed to be constant,
and only the momentum balance in the direction of principal motion was taken
into account. Such idealizations will not be admissible in many problems,
and in such problems the momentum balances are coupled through the pressure
or the continulty equation.

Consider as an exampl.e a fragment of a simple isothermal, ore-
dimensional problem in which the pressure distribution is variable. A
similar example is given by Richtmyer (28). Pressure is replaced by CRT

in the equations where R is a gas law constant,

S
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|
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Equations 71 and T2 could be approximated as indicated below

wy -, ~RT S

st s (G4 )
T p. 0 i ‘

_E%&_Q - fﬂ% ( % aj) (1)

and the equations will be stable for a sufficiently small time step. This
scheme is actually explicit in the procedure of calculation despite the fact
that an implicit difference is used in the continulty equation. Equation
73 is used first to get the values of u' used in Equation Th. It does not
seem to be possible to construct a stable, wholly explicit system of equa-
tions using simple differences involving only two time levels. Equations

73 and T4 are stable if the following inequality is satisfied:

V};ﬁ at </ or %%;?f%g / (75)

A%
An indication of the relative magritude of the time step can be obtailned

N

by considering dimensionless variaskles of the type used previously: T=
tP7L2, U=ulfy/, X = x/L where L is some length such as the radius in the
cylinder problem. The maximum time step in terms of the same dimension-

less time as was used in the cylinder problem is

at = A(?c//_)l/?}i

which for the conditions and increment size of the cylinder problem is of
the order of 10‘8o In the cylinder protlem a time step of about 10-0 was
used. It is concluded that coupling of tke continuity and momentum equa-
tions through the pressure or density places a severe restriction on the

time step if the equations are approximated in the way shown above.
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Some additional work on the stabllity problem is needed before
finite difference methods can be applied to the most general problems. It
seems likely that to avold the time step limitation either an implicit
scheme or an explicit scheme involving three or more time levels will need
be used.

There is a different approach to the more general problems which
mey be preferred to that discussed heretofore. The pressure can be elimi-
nated between the momentum balance equations giving equations involving the
components of the curl of the velocity (the vorticity transport equations).
It appears that the stability problems associated with the vorticity equa-
tions would be much less difficult than those associated with the basic
Navier-Stokes equations. For two=dimensional motion the vorticity has only

a single non-zero component.



VII. SUMMARY OF RESULTS

The principal results and conclusions are given below,

1. The system of partial differential equations governing fluid
motion and heat transfer were solved by finite difference methods for two
physical situations: the classical case of the isothermal vertical flat
plate, and the case of the fluid confined by an infinite horizontal cylinder
with the vertical halves of the walls at different uniform temperatures.
The flat plate problem was solved for a Prandtl number of 0.733 to corre-
spond to prior analytical solutions. The cylinder problem was solved for
three different values of the Grashof number with the Prandtl numbter held
constant at 0.7. An additional solution to the cylinder problem was ob=-
tained for a Prandtl number of 10. In both problems the most general equa-
tions were simplified to correspond to laminar boundary layer flow.

2. The initial value (time dependernt) approach to the problems
was used thereby obtaining both the transient and steady state solutions
in one operation. This approach seems to be preferable to methods in which
steady state is assumed at the outset.

3. In problems of laminar boundary layer flow explicit differw
ence equations can be developed which will be stable for sufficiently small
time increments providing different equations are used in different parts
of the space-time grid depending on the sign of the velocity components.

L., The solution of the difference problems required very little

computation and very little computer storage capacity by modern standards.

123
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5. The solution of the flat plate problem is in good agreement with
the short time arnalytical solubion for conduction alone, and with the steady
state solution of Ostrach. The steady state heat transfer resultes for a

Prandtl number of 0.733 are:

Z
b v Vf
%7 7ﬁAT = 0.3653

The constant, 0.3653, is only 2 per cent larger than that obtained by Ostrach.
6. The solutions to the cylinder problem are in good agreement

with the measurements of Martini and Churchill except at very low Grashof

numbers where the idealizations of the mathematical model are inadequate.

The heat transfer results for a Prandtl nunber of 0.7 are:

B57 = o

For a Prandtl number of 10 the constant, 0.178, should be replaced by 0.163,
a change in the constant of only 8.5 per cent.

T. Finite difference methods aprly to a great variety of prob-
lems which resist ordinary methods of analysis. The methods are well
suited for testing the idealizations often used in fluid mechaniecs., It
seems certain that the most difficult problems in fluid mechanics and
heat transfer will eventually be solved by finite difference methods. This

work constitutes a step in that direction.
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APPENDIX A

ANALYSIS FOR THE CYLINDER

Equations 25a, 25¢, and 25d as given previously are

¥oo e Y= Orpmo-4 45

A new set of variables can te introduced as indicated below

S alwm)t 5 v v(w/e)”
r - (AR ,  v= v (6e/5)

In terms of these variables the equations become:
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From inspection of these equations it is evident that the ideali-
zations made in developing the system of equations used in the caleculations
are valid only for large Grashof numbers. OSuppose that Pr is bounded away
from zero which is valid from physical considerations. Then in the asymp-
totic céSe as Gr»>e0 , GrPr>-0, and the equations can be simplified by
dropping the terms corresponding to YP'/4© , VU/R, U/R®, (1/R))U/)R,

/2 )(BV/&@),(]_/RE}( u/$ed 1/R) §3/3%) and (L/82) (12 #36P. Other simplifi-
cations follow from the fact that 0 £ Y £1 so that ¥ may be neglected

Y
beside (GrPr):

It should be mentioned that in this procedure of dropping.
terms it is assumed that as the coefficient of a term in the differential
equation tends to zero, the effect of the term on the solution also tends
to zero. This assumption cannot be Jjustified from the mathematical stand-
point although it has been used successfully in boundary layer theory for

many years. Birkhoff (2) gives a good discussion of this difficulty.

The simplified equations are given below,



b’C/ IS 37/2.
R ©

The variables in these equations are the same as those used in the analy-
sis of a highly simplified model given in Part IIC., The functional depen=-

dence 1s given below in terms of the original variables of the problem.

wi - (eo/i) £ € (-7 )6rB)”

=
e /-

i = /@,r/gﬁ) i [ o, (I-A75)6rfr) /,Dr]
7[ /_ / fy/‘% /77

¢ = Agi 9/ \/"/'r//’r))(é/rﬂ—, / /rJ

| /.
b= (o) £ [65]

The Grashof number has been taken into account in the analysis.
However, the Prandtl number still appears as a parsmeter in the problem,
Notice that the importance of the inertial terms relative to the viscous
terms in the momentum balance decreases with increasing Prandtl number.
In the limit as Pr-»< the inertial terms may be dropped and the problem
is reduced to the form of that of the analysis of a highly simplified

model given in Part IIC.



APPENDIX B

RESULTS FOR THE FLAT PLATE

The transient results for the flat plate are given in Table VI
in terms of the varlables used in the calculations. These results are for
the line X = 100 for the 40 by 40 grid. To put the results in terms of
the composite variables the velocity parallel to the plate as‘well as the
time step number need only be divided by 10. The velocity normal to the
plate should be multiplied by,ff—° The composite distance variables cor=-
responding to the values ofw/ are given in Table VII. Where there is a
blank space in Table VI (such as all the V values for the first 120 time
steps) the varisble is less than 10-10,

Table VII gives the steady state solution after the Y coordinate
(eorresponding to Y = ©0) was extended and 240 additional time steps were
carried out. Comparison of the steady state values in Table VI with those.
of Table VII shows the influence of the Y coordinate.

Table VIII gives transient values of the heat transfer group
along with Ostrach's result (26).

The symbol E is used in the tables to denote an exponent of 10.

For example 22,5E~02 is the same as 0,225.
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TABLE VII

THE STEADY STATE FLAT PLATE SOLUTION AFTER

I

@3 O\\N =W

O \O

M)l/h- u X l/)-l- . .
s (xgpar) V72 v () (T =y Ko
20.271E-02 17.12TE=02 -10, 094E-03 92, 594E-02
Lo, 542E-02 30. 45 TE-02 =30, 10TE~03 85,210E~02
60.813E-02 40, 349E~02 -59.633E=03 77.895E-02
81.084E-02 47,199E~02 -98, 009E-03 70, TL4E-02
10.135E-01 51, 42TE-02 -14, 431E-02 63, TH2E-02
12.162E-01 53, 4160E-02 -19. T39E=02 57, O54E~02
14,189E-01 53, 713E-02 -25,591E-02 50, T19E~02
16,216E~01 52.5T9E~02 -31,84TE-02 Wy, TokE-02
18, 243E~01 50. 412E-02 -38,361E~02 39,319E-~02
20,271E-01 h7,521E~02 -4k, 995E-02 34,319E-02
22,298E-01 L, 166E-02 ~51,624E-02 29, T99E=02
24, 325E-01 40, 559E-02 -58,13TE-02 25, T54E-02
26.352E~-01 36,86 TE-02 =64, LhoR.02 22,166E-02
28.3T9E-01 33 214E~02 -T70, L68E-02 19, 00TE=02
30, 406E-01 29.692E-02 ~T76,160E=02 16,245E-02
32,433E-01 26.363E~02 -81, 481E~02 13.844E-02
34, U60E~0L 23,264E-02 -86.410E-02 11, 768E=-02
36, 48TE-0L 20, 418E~02 ~90.938E-02 99,818E-03
38,514E~0L 17.830E~02 =95, 064E-02 84. 495E~03
4o, 542E-01 15.500E~02 ~98.800E-02 T1.39TE=03
k2, 569E~01 13, 416E-02 -10.216E=01 60, 231E-03
L) 596E-01 11.566E=02 ~10.516E-D1 50. T3TE=03
46,623E-01 99.338E~03 -10, 783E-0L 42, 679E~Q3
48, 650E~01 85, 000E=03 -11,019E=-01 35,852E-03
50.6TTE=OL T2, 471E-03 ~11.226E~01 30.077E-03
52, TOYE-0L 61.571E=03 -11. 408E-01 25,198E~03
54, T31E~01 52,126E~03 ~11,566E~01 21, 081E~03
56.T58E-0L 43, 9T6E-03 =11, TO3E~01 17.611E=03
58, T85E~01 36,96 TE-03 ~11.822E-01 14, 689E~03
60.813E-01 30.962E-03 -11,923E-01 12, 232E=03
62, 8L40E~01 25,836E-03 -12, 010E~01 10, 16TE-03
64,86 TE-0L 21, k74E-03 -12,084E~01 84,331E-0k
66,894E-01 17.TT5E-03 ~12,146E-01 69.78 E-OL
68,921E~0L 14, 649E-03 -12,199E-01 57 , 601E=Ok
70.948E~0L 12, 015E=03 -12,243E-01 47, LOOE-Ok
T2, 9T5E~0L 98, 052E=-0k ~12,279E~0L 38, 868E~0k4
75, 002E~01 79. 550E=0k4 -12,310E~0L 31, THOE-04
TT7+029E~O1 64, 11TE-Ok4 -12,334E-01 25, T90E-0L
T79.056E~0L 51,281E=-0k4 ~12,355E=01 20.826E-0k

EXTENSION OF THE Y COORDINATE
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TABLE VIII

TRANSIENT HEAT TRANSFER GROUP FOR THE FLAT PLATE

Time

e 2
x gl AT
0.02 2,7450
0.1 1.4483
0.2 1,0509
0.k 0.7532
0.8 0.5362
1.2 0.4389
1.6 0.3805
2,0 0.3405
2.4 0.3171
2.8 0.3450
3.2 0.3634
3.6 0.3637
4.0 0.3642
L. L 0.36L7
4.8 0.3650
542 0.3652
5.6 0.3652
6.0 0,3653
6.k 0.3653
6.8 0.3653

Ostrach's result (26) 0.359



APPENDIX C

RESULTS FOR THE CYLINDER

The results of the calculations on the cylinder problem are
given in Tables IX, X, XI, XII, and XIII.

Table IX gives the transient Nusselt numbers in the cylinder
for Solution 1 using the first grid. The integers j in the table denote
angular position in increments of 7/8. The angle®is (j-2)(7/8).

Tables X and XI give the steady state results for the cylinder.
In these tables the integers j denote angular position in increments of ﬂ716.
The angle & is (j-2)(7716).

The variable Y is (l-r/ro)(GrPr)%g The odd numbered rays in
the central region of the cylinder are blank in Table X because the rays
added on subdivision do not extend into the central region. The results
in Table X denoted as Solutions l4a and Ut are actually the same solution,
that previously called Solution 4, but are at different times to show the
maximum amplitude of the velocity fluctuation. Solution 4a is at a dimen-
sionless time of 0.048 and Solution 4b is at a dimensionless time of 0.072,
Similarly, Solutions bec and 4d of Table XI are at different times t0 show
the maximum amplitude of the fluctuations in the heat transfer results.
Solution Uec is at a dimensionless time of 0.072 and Solution 4d is at a
dimensionless time of 0.096. The fluctuations in the heat transfer rate
are out of phase with the velocity fluctuations. The dimensionless time
mentioned here is measured from the start of the subdivisiorn of the grid as

before.
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Tables XII and XIII give the part of Martini's velocity and tem-

perature data used in the figures and the dimensionless variables calcu-

lated from the data.
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TABLE IX
Time TRANSIENT NUSSELT NUMBERS FOR THE CYLINDER

tVv

ro2x 100 972 3 b 5 6 7 8 9
0.40 0 15,699 15.699 15.699 15.699 15.699 15.699  15.699
0.80 0.2460 13.181 13.181 13,181 13.18L 13,181 13.181 13.181
1.72 0.180 10.859  10.105 9,967 9,837 9.707 9.593 9,583
2,55 0.172 10.299 8.98k 8.680 8.412 8.109 7.821 7.668
3,50 0.170 10.197 8.429 7.909 7.505 6.996 6. 438 6.003
4,63 0.185 10.328 8.272 T.565 7,036 6.367 5,498 b, 574
6.07T 0.252 10.523 8.3k42 7.531 6.943 6.238 5.189 3,678
6.97 0.347 10,617 8. 411 7.580 6,989 6.312 5.277 3,594
T.TL  0.483 10,687 8.463 7.623 T.035 6.384 5,341 3,644

8.41 0.685 10.755 8.50k 7.659 7,07k 6. 4ko 5,492 3,741

9.11  0.990 10.838 8.543 7.690 7.105 6.487 5,572 3.835

9.83 1.hk2 10.956 8.585 AN 7.130 6.519  5.630 3,924
10.58 2.100 11,1k0 8.640 7. 743 T7.152 6.543 5.673 Lk, 009
11.hk2 3,027 11.451 8.729 T.778 7.171 6.561 5.705 4,100
12,41 4,250 12.011 8.904 7.839 7.198 6.578 5,732 k216
13.50 5,386 12,786  9.193  T.94T  T.240 6,597 5.7 W37
14,42 6,293 13.722 9,631 8.135 7.320 6.631 5,781 4, 439
15,61 6,984 14,765  10.279 8.478 7.490 6.711 5,828 4,555
17.01 T.koo  15.639 1l.02k 8.988 7.800 6.887 5,927 4,675
18.54%  T.5Th 16,138  11.603 9.512 8.201 7.166 6,108 4,819
20.31  T«5T9 16.331 11.911 9.890 8.572 7.486 6.361 5,0L4
22,17 T.365 16,330 11.973 10.029  8.763  T.695 6,565  5.196
23,86  T.331 16,255 11.934 10.026  8.796 TeT5T 6,647 5.287
25,28  T.232 17.171 11.876 9,984 8.777 7.T49 6,654 5.306
26,55 T«165 16,080 11.819 9,93k 8.730 7.718 6.633 5,293
27, T4  Tul22 12,028  11.767 9,884 8.684 7.679 6.602 5,265
28,91  T7.099 15.975 11.722 9.83k 8.635 T.637 6.565 5,232
30,07 T.089  15.930 11.685  9.788  8.588  7.59%  6.527  5.197
31.26 7,056 15.899 11.65k4 9,748 8,544 74553 6,490 5,164
34,00 T.122  15.870 11.617  9.693  8.418  T.k84 6,42k 5 101
36.58 T.160 15,882  11.617 9.684 8.463 7,464 6. 401 5,076
39,12  T.190 15.908 11.631 9,695 8. 470 7.468 6,402 5.975
41,72  T.205 15.9%3 11,647 9.713 8. 488 7,482 6,413 5.086
Wi, 36  7.208 15,948  11.660 9.730 8.505 7.498 6,428 5.099
47,05 T.204 15,954  11.666 9.739 8.516 7.509 6.438 £,108
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TABLE XI

STEADY STATE HEAT TRANSFER RESULTS
FOR THE CYLINDER

J Nu SOlutéi?G;Pr)% Nu SOIHt&ﬁ;(grPr)% NuSOlutigi/?GrPr)%
2 11.980 0.467T 3.954 0.2968 20.787 0.ho22
3 22.524 €0.8793 - - 41,131 0.7996
L 15.689 0.6125 8.890 0.6673 30.335 0.5897
5 13.094 0.5112 - - 25.3085 0.4935
6 11.639 0. 45kl 6.131 0.4602 22.551 0.4384%
7 10.635 0.4152 - - 20.601 0.4005
8 9.830 0,3838 5.068 0.380k4 19.065 0.3707
9 H.143 0.3569 -- - 17.796 0.3460
10 8.541 0.333h 4,387 0.3293 16.723 0.3251
11 8.002 0.312& s -- 15.785 0.3069
12 7.498 0.2927 3.813 0.2862 14.928 0.2902
13 6.998 0,2732 - - 14,081 0.2738
14 6.473 0.2527 3.206 0.2407 13.160 0.2558
15 5.897 0.2302 - .- 12.107 0.235k4
16 5.232 0.2043 2,780 0.2057 10.855 0.2110
17  L4.h62 0.1742 -- e 9.356 0.1819
18 -11,980  -0.4677 -3.953  -0.2968  -20.687 0, 4022
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TABLE XI (cont.)

Solution ke Solution L4d
J Nu__ Wu/(GrPr)i __ Wu N/ (GrPr)s
2 15.508 0.3114 15,728 0.3158
3 26.736 0.5369 28.0L0  0.5631
L 21,555 0.4328. 22,263 0,447
5 20.019 0.4020 20,498 0.4116
6  19.229  0.3861 19.578  0.3931
7 18.643 0.37hk4 18,907 0.3797
8 18.113 0.3637 18.317 0.3678
9 17.581 0.3530 17,741 0,3563
10 17.017 0.3417 17.143  0.3442
11 16.398 0.3293 16.497  0.3313
12 15.700 0.3153 15.777  0.3168
13 14.874 0.2987 14.933 0.2999
1h 13.880 0.2787 13.925 0.2796
15  12.662 0.2543 12,692 0,2549
16 11.073 0.2224 11,092 0.2227
17  8.694 0.1746 "8,716  0.1750
18 -15.508 -0.311k -=15,728  =0,3158




TABLE XII

VELOCITIES FROM MARTINI AND CHURCHILL (21)

Experiment 4

(l-r/ro)(GrPr)% 5.31 4,25 3,19 2.13
u, in./sec. 0. 0.75 2.21 3.40
(wo/) (Pr/or)Z 0 0,063  0.183  0.282

Experiment 8

(l-r/ro)(GrPr)% 6.65 L, 22 2.67 2.14 1.61 1.07  0.5k4
u, in./sec 0 0.50 1.20 1.55 1.80 1.90 1.80

(wo/7)(Pr/or)z 0O 0.178  0.428 0.555  0.6k2  0.678 0.6k2

Experiment 9

(1-r/ry) (GrPr)E 5.5 4.35 3.26  2.18 1.09

u, in./sec. 0.45 1.02 3.4 3.58 2.32

[N

(uro/v) (Pr/Gr) 0.032 0.07h 0.247 0.257 0.167

Experiment 10

=

(1-r/rqy) (GrPr) 5.58 RN 3.3k 2.23 1,12
u, in./sec. 0.20 1.38 2.87 2.22 0,88

1
(ury/v)(Pr/Gr)2  0.012 0.078 0,162 0.125 0.050
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TABLE XIII

TEMPERATURES FROM MARTINI AND CHURCHILL (21)

Experiment k4

(1-r/ry)(GrPr)¥ O 0.60  1.31  1.91  L4.88  9.47
T, °C 28.5 31.8 35.5 Lo.1 L .3 43.6
(T-Ti)(TH-TC) <0.500. -0.411 -0.311 -0.187 -0.073 -0.092

Experiment 8

(1-r/ro)(GrPr)% 00  0.310.°0.56 © "0.87 ~ 1.49 "2.49 L4.05 7.16
T, °C 15.97 "16.07 16.23 16.26 16.58 16.95 17.25 17.37

(T-Ti)(TH-TC) -6.500 -0.453 -0.381 -0.368 -6.22L4 -0.058 0.076 0.13(

Experiment 9

(1-r/ro)(GrPr)% 0. 0.63 1.1+ 1.7 3.0 5.06 8.22 1k4.55
T, °C 26.5 29.5 34.6 38.8 Ll 5 46.0 L4.o Lk .0
(T-T, ATy-To)  -0.500 -0.430 -0.312 -0.215 -0.082 -0.048 -0.09% -0.09k

Experiment 10

(1-r/ro)(GrPr)% 0 0.63 .17 1.82 3.1 5.19  8.43
T, °C 37.2 kh.5 55.0 61.6 69.0 69.0  66.8

(T-T; J{(Ty-Tq)  -6C500 -0.400  =0.255 -0.165 -0.063 -0.063 =0.093



APPENDIX D

COMPUTER PROGRAM

The computer program used for the calculations on the unsub-

divided grid is given on the following pages. The symbols U and V in

the program are the same as in the text. The meaning of the principal

symbols which are not defined in the program are given below.

P

T1,T2

DT
DR

DTH

TIEND

PR
PS
ANG

L,Y

dimensionless temperature, (T-Ti)/(TH-TC)
temporary locations

local Nusselt number

sine of the angle

time increment

radial increment

angular increment

integer denoting time step

maximum number of time steps

Grashof number

Prandtl number

either the Prandtl number or 1, whichever is smaller
angle

integer denoting radial position

integer denoting angular position

dimensionless radius, r/rO
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 DIMENSION U(18526)sV(18526)sP(18526)»T1(26)sT2(26)sXNU(18)+5(10)
DT=140E-6

1

2

3 DR=14/25,

4 DTH= 3,1415927/8.

READ INPUT TAPE 7+59IENDs»GsPR
5 FORMAT(1592P2E1445)

IF(1,0-PR) 50145019502

501 Ps=1,0

GO TO 503
..502 Ps=PR

503 CONTINUE
601 TIME=0,

602 I=0
ANG=0,

DO 603 J=3+9
~ ANG=ANG+DTH

- 603 S(J)=SIN(ANG)
- 5(2)=0,

S(10)=0,
12 DO 13 J=349

13 P(Js261=045
14 READ INPUT TAPE 7,106,

Cl(U(JsL)9L=2925)90=2410)
CLIVIJsL)sL=2925)90=24510)>

© CU(P(JsL)sL=2+25)9J=2410)
GO TO 82

7 A=z DT/(DR#*DR)
AS=A/PS

8 Ap= A/PR
9 B= DT/DTH

10 C= DT/DR
11 GDT = G*DT

D=DT/{DTH*DTH)
65 DO 69 L=2+25

TU651 V(1sL)=VI(9,LY T - o o
652 V(11sL)=V(3sL)

66 U(lsL)=U(9sL)
67 U(11sL)=U(3,L)

68 P(1sL)=—P(9sL)
69 P(11sL)==P(3sL) -
185 I=1I+1 h -
186 TIME=TIME+DT
DO 19 J=2,10
19 T2(J)=P(Js26)

Y=26
R=1,

- L=26
20 L=L-1

~ R=zR-DR T ) i ' T
YzY~-1e

DEL=D/R¥R¥PR)
IF(L-2) 52922422

22 DO 48 J=2,10 == _
BET=ABSF(U(JsL))*B/R

GAMS=V(JoL)*C — - N
GAM=ABSF (GAMS)

CI=1.-BET-GAM=Z.¥APFAP/(Y~-1, -2+ ¥DEL
30 IF(U(JsL))Y 34932432

32 C2=DEL+BET
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Cs=DEL

GO TO 36
34 C2=DEL

CS=DEL+BET o
36 IF(V(JsL)) 40,938,438

38 C3sAP-AP/(Y-1,) + GAM S ——

C4=AP

GO TO 42
40 C3=AP-AP/(Y-1,)
C4=AP+GAM S . )
42 T1(J)=C1R#P(JoL)+C2¥P (J=1sL)+C3#P(JoL-1)+CHRP(JsL+1)+CS*P(J+1sL)
XA=ABSF(T1(J)) B o S
IF(XA=1e0E=-10) 44944946

44 T10J)=0.
46 P(JsL+1)=T2(J)

T2t =T11J) S

48 CONTINUE

50 Go 1O 20 e
52 DO 54 J=2410

5% P(Js2)=T2(J)
70 DO 76 J=2+10

71 L=26 I

72 L=aL-1

- 73 Y=L-1 ,
T4 V(JaL) =  ((U(J+19L) = U(J=1yL) + U(J+1sL+1) = U(J-1yL+1))

C 7%+ ¥DTHT + (Y¥1TRV(JISsLFIIT/Y
75 IF(L=3) 76576472

~ 76 CONTINUE o
DO 160 J=2,10

T 160 T2(J)=0. h T
Y=26,

R=T,
L=26

- 162 LabL-1

DEL=D/(R®*R)

UITsL+1)=72(3)
IF(L-2) 19451642164

164 J=11
166 Jed-1
IF{J=-2) 16251689168
168 BET=ABSF{U(JsL))%*B/R

GAMS=V(JsL)*C
__ GAM=ABSF [GAMS)

C121¢~BET-GAM=-2 ¢ #DEL~A#R¥*(1e/(R+0e5%DR) + 1e¢/(R=-0e5%#DR))
___IFtU(JsL)) 172491709170

170 C2=BET+DEL
C&=DEL

Go TO 174
172 C2=DEL

Cs=BET+DEL
174 IF(V(JsL)) 17891769176

176 C33GAM+ A*#(R-DR)/(R-0,5%DR)
C4= AX(R+DR)/(R+0+5%DR)

Go TO 180
178 C3= A*(R—-DR)/(R-0+5%DR)

C4= GAM+ A% (R+DR)/(R+045%DR)
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180 CONTINUE

184‘TiiJ)=(Cl*U(J.L)+c2*U(J-1.L)+C3*U(J.L—1)+C4*U(J.L+1)+C5*U(J+1.L)

C+GDT*P(JsL)%S(J))

XA=ABSF(T1(J))
IF(XA-140E~10) 188+9188,190
188 T1(J)=0.
190 U(JsL+1)=T2(J)

T2(J)=T1(J)
) GO TO 166
194 DO 196 J=2510
196 U(Js2)=T2(J)
198 Sc=0,

Y'O.

DO 28 L=2s25
Y=Y+lorﬁWh”

R=Y#DR
DEL=(D/PS)/{Y®DR)#%2,
DO 28 J=2+9 o
BET=zABSF(U(JsL))#B/R

GAMS=V(J,y L) *C

GAM=ABSF ( GAMS)

X=BET+GAM+2¢ #DEL+2¢#AS
26 IF(X-SC) 28,2827

27 Sc=X
28 CONTINUE

DT=DT/SC

199 1F(1-3) 8282200
200 DO 201 N=1,10
NN=40#N

CIF(I-NN) 201,82,201
201 CONTINUE

IF(I-TEND+1) 7+82,105

82 WRITE QUTPUT TAPE 698551 ((U(JsL)sJ=2910)9sL=1+26)

83 WRITE OUTPUT TAPE 6985, 1s((V(JsL)9J=2410)sL=1926)

84 WRITE OUTPUT TAPE 698SsIs((P(JsL)sJ= 2+10)sL=1+26)

- 841 WRITE OUTPUT TAPE 69842, TIME»DT
842 FORMAT (6H TIME 2P2E14,5)

85 FORMAT(5H6 TI=15/12PSE13.4))
DO 851 J=2,10

851 XNU(J)=50e%(P(J926)-P(J925))

WRITE OUTPUT TAPE 658525 (JsXNU(J) »J=2910)

852 FORMAT(14H6 J AND NU(J)/TTI542P1ET4,45))
X=0,

DO 853 RNN=2,10
853 X=X + XNU(NN)

DO 854 NN=3,9
854 X=X + XNU(NN)

- DO 855 NN=3,9,2
855 Xa2X+2¢*XNU(NN)

X=X/24,
WRITE OUTPUT TAPE 6+8564X

856 FORMAT(18H6MEAN NU ONE SIDE 2PE14,5)
IF(I-TEND) 7410545105

- 105 PUNCH 106, T
ClIUJIsL)sL=2925)9J=2510)

CUIVUIs LT sL=2252579J=225 107
CU(P(JsL)sL=2+25)9J=2910)

106 FORMAT(5E1447)
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