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OBJECT

To investigate the distribution of the zeros of the polynomials

Ne-1 n n41 2n=-1
Pp(z) = 2+ 2.+ ...+ 5% -Z .z - ... =2 ,
n n=1 1 1 2 n

and to determine the maximum modulus of Pn(z) on the unit cirecle C.

ABSTRACT

The polynomial Pp has a zero at z = 1, and it has no other positive
zero and no other zero on the unit circle. It has no negstive zeros if n is
odd; if n is even, it has two negative zeros which are given asymptotically by

the formula
log n = log log 16 al
szli + +Ok"='
n n n

Each of the n - 1 sectors (2k - 1) x/n<argz < (2k + 1)n/n (k =1, 2, ...,
n - 1) contains exactly two zeros of Pp. For € >0 and n sufficiently
large, each of the zeros of Pp{z)/(L - z) 1lies in one of the annuli

n n

1+

(4L + €) logn > 2] >1 L N2e - ¢
n n

As n»w, the maximum modulus of P, on C approaches

k19
2f t~L gin t dt

O
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I. INTRODUCTION

The polynomials

-1 n n+l 2n=~-1
Po(z) = L4+ Z_ 4 .. 4z ozl 20z
n n-1 1 1 2 n

were introduced, by way of their real and imaginary parts on the unit circle
C, by Fejér [6, 7]. Fejér showed that the number 2 + n is an upper bound for
the modulus both of the real and of the imaginary part of P, on C (n =1, 2,
...)} a very simple proof that the polynomials P are uniformly bounded on C
is given in [3, page 43]. In view of recent applications of the Fejér poly-
nomials in the study of Taylor series (see, for example [3, 4, 8]), we have
undertaken an investigation of their least upper bound on C (see Section III)
and of the distribution of their zeros (see Section II).

Elementary considerations show that lim , n P,(z) = 1/(1 - z) for
|z[ < 1, and that the convergence is uniform in every disc {z[ Sr<1l. From
this and the fact that the reciprocal of every zero of P, is also a zero of Py,
it follows that the zeros of P, lie on or near the circle C. The theorem of
Jentzsch and Szegd [9, 11] implies further that the arguments of the zeros are
uniformly distributed in the interval [0, 2x]. Somewhat stronger results on
the distribution of the arguments could be obtained by applying a theorem of
Erdss and Turan [5, page 106]; but by using a method which involves nothing
deeper than Rouché's theorem, we prove that each of the n-l1 sectors

z = rel® £25—€;£2£-< e < {2k + 1)x (k =1, 2, ..., n=1)
n

contains precisely two zeros of Pp.

II. THE ZEROS OF THE FEJﬁﬁ POLYNOMIALS

We will state and prove various lemmas concerning the zeros of the
polynomials Pp,. At the end of the section, the contents of the lemmas will be
gathered into a theorem.

LEMMA 1. The point z =1 1is the only positive zero of P,. The re-

ciprocal and the complex conjugate of every zero of Pp are also zeros of Pp.
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This lemma follows at once from Descartes’ rule of signs, from the
fact that the coefficients of the polynomial P, are real, and from the rela-
tion Pp(z~1) = -z=20+l py(z).

LEMMA 2. Except for z =1, Pp has no zeros on the unit circle.

It is easily verified that
Pa(el®) = 21 e1(0-1/2)8 c(n, @), (1)

where

sin(k - 1/2)0
=] k

C(n, ©) =

Using the identity in [10, Section VI, Problem 17, page 78] and Abel's summa-
tion,we obtain the formula

: n-1
noe) - 1 sin®(ne/2) sin®(k0/2) {
Clo, @) sin(e/2) {j n ¥ Ei;“—_ﬂi—dé_-

k(k + 1)

The lemma follows from the fact that the right member is positive for 0 <
e < 2x.

In the sequel, it will be useful to deal with the function

n=-1

: n -n k -k
Wo(z) =21 -2) Py(z) s 2+ 2 -2+ zZ+z7 . (2)
n K=1 k(k + l)
IEMMA 3. Each of the n sectors
2k = L)X o g, < (2R E L) (k=0, 1, ..., n-1)
n n
contains exactly two zeros of Wp(z).
Let
n-1
n, ,-n zK + z-=K
f Z =E._+_Z.__ -2 Z = v —a———
If =z 1lies on one of the rays
arg z = (2k + 1)x (k =0, 1, .., n-1) 3)
2 2 J 2

n
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then, with |z| =z, |f.(z)] = (r + v™B)/n + 2, and therefore |fq(z)] -
lgn(Z)l z V¥(r), where
-1

¥r) = DI Zrk”"k

= k+ 1

To show that ¥(r) > 0 for r > 0, it is sufficient to consider the values r 2 1.

Now ¥(1) = 4/n > 03 and ¢'(r) 2 O when r = 1, since the function
n=l

kK _ -k
ry'(r) =r?t -8 . ZE: EE——~§——
fer <t

vanishes at r = 1 while its derivative

n-1
k , .-k
r~Ldn® + r) - E k(r® + r7%)
k+1

k=1
is obviously positive. It follows that

ltn(z)] > lgn(2)] (%)

on each of the rays (3). The inequality (4) is also satisfied on the circle
|z| = ry, provided r, 1is sufficiently small or sufficiently large. By ap-
plying Rouché's theorem to the functions fn and fp + g = Wp, with refer-
ence to a region which is bounded by two neighboring rays (3) and by arcs of
two circles |z[ = rn and lzl = rn"l, we conclude that f,, and W, have the
same number of zeros in this region. The lemma now follows from the fact that
the zeros of f, are the 2n numbers

@i./‘?_“‘n N l>l/n 2kni/n (k =0, 1, ..., n-l).

LEMMA L4, Pn, has two or no negative zeros, depending on whether n
is even or odd.

— ———

The function W, has 2n zeros of which two lie at z = 1. If n 1is
odd, Lemma % disposes of the remaining 2n - 2 zeros. If n 1is even, Lemma 3
implies that at most two zeros are negative, and Lemmas 1 and 2 imply that at
least two zeros are negative.

IEMMA 5. If € >0 and n 1is sufficiently large, the zeros of P,
lie in the annulus

exp[-(4 + e)n'l log n] < |z| <exp [(4 + e)n“l log n].
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It suffices to show that Wp(z) #0 for |z| S exp{-(4 + ¢)n-l

log n] and n Z ng(e). By (2), z® Wy(z) = 1/n + Vy(z), where

‘ 2 n-1
Vp(z) = —2 + z R - 2z%
nn-1) (n=-1)(n - 2) 2-1
L 0+1 o D42 geon=1 z2n (5)
+ + + 0.+ +
1-2 2-3 (n - 1)n n

We will now show that |Vn(z)l < 1/n for the values of =z indicated above.

Iet n =2 + €/2. The sum of the moduli of the first [n/n] terms
on the right-hand side of (5) is less than

1t i1 1.1
n-[n/q] n~n-n/qm n n(g-1)

Since the remaining terms have coefficients of modulus at most 2, the modulus
of their sum is at most

2|z|n/n < on e _ 1+ 0(1)
1 - |z| =1 - exp[-2n -1 logn] 7 r logn

It follows that, for large n,

1l 1 1
e e R =r A

and the lemma is proved.

LEMMA 6. If n 1is even, the two negative zeros of P, are given
asymptotically by the formula

7z = - [n log 16 + o(n)]i 1/n

To prove this lemma, suppose that Wn(mrn) =0, with rn > 1, and we
write rp = nPn/n - exp(pnn’l log n). (For the sake of typographical simplicity,
the subscript n is dropped, in the remainder of the proof.)

By Lemma 5, p < 5 when n 1is sufficiently large. From Equation (2)
we obtain the relation

nP-1 4+ n=P-1 = h(r), (6)




— ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN

where
-1 2 -2 3 o, -l , pl-n
nr) =g+ I *+r= 2L/ (7)
12 23 3.4 (n - 1)n

The proof of the lemma hinges on an effective computation of h(r). For the
purpose of this computation, we divide the right-hand member of (7) into two
sections. The first section contains the number 2 and the first [3n/(p log n)]
terms that follow. The kth of these terms has the modulus 2/k(k + 1) + ex,
where

_ 2 cosh(kpn~l log n) -2
k(k + 1)

€k

2

Since cosh u < 1 + 2u when O < u S»B,

- 2
0<ex< 4 (kpr~! log n)< < 4(pn-1 log n)2,
k(k + 1)

and

zg: €x < ——%E—h— . 4(pn-1 1log n)? = 12 pn~t log n = o(1).
k < 3n/(p log n) P o

It follows that the sum of the terms in the first section on the right of (7)
is log 16 + o(1).

To show that the sum of the terms in the second section is small, we
will first prove that each term is numerically larger than its predecessor. It
will then follow that the sum of the terms in the second section is positive
and smaller than the last term. We write

rktl 4 p-k-1 k(k + 1)
rK 4+ r-k (k + 1)(k + 2)

_ cosh[(k + 1)pn-l log n] l:l S22 b ]
cosh(kpn'l log n)

k k2

The second factor on the right is greater than 1 - 2/k, that is, greater than
1l - (2/5)1)171‘:L log n. To obtain a lower bound on the first factor, we use the
fact that the derivative of cosh x 1is an increasing function, and we conclude
that the factor is greater than

cosh(kpn-l log n) + pn—l log n sinh(kpn-l log n) _
cosh(kpn-1 log n)

1 + (pn~t log n) tanh(kpn~! log n) > 1 + (tanh 3) pn~t log n
5
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Since tanh 3 > 2/5, the ratio between the numerical value of the (k + 1)st

term and that of the kth term on the right of (7) is greater than 1 when k >
3n/(p log n). Since the last term in (7) is less than (nP + 1)/(n = 1)n <

3nP=2, it follows that

log 16 + o(1) < h(r) < log 16 + 3nP™2 + o(1) . (8)
We conclude from equation (6) and the first inequality in (8) that p > 1, and
from (6) and the second inequality in (8) that p + 1 as n » . It follows,

again from (8), that h(r) = log 16 + o(1). From (6) we now deduce that r" =
n® = n[h(r) - nP-1], that is,

r = gn[log 16 + o(l)]}l/n s
as was to be proved.

LEMMA 7. If € >0 and n is sufficiently large, the annulus

1-¥2€ € < fz| < 142 -€

n n

contains no zeros of Pn(z)/(1 - z).

We write Pn(z)/(l -2z) =ag + ajz + a222 + .. 4+ agn_gzgn‘g, where

1 1
8n-k = 8n-2+4k = = 4

+ ... +

ol
—
5
il
'_.I
-
no
e
-
o]

n -1

B

We now apply a theorem of Egervéry [2, page 81] which, slightly Specializéd for
our purpose, reads as follows:

Ifapy > 0 (0<m<2n -2) and if, for some p >1 and for m = O,
i, ..., n-2,n,n+1, ..., 2n - 2, the condition

am-l - (p + p-l) am + am_'.l >0 (9)

(with the notation a_.j = app.] = O) is satisfied, then the polymomial

EE:m am z™ has no zeros in the annulus p-l1 < |z | <p.

To establish a value of p for which our polynomial satisfies the
condition (9), we write p =1 + b. Applied to the case m = n - k, condition
(9) becomes, after some elementary computations,

b2 1 _
T+5 Rk - D[1/n + 1/(n-1) + ... + 1/x] (k =2, 3, .0 (10)

6
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In order to find an upper bound for the denominator on the right side of (10),
we note that this denominator has the value

k(k - 1) i1 4+ ...+ 1 +k-l<k210g(n/k)+n.
n n -1 k+1

The maximum of this, for k > 1, is n + n°/2e. It follows that condition (10)
is satisfied provided b° < 1/(n + n2/2e); that is, condition (9) is satisfied,
for large n, if b = N2e - ¢)/n.

The following proposition summarizes the results of this section:

THEOREM 1. The polynomial P, has a zero at =z =1, and it has no
other positive zero and no other zero on the unit circle. It has no negative
zeros if n 1is odd; if =n is even, it has two negative zeros which are given

asymptsgically'hz the formula

z = -1 + (log n , log log 16\, oL
n n n

Each of the n - 1 sectors (2k - 1)ax/n<argz < (2k + L)x/n (k =1, 2, ...,

n - 1) contains exactly two zeros of Pn. For € >0 and n sufficiently
large, each of the zeros of Pp(z)/(l - z) lies in ome of the annuli

1 -4 +€)logn o 2] <1 - Noe - €
n n

e ire)logn . g > 4¥2e - ¢
n n

I1T. THE MAXIMUM MODULUS OF THE FEJER POLYNOMIALS

We denote by Mp the maximum modulus of P, on the unit circle C.

THEOREM 2. As n + ,

7

Mn—>2f BB Y g - 3704 ...
0ot

From (1) we note that

n
Mo=2  max sin(k - 1/2)6
0<e=<x k=L k

Il
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The sum on the right is a partial sum of the Fourier series of the function

e(0) = jii sin(k - 1/2)0 ,

k=1 k

which satisfies the relations g(© + Ux) = g(@), g(-6) = -g(®) and g(2x - 9)
= g(0). We write

= o sin(k - 1/2)6 X sin(k - 1/2)0
g(e) =; ok - 1 _Z k(2k - 1) ’

and we observe that the first sum on the right is the well-known Fourier series
of the function which takes the values n/2 and —ﬂ/Q in alternate intervals
of length 2x, while the second series on the right converges uniformly for all
real ©. Our result now follows from the theory of the Gibbs phenomenon. For
a concise statement, we refer the reader to Zygmund [12, Sections 8.5, 8.51];
interesting graphs and an excellent historical account will be found in [1,
Chapter IX].

By a more detailed investigation, we have been able to show that the
constant of Theorem 2 is actually an upper bound, and hence the least upper
bound, for the maxima M, (n =1, 2, ...). This investigation is based on the
representation C(n, ©) = A(n, @) cos (6/2) - B(n, ) sin(e/2), where

n n
sin k@ . cos ko
Am, 8) =y X B(m, ) =) 2=

k:l k=l
The principal properties of these trigonometric polynomials are treated in [10,

Section VI, Problems 23-28]. The computations involved are so tedious that
their publication is not justified.
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