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Abstract

Background CASMIL aims to develop a cost-effective and efficient approach
to monitor and predict deformation during surgery, allowing accurate, and
real-time intra-operative information to be provided reliably to the surgeon.

Method CASMIL is a comprehensive Image-guided Neurosurgery System
with extensive novel features. It is an integration of various modules including
rigid and non-rigid body co-registration (image-image, image-atlas, and
image-patient), automated 3D segmentation, brain shift predictor, knowledge
based query tools, intelligent planning, and augmented reality. One of the
vital and unique modules is the Intelligent Planning module, which displays
the best surgical corridor on the computer screen based on tumor location,
captured surgeon knowledge, and predicted brain shift using patient specific
Finite Element Model. Also, it has multi-level parallel computing to provide
near real-time interaction with iMRI (Intra-operative MRI). In addition, it has
been securely web-enabled and optimized for remote web and PDA access.

Results A version of this system is being used and tested using real patient
data and is expected to be in use in the operating room at the Detroit Medical
Center in the first half of 2006.

Conclusion CASMIL is currently under development and is targeted for
minimally invasive surgeries. With minimal changes to the design, it can be
easily extended and made available for other surgical procedures. Copyright
© 2006 John Wiley & Sons, Ltd.

Keywords intelligent planning; computer-assisted surgery; neurosurgery; finite
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Introduction

Computer-assisted surgery (CAS) is a methodology that translates into accu-
rate and reliable image-to-surgical space guidance. Neurosurgery is a very
complex procedure and the surgeon has to integrate multi-modal data to
produce an optimal surgical plan. Often the lesion of interest is surrounded
by vital structures, such as the motor cortex, temporal cortex, vision and audio
sensors, etc., and has irregular configurations. Slight damage to such eloquent
brain structures can severely impair the patient (1,2). CASMIL, an image-
guided neurosurgery toolkit, is being developed to produce optimum plans
resulting in minimally invasive surgeries. This system has many innovative
features needed by neurosurgeons that are not available in other academic
and commercial systems. CASMIL is an integration of various vital modules,
such as rigid and non-rigid co-registration (image—image, image—atlas and
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Figure 1. CASMIL modules and flow

image—patient), 3D segmentation, brain shift predictor
(BSP), knowledge-based query tools, intelligent planning
and augmented reality.

Figure 1 shows the flow of steps involved in computer-
assisted surgery. For any neurosurgical procedure, the first
step is always image acquisition, followed by loading of
acquired sequences in an image-guided system (CASMIL
in our case). Next, we can either perform segmentation
of relevant structures or co-registration among different
image modalities. Once the structure of interest, e.g. a
tumour, has been segmented, planning can be performed.
The intelligent planning module of CASMIL utilizes
the brain shift predictor and knowledge-based query
tools modules as input. The digital image atlas is also
loaded and co-registered with the anatomical image
sequence. The intelligent planning module can be used
both preoperatively and intraoperatively. The augmented
reality module can be used intraoperatively to obtain
a composite view of 3D real environment and graphical
images. For all the modules, high-performance computing
(HPC) is utilized for computationally intensive steps to
speed up the process. All these modules are described in
detail in the section on CASMIL modules, below.

As part of this project, Detroit Medical Centre has
acquired a portable intraoperative magnetic resonance
imaging system (iMRI; with 0.15 T from Odin Medical
Technologies) that is currently being used. We have
access to the iMRI data for research purposes and we
are developing a database (CASMILDB) that is being
populated with the performed iMRI cases. These cases
are used for validation and continuous improvement of
the brain shift predictor module. CASMILDB stores multi-
modal information, such as different image modalities,
surgical approaches, best slices, segmented objects, etc.
Currently, CASMILDB is being populated with 3000 cases
from the hospital repository.

This paper is organized as follows. The next section
briefly describes the component design of CASMIL. The
following section details the various modules in CASMIL.
A review of the related work and comparison with CASMIL
are then given.

Copyright © 2006 John Wiley & Sons, Ltd.
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CASMIL design

CASMIL has been developed in a structured manner.
Components with different functions are developed as
blocks that can be simply inserted in the main framework
to work together. We have defined the interface
between the main framework and its components. By
following the interface, we can integrate additional
functions with CASMIL easily. For example, each
segmentation algorithm is implemented as a class
inherited from a base class, which is called ‘XSeglmage’.
To add a new segmentation algorithm, such as ‘Simple
fuzzy connectedness’, we can simply inherit a new
class ‘XSimpleFuzzy’ from ‘XSeglmage’, add parameters
‘m_SamplePoints’ and ‘m_SeedPoints’, and instantiate its
virtual function ‘Segment()’. The segmented output will
be implicitly converted to CASMIL internal format by the
base class XSeglmage’ and the main GUI process will
display it. Figure 2 shows a subset of the relationship
between the base class and the inheritances in CASMIL.

The current version of CASMIL has been optimized
for neurosurgery. However, with minimal changes it
can have broad applicability to a wide variety of fields,
including other surgical specialties, radiation oncology,
and biological and medical research. In addition, the
developed modules are scalable and can be used in many
other biomedical applications, such as computer-assisted
diagnostic imaging and database mining. This system
has been developed using VC++, Qt and OpenGL on
a Windows platform and has been designed to work
independently of the operating system. As we describe
later, it executes on a Linux-based palm device.

CASMIL modules

This section provides a brief overview of the modules
integrated in CASMIL. Before activating any module, all
image sequences related to a case need to be loaded.
CASMIL can load standard DICOM (MRI, CT, PET, etc.) or
IMG image sequences and can display multi-planar, three-
dimensional (3D) and video views (Figure 3). Other tools,
such as contrast and brightness adjustment, panning,
rotation by angle and flipping, are also included. Images
can either be rendered as greyscale images or as coloured
images. For displaying coloured images, 16 different
colour maps have been implemented.

Co-registration

Image registration is the process of aligning images for
one-to-one correspondence among various features. In
the medical imaging domain, this could involve aligning
images from the same modality, MR-MR, multi-modality
MR-CT, MR-PET, MR-DTI, etc. Image registration can be
classified broadly into rigid, non-rigid, and model-based
registrations.

Int J Med Robotics Comput Assist Surg 2006; 2: 123-138.
DOI: 10.1002/rcs
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In the rigid framework, the misalignment can usually be
characterized by translation and rotation parameters. The
rigid framework assumes that there are no considerable
changes with the brain adopting different poses. In the
current CASMIL version, five registration algorithms, viz.
landmark-based, multi-resolution mutual information,
hybrid of landmark and mutual information, landmark
warping and viola wells have been integrated (3). These
techniques have been selected on the basis of ease
of use, surgeon recommendation, human interaction,
computational time required, and accuracy.

In addition, CASMIL includes more complex regis-
tration (NRR) algorithms: Thirion’s ‘demons’ algorithm
(3-5) and geometrical model-based registration (3).
Other non-rigid algorithms that are being integrated
with CASMIL are: diffeomorphic landmark matching (6),
diffeomorphic flow-based image registration (7), and
deformation registration from the Lagrangian frame (8).
Non-rigid registration is now a standard component for
advanced image registration algorithms, which range
from fast, basic image-processing algorithms to highly
advanced physical models that push the boundaries of
numerical simulation and computation. Compared to rigid
registration, non-rigid registration is more efficient, as it
directly incorporates optimization into implementation
and is sensitive to much localized differences, yet exhibits
specificity and robustness. The classical philosophy of
non-rigid image registration is to model an image as a
continuum (fluid, plastic, elastic, etc.) The medium is
then allowed to deform in order to satisfy some a priori
optimization criterion.

In Thirion’s ‘demons’ algorithm, each image is viewed
as a set of iso-intensity contours. The main idea is for
small ‘demons’ to ‘push’ the image around by its level
sets until correspondence is achieved. The orientation
and magnitude of the displacement is derived from the
instantaneous optical flow equation:

D) - Vf(x) = —(m(x) — f(x))
Here m(x) is moving image, f(x) is fixed image and D(x)

is the displacement or optical flow between the images.
D(x) could be normalized as:

D(x) = —(TT;(X) —f(x))Vf(X)2
IV + (mGo) — f(x))

Starting from the initial deformation field, the displace-
ment vector will be updated for each iteration using the
above equation until a certain criterion is met.

In geometrical model-based registration, a geometrical
model is warped into an image based on morphological
information by identifying a number of parameters in
the model. Model parameters are optimized until the
model comes into a good representation of the anatomical
structures contained in an image. The core components of
this registration framework are: the basic input data (pixel
data from an image) and geometrical data from a spatial
object. A metric has to be defined in order to evaluate the

Copyright © 2006 John Wiley & Sons, Ltd.
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fit between the model and the image. This transformation
is the variations in the spatial positioning of the spatial
object and/or by changing its model parameters. The
search space for the optimizer is now the composition of
the transformed parameter and the shape of the internal
parameters (3).

Image-atlas co-registration

CASMIL can also perform image—atlas registration. It uses
Schaltenbrand (SW), Talairach and Tournoux (TT88) and
Talairach and Tournoux (TT93) digitized brain atlases
(9-12). The transfer of anatomical knowledge from 3D
atlases to patient images via image—atlas co-registration
is a very helpful tool for planning. However, there are
anatomical differences among individual patients that
make registration difficult. An accurate voxel-wise fusion
of different individuals is hardly possible. For planning
and simulation applications, accuracy is essential, because
any geometrical deviation may be detrimental to a
patient. Landmark-based registration is one of the most
popular algorithms in atlas-based application (12,13).
CASMIL integrates landmark-based registration as its first
atlas registration algorithm. Here, Anterior Commissure,
Posterior Commissure, Left, Right (AC, PC, L, R) are
chosen as control points (14). Linear conformal is then
used to perform global spatial transformation. MRI is
our fixed image and atlas TT 88 axial view is our
moving image. The registration result is demonstrated
in Figure 4.

CASMIL also integrates a volume-rendered brain atlas
(15). The 3D brain atlas visualization and construction
provides efficient tools to process and analyse 3D images,
object boundaries, 3D models and other associated data
items in an easy-to-use environment. It is the standard
template of 3D brain structures, which allows us to
define brain spatial characteristics, such as position
of a structure, feature relevance, shape characteristics,
etc. Our research is based on the following technical
objectives:

1. Focus on the structural and functional organization
of the brain. In humans and other species, the
brain’s complexity and variability across subjects
is so enormous that reliance on atlases is critical
to manipulate, analyse and interpret brain data
effectively.

2. Describe one or more aspects of brain structures
and their relationships after applying appropriate
registration and warping strategies, indexing schemes
and nomenclature systems. Atlases made from multiple
modalities and individuals provide the capability to
describe image data with statistical and visual power.

3. Provide user-friendly segmentation and labelling of
patient-specific data.

Cerefy atlas consists of three orthogonal stacks of two-
dimensional cross-sections through a brain, which are

Int J Med Robotics Comput Assist Surg 2006; 2: 123-138.
DOI: 10.1002/rcs
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Figure 4. Snapshot of landmark-based patient and digital atlas co-registration

orientated sagittally, coronally and axially. The inter-slice
distance is 2—-5 mm. We calculated a 3D reconstruction
of all objects contained in the atlas at their appropriate
location. The proposed method interpolates additional
cross-sections between each pair of adjacent original
plates. To interpolate the shape of an object for the new
cross-section, we calculate a Delaunay tetrahedrization
of the object using the Nuages algorithm proposed by
Geiger (16). The shell surface of the resulting solid is
then intersected at half the slice distance. The original
stacked and interpolated slices can be considered as a
binary voxel space, where the grey value of each voxel
indicates the structure to which the voxel belongs. The
algorithm structure for Delaunay reconstruction is as
follows:

1. BEGIN DELAUNAY RECONSTRUCTION
2. INPUT: A 3D polygonal reconstruction
3. OUTPUT: A 3D polygonal reconstruction

Copyright © 2006 John Wiley & Sons, Ltd.

a. For i = 0 to number of cross-sections
i. Si = set of vertices in plane

ii. Ci = the contour edges in plane

iii. Dti = 2D_DELAUNAY (Si)

iv. ADD-VERTICES (DTi,Ci)
b. Fori = 0 to number of cross-sections — 1

i. G = 3D-DELAUNAY(DTi, Dti + 1)
ii. REMOVE_TETRAS (G)
iii. OUTPUT (tetrahedra, surface triangles)
4. END DELAUNAY RECONSTRUCTION

Smoothing of the terraced shapes has been achieved
by applying a spatial smoothing filter in plane, and
calculating the mean of two adjacent slices. We then
deduce the enormous number of surface triangles
produced by this method by applying the polygon
reduction algorithm proposed by Melax (17). By this
means the number of vertices will be reduced to 50%
without noticeable loss of quality. The edge cost function

Int J Med Robotics Comput Assist Surg 2006; 2: 123-138.
DOI: 10.1002/rcs
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is as follows:
cost(u,v) = |lu—v|

X max { min{(1 — f - normal e n - normal) + 2}}
feT, |neTw

By this method, we can balance the balance curvature and

size when determining the edge to collapse; and it works

well on ridges.

CASMIL includes 3D co-registration of the volume-
rendered brain atlas with volume-rendered anatomical
image modalities (MRI, CT, fMRI, DTIL, PET, etc.).

Repeated research articles and vast clinical practice
have shown that the proportional grid transformation we
are using presents satisfying registration results. However,
it still has some limitations: it does not handle boundary
areas and highly variable cortical areas well. It also
may not work well if the brain has large deformations
due to brain lesions. To overcome these limitations, we
have proposed a model-based registration in the next
step of our research, which will provide more accurate
mapping outcome in these areas by evolving edges. We
will also provide a graphical user interface (GUI) in our
system, which will allow users to manually improve the
registration result by expert knowledge.

The error assessment and validation process of image-
atlas co-registration will be performed in three different
ways:

1. Expert knowledge will be used to study and match
accuracy between the cross-sections of constructed 3D
model and original atlas slices.

2. Two functional MRI examinations (the precentral
gyrus and putamen) will be performed to assess
quantitative measures of reconstruction and matching
accuracy.

3. Based on a sequence of different experiments,
statistical analysis will be applied to determine the
low and high error boundaries.

Segmentation

Before surgery, surgeons first define volumes of inter-
ests (VOI's), such as lesions, ventricles, etc., which is

G. Kaur etal.

referred to as segmentation. Segmentation is the term
used to refer to the partitioning of an image into rela-
tively homogeneous regions. From this partitioned image
the object or the regions of interest can be separated
from the background. In CASMIL, we have implemented
five segmentation algorithms: Connected Threshold, Con-
fidence Connected, Neighbourhood Connected, Simple
Fuzzy Connected and 3D Confidence Connected (3).
Figure 5 shows a snapshot of 3D segmentation of a tumour
and the ventricles. A set of manual tools has been pro-
vided to refine the segmented object, if needed. Various
segmentation techniques have been integrated because
no single approach can generally solve the problem of
segmentation for a large variety of image modalities.

In addition, CASMIL integrates automated segmenta-
tion. The automated anatomical labelling and compar-
ative morphometric analysis of brain imaging is being
performed by warping a prelabelled atlas into congruence
with the subject anatomy (15). The strategy empha-
sizes anatomically meaningful atlas deformations in the
presence of strong degeneration and substantial morpho-
logical differences. The atlas deformation is not driven by
image intensity similarities but by continuous anatomical
correspondence maps, derived from individual preseg-
mented brain structures of standard digital brain atlases.
This approach has the potential to eliminate the difficulties
of manual segmentation, and substructure segmentation
is positively time saving for an adequate patient sample
size. It is relatively easier to obtain consistent segmenta-
tion between individual patients and for the same patient
over time.

Another automated segmentation integrated with CAS-
MIL is the ratio-based automatic multilevel thresholding
selection method. The method is based on an intuition
that there are some natural threshold choices for an
image and that these can be located by studying the
behaviour of the ratio of the number of pixels below the
threshold to the number of pixels above the threshold.
We demonstrated the accuracy of our method by using
the selected thresholding values in a connected thresh-
olding filter with post-processing, using morphological
operation to perform segmentation of multi-modal brain
tissue sequences. Also, we compared the threshold values

Figure 5. Snapshot of anatomical MRI DICOM slices and 3D segmented ventricles and tumour

Copyright © 2006 John Wiley & Sons, Ltd.
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provided by our algorithm against the optimal threshold
values under the Gaussian distribution for grey level val-
ues. A quantitative cross-validation on Brainweb discrete
phantom has been provided, using three performance
criteria to demonstrate the efficacy of our approach.

Knowledge-based query tools

CASMIL utilizes multi-modal data during a neurosurgical
procedure. We have developed a database, CASMILDB,
using MS SQL for storing multi-modal information such
as different image modalities, surgical approaches, best
slices, segmented objects, etc. An overview of the database
is shown in Figure 6. The schema is flexible, enabling
multiple modalities of data to be easily amended for future
patients. Currently CASMILDB is being populated with
3000 cases from the hospital repository. In addition to
imaging data, this database is also populated with surgeon
knowledge in terms of the weights assigned to brain
structures. Weights have been assigned and validated by
neurosurgeons on a scale of 1-5, 5 being critical, as
indicated in Figure 7 in red. Utilizing the CASMILDB,
CASMIL can perform extensive queries to assist the
surgeon both preoperatively and intraoperatively. This
results in automatic real-time identification of structures
and automated atlas integration. Examples of the queries
include:

e Retrieve planning (entry and target coordinates) of all
cases with frontally located tumours (parietal, occipital,
temporal, etc.).

e Retrieve all previous cases with type of tumour
(low-grade glioma, anaplastic, astrocytoma, glioblas-
toma, multiforme, meningioma, neurinoma, metastatic
tumour, etc.).

e Retrieve all cases with frontally located tumour
(parietal, occipital, temporal, etc.).

Segmented models (digital atlas)

Electrophysiological data

N

Image data \

e

Demographic data
Initial surgical planning

Multi-modality
database system

MULTI-MODALITY INPUT DATA

Figure 6. CASMILDB overview

Copyright © 2006 John Wiley & Sons, Ltd.
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e Retrieve all previous cases with type of tumour
(low-grade glioma, anaplastic, astrocytoma, glioblas-
toma, multiforme, meningioma, neurinoma, metastatic
tumour, etc.) and located at different brain regions
(frontal, parietal, occipital, temporal, etc.).

e Retrieve brain structure (ventricles, corpus callosum,
motor cortex, white matter, grey matter, etc.) from
brain atlas.

e Retrieve all cases that have MRI-T1 (T2, CT, PET, DTI
etc.) and MRI-T2 (T1, CT, PET, DTI etc.).

e Retrieve all cases that have MRI-T1 (T2, CT, PET, DTI
etc.) and MRI-T2 (T1, CT, PET, DTI etc.) and segmented
brain structures (ventricles, corpus callosum, motor
cortex, white matter, grey matter, etc.).

e Retrieve best slices (slices with highlighted tumour) for
a particular case.

Brain shift predictor

Most of the current neuro-navigational systems are only
based on preoperative images; as a result, intraoperative
brain shift significantly affects the efficacy of these neuro-
navigational systems. CASMIL compensates brain shift by
using a patient-specific finite element (FE) model being
developed by our group (18,19), which will preoperatively
predict the direction and magnitude of brain shift, based
on tumour location and surgical corridor. This model
is developed with detailed anatomical structures (grey
and white matter, ventricles, pia mater, dura mater,
falx, tentorium, cerebellum and brainstem) using only
quadrilateral and hexahedral elements. Most of the
existing FE models use tetrahedral elements (20-24).
Theoretically speaking, tetrahedral elements have been
known to be less accurate and less computationally
efficient than hexahedral elements. Moreover, the human
brain is an inhomogeneous and a highly complicated
structure. To the best of our knowledge, no studies

Details of the risk factors
and a total risk factor
associated with the
proposed surgical plan

Surgical planning
optimization kit

Optimized surgical trajectory

SYSTEM OUTPUT
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have been attempted to describe in detail the intracranial
structures of the brain when calculating brain shift.

The following steps provide a brief description for the
development of a patient-specific FE model and brain shift
prediction:

1. Method to develop 3D patient-specific FE brain model

(Figure 8).

a. A 3D FE brain model previously developed by Zhou
et al. (25), as shown in Figure 9, is used as the
baseline model.

b. Dura and pia mater are segmented for a specific
patient.

Copyright © 2006 John Wiley & Sons, Ltd.

c. A landmark-based rigid registration is then used
between the baseline model and segmented data,
so as to compensate for global differences between
the baseline model and the segmentation data.

d. To compensate for the local differences, the
dura and pia mater of the baseline model are
then projected onto the segmented dura and
pia surface, respectively. The deformation vectors
obtained through this process are used as boundary
conditions (prescribed displacements) to deform
the baseline model into the patient-specific model.

2. Different patient positions and different volumes of

CSF drainage can be assumed, based on various surgery

Int J Med Robotics Comput Assist Surg 2006; 2: 123-138.
DOI: 10.1002/rcs
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Figure 9. Oblique view of baseline FE human brain model

protocols, as shown in Figure 10. The arrows in the
figure indicate the direction of gravity. Then the brain
shift can be estimated by the patient-specific FE brain
model.

3. After calculation, the preoperative MR images can be
updated by the FE model results, so that surgeons
can easily know the magnitude and direction of
model-estimated brain shift. Figure 11 shows six
landmark points selected to compare iMRI data and
the numerical simulation. Landmark points one, three,
four and five are located in the left ventricle, and
landmark points two and six are located at sulci.
The results are listed in Table 1 and are given in
terms of the displacement measured by iMRI data and
numerical simulations. In Figure 12 the light-coloured
lines distinguish the boundaries of the brain before

Table 1. Comparison between the results of numerical simula-
tions and IMRI data

Displacement (mm)

Landmark # IMRI data Numerical results
1 2.6 2.5
2 6.2 7.3
3 0.9 1.4
4 2.0 4.1
5 1.0 3.1
6 6.2 6.5

131

Figure 11. Six landmark points on the preoperative MR image

and after dura opening to highlight the magnitude of
the brain shift. The maximum brain shift calculated
in 3D space by the FE model was 7.3 mm, while the
maximum 2D brain shift predicted by the model in the
transverse plane was 7.0 mm. In the corresponding
plane, the maximum displacement was 6.2 mm using
iMRI.

We are also collecting brain tumour/lesion tissue
specimens to measure their properties and integrate
the resulting data into the FE model. Computationally
intensive steps during brain shift prediction are being
parallelized, thus providing near real-time results. This
FE model will allow other institutions that do not have
intraoperative MRI to benefit, and will also allow for
better understanding of the mechanical properties of brain
tissue.

Intelligent planning

CAS uses registered multi-modal images during a surgical
procedure. A critical component of computer-assisted
neurosurgery is preplanning, during which the surgeon
plans a path of entry to a tumour that needs to be
resected. The goal of this preplanning step is to find the
shortest path that causes least damage. This becomes
further challenging when the tumour is surrounded by
vital structures or has an irregular shape. Slight damage

Before dura opening

Supine position

90° to the patient’s right
After dura opening

Figure 10. Model updated images for different patient orientations

Copyright © 2006 John Wiley & Sons, Ltd.
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Figure 12. Preoperative MR image (left) and model updated MR image (right)

to critical structures can leave the patient highly impaired.
CASMIL integrates an intelligent planning module, which
provides a surgeon with a list of surgical corridors, based
on the lesion location, shortest trajectory and critical brain
structures. A key component of locating a surgical corridor
is to find all brain structures that intersect with potential
surgical trajectories that originate from a number of
chosen points on the surface of the brain and end in the
tumour. This module utilizes the surgeon’s knowledge in
terms of the weighted structures and acquired knowledge
from previous cases in the database for decision-making
and plan determination. Structures (137 in number)
from the TT88 atlas have been segmented and given
a priority value or weights by using surgeon knowledge
and available functional data. The system performs a
query based on potential surgical paths and weighted
structures in the atlas, co-registered with patient images,
and presents the surgeon with the shortest, least damaging
corridor for tumour resection. This is beneficial not
only during the preplanning phase but also during
intraoperative navigation. If, during surgery, a surgeon
is close to a critical region, such as the motor cortex, the
system will display a message on the screen to avoid that
region. The advanced intelligent planning module will
integrate the patient-specific FE model. Thus, this module
will provide the surgeon preoperatively with an updated
surgical corridor based on predicted brain shift.

The query is performed using a novel indexing structure
for spatial data in multi-dimensional space, called a target
tree (26), designed to efficiently answer a new type
of spatial query, called a radial query (26). A radial
query seeks to find all objects in the spatial dataset that
intersect with line segments emanating from a single,
designated target point. Many existing and emerging
biomedical applications use radial queries, including
surgical planning in neurosurgery. Traditional spatial
indexing structures such as the R*-tree and quadtree
perform poorly on such radial queries. A target tree uses a
regular hierarchical decomposition of space, using wedge
shapes that emanate from the target point. A target tree
is a variable-height tree that recursively decomposes the
search space around a single target point. The index allows

Copyright © 2006 John Wiley & Sons, Ltd.

for insertion and deletion operations to be intermixed with
searches. The tree itself may be stored on disk in a fashion
similar to that of a quadtree or an octree. Target trees
can be two-dimensional or three-dimensional (26). The
target tree in 3D partitions space radially outward from
the centre point in the same way as is done in the 2D case.
In addition to the data stored in two dimensions, each
tree node contains two z dimension angles. The target
tree can be stored and searched using a B+-tree by simply
using the key for a target tree node, which is a (level,
wedge-code) pair, as with the B+-tree index key. Our
implementation uses this method.

A spatial object in a 3D space consists of a set of surface
points which, when connected, form lines or polygonal
surfaces that make up the boundaries of the region. We
will consider inserting regions defined by some arbitrary
number of such surface points in the search space into
the target tree. The insertion algorithm progresses as
follows. Starting at the root of the tree, the minimum
bounding wedge (MBW) of the object to be inserted is
checked to see which, if any, of the children of the root
the object may lie within. The object is then inserted into
any and all children whose space partition contains the
MBW, either in whole or in part. This process recurses
through the nodes in the tree until the object is inserted
into a leaf or leaves that have space for it. If an object
must be inserted into a leaf, and the leaf has reached a
full capacity, the leaf is split, producing a new internal
node in the tree and some number of new children,
depending on the dimensionality. The new MBW, along
with all the old MBWs that were contained in the old leaf,
are inserted into any of the new children whose space
partition intersects that of their respective MBWs.

To illustrate the insertion of a MBW into a target
tree, consider inserting the object and MBW shown in
Figure 13a into the tree represented in Figure 13b. The
insertion algorithm begins by testing the four largest pie-
shaped wedges at level 2. Let R1, R2, R3, and R4 denote
these wedges. Each of these wedges is checked to see
whether it overlaps the MBW of the object being inserted.
Only R1 (shown in 13a) overlaps with the MBW of the
object, since the object lies entirely in the first quadrant.
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Figure 13. (a) An example of a MBW being inserted. (b) An example of a search query

Figure 14. Snapshot of surgical corridor generated by intelligent planning module

Next, the four nodes at level 3, i.e. the nodes labelled 0,
1, 2 and 3 in Figure 13a, will be tested to see whether
they overlap the MBW. Nodes 2 (which contains children
E, F, G and H) and 3 will be eliminated. Node O is a
leaf, so it will include a reference to the object and its
MBW. Node 1 is not a leaf, so the insertion will continue
with its four children, A, B, C and D. Each overlaps
the object’s MBW and will have a reference placed in
them. At the leaf level inserts, the insertion could have
caused a further node split if the node fill threshold was
exceeded.

We have conducted a detailed performance evaluation
of the target tree compared with the R*-tree and quadtree
indexing methods (27-29). Our experiments show that
query evaluation with the target tree method outperforms
these existing methods by at least a factor of five. We
have also extended our approach to a cylindrical query
path and have examined various techniques for query
speed-up. Figure 14 shows different segmented features
of the brain, in a red-blue scale, the trajectory that the
database has computed, shown by the green arrow and a
list of the structures that are intersected by the trajectory.

Copyright © 2006 John Wiley & Sons, Ltd.

Augmented reality

CASMIL provides an improved and user-friendly sur-
geon—computer interface in the operating room by pro-
viding an augmented display of a virtual graphical image
(such as a patient’s segmented tumour) correctly regis-
tered with a view of the 3D real environment (such as
the patient’s head) (30). To date, surgeons have always
been able to see the tumour and monitor its resection
with 2D visualization. In order to continue along the
pathway of smaller craniotomies and help surgeons to
handle the huge amount of data he/she is dealing with,
a 3D augmented reality, which preserves the geometri-
cal 3D relationships between the objects of interest, has
been developed (31). The patient image sequences are co-
registered with the patient using the fiducial markers as
the reference in the two coordinate spaces. This improved
system generates a composite view for the surgeon that is a
combination of the real scene and a virtual one that is gen-
erated by the computer. The computer-generated version
is augmented with additional, surgically relevant informa-
tion. Augmented reality is applied so that the surgical team
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can visualize the CT, MRI or other sensed data correctly
registered on the patient in the operating room during a
surgical procedure. Additional sensed data, such as func-
tional MR (fMRI) images, could also be overlaid on this
display. Providing this view to a surgeon in the operating
room could enhance their performance. The ideal way to
visualize and augment data would be to use intraoperative
images to update any changed surgical information.

The above technology is developed to accurately show
an ‘X-ray’ view of the objects of interest before opening the
skull. The system consists of a video camera, an infrared
(IR) camera and dynamic reference frames (DRFs). The
DRFs are mounted on the camera and the skull phantom,
which are tracked by the infrared camera, thus updat-
ing the position of the video camera in world coordinate
space. The other alternative tracking technology used has
been robotics and an articulated arm (30). Although the
robotic digitizer provides better accuracy than infrared,
its use in the operating room is restricted due to lim-
ited degrees of freedom. Independent of the tracking
technology used, the AR system generates transformation
matrices that can be solved to compute the position(s) and
orientation(s) of the object(s) of interest in the camera
coordinates. 3D models of objects of interest are acquired
using the 3D segmentations techniques discussed above.
These models are written in VTK polydata format. Heads-
up-display technology has also been integrated to the CAS-
MIL, thus providing the surgeon with an augmented view
of the real scene and graphical objects, via see-through or
immersive glasses, rather than looking at the monitor con-
tinuously while performing a surgical procedure. We are
undergoing human performance studies for qualitative
and quantitative statistical analysis of the effects of wear-
ing such headgear to perform various tasks during surgery.

HPC for computationally intensive
tasks

Image-guided surgeries and therapies involve several
computationally intensive steps, such as multi-modality
image fusion, intelligent planning, 3D visualization, etc.
In addition, the real-time analysis of complex data (image,
sensed and electrophysiological data) and finite element
modelling are extremely computationally intensive. Such
computations cannot be executed on single-processor
computers. Although voxel-based visualization serves a
number of important uses in basic research, clinical diag-
nosis and treatment and surgery planning (32), it is
limited by long rendering times for large image datasets
and minimal interaction between the user and the ren-
dered data. CASMIL utilizes high-performance computing
for these computationally intensive tasks. It uses a mes-
sage passing interface (MPI) for distribution of these
tasks. MPI is the most widely used of the new standards
in parallel computing (33). It is a library specification for
message passing. Several nodes are used to distribute the
workload across a grid network. Grid computing is an
evolving area of distributed computing, where groups of
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computers share computing resources, such as memory,
disk space and computing power, over a high-speed net-
work. Grids are currently being developed for scientific
and engineering research that requires large amounts of
computation. Over the years, considerable progress has
been made in grid architecture (34). Now, grid comput-
ing is emerging as a profitable area of computer science
that can be used by corporations for computing other than
research. The grid at Wayne State University allows access
to 24 POWER-3 processors, 98 Pentium IV Xeon proces-
sors, eight Itanium-2 processors with over 152 GB of RAM
and over 4 TB of central disk space. It uses a high-speed,
low-latency Myrinet switch fabric for communication. The
coordinating node receives the entire image from CASMIL
as well as instructions on what segmentation routines
to perform on the images. The coordinator then sends
individual slices to its nodes, which in turn run the appro-
priate routine on the image in parallel, and return the
segmented images back to the coordinator. The coordi-
nator then returns the entire segmented image back to
the CASMIL. Segmentation of multiple 2D images can be
done at one time, allowing for a rough estimate of the 3D
segmentation, which can take up to 7 minutes. The result-
ing speed-ups have shown to be near-linear using image
segmentation techniques such as Fuzzy Connectedness,
Isolated Connectedness, Confidence Connected, Hybrid
Fuzzy Voronoi, Geodesic, Neighbourhood Connected, Fast
Marching and Connected Threshold (Figure 15). Using
Fuzzy Connectedness to segment a stack of 50 images,
the computation time was reduced from several minutes
to only 16 seconds. CASMIL also takes advantage of mul-
tiple processors on each node using OpenMP, which on
a dual-processor computer can double the speed. It also
takes advantage of Intel’s SSE and SSE2, which are Intel’s
single instruction multiple data (SIMD) extensions. These
are essentially vector operations and ideally suited for
several of the computations within CASMIL.

Currently we are implementing registration using
MPI, OpenMP and SIMD instructions to drastically
reduce the computation time. The results will be fast
enough to allow for intraoperative, almost real-time,
registration of preoperative image data to the low-quality
intraoperative MRI.

Web-enabled CASMIL

Currently, the computer-assisted surgery (CAS) system is
an isolated system in the operating room with obtrusive
and cumbersome wired connections, which are not
conducive to portable displays, or interactive surgical
navigation and comparison to surgical plans. Surgery
multi-modal data preparation, registration, segmentation,
planning and related operations have to run and display
at one physical site, which reduces the potential for
collaborative interaction. There is a need for a more
functional system that would enable surgeons at remote
locations to access and plan the surgery, actively
participate in remote surgeries, share patient information
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Figure 15. Segmentation speed-up for various segmentation methods

and exchange opinions in real time before, during and
after surgery. The benefits of such an interaction may
include providing access to highly specific and time-
critical information for first responders in addition to
more traditional in-theatre applications.

This project presents a collaborative environment
for CAS, which will enable effective and efficient
collaboration among multiple expert surgeons from
different sites who have different roles in a surgery,
using heterogeneous devices, such as desktop, laptop,
PocketPC, etc.

With minimal changes to the standalone CASMIL, it has
been made web-enabled and can be accessed anytime,
anywhere by a surgeon using secured authentication
mechanisms. Only some modules, such as co-registration,
segmentation and planning, have been made web-
enabled. Other modules, such as augmented reality,
cannot be made web-enabled because they require
interaction with real-world (patient) coordinates. web-
enabled CASMIL provides flexibility to a surgeon to plan
a surgery from his/her office or house. In addition, it is
being optimized for easy remote access using PDA. With
the popularity of wireless network and handheld devices,
it has become necessary to bring CASMIL into these
lightweight devices. Certain CASMIL modules, such as
non-rigid registration, have to be moved to a backend
server because of the constraints of computing and
storage abilities of these devices. Only tasks that are
not computationally intensive can be accomplished on
handheld devices.

The client server architecture determines that commu-
nication across networks is a big issue for the web-enabled
CASMIL. We systematically evaluated several of the most
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widely used network technologies for handheld devices,
such as IEEE 802.11b, Bluetooth, dialup, Ethernet etc.
Among them, some slow networks are becoming the obvi-
ous bottlenecks for data traffic on the network. In order
to alleviate the effect of a slow network on the CASMIL,
we have investigated several communication optimization
techniques, such as Gzip, Vary-sized Blocking, Fix-sized
Blocking, etc. (35), as well as the characteristics of the
DICOM file, which is a very popular medical image pro-
cessing format. A hybrid of the existing algorithms and
the novel Bitmap algorithm (36), proposed by us specif-
ically for DICOM images, can greatly reduce the traffic
overhead to further eliminate the bottleneck if selected
carefully according to different network scenarios and
client configurations, as shown in Figure 16.

For a series of DICOM images which have to be trans-
ferred from server to client, Bitmap-Diff generates the
smallest transfer bytes compared with other communi-
cation optimization mechanisms. This is significant for
low-speed network users because the total delay is sensi-
tive to the change of transfer bytes.
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Figure 16. Transfer bytes of different communication algorithms
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In our Fractal framework (37), we have designed a
comprehensive approach to the adaptation of commu-
nication optimization techniques for the CASMIL. The
Fractal framework guides to dynamically choose the
best communication optimization technique according
to different client and network environments. The Frac-
tal framework on the communication optimization for
web-enabled CASMIL will dramatically reduce the com-
munication time across different networks. In Fractal, if
we consider each communication optimization technique
as a protocol adaptor (PAD) for a specific application,
one of the techniques, a PAD, will be chosen in different
scenarios. Four PADs used in CASMIL are Durect, Gzip,
Var-sized and Bitmap.

As shown in the system architecture (Figure 17),
different clients, such as desktop, laptop and PDA,
negotiate with the adaptation proxy to find the
appropriate PAD. The adaptation proxy then informs
the client about the metadata of this PAD, based on
which the client is able to download it from the content
delivery network (CDN). Then, under the adaptation of
the PAD, client and server efficiently set up the application
communication session. One of the experiment results is
shown in Figure 18.

In Figure 18, the x axis represents the different client
configurations and the y axis is the total time used
by the different communication optimization algorithms
selected by the three kinds of adaptation mechanism. For
instance, for PDA in Bluetooth, no protocol adaptation
mechanism chooses direct sending as the optimization
algorithm, as shown by the green bar. Its total time is
high. The fixed protocol adaptation mechanism always

Copyright © 2006 John Wiley & Sons, Ltd.
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Figure 18. Bytes transferred by different adaptation mechanism
for different client configurations

chooses the Varied-Block optimization algorithm, which
also has a high total time. However, the adaptive protocol
adaptation mechanism in Fractal can choose Bitmap as
the optimization algorithm, which tenders the smallest
total time delay that the user could experience.

The experiment proves that the Fractal framework is
especially suitable for applications that require dynamic
application protocol adaptation flexibility, such as web-
enabled CASMIL.

Comparison with Other Toolkits

Most of the existing image-guided systems provide multi-
planar and 3D views, basic registration and segmentation
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Table 2. Comparison of the existing image-guided systems for neurosurgery

3D Brain shift  Intelligent Query
Non-rigid registration segmentation  predictor planning  tools  Augmented reality
CASMIL Yes Yes Yes Yes Yes Yes
IGSTK Organ model to image Yes No No No Tracker:
registration, and electromagnetic,
fluoroscopy (video input) optical
to CT registration
Analyse Direct Yes Yes No No No No
Stryker No Near-3D* No No No Yes
Medtronics No Yes (tumour)  Yes (tumour) No No No
Brain Lab Z-touch laser registration  Yes No No No Yes
Atamai/Robarts Imaging Yes No No No No Optical and magnetic
tracking
Surgical Planning Laboratory** Yes No Yes No No Yes
The Computer-Aided Surgery Laboratory***  Yes No No No No Yes

*Using multi-slice 2D segmentation to simulate 3D segmentation.
**Brigham and Women's Hospital.

***Centre of Biomedical Engineering and Physics at the Medical University of Vienna.

techniques, planning of surgical corridors and navigation
(38-48). In these systems, preoperative planning is
performed by neurosurgeons by defining the entry and
the target points, thus forming a trajectory for the surgical
instrument.

As shown in Table 2, CASMIL has the most comprehen-
sive features. Some toolkits have non-rigid registration
and 3D segmentation, such as IGSTK, Analyse Direct
and Brain Lab. However, they lack the brain shift pre-
dictor, intelligent planning and query tools modules.
Surgical Planning Laboratory and Medtronics image-
guided systems have brain shift predictors but they do
not include intelligent planning and query tools mod-
ules.

CASMIL, in addition to these basic functionalities,
includes an intelligent planning module, which provides
the surgeon with a list of optimum surgical corridors,
based on the lesion location, shortest trajectory and
extensive surgeons’ knowledge in terms of critical
brain structures and predicted brain shift, using the
patient-specific finite element model (see Table 2). Other
vital modules of this system include 3D segmentation,
query tools and augmented reality. High-performance
computing (HPC) is used to speed up computationally
intensive tasks involved in CAS, thus providing near real-
time results while performing surgery. This system has
also been made securely web-enabled for surgeons to
access it from any other location (e.g. their homes or
offices). In addition, the system is being optimized for
remote PDA access. Another unique feature of this system
is the integration of various digital brain atlases.

Conclusion

We have described the design and features of a new
image-guided neurosurgery tool, CASMIL. Clearly, it
has many features that are not available in other
academic and commercial tools currently being used for
neurosurgeries. CASMIL is still under continual validation

Copyright © 2006 John Wiley & Sons, Ltd.

and development. Feedback from surgeons and clinical
engineers using the system is being used to improve the
system. We have tested current modules of CASMIL using
10 cases from the Detroit Medical Centre.
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