A DESCRIPTION OF ADBMS
Version D2.0
by

Ernest Allen Hershey III
Richard L. Dissen
Paul W. Messink

ISDOS Working Paper No. 122

July 1975

ISDOS Research Project
Department of Industrlal and Operations Engineering
The University of Michigan
Ann Arbor, Michigan 48104
(313) 763-3469
763-5329

This is a working paper and should not be quoted
or reproduced in whole or in part without the
written consent of tne authors. Comments are
solicited and should be addressed to the authors.

TABLE OF CONTENTS

Introduction
1.1 Purpose . .« « ¢ o ¢ o« 4 4 e e e e
1.2 Organization « « « « ¢« « . .
ADBMS Overview .
2.1 The Data Base Table File (DBTF)
2.1.1 The Record Table (RECTAB) .
2.1.2 The Set Table (SETTAB)
2.1.3 The Names Vector (NAMES)
2.2 The Data Base File (DBF) .
2.2.1 The Page Header Information (PHI)
2.2.2 The Physical Record Header (PRH)
2.2.3 Data Base Keys
2.3 Data Base Storage Allocation .
2.4 Data Base Page Management.
2.5 The Data Baée Control System (DBCS)
2.6 ADBMS Utility Programs
Object Schema Control Blocks
3.1 The Data Base Record Table (RECTAB)
3.1.1 Record Description Blocks (RDB)
3.1.2 TItem Description Blocks (IDB)
3.2 The Data Base Set Table (SETTAB)
3.2.1 Set Description Blocks (SDB)
3.2.2 Owner Description Blocks (ODB).

3.2.3 Member Description Blocks (MDB)

10

10

11

12

4.

TABLE OF CONTENTS (Continued)

3.3 The Character Array NAMES « « « « « o« « & &
3.4 DBTF Structure as Output from DDLA « .

3.4.1 The Object Schema Parameters . . .« « « ¢« « « &

3.4.2 RECTAB ¢ v & ¢ v ¢ o o ¢ ¢ o o o o « o o o« s

3.4.3 SETTAB &+ ¢ v v v v v o o o o s o o o o o o o« s

3.4.4 NameS o & v v v v v e e e e e e e e e e e e
Data Base Control BlockS . . « ¢ « v ¢ ¢ v o o o v o o o 4

4.1 The Page Header Information (PHI) « . « .
4.2 Physical Record Header (PRH) « . .
A.Zfi Data Base Holes . . . « « « « v o o« «
4.2.2 Data Base Data Records . .
4.2.2.1 ThePointer Area .
4,2.2.1.1 Owner Pointers
4.2.2.1.2 Member Pointers .
4.2.2.1.3 Data Base Keys

4.2.2.1.4 Links Between Owner Records
and Member Records

4.2,2.2 The Data Area .
Data Base Storage Allocation
5.1 The Hole Chain
5.2 Storage Allocation
5.3 Storage Deallocation
Data Base Page Management
6.1 The DBF Structure . . . « « « o ¢ o « o o o o o« &

6.2 DBCS Page Management System

14

14

14

15

. 15

15

. 16

. 16

. 16

. 17

. 17

. 18

. 18

18

. 20

. 20

. 21

.21

. 22

. 22

. 23

. 24

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

6.2.6

TABLE OF CONTENTS (Continued)

The DBCS Random I/0 Routines .
The Page Buffer (PAGE) .
The Current Page .

Reading a New Page from the DBF into Main
Memory

Setting the Currenc Page .

Modifying the Current Page .

The Data Base Control System (DBCS)

7.1 DBUSER

7.1.1

7.1.2

7.2 DBLOW .

7.2.1

7.2.2

7.3 DBTAB .

7.3.1

7.3.2

7.4 DBRAND

7.4.1

7.4.2

DBUSER Error Control and Data Base Security

DBUSER Subprogram Descriptions .

DBLOW Subprogram Description Format

DBLOW Subprogram Descriptions

DBTAB Subprogram Descriptions Format .

DBTAB Subprogram Descriptions

DBRAND Subroutine Description Format .

DBRANT Subroutine Descriptions .

7.5 Block Data for the DBCS .

7.5.1

7.5.2

7.5.3

MACHIN .

BLENS

PAGINF .

. 24

. 26

26

. 26

. 27

. 27

. 28

. 28

. 28

. 28

. 29

. 55

. 55

.99

. 99

. 99

.105

.105

.105

.105

TABLE OF CONTENTS (Continued)

7.5.4 PAGE .« + v ¢ o o « o o o o o o o o o o o o o
7.5.5 DBSWS .+ ¢ ¢ ¢ o o o 4 e 0 e e
7.6 DBCS Dependence upon Routine Library SLIB .
8. Data Base Utility Programs . . . « « & « « ¢ o o o ¢ = o o
8.1 DDLA (Data Description Language Analyzer) . .

8.1.1 Input of the DDL and Generation of the
DDL TableS . « « o o« o o o s o o o« =

8.1.2 Summary Report « « « « «

8.1.3 Generation and Output of BLOCK DATA
8.1.4 Output of the Data Base Tables
8.1.5 Logical Input/Output Unit Numbers for DDLA .

8.2 DBIN (Data Base Initializer)

8.3 DBSM (Data Base Summary) . « « « « « ¢ o o o o o ¢
8.3.1 Page Summary . . .« o ¢ o < °
8.3.2 Page Summary Statistics
8.3.3 Record Summary« « ¢ o o o+ o e e e o0

8.3.4 Logical Input/Output Unit Numbers Used by DBSM .

GLOSSATY + « o o o o o o o s o o o s s oe e e s et

Appendix A . . o o e e e e e e e e e e e e e e

Page
105

105
105
107

107

107
107
109
109
109
109
110
110
110
110
111
112

115

1. INTRODUCTION

This working paper presents a description of a particular data base
management system, ADBMS. The reader should be familiar with the
concepts and data description language (DDL) used by the data base
system, described in working paper No. 88, July 1975, entitled A
DATA BASE MANAGEMENT SYSTEM FOR PSA BASED ON DBTG /1.

1.1 Purpose

This working paper is meant to serve gseveral purposes. Its primary
purpose is to give the reader a detailed understanding of how ALBMS
operates. Secondly, it is meant to describe the logical structure of
the data base, and of the data base object schema. Thirdly, it is
meant to describe the data base control system (DBCS) routines as to
their function, calling parameters, return codes, etc.*

1.2 Organization

Section 2 of this working paper gives a general overview of the complete
data base management system. The sections following the overview
describe in detail not only the logical and physical structure of the
system, but also describe how the system accesses and updates the data
base, and how the system performs the secondary functions of storage
allocation and page management. The specific arrangement of the sec-
tions is as follows:

Section 2 ADBMS Overview

Section 3 Object Schema Control Blocks (DBTF)

Section 4 The Data Base, and Data Base Control Blocks (DBF)
Section 5 Data Base Storage Allocation

Section 6 Data Base Page Management

Section 7 The Data Base Control Systems (DBCS)

Section 8 Data Base Utility Programs

In addition, a glossary and an appendix are included at the end of the
working paper to aid the reader in understanding the material presented.

2. ADBMS OVERIVEW

ADBMS is a data base management system, consisting of four parts:

(1) The data base (DBF) which consists of the data that is to be
accessed.

(2) The data base tables (DBTF), otherwise known as the Object
Schema. This is the logical description of the structure of
the data base.

* Throughout this paper the term fullword and halfword are used as they
apply to IBM 370 computers. In particular, fullword means a 32 bit
word and a halfword means a 16 bit word. A byte is number of bits needed
to store one character (8 bits in the case of the 370).

(3) The data base control system (DBCS), which consists of a
collection of subroutines callable from FORTRAN. This is

the actual programmed interface to the data base.

(4) The data base utility routines which are three stand-alone
programs which aid the analyst in creating and maintaining a
collection of data bases.

Section 2.1 of this overview describes the DBF, and the DBTF is des-
cribed in section 2.2. Sections 2.3, 2.4, and 2.5 explain the DBCS,
and section 2.6 describes the three utility programs.

2.1 The Data Base Table File (DBTF)

The DBTF contains the data base tables. The DBTF is generated by a
program named DDLA, whose input is a data base description written
in the Data Description Language (DDL).

The DBTF consists of two object schema tables (RECTAB and SETTAB),
a character vector of DDL names (NAMES), and five fullwords of control
information, as described in section 3.4.1.

2.1.1 The Record Table (RECTAB)

RECTAB can be viewed as a linear vector containing two types of
object schema control blocks: Record Description Blocks (RDB) and
Item Description Blocks (IDB). The logical structure of data in

the DDL consists of a data base record and the data base items which
belong to the record. There is an RDB for each record described in
the DDL, followed by an IDB for each item belonging to that record.

The RDB and IDB are structured into fields, which contain pointers
into NAMES, control information needed by the DBCS, and the lengths
and displacements of other control areas and of physical data; gen-
erally any information needed to describe the logical structure of
records and their associated items.

2.1.2 The Set Table (SETTAB)

SETTAB can also be seen as a linear vector of object schema control
blocks; Set Description Blocks (SDB), Owner Description Blocks (ODB)
and Member Description Blocks (MDB). These three types of control
blocks describe the logical structure of the records in the data
base. Each set described in the DDL will have an SDB located in the
set tables. Following each SDB will be an ODB for each record type
which is a legal owner of the set, followed by an MDB for each record
type which is a legal member of the set.

The SDB, ODB, and MDB are also structured into fields. 1In addition
to the NAMES pointers and control information are pointers to re-
cords in the data base, and pointers to other pointer areas in the
data base itself. These pointers provide the DBCS with the informa-
tion needed to add, update, and delete records from the data base.

-2

2.1.3

2.2

2.2.1

2.2.2

2.2.3

The Names Vector (NAMES)

One way that objects in the schema (records, sets, etc.) are identified
is by their DDL name. As the DBTF is being generated, each DDL name
encountered is placed into the character array NAMES. The DBCS uses
this vector when searching the data base for a particular object.

The Data Base File (DBF) -

The information stored in the data base is placed by the DBCS into the
DBF. The DBF consists of physical pages, usually defined at a computer
installation to be equal in size to some unit of storage for that in-
stallation (i.e., track, page, etc.). For System/360-370, a data base
page is the same size as a rage of main memory, or 4096 bytes.

A data base page consists of two types of control blocks: a Page
Header Information block (PHI), and Physical Record Header blocks (PRH).

The Page Header Information (PHI)

There is one PHI for every data base page, which appears at the begin-
ning of each page. It contains control information needed by the DBCS
to allocate space for new records.

The Physical Record Header (PRH)

One PRH preceeds each logical record on the page, and contains informa-
tion used by the DBCS to jdentify the record type, if the record is
currently being used for storage. 1f that record is not being used,

it is referred to as a data base hole, and the PRH contains information
needed by the DBCS to allocate that storage space or to combine the
hole with other holes.

Following the PRH for a logical record are two additional blocks:
the pointer area and the data area. The pointer area for a record
(which is a member or an owner of a set) contains pointers to other
records (which are owners or members of the same set). In this way,
all the owners and members of a set can be logically connected.

The data area follows the pointer area. This area stores the data

as it is added to the data base. Its physical structure caunot be
generally described, since it is totally dependent upon the data des-
cription in the DDL. The logical structure is defined by the record
type (RDB) of which the logical record is an occurrence.

Data Base Keys

Each logical record in the data base is uniquely identified by its data
base key. This key is assigned by the DBCS when a record is entered
into the data base, and is invariant as long as the record remains

in the data base. The data base key is used by the DBCS to refer to

2.3

2.4

2.5

specific logical records. Its value is a function of the record's
physical location in the data base. Thus it can be used as the value
of a pointer in the control blocks and in the pointer areas.

Data Base Storage Allocation

When a data base is initialized, the entire area of each page (with the
exception of the PHI) is availabe to the DBCS. When a record is entered
into the data base, a block of storage is allocated by the DBCS, and

no longer is availabe. If that record is subsequently deleted from

the data base, the storage space is released, and 1s placed back into
the pool of available storage. The allocation and deallocation of
storage is totally under the control of the DBCS; it is transparent

to the program calling the DBCS routines.

When a section of a data base page is being used for storage, it is re-
ferred to as a data base data record, or a logical record. If the block
is not being used, it is called a hole, and is placed on a hole chain.
When allocating storage, the DBCS uses the hole chain to provide the
"best fit" of the new record into an availabe hole.

Data Base Page Management

A data base may range in size from 1 page to 99,999 pages. Since it is
expensive (and often physically impossible) to have an entire, large
data base in main memory at one time, the DBCS has a page management
system which uses random data base page input and output routines to
allow an efficient transfer of the data base between main memory and
the DBF. 1If a record is needed that is not in main memory, the page

on which that record appears is read into main memory. If a page needs
to be removed from main memory to allow room for a new page, the DBCS
uses an alogrithm to determine which page was used the longest time ago;
it is probable that this page will least likely be needed soon in the
future. If the page has been modified while in main memory, it is re-
written into the DBF before the new page is read in over it. The page
management system is under the complete control of the DBCS, and is
transparent to the program calling the DBCS routines. The calling
program may assume that every record is available for use at any time.

The Data Base Control System (DBCS)

The DBCS is a collection of FORTRAN routines which interface with the
user's program and with the ADBMS utility programs. They are divided
into four groups, classified by function. The four groups are:

DBUSER
DBLOW
DBTAB
DBRAND

The DBUSER routines are the only routines that directly interface with
the user's program. They contain comprehensive error checking to protect

2.6

the security of the data base against system errors and most user errors.

The DBLOW routines are the lower level routines used by DBUSER to
access the data base; they also contain much of the program logic for
the data base storage allocation system and for the data base page
management system.

DBTAB is a collection of FORTRAN integer functions which return control
block fields, and FORTRAN subroutines which update the control block
fields. They are heavily used by DBUSER and DBLOW in referencing the
data base tables.

DBRAND consists of random input/output routines used by DBUSER and
DBLOW to transfer pages of the data base between main memory and the DBF.

In addition to these routines, a BLOCK DATA for the DBCS must be
included by the user which specifies additional run-time control

information for the routines.

ADBMS Utility Programs

There are three utility programs available for use with ADBMS. Each
is a stand alone program, whith calls routines in the DBCS.

The programs are:
(1) The Data Description Language Analyzer (DDLA)

This program generates the data base tables (DBTF) from a DDL. It also
produces a FORTRAN BLOCK DATA source subprogram which is used by the

DBCS. 1In addition, a DDL summary is produced for every record-type and
set-type in the data base.

(2) The Data Base Initialization Program (DBIN)

This program uses the DBTF generated by DDLA to initialize a datas
base (DBF).

(3) The Data Base Summary Program (DBSM)

DBSM produces, for a populated data base, summary information on the sizes
and percentage utilization of data base holes and records.

OBJECT SCHEMA CONTROL BLOCKS

The object schema is the computer's description of the data base which
is generated from the user's description, the DDL. A program (DDLA)
takes the DDL as input and generates the Data Base Table File (DBTF),
which contains the object schema. The record table (RECTAB) contains
control blocks for data base records and items. The set table (SETTAB)
contains control blocks for sets, owner records, and member records,

3.1

3.1.1

while the character vector of names (NAMES) contains the DDL names
for reference by the DBCS.

The Data Base Record Table (RECTAB)

The data base record table is made up of record description blocks
(RDB) and item description blocks (IDB). There is one RDB for every
record described by the DDL, and there is one IDB for each item asso-
ciated with each record. For example, for the following lines included
in a DDL:

RECORD EMPL

ITEM NAME CHAR 30
ITEM SSNO INTEG 31
ITEM TITLE INTEG 7
ITEM PAYRTE REAL 31

there will be one RDB and four IDB.

Record Description Blocks (RDB)

An RDB consists of six contiguous fullwords of information used to
describe record types in the data base, (The terms "RDB" and "re-

cord types'" are used interchanageably.) The following diagram describes
the physical structure of the RDB:

0 RDBNMP RDBNML

1 RDBCUR

2 RDBITM RDBMLR

3 RDBPAL RDBDAL

4 RDBOWN RDBMEM

5 RDBBTS RDBDIS
Fullword

There are ten halfword integers and one fullword integer of storage
contained in the RDB. The following table, Table 3.0, describes

the meaning of each storage location. The "F" and "S" columns
indicate whether there is a function (F) or a subroutine (S) in

DBTAB which can be used to reference or change the appropriate storage
location. See section 7 of this working paper for a full explanation
of the use of these routines.

Table 3.0

FIELD |
NAME SIZE F S DESCRIPTION

RDBNMP HALFWORD X RECORD NAME POINTER (BYTES)

RDBNML HALFWORD X RECORD NAME LENGTH (BYTES)

RDBCUR FULLWORD X X | DATA BASE KEY OF CURRENT OF
RECORD TYFE

RDBITM HALFWORD X NUMBER OF ITEMS IN RECORD TYPE

RDBMLR HALFWORD X MAXIMUM LENGTH OF RECORD (WORDS)

RDBPAL HALFWORD POINTER AREA LENGTH (WORDS)

RDBDAL HALFWORD X DATA AREA LENGTH (WORDS)

RDBOWN HALFWORD X NUMBER OF SETS OF WHICH THIS
RECORD IS AN OWNER

RDBMEM HALFWORD X NUMBER OF SETS OF WHICH THIS
RECORD IS A MEMBER

RDBBTS HALFWORD X RECORD BITS

RDBDIS HALFWORD X DISPLACEMENT OF DATA AREA (WORDS)

|

RDBNMP is the pointer into the character array NAMES where all the DDL
names are stored, and RDBNML is the name length. The data base key of
the current record of this RDB is stored in RDBCUR. The current record
may be changed using subroutine RDSCUR. The pointer area length and
data area length for this record type are stored in RDBPAL and RDBDAL.
RDBBTS stores the record bits for the record type. The record bits
classify the record in the following way:

RDBBTS
1 Fixed Length Record
2 Variable Length Record
4 System Record

Every record is either of fixed length or variable length. The system
record has an RDBBTS value of 5, since it is of fixed length and it is
the system record.

The displacement of the data area in the data base data record is kept
in RDBDIS.

To reference an RDB, the data base routines use an RDB pointer. This
pointer contains the displacement into RECTAB where the first halfword
begins. In any data base an RDB pointer specifies a unique RDB.

3.1.2

Item Description Blocks (IDB)

In RECTAB there is an IDB for every item associated with every record in
the DDL. The IDB consists of five contiguous fullwords of storage.

These five fullwords consist of nine halfword integer locations and one
unused halfword. The following diagram describes the physical structure

of the IDB.
0 ! IDBNMP IDBNML
1 IDBTYP IDBBTS
2 IDBMLI IDBMVD
3 IDBDDP IDBDSP
4 IDBTMV - not used -

The next table describes the meaning of each field:

FIELD
NAME SIZE F S DESCRIPTION
IDBNMP HALFWORD ITEM NAME POINTER (BYTES)
TDBNML HALFWORD ITEM NAME LENGTH (BYTES)
IDBTYP HALFWORD X ITEM TYPE
TDBBTS HALFWORD X ITEM BITS
IDBMLI HALFWORD X MAXIMUM LENGTH OF ITEM (WORDS)
TDBMVD HALFWORD X MAXIMUM VALUE OF DEPEND-
ING ITEM (WORDS)
IDBDDP HALFWORD X DISPLACEMENT OF DEPEND- (WORDS)
ING ITEM
IDBDSP HALFWORD DISPLACEMENT OF ITEM (WORDS)
IDBTMV HALFWORD X TTEM TYPE MODIFIER VALUE

IDBTYP identifies the item type, according to the following table:

IDBTYP TYPE
1 INTEGER
2 INTEGER
4 REAL
8 REAL
16 BINARY
32 DATA BASE KEY
64 LOGICAL
128 CHARACTER

The next table describes the values of IDBBTS, and their meanings.

IDBBTS ITEM CLASS
1 SINGLE ITEM
2 FIXED LENGTH ITEM
4 VARIABLE LENGTH ITEM
8 DEPENDED ON ITEM

In the current implementation, an item may be classified into only
one of the above four item classes, the exception being that a single
item may be a depended on item also (IDBBTS=9).

IDBMLI is the value for the maximum length of the item, in words.
IDBDDP is the displacement in the record data area of the depending
item, and IDBDSP is the displacement in the data area of the item
itself. IDBIMV is the type modifier value given the item in the
DDL. For example, for the DDL statement

ITEM NAME CHARACTER 30
the type modifier value is 30.
Fach IDB in the data base can be uniquely referenced using an IDB
pointer. This value of the pointer is the displacement (in words)

into RECTAB of the first halfword of the IDB.

DEPENDING ITEMS

A repeating item may be specified for a record by specifiying in the
DDL the depending on item, and a maximum value of the depending item.
1f an item is a repeating item, the IDBMVD and IDBDDP fields of the
IDB contain the appropriate data. If the item is a single item, these
two fields are ignored.

3.2

3.2.1

The Data Base Set Table (SETTAB)

The data base set table is made up of set description blocks (SDB),
owner description blocks (ODB) and member description blocks (MDB).
There is one SDB for every set in the DDL. For each SDB there is
one 0DB for every record type which is a legal owner of the set-type,
and one MDB for every record type which is a legal member of the set-
type. For example, for the following lines included in a DDL:

SET ALLEMP SORTED SSNO
OWNER SYSTEM
MEMBER EMPL

there will be one SDB, one ODB, and one MDB.

Set Description Blocks (SDB)

A set type is defined by an SDB, which consists of seven contiguous
fullwords of storage. These seven fullwords contain ten halfword
integer fields and two fullword fields. The following diagram illus-
trates the physical structure of the SDB.

0| somew | somw
1 SDBCRO

2 | ~ SDBCRM

3 | SDBSNP | SDBSNL |
4 | spBsar | spBOBT
5 | SDBSKT | SDBSKL

6 | SDBNMD | SDBNMM |

The next table describes the meaning of each SDB field.

-10-

FIELD
NAME SIZE F S DESCRIPTION
SDBNMP HALFWORD SET NAME POINTER (BYTES)
SDBNML HALFWORD SET NAME LENGTH (BYTES)
SDBCRO | FULLWORD X DATA BASE KEY OF CURRENT

OWNER OF THE SET
SDBCRM FOLLWORD X DATA BASE KEY OF CURRENT

MEMBER OF THE SET
SDBSNP HALFWORD SORT KEY NAME POINTER (BYIES)
SDBSNL HALFWORD SORT KEY NAME LENGTH (BYTES)
SDBSKM HALFWORD SORT KEY TYPE MODIFLER

(see IDBTMV)

3.2.2

(cont.)

EIELD
|NAME SIZE F |S DESCRIPTION
SDBOBT | HALFWORD X SET ORDER' BITS (BYTES)
SDBSKT | HALFWORD X SORT KEY TYPE (see IDBTYP)
SDBSKL | HALFWORD X SORT KEY LENGTH (WORDS)
SDBNMO | HALFWORD NUMBER OF LEGAL OWNER

RECORD TYPES
SDBNMM | HALFWORD NUMBER OF LEGAL MEMBER

RECORD TYPES

The data base keys of the current owner and current member of the set
are stored in SDBCRO and SDBCRM. They may be changed using routines
SDSCRO and SDSCRM, which are described in section 7 of this working
paper.

The order in which the members are sorted in and retrieved from the set
is determined by SDBOBT, according to the following table.

SDBOBT ORDER TYPE
1 FIFO
2 LIFO
4 NEXT
8 PRIOR
16 IMMATERIAL
32 SORTED ON...

Each SDB in the data base can be uniquely referenced using an SDB
pointer. The value of the pointer is the displacement into SETTAB
of the first halfword in the SDB.

SORTED SETS

A set is sorted when it has an SDBOBT value of 32. SDBS.r and SDBSNL
reference the name of the item on which the set is ordered, known as
the "sort key.'" SDBSKM has the type modifier value for the sort key,
which should be the same as IDBTMV for the sort key item. The sort

key type and length are specified by SDBSKT and SDBSKL, and should also
be the same as the type and length of the sort key item.

Owner Description Blocks (ODB)

Each owner record type for a set is defined by an ODB, which consists
of two contiguous fullwouds of storage. In these two fullwords are
three halfword integer fields and one unused halfword field. The
following diagram shows the physical structure for an ODB.

-11-

3.2.3

0 ODBNMP ODBNML
1 ODBDSP

The next table describes the meaning of each ODB field.

FIELD
NAME SIZE F S DESCRIPTION
ODBNMP HALFWORD OWNER NAME POINTER (BYTES)
ODBNML HALFWORD OWNER NAME LENGTH (BYTES)
ODBDSP HALFWORD X DISPLACEMENT OF OWNER (WORDS)
POINTERS

ODBDSP is the displacement of the owner pointers in the data area of
the owner record.

Each ODB in the data base can be uniquely referenced using an ODB
pointer. The value of this pointer is the displacement into SETTAB
of the first halfword in the ODB.

Member Description Blocks (MDB)

record type for a set is defined by an MDB, which consists
In these two fullwords are three
The following diagram

Fach member
of two contiguous fullwords of storage.
halfword integer fields and one unused halfword.
shows the physical structure for an MDB.

0 MDBNMP MDBNML
1 MDBDSP

The next table describes the meaning of each MDB field.

FIELD |
NAME SIZE F S DESCRIPTION
MDBNMP HALFWORD MEMBER NAME POINTER (BYTES)
MDBNML HALFWORD MEMBER NAME LENGTH (BYTES)|
MDBDSP HALFWORD X DISPLACEMENT OF (WORDS)
MEMBER POINTERS

MDBDSP is the displacement of the member pointers in the data area of
the member record.

-]12~-

3.3

3.4

Each MDB in the data base can be uniquely referenced using an MDB pointer.
The value of this pointer is the displacement into SETTAB of the first
halfword in the MDB.

The Character Array NAMES

The third table that is generated from a DDL is a character array where
the names of all the DDL records, items, and sets are stored. The array
is used by the data base routines when searching the data base for a
particular record type, set type, etc. The index into the table

is not kept in one place; rather, each RDB, IDB, SDB, MDB, and ODB has

a name pointer field and a name length field. The name pointer is the
displacement (in bytes) into NAMES where the name begins, and the name
length field has the value of the name length (also in bytes). (In

the current implementaiton, all name lengths are by default six characters.

If a DDL name is less than six characters, it is padded on the right
with blanks.)

The following table illustrates the name types that are stored in NAMES,
and where the name pointer and length fields are stored.

NAME TYPE NAME POINTER NAME LENGTH WHERE STORED
RECORD RDBNMP RDBNML RDB
ITEM IDBNMP IDBNML IDB
SET SDBNMP SDBNML SDB
SORT KEY SDBSNP SDBSNL SDB
OWNER RECORD ODBNMP ODBNML ODB
MEMBER MDBNMP MDBNML MDB
RECORD

It should be noted that an item is ggg_uniquely identified by its DDL
name, since two distinct record types may have items with the same name.
When searching RECTAB for an item name, the record type in which the
item appears must also be specified, to guarantee that the correct item
has been found.

Since record and set names are unique in the DDL, they can be uniquely
jdentified by their DDL name.

DBTF structure as output from DDLA

This section will describe the physical order of the data base control
blocks as written into the DBTF by DDLA.

There are four logical records of table information:

1 The object schema parameters
2. RECTAB

3. SETTAB

4 NAMES

-13-

3.4.1

3.4.2

3.4.3

Each logical record is written into the DBTF using a single, unformatted
FORTRAN WRITE statement. The DBTF is read into main memory each time
the data base is opened using four unformatted FORTRAN READ statements.

The Object Schema Parameters

There are five parameters which are contained in the first line of the
DBTF. They are NPAGES, the number of pages in the data base (taken

from the NPAGES statement in the DDL); PAGSIZ, the machine page gize in
words (system dependent); RECLEN, the length of RECTAB (in words);
SETLEN, the length of SETTAB (in words); and NAMLEN, the length of NAMES
(in words).

RECTAB

The RDB and IDB are stored in RECTAB, in the order which they appear in
the DDL. The first control block defines the SYSTEM record. After

the SYSTEM RDB is the RDB for the first record type in the DDL, followed
by the IDB for the items in that reocrd type. The IDB appear in the
order specified in the DDL. The next control block is the RDB for the
next record type, followed by its IDB. This pattern continues for each
RDB and IDB in the data base. The following diagram illustrates the

structure of RECTAB.

[I
RDB RDB IDB|... |IDB RDB IDB| ..+ {IDB RDB soes

SETTAB

The set table contains all the SDB, ODB, and MDB for the data base, in

a manner similar to RECTAB. The first control block in SETTAB is the
SDB for the first set specified in the DDL. Following the SDB is one or
more ODB (depending on the value of SDBNMO) and one or more MDB (de-
pending on the value of SDBNMM). Following the last MDB is the SDB

for the next set, along with its ODB and MDB.

For the follwoing statements found in a DDL:

SET ALLEMP FIFO
OWNER SYSTEM
MEMBER EMPL
MEMBER MANAGR

This section of SETTAB would be generated.

SDB ODB MDB MDB
(ALLEMP) (SYSTEM) | (EMPL) | (MANAGR)

-14-

3.4.4 Names

The names of all the objects described in the DDL are stored in the ar-
ray NAMES (see section 3.3). The first name stored will always be
"SYSTEM." Following this are the names of the DDL records, items,

and sets. The names are stored in the order found in the DDL, except
when an item is described which has the same name as a previous item.
In this case, only the first instance of the name is stored, and

IDBNMP for the duplicate name will point to the first occurrence of

the name.

In the current implementation, if the DDL name is less than six char-
acters in length, the name is padded on the right to insure the
correct name length.

4. DATA BASE CONTROL BLOCKS
As information is stored in the data base it is structured by the DBCS
into physical records, and is stored in the Data Base File (DBF). This
section describes the structure of the physical records which appear in

the DBF.

4.1 The Page Header Information (PHI)

The DBF consists of 1 to 99,999 physical pages (defined on System/360-370
to be 4096 bytes each). The first two fullwords on each page are re-
served for the PHI, which contains four halfword integer fields of

page identification and control information. The following diagram
illustrates the physical structure of the PHI.

0 | PHIPNM PHIMHS
PHIHCH PHIBTS

The next table describes the meaning of each PHI field.

FIELD

NAME SIZE F S DESCRIPTION

PHIPNM | HALFWORD X PAGE NUMBER

PHIMHS | HALFWORD X MAXTMUM HOLE SIZE ON THE PAGE
PHIHCH | HALFWORD X HOLE CHAIN HEADER

|PHIBTS HALFWORD X PAGE BITS

PHIPNM contains the page number for the page. The pages are numbered
sequentially beginning at page 1.

PHIMHS and PHIHCH contain information used by the DBCS in allocating
and releasing storage space on the page. See section 5 for a detailed

-15-

4.2

4.2.1

4.2.2

description of the data base spacé allocation system.

The PHIBTS field is a switch used by the DBCS when modifying the data
base. If a page is in main memory and it has a PHIBTS value of 1, it
means that the page has been modified in some way, and must be re-
written into the DBF before closing the data base page. See sectien 6
for an explanation of the data base page management system.

Physical Record Header (PRH)

The PRH consists of one fullword of storage which preceeds every data
base data record and every data base hole. The two halfword integer

fields contain control information for that record or hole. The fol-
lowing diagram illustrates the structure of the PRH.

0 { PRHLEN PRHLNH/ PRHRDB

The next table describes the meaning of each field in the PRH.

FIELD
NAME SIZE F S DESCRIPTION
PRHLEN HALFWORD X X LENGTH OF BLOCK
PRHLNH HALFWORD X X LINK TO NEXT HOLE (IF BLOCK IS
DATA BASE HOLE)
PRHRDB HALFWORD X X RDB POINTER (IF BLOCK IS A
DATA BASE DATA RECORD)

The PRHLEN field contains the length of the block, excluding the

PRH. If the block is a data base hole, PRHLEN gives the size of the
hole, and PRHLNH is the link to the next hole on the hole chain (see
section 5). If the block is a logical record, PRHLEN is the block
length, including the pointer area and the data area. PRHRDB is the
pointer into RECTAB of the RDB (record type) which describes this record.

Data Base Holes

Unallocated storage space on a data base page is called a hole. The
holes on a page are structured in such a way that the DBCS can find

and allocate storage in a fairly efficient manner. A detailed explana-
tion of the method in which the DBCS allocate and release storage is
given in section 5 of this working paper.

Data Base Data Records

The DBCS stores the data base information in the data base data records

(also called "data base logical records").The length of the record is a
function of three things:

~-16-

4.2.2.1

4.2.2.1.1

1. The number and length of items in the record type which
this record is an occurrence of.

2. The number of sets the record type is an owner of.

3. The number of sets the record type is a member of.
The structure nf a logical record is:

1. The PRH

2. The pointer area

3. The data area

This structure is shown graphically by the following figure.

i PRH \ POINTER AREA DATA ARFA

logical record >

<

The Pointer Area

The pointer area for a data base record contains owner pointers and
member pointers. A physical data record will have one set of owner
pointers for every set of which the associated data base record type
is a legal owner, and have one set of member pointers for every set

of which the associated data base record type is a legal member. Each
set of pointers (owner and member) uses three fullwords of storage. A
more detailed diagram of the pointer area looks like this:

S

% OWNER | OWNER MEMBER MEMBER |

ooooooo

POINTERS ! lPOINTERSl POINTERS POINTERS o

The owner pointers always preceed the member pointers. The exact

number of owner and member pointers can be found for a record type
in the RDB, in fields RDBOWN and RDBMEM. The length of tue pointer
area for a record type may be found also in the RDB, or may be cal-
culated using the formula 3 x (RDBOWN + RDBMEM) since each set of

pointers uses three fullwords.

Owner Pointers

An instance of a record type will have owner pointers for each set of
which the record type is a legal owner. The contents of the owner
pointer area is the data base keys for the first member and last .
member of the set, as well as the count of the number of members in the

set.

-17-

" This is shown as follows:

0 1 2
OWNER " DATA BASE KEY OF | DATA BASE KEY ;
POINTERS l FIRST MEMBER | OF LAST MEMBER | NUMBER OF MEMBERS J

4,2.2.1.2 Member Pointers

An instance of a record type will have member pointers for each set
of which the record type is a legal member. The contents of the
member pointer area is the data base keys of the previous member of
the set, the owner of the set, and the next member of the set. Gra-

phically:

0 1 2

i
MEMBER i DATA BASE KEY OF DATA BASE KEY OF DATA BASE KEY OF|
POINTERS | PREVIOUS MEMBER OWNER RECORD NEXT MEMBER

4.2.2.1.3 Data Base Keys

Every data base data record has a unique identifier called a data base
key. The data base key is a fullword of storage, consisting of two
halfword integer fields.

PAGE NUMBER DISPLACEMENT ON PAGE

The first halfword of the data base key contains the page number of

the data base page which the logical record is stored on. The second
halfword of the key contains the displacement (in words) of the logical
record on the page. Using these two fields the DBCS can locate and
identify any record in the data base.

4,2.2.1.4 Links Between Owner Records and Member Records

The data base keys in the owner and member pointers form doubly linked
lists of records: the owner pointers contain pointers to the heads of
lists, and for each owner there are member records that form the elements
on the list. A set with three members would be chained together in the
manner shown in the following figure.

-18-

+019z JO ONTEA B 9ABY SPTOTJ oM} 950yl ‘Lo oseq BIBP B SUTUTEIUOD UBY] I9Yjel
suesw STYL °T[DU O3 39S @I 39S 9yl JO IdquAm ISBT 2Y3l JO Id3quou
1%ou 9y3 pue 39S 9yl JO IoqULW ISATF 9Y3 JO Ioquew snoradid 9yl eyl 330N

Jeya

(q9007Y WAIWARW)

6 AI..Taxmz

TANMO *

SNOIATYd _ »||m
/

(@400HY YHAIWARW)

(@900 YAIWINW)

—® LXIAN

YANMO

SNOIATEA “ < _ ' IXAN

JINMO
_e

SNOTIAHYd =

—>

T |

(g) gHIWON

e
LSV1I

(@I0D3y ¥HNMO)

~-19-

4.2.2.2

The members associated with a particular owner of a set are entered onto
the linked list in a specific order, as specified in the DDL. The DBCS
checks the set order bits (SDBOBT) and adds new members in the appropriate
place on the list.

The Data Area

The information stored in the data base is kept in the data area. Each
record in the data base (except for the SYSTEM record) should have one or
more items associated with it. The length of each item is specified in
the DDL, and room is reserved in the data area for each item, in the
order that the items appear in' the DDL,

It is impossible to show the general structure of the data area, since it
is determined totally from the DDL. The data in each record is located
and retrieved using the IDB for each item in the record. The following
table is a summary of the IDB fields which reference the data area in

some way.

FIELD
NAME DESCRIPTION
IDBTYP Item Type (Integer, Real, Binary, Data Base
Key, Logical, Character)
IDBBTS Item Bits (Single, Fixed, Variable,
Depended on)
IDBMLI Maximum Length of Item
IDBMVD Maximum Value of Depending Item
IDBDDP Displacement of Depending Item in Data Area
IDBDSP Displacement of Item in Data Area
IDBTMV Type Modifier Value

In addition, several fields in the record's RDB are used to locate and
reference the data in the data area. These RDB fields are:

FIELD
NAME DESCRIPTION
RDBITM Number of Items
RDBMLR Mamimum Length of the Record
RDBPAL Pointer Area Length
RDBDAL Data Area Length
RDBBTS Record Bits
RDBDIS Displacement of Data Area in the

physical record

If an item is a repeating item, the DBCS will reserve storage for the
maximum number of occurrences of that item (see the IDBMVD field).

DATA BASE STORAGE ALLOCATION

The DBCS contains a data base storage allocation/deallocation system
which is used to create and delete logical records in the data base.
When a block of storage is allocated for use by the DBCS, it 1is

=20~

5.1

5.2

called a data base data record, or logical record. When the storage is
released, it is available for re-use by the DBCS, and is called a data
base hole. Each hole on a data base page is a member of the hole chain
for that page. The hole chain is a linked 1ist of holes; its management
is under the complete control of the DBCS.

There is no indication in the data base of whether a particular block on

a page is a hole or a logical record. The DBCS has an implicit knowledge

of whether a storage block is a hole or not in this way: a logical record
should not appear as a member on the hole chain. Any storage block on the
hole chain is assumed to be a data base hole. Conversely, any storage block
that is pointed to by a data base control block (i.e., by an RDB or SDB)

is assumed to be a logical record, and not a hole.

This section describes the structure of hole chain, how it is used by
the DBCS, and how storage space is allocated and released.

The Hole Chain

Each data base page has a hole chain, which is independant of the hole
chain of any other page. Two of the four halfwords of the PHI are used
by the DBCS in storage = space mangement as follows:

FIELD

NAME DESCRIPTION

PHIMHS Mazximum Hole Size on this Page
PHIHCH Hole Chain Header

The PHIHCH field contains the displacement on the page of the PRE of the

first hole logically on the page. For a data base hole, the first PRH field
is the length of the hole (PRHLEN) and the second field is a link to the next
hole on the chain. The last hole on the chain has a link which is set to null
(the value of the link is zero). The holes are placed on the hole chain by
the DBCS in ascending order of size. If there are no holes on a particular
page, PHIHCH is set to null, and PHIMHS is set to zero.

Storage Allocation

When the DBCS searches a page for scome available storage to allocate, it
first checks PHIMHS to see if there is a contiguous block of space on the
page with a size equal to or greater than the desired block size. If not,
another page will be checked.

If the PHIMHS field indicates that the space is available, the DBCS begins
to search the hole chain. The search ends when the first block is found
whose size is greater than or equal to the desired block size. Since

the chain is ordered by increasing size, the block chosen by the DBCS

will be the "best fit;" i.e., it will be the smallest block on the page
that is big enough to hold the desired allocation.

-21~-

5.

3

6.

The block found by the DBCS is taken off the hole chain. If the size of
the block exceeds the desired size by more than two fullwords, the excess
storage is separated from the allocated block, and is returned to the

hole chain, in the proper location. The allocated block is then assigned
a data base key, and is given to the DBCS to be used as a logical record.

1f the size of the block found by the DBCS is greater than the desired
size by two fullwords or less, the excess one Or two words are included
in the allocated block, and is treated as "padding.'" This is done because
the excess words are too small to be used elsewhere and should not be

put back onto the hole chain. The PRHLEN field for the block contains

the value for the length of the block, including padding. When the block
becomes an instance of a record type, the RDBMLR field of the record's
RDB will contain the length of the record, excluding any padding that may
be present. It is important to realize that the values of the two fields
will not always be equal.

Storage Deallocation

When a logical record is deleted from the data base, the storage space
is deallocated (or released), and becomes available again to the DBCS for
reuse.

Before a storage block is returned to the hole chain, the DBCS checks
the entire chain to see if there is a hole on the chain that is stored
physically before or after the released block. If a contiguous hole is
found, it is taken off the chain and combined with the released block,
forming a larger hole. When the entire chain has been searched, the hole
is put onto the hole chain in its proper location.

As an illustration, take the following example of a section from a data
base page:

" "DATA7/] HOLE | RELEASED BLOCK HOLE /" DATA /)
! v l oy ’y Z

After combining, the same section looks like this:

e e

DATA BASE PAGE MANAGEMENT

Sections 3 and 4 of this working paper discussed the control blocks nec-
essary to reference and update the data base pages. Section 5 explained
the data base storage allocation/deallocation algorithm. This section
will use the three previous sections to describe the total data base
page structure. It will also describe the page management system used
by the DBCS.

-22-

6.1

The DBF structure

As described in ISDOS working paper No. 88, the second stép in creating
a data base is to intialize the DBF using the DBTF. The result of this
operation is an initialized data base; that is, the DBF contains only
one logical record, an occurrencd of the SYSTEM record. The first page
of the data base then looks like the following diagram.

PHI | PRH | SYSTEM RECORD [PRH [HOLE.....

.+..HOLE

Each succeeding page in the data base lcoks like the next diggram.

PHI PRH HOLE..ce..oes

«.... HOLE

Once the data base has been populated, the holes are allocated as logical
records. If some records are then deleted, the data base pages begin to
have holes imbedded between records. The following diagram might be a
typical page from this type of data base.

-23-

e PRH | POINTER AREA DATA AREA .
. "** {PRH POINTER AREA
DATA AREA e p PRH
HOLE |pRH | POINTER AREA .
-+« [PRH| POINTER AREA | DATA AREA PRH
 POINTER AREA } DATA AREA § HOLE

6.2 DBCS Page Management System

Many computer installations limit the number of pages of main memory that a
program may use at any time. Since the size of a data base can be many times
this limit, the DBCS contains a set of routines which will control which
pages in the data base are kept in main memory. If a page is needed that is
not in main memory at that time, the DBCS will go to the DBF and read in the
page. This action is totally under the control of the DBCS. The user pro-
gram may assume that every logical record in the data base is available to

it at any time.

6.2.1 The DBCS Random I/0 Routines

The basis of the page management system is a set of random input/output
routines contained in the DBCS. These routines can read into main memory se-
lected pages of the data base, and write them out again into the DBF, in their
proper sequence. (Remember that the pages in the DBF are numbered sequentially.)
Section 7.4 describes these routines.

6.2.2 The Page Buffer (PAGE)

The data base pages, when in main memory, are kept in a single, one dimen-
sional integer array called PAGE. PAGE is dimensioned to a value equal to
the page size (in words) multiplied by the maximum number of pages allowed
in main memory at one time, MPICOR.

6.2.3 The Current Page

The DBCS flags one of the pages in main memory as the "current page''. The
page number of the current page 1is kept in an integer fullword named CURPNO.
Several DBCS routines reference the current page rather than specify one par-
ticular page.

Associated with CURPNO is a fullword integer variable, PHICUR. PHICUR is a
pointer to the PHI of the current page. Because the current page may be in
one of several places in PAGE, a displacement into the current page is not
necessarily the same as the displacement of the same location in the PAGE
vector.

-24—

Finding the hole chain header of the current page, for example, would
entail adding the displacement of the PHIHCH field (the displacement is
2 words) to the value of PHICUR, taking the left halfword of the location
of the resulting absolute displacement.

The following diagram gives an example of a data base at a particular point

of execution of a user program. MPICOR for this example is 4 pages, and
PAGSTIZ is 1024 (1024 words per page). This implies that PAGE is dimen-

sioned to 4096. There are four data base pages in main memory: pages 17,

2, 9, and 6. NPICOR, the number of data base pages in main memory has a va-
lue of 4. Page 9 is the current page, which is sequentially the third page
in main memory. NCUR, the sequence number of the current page in main memory,
is then 3. PHICUR, the pointer into PAGE of the PHI for CURPNO, is 2048.
(This is numerically equal to (NCUR-1) *PAGSIZ.)

PAGE
PHI
CURPNO = 9
NCUR =3
(Data Base PHICUR = 2048
Page #17) NPICOR = &4
MPICOR = 4
PAGSIZ = 1024
PHI Dimension of
PAGE = 4096 (words)
(Data Base
Page #2)
PHICUR™ PHI
Absolute Displacement in PAGE=
(Data Base Displacement in Current Page
Page {9) +PHICUR
PHI
(Data Base
Page #6)

-25-

When the current page changes, CURPNO and NCUR are changed, and PHICUR
is recalculated. This means that the DBCS can always reference the cor-
rect location given the displacement on the current page.

6.2.4 Reading a New Page from the DBF into Main Memory

There is a particular algorithm used to read a page into main memory from the
data base. The DBCS first checks to see if NPICOR is less than MPICOR.

If so, there is still room in PAGE for a new data base page, and the page

is read from the DBF into main memory. NPICOR is incremented by 1, and the

new page becomes the current page.

If there is no room in main memory, one page currently in main memory must
be selected to be removed. To do this, the DBCS utilizes a vector named
PREF and a counter named NDBKF. PREF must be dimensioned to be at least
the value of MPICOR. Each time the current page is reset, NDBKF is in-
cremented, and stored in the location in PREF that is associated with the
page sequence number in main memory (i.e., PREF(NCUR)). In this way, the
page in main memory which corresponds to the lowest value in PREF is the
page that was least recently referenced. This is the page that the DBCS
selects to be removed. Since all the other pages in main memory have been
referenced more recently, they normally have a greater chance of being re-
ferenced than the one being removed.

The DBCS checks the page bits of the page to be removed. If the value of
the page bits is 1, the page is rewritten into the DBF, and the new page
is read into main memory, replacing the old page. The current page is set
to the page number of the new page. ‘

If the page bits value of the old page is zero, it means that the old
page was not modified since being read in; therefore it does not need
to be written out into the DBF. The new page is read in, replaces the
old page, and becomes the current page.

6.2.5 Setting the Current Page

There are two times that the current page is set by the DBCS. The first,
reading in a new page, is described in the above paragraphs. The second
time is when routine DBKFND is called. This routine accepts a data base
key as input and returns the record's PRH pointer. DBKFND checks the page
number of the input key; if the page is in main memory it is made the cur-
rent page and the corresponding location in PREF is updated.

If the page is not in main memory, DBKFND uses the DBCS random I/0 routines
to read the page from the DBF, as described in section 6.2.4.

Although no other routines directly set the current page, most higher
level DBCS routines reference DBFND during their execution.

6.2.6 Modifying the Current Page

The only page that can be modified by the DBCS is the current page. When
modified, the page bits for the current page must be set to 1. When a

page is replaced by a new page from the DBF or when the data base is closed,
the page bits are checked; when they contain a value of 1, the page is re-
written into the DBF.

-26-

7. THE DATA BASE CONTROL SYSTEM (DBCS)

The DBCS is a set of FORTRAN routines which are used by the user's:pro-
gram to access a data base. The routines are divided into the four
following groups, classified roughly by function.

These routines are the highest level routines. They
are the only routines that interface directly with the
user's program.

DBUSER

DBLOW - These are the low level routines used by DBUSER. They
do most of the actual "work'" of the DBCS.

DBTAB - These routines are used by DBUSER and DBLOW to access the
data base tables and control blocks.
DBRAND - These are the DBCS random I/0 routines, which are used to

open, read from, write onto, rewrite onto, and close the DBF.

The user program interfaces (or references) only DBUSER. The "hierarchy"
of the DBCS routine groups is as follows:

USER PROGRAM

|

i DBUSER
1\ n
\
DBLOW
~
v A I
DBTAB | DBRAND

7.1 DBUSER

The routines contained in DBUSER directly interface with the .ser's pro-
gram. The routines give the user's program control over what data base
is to be accessed, what information is to be stored in which sets, what
the current status of the currency indicators are, etc. The routines
can add and delete records in the data base, they can store and retrieve
data fields, théy can find members of a set, and check set ownership

and membership.

The user's program does not need to do anything to insure the correct
data base page is accessible, to locate available data base holes for
record storage, to determine the physical location of a record or an item,
etc. All these function are taken care of by DBUSER.

-27-

7.1.1

7.1.2

7.2.1

DBUSER Error Control and Data Base Security

Built into DBUSER is an error detection and notification system. Each
routine in DBUSER begins by checking to make sure the data base is open.

If so, a counter called LEVEL is incremented. LEVEL is set to O when the
data base is opened; it is incremented each time a DBUSER routine is
entered and decremented each time it exits. In this way, LEVEL keeps a
count of the current "level" of nesting. When an error occurs, it is help-
ful to know the value of LEVEL, in order to trace which DBUSER routines
called other DBUSER routines.

Each possible error encountered in DBUSER is assigned an error number (see
ISDOS Working Paper No.88), which is returned to the calling program in
the return parameter IERR. In addition, the error number, the routine
name, and the value of LEVEL is printed out each time an error is detected
in DBUSER.

Most of the errors that occur are due to invalid set types, record types,
owners, or members being specified, or when currency indicators are not
set. When an error is found, the execution of that routine is halted,
the error information described above is printed, and an immediate re-
turn is made. Through the DBCS error checking facility the security of
the data base is protected against system errors and against most user
errors.

DBUSER Subprogram Descriptions

Complete subprogram descriptions for the DBUSER routines can be found in
ISDOS Working Paper No. 88 (July, 1975). Also in this same working paper
is a thorough explanation of the manner in which a user's program accesses
the data base, sets currency indicators, etc. ‘

DBLOW

The routines in DBLOW are low level routines used by DBUSER, which do
much of the actual "work" involved in manipulating the data in the data
base. They find control blocks, set pointers, compare items, find and
release data base storage, and set the links in owner and member pointer
areas. DBLOW also takes care of much of the actual page management faci-
lities needed by DBUSER. DBLOW relies heavily upon DBTAB and DBRAND to
access the data base. (DBRAND is used to get data base pages in and out
of main memory, and DBTAB is used to directly access the data base control
blocks and the object schema control blocks.)

DBLOW Subprogram Description Format

The DBLOW routines described here follow a standard format., This format
entails the following:

1. Routine name

2. Calling convention

3. Purpose - a 1 line statement of the routine's function.

4, Description - a longer, narrative description of possible
calling parameter values, algorithms used,
special conditions, etc. This section may
be omitted if the routine is very simple in
function.

28

5. Arguments - A list of all the calling parameters are

given. The format for each parameter

is:

-NAME (as found in the calling convention)

~USAGE (Input, Output, Updated, Scratch)

-TYPE (Integer, Real, Data Base Key, Character)

-Description-(a short explanation of the way
in which the argument is used.)

6. Errors — A listing of all possible errors is given.

7. Currency Indicators Used - a list of which currency indi-

cators are referenced by the routine (Input) and
which are reset by the routine (Outpurt).

7.2.2 DBLOW Subprogram Descriptions

The following routines are located in DBLOW:

BLKFND
BLKREL
CIT™
DBERR
DBKFND
DDLIN
FMKSDB
INSERT
ITMLOK
MEMLKR
MEMLOK
MODPAG

MPT
OPT
OWNLKR
OWNLOK
RECLOK
REMOVE
RPAGE
SDBNXT
SEARCH
SETLOK
WPAGE
ZMCHAN

-29—~

ADBMS DOCUMENTATION FORM ROUTINE
NAME: BLKFND

CALLING
CONVENTION: CALL BLKFND (RSIZE, PRHPTR, KEY)

PURPOSE: Find a block of storage in the data base.

DESCRIPTION: This routine checks the PHIMHS (maximum hole size) field
of the current page. If the largest hole is smaller than
the given blocksize, the remaining pages in core are searched.
If a sufficiently large hole is not found, the entire data
base is searched, beginning with the current page. If suffi-
cient space is still not found, KEY is set to zero. If a block
is found, the PRH pointer which indentifies the block is
returned, along with the data base key of the block.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION
RSIZE INPUT INTEGER Size of the desired block (wor
PRHPTR OUTPUT INTEGER PRH pointer of the allocated

’ block.
KEY OUTPUT DBKEY Key of the allocated block,
or zero.

ERROR

CONDITIONS :

CURRENCY

INDICATORS

USED :

=30~

ADBMS DOCUMENTATION FORM ROUTINE
NAME : BLKREL

CALLING
CONVENTION: CALL BLKREL (KEY, IRC)

PURPOSE: Release a block of storage.

DESCRIPTION: The data base logical record identified by the given data
base key is released, and becomes a hole. The hole is com-
bined with other holes that preceed or succeed the new hole
physically in the data base, and the combined hole is placed
on the hole chain.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION
KEY INPUT DBKEY Key of record to be released.
IRC OUTPUT INTEGER Error code

ERROR

CONDITIONS: 0O -~ O0.K.
1 - Invalid data base key given.

CURRENCY
INDICATORS
USED :

-31-

CALLING
CONVENTION:

PURPOSE:

DESCRIPTION:

ARGUMENTS :

ERROR

CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM ROUTINE

NAME: CITM

CALL CITM (PRHPTR, IDBPTR, VALUE, ISW)

Compare an item to a given value.

The item identified by the given PRH and IDB pointer is
compared to the given value for equality. The given IDB
pointer is used to find the displacement of the item in the
record . identified by the given PRH pointer. VALUE may

be integer, real, binary, or logical; it may be a data base key
or a character array.

NAME
PRHPTR

IDBPTR
VALUE
ISW

USAGE
INPUT

INPUT

INPUT
OUTPUT

-32-

TYPE DESCRIPTICN
INTEGER PRH pointer to a physical
record

INTEGER IDB pointer to an item type
(see above) Value to use in comparison
INTEGER Return Code: -1 ITEM less
than VALUE
0 ITEM equal to
- VALUE
+1 ITEM greater
than VALUE

ADBMS DOCUMENTATION FORM

CALLING

CONVENTION: CALL DBERR (RTNNUM, T1ERR)

PURPOSE: Handle data base errors

ROUTINE
NAME: DBERR

DESCRIPTION: This routine is called from DBUSER routines, after an
error is detected (see ISDOS Working Paper No. 88). The
error number, routine name and

printed.
nurbers.

ARGUMENTS : NAME
RTNNUM

IERR

ERROR
CONDITIONS :

CURRENCY
INDICATORS
USED :

USAGE

INPUT

INPUT

-33-

TYPE
INTEGER

INTEGER

routine nesting level is
See Appendix A for a listing of routine names and

DESCRIPTION

Routine number which detect-
ed error (See appendix A)

Error Code (see ISDOS
Working Paper No. 88)

CALLING
CONVENTION:

PURPOSE:

DESCRIPTION:

ARGUMENTS :

ERROR
CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM ROUTINE
NAME: DBKFND

PRHPTR = DBKFND (KEY)
Find a PRH pointer for a given data base key.

Integer Function which returns the PRH pointer associated
with the logical record identified by the given data base
key. If the key is invalid, a value of zero is returned.

If the page on which the logical record is stored is not

in core, it is read into core from the DBF. The current
page is set to the page on which the logical record appears.

NAME USAGE TYPE DESCRIPTION
KEY INPUT DBKEY Data Base key
PRHPTR OUTPUT INTEGER PRH pointer to a logical

record, or zero.

-34~

ADBMS DOCUMENTATION FORM ROUTINE

NAME: ppLIN

CALLING
CONVENTION: CALL DDLIN (LIONUM)
PURPOSE : Read in DDL tables (DBTF).
DESCRIPTION: The object schema control blocks and the DDL names

vector are read into core using the given logical I/0

unit number.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION

LIONUM INPUT INTEGER The logical I/0 unit number
to which the DBTF is attached

ERROR
CONDITIONS :
CURRENCY
INDICATORS
USED :

~35-

CALLING
CONVENTION:

PURPOSE :

DESCRIPTION:

ARGUMENTS :

ERROR
CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM ROUTINE
NAME: FMKSDB

CALL FMKSDB (SDBPTR, KEYCUR, KEYNXT, ISW, IRC)

Find the next, previous, first, or last member of a set.

The set identified by the given SDB pointer is searched
for the next, previous, first, or last member (depending
on KEYCUR and ISW). If found, the data base key of the
located member is returned in KEYNXT. If not found, a
value of zero is returned. The value of ISW indicates
the direction (next or previous) in which the set is to
be searched. The search is relative to the member iden-
tified by the given data base key (KEYCUR). If the va-
lue of KEYCUR is zero, the first or last member is sought.

NAME USAGE TYPE DESCRIPTION
SDBPTR INPUT INTEGER SDB pointer to a set type
KEYCUR INPUT DBKEY Key of member relative to

which search is to be made;
or zero for first or last.

KEYNXT OUTPUT DBKEY Key of located member, or

‘ zero if not found.

ISW INPUT INTEGER <0 find previous (last if

KEYCUR = 0)
>0 find next (first if

KEYCUR = 0)

IRC OUTPUT INTEGER Error Code

-1 - Member not found (KEYNXT = 0)
0 - OK (KEYNXT = key of located member)
6 - Invalid member type (KEYCUR) for set type (SDBPTR)
7 - Invalid data base key (KEYCUR)
8 - No current owner of set type
12 - Record not member of set
99 - Catastrophe

Current Owner of Set (INPUT)

-36~

CALLING
CONVENTION:

PURPOSE:

DESCRIPTION:

ARGUMENTS

ERROR

CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM ROUTINE
NAME: INSERT

CALL INSERT (SDBPTR, KEYCUR, KEYNEW, ISW, IRC)

Add a record to a set

The record identified by KEYNEW is added as a member

of the set identified by the given SDB pointer, relative
to the record identified by KEYCUR. If the value of
KEYCUR is zero, insertion is at the beginning or end of
the set. The value of ISW indicates the direction of in-
sertion: before KEYCUR or after KEYCUR (beginning or end
if KEYCUR = 0).

NAME LUSAGE TYPE DESCRIPTION
SDBPTR INPUT INTEGER SDB pointer to a set type
KEYCUR INPUT INTEGER Key of member relative to

which insertion is made,
or zero for beginning or end.
KEYNEW INPUT DBKEY Key of record to be inserted.
ISW INPUT INTEGER <0 insert before KEYCUR
(beginning if KEYCUR = 0)
>0 insert after KEYCUR
(end if KEYCUR = 0)
IRC OUTPUT INTEGER Error Code

- 0K

- Invalid member (KEYNEW) of given set.
- Invalid data base key (KEYNEW)

- No current owner of set

- Record already a member of set.

- Catastrophe

O =
O ~NONO

Current Owner of Set (Input)

-37-

CALLING
CONVENTION:

PURPOSE:

DESCRIPTION:

ARGUMENTS :

ERROR

CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM ROUTINE
NAME : ITMLOK

IDBPTR = ITMLOK (RDBPTR, NAMEL, NAME, NAMPTR)
Find an item which belongs to a record type.

Integer Function which returns the IDB pointer of the

item which belongs to the record type identified by the
given RDB pointer. The item is identified by the item
name, which is stored in the character array NAME at index
NAMPTR and length NAMEL. The name of each item in the re-
cord type is compared to the given name until the correct
item is found, or until all the items are searched, If
the item is not found, a value of zero is returned,

NAME USAGE TYPE DESCRIPTION

RDBPTR INPUT INTEGER RDB pointer to a record type

NAMEL INPUT INTEGER Length of the item name

NAME INPUT CHARACTER Array where item DDL names
are stored. . ‘

NAMPTR INPUT INTEGER Index into NAME where the
item name begins

IDBPTR OUTPUT INTEGER IDB pointer to an item type,
or zero if the item is not
found. ' ’

~-38-

CALLING
CONVENTION:

PURPOSE:

DESCRIPTION:

ARGUMENTS :

ERROR

CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM

MDBPTR = MEMLKR (SDBPTR, RDBPTR)

ROUTINE
NAME: MEMLKR

Look up an MDB of a set given an RDB pointer

Integer Function which returns the MDB pointer for the
record type which is a member of the set type identified

by the given SDB pointer.

The given RDB pointer is used

to find the record name length and index pointer, then
MEMLOK is referenced to find the MDB pointer. If the mem—-
ber is not found, a value of zero is returned.

NAME

SDBPTR
RDBPTIR
MDBPTR

USAGE

INPUT
INPUT
OUTPUT

TYPE

INTEGER
INTEGER
INTEGER

DESCRIPTION

SDB pointer to a set type

RDB pointer to a record type

MDB pointer to a member
control block.

CALLING
CONVENTION:

PURPOSE:

DESCRIPTION:

ARGUMENTS :

ERROR
CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM ROUTINE

NAME : MEMLOK

MDBPTR = MEMLOK (SDBPTR, NAMEL, NAME, NAMPTR)

Find an MDB of a given set

Integer Function which returans the MDB pointer of the

given member of the set identified by the given SDB pointer.
The member is identified by its record name, which is stored
in the character array NAME. The given member name is com-
pared to the record name associated with each MDB in the set.
If a pair of names match, the pointer to that MDB is returned;
otherwise a zero is returned.

NAME
SDBPTR
NAMEL
NAME
NAMPTR

MDBPTR

USAGE

INPUT
INPUT
INPUT
INPUT

OUTPUT

-40-

TYPE DESCRIPTION
INTEGER SDB pointer to a set type.
INTEGER Name length

CHARACTER Array where member DDL names
are stored.

INTEGER Index into NAME where the
member record name begins
INTEGER MDB pointer to a MDB or zero

CALLING
CONVENTION:

PURPOSE :

DESCRIPTION:

ARGUMENTS :

ERROR
CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM ROUTINE
NAME: MODPAG

CALL MODPAG
Setvthe page bits of the current page.

This routine calls the DBTAB routine PHSBTS with a page
bits value of 'l’.

NAME USAGE TYPE DESCRIPTION

none.

41~

CALLING
CONVENTION:

PURPOSE:

DESCRIPTION:

ARGUMENTS :

ERROR

CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM ROUTINE
NAME: MPT

MEMPA = MPT (SDBPTR, KEY)
Find the member pointer area for a member of a set.

Integer Function which returns the pointer to the member
pointers in the pointer area of the logical record iden-
tified by the given data base key. This record is assumed

to be a legal member record of the set type identified by the

given SDB pointer.

NAME USAGE TYPE DESCRIPTION

SDBPTR INPUT INTEGER SDB pointer to a set type

KEY INPUT DBKEY Key for a member of the set
MEMPA OUTPUT INTEGER Pointer to the member pointers

in the pointer area of the
member record.,

-4~

CALLING
CONVENTION:

PURPOSE:

DESCRIPTION:

ARGUMENTS :

ERROR
CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM

OWNPA = OPT (SDBPTR, KEY)

ROUTINE
NAME ; OPT

Find the owner pointer area for the owner of a set.

Integer Function which returns the pointer to the owner

pointers in the pointer area of the logical record identified
by the given data base key. i
legal owner record of the set type identified by the given

SDB pointer.

NAME USAGE
SDBPTR INPUT
KEY INPUT
OWNPA OUTPUT

-43-

z
|sal

INTEGER
DBKEY
INTEGER

This record is assumed to be a

DESCRIPTION

SDB pointer to a set type

Key for an owner of the set

Pointer to the owner pointers
in the pointer area cf the
owner record.

CALLING
CONVENTION:

PURPOSE:

DESCRIPTION:

ARGUMENTS :

ERROR
CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM

ODBPTR = OWNLKR (SDBPTR, RDBPTR)

ROUTINE
NAME: OWNLKR

Look up an ODB of a set given an RDB pointer.

Integer Function which returns the ODB pointer for the
record type which is an owner of the set type identified

by the given SDB pointer.

The given RDB pointer is used to

find the record name length and index pointer, then OWNLOK
is referenced to find the ODB pointer. If the owner is not
found, a value of zero is returned.

NAME USAGE
SDBPTR INPUT
RDBPTR INPUT
ODBPTR OUTPUT

bl

TYPE

INTEGER
INTEGER
INTEGER

DESCRIPTION

SDB pointer to a set type

RDB pointer to a record type

ODB pointer to owner control
block

CALLING
CONVENTION:

PURPOSE :

DESCRIPTION:

ARGUMENTS :

ERROR

CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM

ROUTINE
NAME: OWNLOK

ODBPTR = OWNLOK (SDBPTR, NAMEL, NAME, NAMPTR)

Find an ODB of a given set.

Integer Function which returns the ODB pointer of the given
owner of the set type identified by the given SDB pointer.
The owner is identified by its record name, which is stored

in the character array NAME.

The given owner name is compared

to the record name associated with each ODB in the set. If a
pair of names match, the pointer to that ODB is returned;
otherwise a value of zero is returned.

NAME
SDBPTR
NAMEL
NAME

NAMPTR

ODBPTR

USAGE TYPE
INPUT INTEGER
INPUT INTEGER
INPUT CHARACTER
INPUT INTEGER
OUTPUT INTEGER

45—~

DESCRIPTION

SDB pointer to a set type

Name length

Array where owner DDL names
are stored.

Index into NAME where :he owner
record name begins.

ODB pointer to an ODB or zero.

CALLING
CONVENTION:

PURPOSE:

DESCRIPTION:

ARGUMENTS :

ERROR
CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM

ROUTINE
NAME: RECLOK

RDBPTR = RECLOK (NAMEL, NAME, NAMPTR)

Find a record type in the record table.

Integer Function which returns the RDB pointer of the record
type identified by the given record name length and index.
The given record name is compared to the name of each record

type in the data base.

that record type is returned.
is returned.

NAME

NAMEL
NAME

NAMPTR

RDBPTR

USAGE

INPUT
INPUT

INPUT

OUTPUT

46~

TYPE

INTEGER
CHARACTER

INTEGER

INTEGER

If the names match, the pointer to
If not found, a value of zero

DESCRIPTION

Name length

Array where DDL record
names are stored

Index into NAME where the
record name begins.

RDB pointer to a record type,
or zero.

CALLING
CONVENTION:

PURPOSE :

DESCRIPTION:

ARGUMENTS :

ERROR
CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM ROUTINE
NAME : REMOVE

CALL REMOVE (SDBPTR, KEYMEM, KEYNXT, IRC)

Remove a single member of a set.

The member record identified by KEYMEM is removed from the
set identified by the given SDB pointer. First, the links
in the member record pointer area are set to null. Then the
member record is removed from the ownership of the owner of

that mem?er. The data base key of the next member of the set
(KEYNXT) is returned. If KEYMEM was the last member of the
set, a value of zero is returned in KEYNXT.

NAME USAGE TYPE DESCRIPTION

SDBPTR INPUT INTEGER SDB pointer to a set type

KEYMEM INPUT DBKEY Key of the member to be
removed.

KEYNXT QUTPUT DBKEY Key of the member which follows

KEYMEM in the set, (T Zero
if KEYMEM was last.
IRC OUTPUT INTEGER Error Code

0 -0K
12 - Record (KEYMEM) not a member of the set.
99 - Invalid links found.

47~

CALLING
CONVENTION:

PURPOSE:

DESCRIPTION:

ARGUMENTS :

ERROR

CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM ROUTINE
NAME: RPAGE

CALL RPAGE (PAGENO)
Read a page into core.

If the page with the given page number is not in core,
it is read from the DBF into core, replacing, if nec-
essary, another page already in.core. The page with the
given page number becomes the current page.

NAME USAGE TYPE DESCRIPTION

PAGENO INPUT INTEGER The page number of the desired
data base page.

-48-

ADBMS DOCUMENTATION FORM ROUTINE

NAME : SDBNXT
CALLING
CONVENTION: SDBPTR = SDBNXT (SDBPTR)
PURPOSE : Find the next SDB in the set table.
DESCRIPTION: Integer Punction which returns the SDB pointer of the set
which follows the set identified by the given SDB pointer.
1f SDBPTR has an input value of zero, the pointer to the
first SDB is returned. If SDBPTR points to’'the last set on
input, a value of zero is returned.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
SDBPTR UPDATED INTEGER INPUT: SDB pointer to a set
(or zero for the first
set)

OUTPUT: SDB pointer to the next
set (or zero if SDBPTR
was the last.)

ERROR
CONDITIONS :
CURRENCY
INDICATORS
USED :

-49-

CALLING
CONVENTION:

PURPOSE:

DESCRIPTION:

ARGUMENTS:

ADBMS DOCUMENTATION FORM ROUTINE
NAME; SEARCH

CALL SEARCH(SDBPTR, VALUE, DUPSW, KEY, ISW, IRC)
Find a member of a sorted set with a certain sort key value.

The sorted set identified by the given SDB.pointer is
searched for a member with a sort key equal to the given
sort key value (VALUE). The search begins with the current
member of the set (or with the last member if the ‘current
member is null) and continues until the appropriate member
is found, or until it is determined that there is no member
of the set with the given sort key value.

If more than 1 member with the given sort key value is
found, the search may continue until in order to find the
first or last of the duplicates, depending on the value of
DUPSW.

When the appropriate member is found, the data base key of
the member is returned in KEY. This member becomes the
current member of the set. If not found, the given sort
key value goes either before or after the member identified
by KEY, depending on the value of ISW. IRC is set to —1

VALUE may only be of type integer or character grray.

It is assumed that the set is sorted and that if has a
current owner. The search is linear.

NAME USAGE TYPE DESCRIPTION
SDBPTR INPUT INTEGER SDB pointer a set type (sorted
VALUE INPUT (see above) Sort key value to look for.
DUPSW INPUT INTEGER What to do with duplicates
-1 return key of first
dupliCate .

0 don't care
+1 return key of last du-

plicate.
KEY OUTPUT DBKEY Data base key of appropriate
member (see ISW)
ISW OUTPUT INTEGER Relative location of KEY to
VALUE.

-1 VALUE not found VALUE
goes before KEY (beginnin
if KEY = Q)

0 VALUE found KEY is membe

(see DUPSW)

+1 VALUE not found, VALUE
goes after KEY (end if
KEY = 0)

IRC OUTPUT INTEGER Error Code

-50-

ERRORS: -1 - Value not found (see ISW).
0- OK
8 — No current owner of set
99 - Set out of sequence

CURRENCY

INDICATORS

USED: Current Owner of Set (Irput)
Current Member of Set (Output)

-51-

CALLING
CONVENTION:

PURPOSE:

DESCRIPTION:

ARGUMENTS :

ERROR

CONDITIONS :

CURRENCY
INDICATORS
USED :

ADBMS DOCUMENTATION FORM

ROUTINE
NAME: SETLOK.

SDBPTR = SETLOK (NAMEL, NAME, NAMPTR)

Find a set type in the set table.

Integer Function which returns the SDB pointer of the set type
identified by the given set name length and index. The given

set name is compared to the name of each set in the data base.
If the names match, the pointer to that set type is returned.

If not found, a value of zero is returned.

NAME

NAMEL
NAME

NAMPTR

SDBPTR

USAGE

INPUT
INPUT

INPUT

OUTPUT

-52-

TYPE
INTEGER
CHARACTER
INTEGER

INTEGER

DESCRIPTION

Name length

Array where DDL set names are
stored.

Index into NAME where the set
name begins.

SDB pointer to a set type, or
zero.

ADBMS DOCUMENTATION FORM ROUTINE

NAME: WPAGE
CALLING
CONVENTION: CALL WPAGE
PURPOSE: Write the current page (if it has been modified)
DESCRIPTION: The page bits of the current page are checked. If non-zero,
the page is rewritten into the DBF.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
none.
ERROR
CONDITIONS :
CURRENCY
INDICATORS
USED :

-53-

ROUTINE

ADBMS DOCUMENTATION FORM
NAME ; ZMCHAN
CALLING
CONVENTION: CALL ZMCHAN (SDBPTR, KEY, IRC)

PURPOSE: Remove all the members from the owner of a set.

DESCRIPTION: Each member of the set identified by the given SDB pointer,
and which has as its owner the record identified by the given
data base key, is removed from the set.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION
' SDBPTR INPUT INTEGER SDB pointer to a set
KEY INPUT DBKEY Key of an owner of the set
IRC OUTPUT INTEGER Error code
ERROR
CONDITIONS : 00 - OK
99 - Tnvalid links found in member pointers.

CURRENCY
INDICATORS

USED :

54—

7.3

7.3.1

7.3.2

DBTAB

The DBTAB routines are used to reference and update the seven types of
control blocks described in &ections 3 and 4. They can be divided into
two groups: routines that reference particular fields in the control
blocks, ahd routines that change particular fields.

The routines that only reference the data base control blocks are all
FORTRAN integer functions. The first three letters of the routine name
identify the control block they use, and the last three letters identify
the particular field. For example, PHIBTS is an integer function which
returns the page bits field of a given PHI. Note that the function name
is the same as the name of the field that it references.

All the routines that change fields in the control blocks are FORTRAN
subroutines. Here again, the subroutine name is the same as the name of
the field it changes, EXCEPT that the third letter of the name is an 's',
i.e., the subroutine PHSBTS sets the page bits for a given PHI.

DBTAB Subprogram Descriptions Format

The DBTAB subprogram description format is the same as that described in
section 7.2.1.

DBTAB Subprogram Descriptions

The following routines are available in DBTAB:

Control Block Function Subroutine

IDB: IDBTYP
IDBBTS
TDBMLI
IDBMVD
IDBDDP
IDBDSP
IDBMTIV

MDB: MDBDSP

ODB: ODBDSP

PHI: PHIPNM
PHIMHS PHSMHS
PHIHCH PHSHCH
PHIBTS PHSBTS

PRH: PRHLEN PRSLEN

PRHLNH PRSLNH
PKHRDB PRSRDB

-55-

Control Block Function Subroutine

RDB: RDBNMP
RDBNML
RDBCUR RDSCUR
RDBITM
RDBMLE
RDBDAL
RD BOWN
RDBMEM
RDBBTS
RDBDIS

SDB: SDBCRO SDSCRO
SDBCRM SDSCRM
SDBSNP
SDBSNL
SDBSKM
SDBOBT
SDBSKT

-56~

ADBMS DOCUMENTATION FORM ROUTINE

NAME; IDBTYP
CALLING
CONVENTION: I = IDBTYP(IDBPTR)
PURPOSE: Integer Function which returns the item type from the IDB
identified by the given IDB pointer.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
IDBPTR INPUT INTEGER IDB pointer to an item-type
I OUTPUT INTEGER Item Type: 1. or 2. Integer
4 or 8 Real
16 Binary
32 Data Base Key
64 Logical

128 Character

~57-

ADBMS DOCUMENTATION FORM ROUTINE

NAME; IDBBTS

CALLING
CONVENTION: I = IDBBTS (IDBPTR)
PURPOSE: Integer Function which returns the item bits from the

IDB identified by the given IDB pointer.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION

IDBPTR INPUT INTEGER IDB pointer ta an item type.

I OUTPUT INTEGER Item Bits: 1 Single item

2 Fixed item
4 Variable item
8 Depended on ite

-58~

ADBMS DOCUMENTATION FORM ROUTINE

NAME : IDBMLI
CALLING
CONVENTION: I = IDBMLI (IDBPTR)
PURPOSE : Integer Function which returns the value of the maximum
length of the item from the IDB identified by the given
IDB pointer.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
IDBPTR INPUT - INTEGER IDB pointer to an item-type
I OUTPUT INTEGER Maximum length of the item
(words)

-59-

ADBMS DOCUMENTATION FORM ROUTINE

NAME: IDBMVD

CALLING

CONVENTION: I = IDBMVD (IDBPTR)

PURPOSE: Integer Function which returns for a repeating item the max-
imum value of the item's depending item. This value is taken
from the IDB identified by the given IDB pointer.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION

IDBPTR INPUT INTEGER IDB pointer to an item type.
I OUTPUT INTEGER Maximum value of depending ite

-60~

ADBMS DOCUMENTATION FORM ROUTINE

NAME: IDBDDP

CALLING

CONVENTION: I = IDBDDP (IDBPTR)

PURPOSE: Integer Function which returns for a repeating item the
displacement (into the data area) of the item's depending
item. This displacement is taken form the IDB identified
by the given IDB pointer.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION

IDBPTR INPUT INTEGER IDB pointer to an item-type
I OUTPUT INTEGER Displacement of the depending

item (words).

-61-

ADBMS DOCUMENTATION FORM ROUTINE

NAME: IDBDSP
CALLING .
CONVENTION: I = IDBDSP (IDBPTR)
PURPOSE : Integer Function which returns the item displacement
(into the data area). This displacement is taken from the
IDB identified by the given IDB pointer.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
IDBPTR INPUT INTEGER IDB pointer to an item-type
I OUTPUT INTEGER Displacement of the item (wor«

-62~

ADBMS DOCUMENTATION FORM ROUTINE

NAME: IDBTMV

CALLING
CONVENTION: I = IDBTMV (IDBPTR)
PURPOSE: Integer Function which returns the value of the item type

modifier from the IDB identified by the given IDB pointer.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION

IDBPTR INPUT INTEGER IDB pointer to an item-type
I OUTPUT INTEGER Item type modifier.

-63-

ADBMS DOCUMENTATION FORM ROUTINE

NAME ; MDBDSP

CALLING

CONVENTION: I = MDBDSP (MDBPTR)

PURPOSE : Integer Functilon which returns the displacement (into the
pointer area) of the member pointers from the MDB iden~-
tified by the given MDB pointer.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION

MDBPTR INPUT INTEGER MDB pointer to a member
control block
I OUTPUT INTEGER Displacement of the member

pointers (words)

~64~

ADBMS DOCUMENTATION FORM ROUTINE

NAME: ODBDSP

CALLING

CONVENTION: I = ODBDSP (ODBPTR)

PURPOSE : Integer Function which returns the displacement (into the
pointer area) of the owner pointers from the ODB identified
by the given ODB pointer.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION
ODBPTR INPUT INTEGER ODB pointer to an owner

control block
I OUTPUT INTEGER Displacement of the owner

pointers (words)

-5~

ROUTINE

ADBMS DOCUMENTATION FORM
NAME; PHIPNM
CALLING
CONVENTION: I = PHIPNM (ARG)
PURPOSE: Integer Function which returns the page number of the
current page.
Note that ARG should always contain the value 'l1'
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
ARG INPUT INTEGER A dummy argument which has
the value '1'.
I OUTPUT INTEGER Page number of the current
’ page.

-66-

ADBMS DOCUMENTATION FORM ROUTINE
NAME : PHIMHS

CALLING
CONVENTION: I = PHIMHS (ARG)

Integer Function which returns the value for the maximum hole

PURPOSE: .
size of the current page.
Note that ARG should always contain the value 'l'.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
ARG INPUT INTEGER Dummy argument - value always
'1'.
I OUTPUT INTEGER Maximum hole size of the cur-
rent page.

-67-

ADBMS DOCUMENTATION FORM ROUTINE

NAME: PHIHCH

CALLING

CONVENTION: I = PHIHCH (ARG)

PURPOSE: Integer Function which returns, for the current page, the
displacement on that page of the first hole on the hole
chain. If there are no holes, a value of zero is returned.
Note that ARG should always contain the value 'l'.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION

ARG INPUT INTEGER Dummy argument - value always
1.
I OUTPUT INTEGER Displacement of first hole on
the current page (words),
or zero.

-68~

ADBMS DOCUMENTATION FORM ROUTINE

NAME: PHIBTS
CALLING
CONVENTION: I = PHIBTS (ARG)
PURPOSE: Integer Function which returns the value of the page bits
for the current page.
Note that ARG should always contain a value of 'l'.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
ARG INPUT INTEGER Dummy Argument - value always
1.
I OUTPUT INTEGER Page bits of current page.

-59-

ADBMS DOCUMENTATION FORM ROUTINE

NAME ; PHSMHS

CALLING
CONVENTION: CALL PHSMHS (ARG, MHS)
PURPOSE : Set the value of the maximum hole size of the current page

to the given hole size. 1If there are no holes, the maximum

hole size should be set to zero.

Note that ARG should always contain a value of '1'.
ARGUMENTS : ~ NAME USAGE ~ TYPE DESCRIPTION

ARG INPUT INTEGER Dummy Argument - value always

"1'.
MHS INPUT INTEGER Maximum hole size or zero.

-70-

ADBMS DOCUMENTATION FORM ROUTINE

NAME ; PHSHCH
CALLING
CONVENTION: CALL PHSHCH(ARG, HCH)
PURPOSE: Set the PHIHCH field (displacement of the first hole on the
hole chain) of the current page to the given displacement.
If there is no hole, the PHIHCH field should be set to zero.
Note that ARG should always contain a value of '1'.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
ARG INPUT INTEGER Dummy Argument - value always
. |1| .
HCH INPUT INTEGER Displacement of the first

hole (words), or zero.

-71-

ADBMS DOCUMENTATION FORM ROUTINE
NAME : PHSBTS

CALLING
CONVENTION: CALL PHSBTS (ARG, BTS)

PURPOSE : Set the PHIBTS field (page bits) of the current page to the
given page bits value.
Note that ARG should always contain the value 'l'.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
ARG INPUT INTEGER Dummy Argument - value is 'l'.
I INPUT INTEGER Page bits

-72-

ADBMS DOCUMENTATION FORM ROUTINE

NAME: PRHLEN

CALLING
CONVENTION: I = PRHLEN(PRHPTR)
PURPOSE : Integer Function which returns the logical record length

from the PRH identified by the given PRH pointer. The

length of the record may include up to 2 extra words

which follow the record as padding (see section 5.2).
ARGUMENTS NAME USAGE TYPE DESCRIPTION

PRHPTR INPUT INTEGER PRH pointer to a logical record
I OUTPUT INTEGER Logical record length (words)

-73=

CALLING

CONVENTION:

PURPOSE:

ARGUMENTS ¢

ADBMS DOCUMENTATION FORM ROUTINE
NAME ; PRHLNH

PRHPT2 = PRHLNH(PRHPT1)

Integer Function which returns the pointer to the hole

on the hole chain which follows the current hole. The given
PRH pointer (PRHPT1) points to the current hole on the
current page. If the current hole is the last hole on the
chain, the value returned is zero.

NAME USAGE TYPE DESCRIPTION
PRHPT1 INPUT INTEGER PRH pointer to the current
: hole. '
PRHPT2 OUTPUT INTEGER PRH pointer to the next hole,
or zero.

. A

ADBMS DOCUMENTATION FORM ROUTINE

NAME: PRHRDB
CALLING
CONVENTION: RDBPTR = PRHRDB (PRHPTR)
PURPOSE: Integer Function which returns the RDB pointer from the
PRH identified by the given PRH pointer.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION

PRHPTR INPUT INTEGER PRH pointer to a logical record

RDBPTR OUTPUT INTEGER RDB pointer to a record type

-75=

ADBMS DOCUMENTATION FORM ROUTINE
NAME: PRSLEN

CALLING
CONVENTION: CALL PRSLEN(PRHPTR, LEN)
PURPOSE : Set the PRHLEN field (the logical record length)
in the PRH identified by the given PRH pointer to the
given record length.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
PRHPTR INPUT INTEGER PRH pointer to a logical recorc
LEN INPUT INTEGER Length of the record (words)

-76-

ADBMS DOCUMENTATION FORM ROUTINE

NAME ; PRSLNH

CALLING
CONVENTION: CALL PRSLNH(PRHPTR, NHPTR)

PURPOSE : Set the PRHLNH field (link to the next hole) in the
PRH identified by the given PRH pointer to the given
data base hole pointer, which points to the PRH of the
hole. If the currént hole is the last hole on the chain,
the link to the next hole should be set to zero.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION

PRHPTR INPUT INTEGER

PRH pointer to a data b
NHPTR INPUT INTEGER e

PRH pointer to the next hole
on the hole chain, or zero.

-77-

ADBMS DOCUMENTATION FORM : ROUTINE

NAME; PRSRDB
CALLING
CONVENTION: CALL PRSRDB(PRHPTR, RDBPTR)
PURPOSE : Set the PRHRDB field (RDB pointer) in the PRH identified

by the given PRH pointer to the given RDB pointer. This
RDB pointer should point to the record type of which the
logical record, identified by the given PRH pointer, is an

nccurrence.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
PRHPTR INPUT INTEGER PRH pointer to a logical
record
RDBPTR INPUT INTEGER RDB pointer to a record type

-78-

ADBMS DOCUMENTATION FORM ROUTINE
NAME : RDBNMP

CALLING

CONVENTION: I = RDBNMP (RDBPTR)

PURPOSE : Integer Function which returns the record name indek pointer
from the RDB identified by the given RDB pointer.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION

RDBPTR INPUT INTEGER RDB pointer to a record type
I OUTPUT INTEGER Record name index pointer
into NAMES,

-79-

ADBMS DOCUMENTATION FORM ROUTINE

NAME RDBRML

CALLING
CONVENTION: | - RDBNML(RDBPTR)
PURPOSE : Integer Function which returns the record name length

from the RDB identified by the given RDB pointer.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION

RDBPTR INPUT INTEGER RDB pointer to a record type
I OUTPUT INTEGER Record name length (words)

-80-

ADBMS DOCUMENTATION FORM ROUTINE

NAME: RDBCUR
CALLING
CONVENTION: KEY = RDBCUR(RDBPTR)
PURPOSE: Integer Function which returns the value of the data base key

of the current record »f the record type identified by the
given RDB pointer. If there is no current record, a value of
zero is returned.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION
RDBPTR INPUT INTEGER RDB pointer to a record type
KEY OUTPUT DBKEY Data base key of the current

record, or zero.

-81~

ADBMS DOCUMENTATION FORM ROUTINE

NAME : RDBITM

CALLING :
CONVENTION: I = RDBITM(RDBPTR)
PURPOSE: Integer Function which returns the value of the number of
items in the record type identified by the given RDB pointer.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
RDBPTR INPUT INTEGER RDB pointer to a record type.
I OUTPUT INTEGER Number of items in the record
type.

-82-

ADBMS DOCUMENTATION FORM ROUTINE

NAME; RDBMLR
CALLING :
CONVENTION: I = RDBMLR(RDBPTR)
PURPOSE: Integer Function which returns the value of the maximum

length of the data base record from the RDB identified
by the given RDB pointer. (See Section 5.2.)

ARGUMENTS NAME USAGE TYPE DESCRIPTION
RDBPTR INPUT INTEGER RDB pointer to a record type
I OUTPUT INTEGER Maximum length of the record

type (words).

-83-

ADBMS DOCUMENTATION FORM ROUTINE

NAME: RDBDAL
CALLING
CONVENTION: 1 = RDBDAL(RDBPTR)
PURPOSE : Integer Function.which returns the value of the logical
record data area length from the RDB identified by the
given RDB pointer.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
RDBPTR INPUT INTEGER RDB pointer to a record type.
I OUTPUT INTEGER Data area length (words).

-84=

ADBMS DOCUMENTATION FORM ROUTINE

NAME: RDBOWN
CALLING
CONVENTION: I = RDBOWN(RDBPTR)
PURPOSE: Integer Function which returns the value for the number of sets
of which the record type identified by the given RDB pointer
is a legal owner.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
RDBPTR INPUT INTEGER RDB pointer to a record type.

I OUTPUT INTEGER Number of sets of which record
' : type is an owner.

-85~

ADBMS DOCUMENTATION FORM ROUTINE
NAME ; RDBMEM

CALLING
CONVENTION: I = RDBMEM(RDBPTR)
PURPOSE: Integer Function which returns the value for the number
of sets of which the record type identified by the given
RDB pointer is a legal member.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
RDBPTR INPUT INTEGER RDB pointer to a record type
I OUTPUT INTEGER Number of sets of which record

type is a member.

-86-

ADBMS DOCUMENTATION FORM ROUTINE

NAME: RDBBTS
CALLING
CONVENTION: 1 = RDBBTS (RDBPTR)
PURPOSE: Integer Function which returns the value of the record
bits from the RDB identified by the given RDB pointer.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
RDBPTR INPUT INTEGER RDB pointer to a record type
I OUTPUT INTEGER Record bits: 1 - fixed length
2 - variable
length

4 - sysvem record

~87-

ADBMS DOCUMENTATION FORM ROUTINE

NAME : RDBDIS
CALLING
CONVENTION: I = RDBDIS(RDBPTR)
PURPOSE : Integer Function which returns the value of the displacement

(into the logical record) of the data area for the record
type identified by the given RDB pointer.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION
RDBPTR INPUT INTEGER RDB pointer to a record type.
I OUTPUT INTEGER Displacement of the data area

(words).

-~88~

ADBMS DOCUMENTATION FORM ROUTINE

NAME; RDSCUR

CALLING
CONVENTION: CALL RDSCUR(RDBPTR, KEY)
PURPOSE : Set the current record indicator of the record type

identified by the given RDB pointer to the given data base

key value. The current record indicator is set to null

by calling this routine with a data base key value of zero.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION

RDBPTR INPUT INTEGER RDB pointer to a record type

KEY INPUT DBKEY Data base key of the current

record, or zero.

~89-

ADBMS DOCUMENTATION FORM

ROUTINE
NAME: SDBCRO

CALLING

CONVENTION: KEY = SDBCRO(SDBPTR)

PURPOSE: Integer Function which returns the value of the data base
key of the current owner of the set type identified by the
given SDB pointer. If the current owner indicator of this
set type is null, a value of zero is returned.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION
SDBPTR INPUT INTEGER SDB pointer to a set type.
KEY OUTPUT DBKEY Key of the current owner,
or zero.

-90-

ADBMS DOCUMENTATION FORM ROUTINE

NAME : SDBCRM

CALLING

CONVENTION: KEY = SDBCRM(SDBPTR)

PURPOSE : Integer Function which returns the value of the data base
key of the current member of the set type identified by the
given SDB pointer. 1If there is no current member, a value
of zero is returned.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION

SDBPTR INPUT INTEGER SDB pointer to a set type
KEY OUTPUT DBKEY Key of the current member,
or zero.

~91-

ADBMS DOCUMENTATION FORM ROUTINE

NAME : SDBSNP
CALLING
CONVENTION: I = SDBSNP(SDBPTR)
PURPOSE: Integer Function which returns the sort key name index pointer
from the SDB identified by the given SDB pointer.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
SDBPTR INPUT INTEGER SDB pointer to a set type
I OUTPUT INTEGER Sort key name index pointer
into NAMES,

-Q2-

ADBMS DOCUMENTATION FORM ROUTINE
NAME: SDBSNL

CALLING
CONVENTION: I = SDBSNL(SDBPTR)
PURPOSE : Integer Function which returns the sort key name length
from the SDB identified by the given SDB pointer.
ARGUMENTS NAME USAGE TYPE DESCRIPTION
SDBPTR INPUT INTEGER SDB pointer to a set type
I OUTPUT INTEGER Sort key name length

-93-

ADBMS DOCUMENTATION FORM ROUTINE

NAME: SDBSKM
CALLING
CONVENTION: I = SDBSKM(SDBPTR)
PURPOSE: Integer Function which returns the value of the sort key type

modifier from the SDB identified by the given SDB pointer.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION
SDBPTR INPUT INTEGER SDB pointer to a set type
I OUTPUT INTEGER Sort key type modifier

-94-

ADBMS DOCUMENTATION FORM ROUTINE

NAME : SDBOBT
CALLING
CONVENTION: I = SDBOBT(SDBPTR)
PURPOSE : Integer Function which returns the value of the order bits
from the SDB identified by the given SDB pointer.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
SDBPTR INPUT INTEGER SDB pointer to a set type
I OUTPUT INTEGER Order bits: 1 FIFO
2 LIFO
4 NEXT
8 PRIOR

16 IMMATERIAL

32 SORTED ON ...

-95-

ADBMS DOCUMENTATION FORM ROUTINE

NAME: SDBSKT
CALLING
CONVENTION: I = SDBSKT(SDBPTR)
PURPOSE: Integer Function which returns the sort key type from the
SDB identified by the given SDB pointer.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
SDBPTR INPUT INTEGER SDB pointer to a set type
I OUTPUT INTEGER Sort key type (see IDBTYP)

-96~

ADBMS DOCUMENTATION FORM ROUTINE

NAME: SDSCRO

CALLING

CONVENTION: CALL SDSCRO(SDBPTR, KEY)

PURPOSE : Set the current owner indicator of the set type identified by
the given SDB pointer to the given data base key value. The
current owner indicator is set to null by calling this routine
with a data base key value of zero.

ARGUMENTS : NAME USAGE TYPE DESCRIPTION
SDBPTR INPUT INTEGER SDB pointer to a set type
KEY INPUT DBKEY Key of the current owner,

or zero.

-97-

- ADBMS DOCUMENTATION FORM ROUTINE

NAME: SDSCRM
CALLING
CONVENTION: CALL SDSCRM(SDBPTR, KEY)
PURPOSE: Set the current member indicator of the set type identified
by the given SDB pointer to the given data base key value.
The current member indicator is set to null by calling
this routine with a data base key value of zero.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
SDBPTR INPUT INTEGER SDB pointer to a set type
KEY INPUT DBKEY Key of current member, or
zero.

~98-

7.4

4.1

7.4.2

DBRAND

There are 5 subroutines located in DBRAND, whose function is to provide
random input/output between main memory and the DBF.

A random I/0 file must be opened before it can be accessed by the user
pﬁogram; this is done with RANDOP. To insure that the data base has been
fully updated, the file must also be closed before the user program ends,
using RANDCL. If this is not done, the data base can easily become incon-
sistent.

The other three routines, RANDRD, RANDRW, and RANDWT, provide facilities to
read, rewrite, and write specific pages of the data base.

DBRAND Subroutine Description Format

See section 7.2.1

DBRAND Subroutine Descriptions

The following routines are available in DBRAND:

RANDCL
RANDOP
RANDRD
RANDRW
RANDWT

~99-~

ADBMS DOCUMENTATION FORM ROUTINE
NAME: gpanDCL

CALLING
CONVENTION: CALL RANDCL(FDESG)

PURPOSE: To close a file opened for random I/O.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
FDESG INPUT INTEGER File designator returned by
RANDOP

-100-

ADBMS DOCUMENTATION FORM ROUTINE
NAME : RANDOP

CALLING
CONVENTION: CALL RANDOP(LIONUM, FDESG)
PURPOSE : To open a file for random I/0.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
LIONUM INPUT INTEGER Logical I/0 unit number to
. use for the DBF.
FDESG OUTPUT INTEGER File designator used by

other DBRAND routines.

-101-

ADBMS DOCUMENTATION FORM ROUTINE

NAME; RANDRD
CALLING
CONVENTION: CALL RANDRD(FDESG, PAGENO, BUFFER)
PURPOSE: Read a given page from a random I/0 file into a given buffer.
ARGUMENTS NAME USAGE TYPE DESCRIPTION

FDESG INPUT INTEGER File designator returned by

RANDOP.
PAGENO INPUT INTEGER Page number to read.
BUFFER OUTPUT INTEGER Array dimensioned to the page

size (in words), into which
the page is read.

~102~

ADBMS DOCUMENTATION FORM

ROUTINE

NAME; RANDRW
CALLING
CONVENTION: CALL RANDRW(FDESG, PAGENO, BUFFER)
PURPOSE : Rewrite a given page into a random I/0 file from a buffer.
‘This page is assumed to exist in the DBF.
ARGUMENTS : NAME USAGE TYPE DESCRIPTION
FDESG INPUT INTEGER File designator returned by
by RANDOP
PAGENO INPUT INTEGER Page number tQ be rewriiten
BUFFER INPUT INTEGER Array dimensioned to the

~-103~-

page size (in words), ‘rom
which the page is rewritten.

ADBMS DOCUMENTATION FORM ROUTINE

NAME ; RANDWT
CALLING
CONVENTION: CALI, RANDWT (FDESG, PAGENO; BUFFER)
PURPOSE: Write a given page into a random 1/0 file from a buffer.
This page is a new page being added to the DBF.
ARGUMENTS : NAME USAGE - TYPE DESCRIPTION
FDESG INPUT INTEGER File designator returned by
RANDOP.
PAGENO INPUT INTEGER Page number to be written
BUFFER INPUT INTEGER Array dimensioned to the page

gsize (in words) from which
the page is written.

-104~

5.1

5.2

.5.3

5.4

5.5

Block Data for the DBCS

A block data must be supplied for the DBCS, to initialize certain constants
and user supplied values. Figure 7.5 is an example block data for an IBM
System 360/370 installation. The informaticon in common areas BLENS and DBSWS
are dependent on the data base system, and should not be changed. The infor-
mation in areas MACHIN and PAGINF is installation dependent, and should be
adjusted accordingly.

MACHIN

The number of characters per word for the particular machine being used is
supplied in the variable NCW, located in named common MACHIN.

BLENS

Common BLENS contains the lengths of the control blocks in the data base.
The block sizes remain invariant throughout the data base.

PAGINF

Certain information must be supplied by for the DBCS page management
system. This includes values for NPAGES, PAGSIZ, MPICOR, and an initial
value for CURPNO. The array PREF should be dimensioned here, to the value
of MPICOR.

PAGE

The common area PAGE, although not initialized, is included here to show
the size of the page buffer. PAGE should be dimensioned to a value of
PAGSIZ*MPICOR.

DBSWS

The information found in common DBSWS is used by the routines in DBUSER
(see section 7.1.1 of this working paper). OPENSW is a logical switch
which indicates whether the data base has been opened or not. LEVEL is a
counter used by the DBCS to return error information to the user.

DBCS Dependence upon routine library SLIB

The routines in DBUSER, DBLOW, and DBTAB are all written in machine inde-
pendent FORTRAN. To facilitate this independence, DBCS utilizes a machine
dependent routine library, SLIB. The SLIB routines for an instaliation are
all written in the machine language of that particular computer; they are
documented in ISDOS Working Paper No. 111, May 1975.

The following is a list of routines located in SLIB.

SUBROUTINES INTEGER FUNCTIONS
CPUSEC IAND
GETDAT IBITS
GETTIM IBYTE
ITOC [BYTEL
LEFTI ICNC1
RIGHTI ICSC1
SBITS THASH
SMOVE IOR
ISCOMP
ISHFTL
ISHFTR
LEFT

RIGHT

e AT S

#
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
#
#

$list -blkd

WN - OV ~NOoOWUMdwWwN —

— — s —

END OF FILE

ata
BLOCK DATA

C
COMMON/MACHIN/NCH
INTEGER NCwW

COMMOM/BLENS /RDBLEN, IDBLEN,SDBLEN,ODBLEN, MDBLEN,
& PHILEN,PRHLEN

INTEGER RDBLEN,IDBLEN,SDBLEN,ODBLEN.MDBLEN,
& PHILEN,PRHLEN

COMMON/PAGINF/NPAGES,PAGSIZ,FILE,CURPNO,MPICOR,NPICOR,NCU}
& PHICUR,PREF(16)

INTEGER NPAGES,PAGSIZ,FILE.CURPNO.MPICOR,NPICOR,NCUR,
& PHICUR,PREF

COMMON/PAGE /PAGE(16384)
INTEGER PAGE

COMMON/DBSWS /OPENSW,.LEVEL

INTEGER LEVEL

LOGICAL QOPENSHW
C ;
Ceveooceseossesooanesassosesoseosossonososcssocsncsasossscascnnsas
C

DATA NCW/4/

C

DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA

DATA
DATA

END

RDBLEN/6/
IDBLEN/S/
SDBLEN/ T/
ODBLEN/2/
MDBLEN/2/
PHILEN/2/
PRHLEN/1/

NPAGES/ 2/
PAGSIZ/10
MPICOR/16
CURPNO/Q/

OPENSW/ .F
LEVEL/0/

24/
/

ALSE./

FIGURE 7.5

~-106-

8. DATA BASE UTILITY PROGRAMS

ADBMS uses three utility programs to generate, initialize, and report on
data bases. All three programs are written totally in FORTRAN. The re-
mainder of this section describes each program in detail.

8.1 DDLA (Data Description Language Analyzer)

This program accepts a data base description (DDL) as input and generates
three types of output: an analysis of the data base, in the form of a

printed summary of the DDL tables; a FORTRAN BLOCK DATA source subprogram
which is to be used in conjunction with the DBCS in a user's program; and

the DDL tables for the data base (DBTF).

The program can be divided into four logical sections:

Input of the DDL and generation of the DDL tables
Summary Report for the DDL tables

Generation and output of the BLOCK DATA

Output of the DDL tables into the DBTF

8.1.1 Input of the DDL and generation of the DDL tables

DDLA begins by initializing several variables, and by setting up the RDB for
the SYSTEM record. It then enters a loop which consists of:

Reading an input line (form the DDL file)

Echoing the input line

Determining what type DDL card the input line is (see ISDOS
Working Paper No. 88)

Setting up the DDL tables for that card type

RECTAB, SETTAB, and NAMES are all set up in this way. The information
from the DDL is stored in the tables in the appropriate fields. Once the
entire DDL has been read in and stored, DDLA goes back over RECTAB and
SETTAB to compute any remaining data that needs to be supplied. DDLA
computes for each RDB the maximum record length of the record type, and
the displacement of the data area. DDLA also computes the displacement
(into the physical record) of each item in the record type, and of the
depending item, if one exists.

For each SDB in the set table, DDLA sets up the sort key (if the set is
sorted), and if SYSTEM is a legal owner of the set, the current owner is
set to the SYSTEM record.

8.1.2 Summary Report

The next step that DDLA performs is to print a summary report of RECTAB
and SETTAB. The report consists of one section for every record type,
and one section for every sec type. The following table shows which

-107-

information is printed for each record type. (The name of the control
block data field is indicated here, when appropriate. (See section 3.1

of this working paper).

For each RDB:

RECORD NAME (RDBNMP, RDBNML)
POINTER INTO RECTAB OF RDB
NUMBER OF ITEMS (RDBMLR)
MAX LENGTH (RDBMLR)

POINTER AREA LENGTH (RDBPAL)
DATA AREA LENGTH (RDBDAL)
DATA DISPLACEMENT (RDBDIS)
RECORD BITS (RDBBTS)

NUMBER OF SETS OF WHICH THIS RECORD TYPE IS A
LEGAL OWNER (RDBOWN)

For each set of which this record is a legal owner:
SET NAME (SDBNMP, SDBNML)
DISP OF OWNER POINTERS (ODBDSP)
SET ORDERING (SDBOBT)
SORT KEY (SDBSNP, SDBSNL)
POINTER INTO SETTAB OF ODB

NUMBER OF SETS OF WHICH THIS RECORD TYPE IS A LEGAL
MEMBER (RDBMEM)

For each set of which this record is a legal member:

SET NAME (SDBNMP, SDBNML)

DISP OF MEMBER POINTERS (MDBDSP)
SET ORDERING (SDBOBT)

SORT KEY (SDBSNP, SDBSNL)
POINTER INTO SETTAB OF MDB

For each item that belongs to this record type:

ITEM NAME (IDBNMP, IDBNML)

ITEM TYPE (IDBTYP)

ITEM MODIFIER VALUE (IDBIMV)

ITEM BITS (IDBBTS)

POINTER INTO RECTAB OF IDB

MAX LENGTH OF ITEM (IDBMLI)

DISP OF ITEM (IDBDSP)

MAX VALUE OF DEPENDING ITEM (IDBMVD)
DISP OF DEPENDING ITEM (IDBDDP)

The next‘ table shows which information is printed for each set type.
(Again, the control block data field name is given here, when appropriate.)

-108-

8.1.3

8.1.4

8.1.5

8.2

For each SDB:

SET NAME (SDBNMP, SDBNML)
POINTER INTO SETTAB OF SDB
SET ORDERING (SDBOBT)

SORT KEY NAME (SDBSNP, SDBSNL)
SORT KEY LENGTH (SDBSKL)

NUMBER OF POSSIBLE OWNER RECORD TYPES (SDBNMO)

For each possible owner record type:
OWNER NAME (RDBNMP, RDBNML)
DISP OF OWNER POINTERS (ODBDSP)
POINTER INTO SETTAB OF ODB

NUMBER OF POSSIBLE MEMBER RECORD TYPES (SDBNMM)
For each possible member record type:

MEMBER NAME (RDBNMP, RDBNML)

DISP OF MEMBER POINTERS (MDBDSP)

POINTER INTO SETTAB OF MDB

Generation and output of BLOCK DATA

DDLA next generates a FORTRAN BLOCK DATA subprogram, which defines the
storage area needed for the data base tables. The FORTRAN source code
is generated for the common areas RECTAB, SETTAB, and NAMES, a?d the
length of the corresponding vectors are initialized in the variables
RECLEN, SETLEN, and NAMLEN. Note that values for RECLEN and SETLEN are
in words, but the value of NAMLEN is in bytes.

The BLOCK DATA may be punched onto cards, or can be stored in a file.
The statements are syntactically correct and complete, and can be compiled

without alteration.

Output of the data base tables

The last procedure DDLA performs is to write out the data base tables, which
it has generated, into the DBTF. See section 3.4 of this working paper
for a description of the DBTF structure.

Logical input/output unit numbers for DDLA

Currently, the following FORTRAN logical I/0 unit numbers are used for the
indicated purposes:

5 - Input of the DDL

6 - Printed Output. This includes the echo of the DDL input,
and the DDL analysis summary report.

7 - FORTRAN BLOCK DATA

8 -~ DBTF (the DDL tables)

DBIN (Data Base Initializer)

DBIN uses the DBTF generated by DDLA to initialize a data base. The size
of the initialized data base is determined by the NPAGES card in the DDL.

-109-

Each page 1is first completely filled with zeroes. DBIN sets up the PHI on
each page with the correct page and hole information. In addition, one oc-

currence of the SYSTEM record is placed at the beginning of the first page.
Each page is set up and then written out into the DBF using the DBRAND routine

RANDWT .
The following FORTRAN logical I/0 unit. numbers are used by DBIN:

2 - Qutput of the DBF
3 - Input of the DBTF

8.3 DBSM (Data Base Summary)

DBSM is a program which is executed using a populated data base. It
produces three types of summaries:

- Page Summary
- Page Summary Statistics
~ Record Summary

8.3.1 Page Summary

DBSM first prints out a summary for each page, giving the following in-
formation:

PAGE NUMBER |
MAXIMUM HOLE SIZE

NUMBER OF HOLES

TOTAL SPACE USED BY HOLES
PERCENTAGE SPACE USED BY HOLES
NUMBER OF RECORDS

TOTAL SPACE USED BY RECORDS
PERCENTAGE SPACE USED BY RECORDS

8.3.2 Page Summary Statistics

Following the page summary, DBSM prints out a similar set of information
for the data base as a whole. This includes the following:

PAGE SIZE
NUMBER OF PAGES

TOTAL NUMBER OF HOLES
TOTAL HOLE SIZE
TOTAL PERCENTAGE OF HOLES

TOTAL NUMBER OF RECORDS
TOTAL RECORD SIZE
TOTAL PERCENTAGE OF RECORDS

8.3.3 Record Summary

The third set of summary information produced by DBSM is a summary of
space used by each record type in the data base. The following informa-
tion is given for each record type:

-110-

RECORD NAME

SIZE OF POINTER AREA

SIZE OF DATA AREA

TOTAL SIZE OF PHYSICAL RECORD
NUMBER OF OCCURRENCES

TOTAL SPACE USED

PERCENTAGE SPACE USED

8.3.4 Logical Input/Output Unit Numbers Used by DBSM

The following FORTRAN logical I/0 unit numbers are used by DBSM:
2 - Input of DBF

3 - Input of DBTF
6 - Output of printed summaries

-111-

GLOSSARY

ADBMS - The data base management system described by this working paper

Control block - An area of storage in the DBF or DBTF whose fields contain
pointers or control information for the data base management system.

CURPNO - A FORTRAN variable, whose value is the data base page number of
the current page.

Current member of a set - A conceptual pointer to one particular member
of a set. Each set in the data base has a current member, which
may be set to null.

Current owner of a set - A.conceptual pointer to one particular owner of
a set. Each set in the data base has a current owner, which may be
be set to null.

Current page - A conceptual pointer to one particular page in the data
base which is in main memory.

Current record of a record type - A conceptual pointer to one particular
record occurrence of a record type. Each record type in the data
base has a current record, which may be set to null.

Data base data record - See logical record.

Data base hole - A block of storage in the DBF which is available to the
DBCS for allocation as a logical record. '

Data base key - A fullword of data used to uniquely identify a logical
record.
Data base page - A block of storage that the data base is divided into.

It is also the amount of the DBF moved in and out of main memory
at one time.

DBCS - The Data Base Control System; a collection of FORTRAN routines
which interface with a user's program to access a data base.

DBF - The Data Base File; the name of the place where the data and data
base control blocks are stored.

DBIN ~ A FORTFRAN program which uses an object schema to initialize a data
base.

DBLOW =~ The name of a set of FORTRAN routines that are part of the
DBCS. They are lower level routines used to access the data
base.

DBRAND - The name of a set of FORTRAN routines which perform random
input/output operations. These routines are part of the DBCS.

DBSM - A FORTRAN program which prints summary information on the uti-
lization of a data base.

-112-

DBTAB - The name of a set of FORTRAN routines which access the data base
control blocks. These routines are part of the DBCS.

DBTF - The Data Base Table File; the name of the place where the data
base tables are stored.

DBUSER - The name of a set of FORTRAN routines which interface directly
with the user's program. These routines are part of the DBCS.

DDL - The Data Description Language; a formal language used to describe
a data base in source form.

DDLA - A FORTRAN program which uses a data base description (DDL) to gen-—
erate the data base tables (object schema).

Hole ~ See data base hole.

Hole chain - A linked list of all the data base holes on a data base

page arranged in increasing order of size.

IDB - The Item Description Block; an object schema control block used to
logically describe an item.

Ttem - The elementary data unit, from which all other types of structures
are ultimately composed. (An item is sometimes called a field, data
item, or element in other DBMS.)

Key - See data base key.

Logical record - A block of storage in the DBF in which data is stored.
A logical record consists of a PRH, a pointer area, and a data area.

MDB - The Member Description Block; an object schema control block used
to identify members of a set.

MPICOR - A FORTRAN variable, whose value is the maximum number of data
base pages allowed in main memory at one time.

NAMES - A character vector which contains the names of all sets, records,
and items described in a DDL

NCUR - A FORTRAN variable, whose value specifies the sequence number in
main memory of the current page.

NDBKF - A FORTRAN variable, whose value is the number of times the cur-
rent page has been set as a result of calling DBKFND.

NPICOR - A FORTRAN variable, whose value is the current number of data
base pages in main memory.

Object schema - The logical description of the data base.

ODB - The Owner Description Block; an object schema control block used
to identify owners of a set.

-113-

Page - See data base page.

PAGE - A TFORTRAN vector, which is used as the data base buffer in main
memory.

PHI - The Page Header Information; a data base control block which ap-
pears at the beginning of each data base page.

PHICUR - A FORTRAN variable, whose value is the displacement into the
vector PAGE where the current page begins.

PREF - A FORTRAN vector, used with NDBKF by the DBCS to determine which data
base page should be rewritten into the DBF.

PRH - The Physical Record Header; a data base control block which preceeds
every logical record and every data base hole.

RDB - The Record Description Block; an object schema control block, which
describes the logical structrue of a record.

Record (or record type) - A named collection of items. There is an arbi-
trary number of occurrences of logical records for each record type.

RECTAB - A FORTRAN vector, used to store the RDB and IDB.
Schema - See object schema
SDB - The Set Description Block; an object schema control block which des-

cribes the logical structure of a set.

Set (or set type) - A named collection of records which specifies an or-
dering or relation among the records.

SETTAB - A FORTRAN vector, used to store the SDB, ODB, and MDB.

-114-

APPENDIX A

Routine Names and Numbers for DBERR

Routine Routine Number Routine Routine Number
AMS 1 SFM 34
CLOS 2 SFO 35
CMT 3 SFR 36
COT 4 SM 37
CR 5 SMK 38
CRS 6 SMM 39
DR 7 SMO 40
DRK 8 SO 41
DRM 9 SOK 42
DRO 10 SOM 43
FFM 11 SO0 44
FLM 12 SRK 45
FMSK 13 SRM 46
FNM 14 SRO 47
FPM 15 USE 48
GETK 16 CARD 49
GETM 17 CMK 50
GETO 18 MM 51
GETR 19 CMO 52
GFK 20 CMR 53
GFM 21 COK 54
GFQ 22 COM 55
GFR 23 Ccoo 56
GKM 24 COR 57
GKO 25 FNSK 58
GKR 26 DBST 59
GTK 27 SKFM 60
GTM 28 SMFM 61
GTO 29 SOFM 62
OPEN 30 SRFM 63
RM 31 AMSK 64
RS 32 AMSM 65
SFK 33 AMSO 66

-115-

Routine Routine Number

DELS 67
SETK 68
SETM 69
SETO 70
SEIR 71
ICFK 72
ICFM 73
ICFO 74
ICFR 75

-116-

