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Abstract

We consider a general infinite horizon problem with stochastic data. We
establish necessary and sufficient conditions under which the stochastic problem
may be correctly solved using an equivalent deterministic problem. In particular,
we establish conditions under which there exists an equivalent interest rate,
which permits replacement of the stochastic data by their expectations. This
equivalent interest rate can be approximated by a linear function of the ratio of
the variance to the mean of the stochastic data. Applications to production
planning are included.
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1. Introduction

Stochastic infinite horizon optimization comprises an important class of
dynamic sequential decision making problems, including stochastic versions of
capacity expansion, equipment replacement, and production planning problems.
These problems can generally be modelled as stochastic cost flow problems in
which a decision maker initiates a sequence of actions which, when coupled with
some underlying random occurance, gives rise to a cost flow in which either the
magnitude or the timing of the costs (or both) are not known in advance. The
decision maker typically seeks to implement an action sequence with a minimum

expected cost.

Procedures for solving these problems generally fall into one of two classes,
open loop or nonadaptive procedures, and closed loop or adaptive procedures.
Nonadaptive procedures require that all decisions be made using only the
distributional information that is available at the onset of the problem. Adaptive

procedures allow the decision maker to use information from any realizations of
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random occurances that take place prior to each decision epoch. Thus,
nonadpative prodedures do not allow a decision maker to receive any information
through a feedback mechanism, while adaptive procedures do. In general, the
nonadaptive procedures are easier to implement, but may yield suboptimal

results.

Nonadaptive solutions are frequently optimal for a commonly studied class
of problems which have a regenerative property, so that a single decision is
implemented infinitely often (e.g. [5], [12], [13], and [14]). Problems which do not
have a simplifying regenerative property often require the more difficult adaptive
solution procedures. To simplify their solution, these problems are often
approximated by finite horizon deterministic problems (e.g. (2], [4], and [9]). The
solution to this finite horizon deterministic problem is then used as an
approximate solution to the stochastic infinite horizon problem. In general, one
does not know a priori the cost of the errors associated with the approximation.
Alternative procedures for nonregenerating problems are treated in [1], [8], and
[11].

In this paper, we develop conditions under which it is possible to replace a
more general stochastic infinite horizon problem with a deterministic problem
whose optimal sequence of actions is identical to that of the stochastic problem.

When such a problem exists, it is said to be a deterministic equivalent problem

(DEP). In particular, we develop conditions for the existence of an equivalent
interest rate, which permits the replacement of stochastic data by expectations
without loss of optimality. When a DEP exists, we describe a method to
construct it and note that it differs from the deterministic approximation

commonly used in practice.



-3-

Section 2 of this paper presents a formal statement of our general problem,
including our assumptions. Section 3 includes a discussion of a deterministic
equivalent problem. Section 4 introduces an equivalent interest rate. Section 5
contains an application of our results to a simple lot sizing problem with

stochastic demand. Section 6 presents our summary and conclusions.
2. Problem Statement

2.1. Notation

The following is a list of the notation and terms used throughout this paper.

- a=(a;)2, is an infinite sequence of actions such that for all 1, ;€I for
some index set I.
00
- A C X I is the set of all feasible action sequences.
1=1
- (1 is the sample space of the underlying random occurance.

* (0, &, P) is a probability space of the underlying random occurance,
where @ is a o-algebra and P is a probability measure.

+ T, is the set of all nondecreasing right continuous functions.

T:0-T, is a stochastic process known as the randomized time process.
Thus, T maps each realization of the underlying random process, wefl,
into a nondecreasing right continuous function. To simplify notation, the
dependence of the randomized time process on w will be supressed, and
the time process will be written as {T (z ), z 20} whenever doing so avoids
ambiguity.

* 7:{1+A is random variable, known as a strategy. In general, 7 maps
each realization of the underlying random process into a feasible action
sequence.

+ II is the set of all strategies.

* = is said to be a nonadaptive strategy if there exists an action sequence
a€ A such that P{r=a }=1.
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+ Iy CIT is the set of all nonadaptive strategies.

* T;(a) is a random variable denoting the time at which the ¢ * action in
the sequence a is implemented.

© ATi(a) = Tiy(e) - Ti(a).

y 6',,: {1-R is the present value of the cost of implementing the action
sequence @ .

- C,: (=R is the composition of the functions 7 (-) and C,, and is a
random variable which represents the present value of the cost of
implementing the strategy «.

2.2. Assumptions

The cost flow associated with a given action sequence, a, consists of two
components: the magnitude of the costs incurred, and the times at which they are
incurred. It is assumed that these components can be expressed separately in
terms of a pseudo-time parameter, z. Throughout this paper, we make the

following assumptions:

Al. For every action sequence a, there exists a right continuous deterministic
cost function, C, (z), which describes the undiscounted magnitudes of the
costs associated with the action sequence in terms of the pseudo-time
parameter z. We assume that Cal(z) is of bounded variation for all feasible

action sequences.

A2. There exists a nonnegative monotonically increasing stochastic process
{T (z), 220}, known as the randomized time process. Its parameter, z, is

called the pseudo-time parameter. It is assumed that E [T (z)] is finite for

all finite 2.

A3. For every action sequence a, there exists a monotonically increasing

deterministic sequence (z; , )2, such that 7;(a) = T (z; ,)-
t1,6/1=1 $ 1,8
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A4. The present value of the cost of an action sequence a is given by
[+ <]
C’,,=fc"'T(')dC¢l (2).
0

It is clear that the pseudo-time parameter, z, plays an important role in the
problem formulation. This parameter acts as a link between the magnitude and
the timing of the costs, as evidenced by assumption A4. The precise
interpretation of z will be problem specific. In many cases, this pseudo-time
parameter has a very natural interpretation within the context of the problem.
For example, in the capacity expansion problems analyzed in [1] and (8], the
authors use the cumulative demand as a pseudo-time, and formulate their
problems so that assumptions A1-A4 are satisfied. In Section 5, we provide an

analysis of a simple EOQ problem using the concept of a pseudo-time parameter.

2.3. Formulation

Simply stated, the stochastic infinite horizon problem (P) is to find a

strategy 7 ¥ to
Minnﬂ E[b,] (P)’

o0
where E[C,] = E[fe"r(’)dC',(z)].
0

8. Deterministic Equivalent Problem

We now define an equivalence between a deterministic problem and a
stochastic problem, which will allow the use of deterministic problem solving
techniques without loss of optimality.

Definition: A deterministic problem (P) is said to be equivalent to a

stochastic problem (P) if every action sequence which is optimal for (P) is

also optimal for (P).
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In general, the sequence of actions implemented under strategy = is random.
Thus, C,(z) is not, in general, a deterministic function and the expectation of
C, may be difficult to obtain. However, if C,(z) is a deterministic function,

one can invoke Fubini’s Theorem and conclude that
. [+ ]

E[C,] = fE[c"T(’)]dC,(z). If » is a nonadaptive strategy, then = is a
0

deterministic action sequence and the function C,(z) is deterministic. With this
observation, we can now prove conditions under which a deterministic equivalent

problem exists.

Lemma 1 If there exists an optimal strategy = *e¢Ily, then there exists a

deterministic equivalent problem.

Proof Suppose T (2) is a nonnegative, monotonically increasing function,

00

and f is a nonnegative number. For every ae 4, let C’a = fc"'T(’)dCa (2).
0

If for every z20, E[e~"T(2)] = ¢ ~*1(2), then for every relly, C, = E[C,].
By hypothesis, there exists an optimal strategy = *eIly. Thus, every optimal
solution for the deterministic problem (P ),
Min,; C, (P), )

is also an optimal solution for the stochastic problem (P). It follows that (P) is
a deterministic equivalent problem (DEP) for (P). M

Thus, to establish conditions under which a deterministic equivalent problem
exists, it is sufficient to establish condition under which a nonadaptive strategy is
optimal. The following Lemma provides sufficient conditions under which there
exists an optimal strategy 7 * such that 7 *¢IIy. When this is the case, we may
without loss of optimality restrict our attention to the nonadaptive strategies,

and thus solve the stochastic problem by solving a deterministic problem.
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Lemma 2 If {T (z), z 20} has independent increments, then there exists an
optimal strategy which is nonadaptive.

Proof We proceed by induction. Let 7 * be an optimal strategy for (P).
Clearly, since some action must be implemented first, we can assume without loss
of generality that there exists an action a; such that P{7r1‘ = a; } = 1. Now,
suppose that for every ¢ <n, there exists a,-'eI such that P{7r,-‘ = ‘-‘} = 1 for

some n. By definition,

ooe—rT (2)
= dC .+ (2)

= A + BC, where

A = fe""T(’)dC,,:(z),
0
B = e_'T(z"'"), and
C = j‘ e—'[T(z)_T(z""')]dC“(z).

By the property of independent increments,
E[C,:] = E[A]+E[B]E|[C]

Thus, z, ,+ and (7 ‘), 21 are the only data that are relevant when predicting the
future evolution of the problem. In particular, these are the only data that are
relevant when determining 7r,:+1. But z,,: is completely determined by
(7r,~‘),-",l, by assumption A3, and it follows that 7r,:+1 depends solely on the
optimal leading subsequence, (1r,.‘),-"_1. By hypothesis, this subsequence is known,
and we conclude that there exists an action a,:ﬂ €I such that

P{7r,:!+1 = a;H} = 1. By induction, we conclude that there exists an action

sequence a*¢ A such that P{x *=a*} = 1, and the result follows. @
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It is not difficult to construct examples in which {T (2), z 20} does not have
independent increments and a nonadaptive optimal strategy exists. These
examples inevitably exploit some special structure found in the set of cost
functions {C, (z )}“A . To obtain necessary and sufficient conditions for the
existence of a nonadaptive optimal strategy that are independent of the choice of
cost functions, {C, (2 )}“A , we require the following lemma and corollary which

are stated without proof.

Lemma 3 If X and Y are dependent random variables, and if
S={y:| Ele=® | Y=y]-E[e~]| >0}, then P{¥ ¢S }>0.

Proof Omitted. |

Corollary 4 If X and Y are dependent random variables and if
Sg={y :| Ele~™X | Y=y]—E[c"x]| >0} , then there exists ¢>0 such
that P{YeS,} > ¢.

Proof Omitted. ]

Using these results, we now establish necessary and sufficient conditions
under which one may, without loss of optimality, consider only nonadaptive
strategies. Note that these conditions are independent of the choice of cost

functions {C, (2)}

acd’

Theorem 5 There exists for every set of cost functions, {C, (z)} an

scA’

optimal solution which is nonadaptive if, and only if, the stochastic process

{T;(a), $=1,2,...} has independent increments for all a¢ A4 .

Proof See Appendix.

By combining Lemma 1 and Theorem 5, we see that for an arbitrary set of

cost functions, a deterministic equivalent problem exists whenever the stochastic
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process {T; (@), §=1,2,...} has independent increments for all ae A. Under these

conditions, if # and the function T (z) are chosen so that E[e T (?)] = e~1(2)

for all z, then the deterministic problem

[+ ]

Cp = [erTWic,(z)  (P)
0

is equivalent to the stochastic problem

Min

xelly

Ming.n E [&x] (P).
4. Equivalent Interest Rate

Because # and T (2) appear as a product, there is some degree of flexibility
available when choosing these parameters for the deterministic equivalent

problem. If the conditions of Theorem 5 are satisfied, then the deterministic

problem in which #=r and T(z) = :;llnE[c"T(' )] can be solved to obtain

an optimal solution for (P). This is precisely the DEP proposed in [8]. A more
natural choice for the time function, which is independent of the interest rate, is
T(z) = E[T(z)]. We now define an equivalent interest rate, which permits
the replacement of stochastic times by their expectations.

*  guch that

Definition: If there exists an interest rate r
E[e~'T(#)] = ¢~r"E[T(2)] for all z, then r* is said to be an equivalent
interest rate for the stochastic process {T (z), z 20}.
Note that when an equivalent interest rate exists, it incorporates all of the
information regarding the uncertainty in the cost flows which is relevant to the
decision making process. As such, it provides the decision maker with a powerful -
analytic tool. For example, understanding how changes in the stochastic problem

data effect the equivalent interest rate will provide the decision maker with an

understanding of how these changes effect the optimal solution.
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4.1. Conditions for the Existence of an Equivalent Interest Rate

The following lemma provides necessary and sufficient conditions under

which an equivalent interest rate exists.

Lemma 6 Let {T (2), z 20} be a monotonically increasing stochastic process.
There exists an equivalent interest rate, r*, if, and only if, there exists functions

g and h such that E[e~"T(2)] = ¢~9(r)h(z),

Proof Suppose there exist functions g and Ak such that
Ele~T()] = ¢=9(")A(z), Then E[T(z)] = ¢’(0)h(z). If g’(0) = O, then
P{T(z) = 0}=1 for all z, since the stochastic process increases monotonically,
and the proof is trivial. Thus, we assume without loss of generality that

g '(0) # 0. By hypothesis,

~In(B[e=TE)) _ g(r)
E[T(z)] ¢°(0)
Thus, the equivalent interest rate exists and is given by r* = _gir_)_

g°(0)°
Now, suppose the equivalent interest rate, r*, exists. Since r* is independent of
z, by hypothesis, and E [T (z)] is independent of r, set g(r) = r*, and

h(z) = E[T(z)]. The result follows. =

Lemma 6 offers a characterization of stochastic processes which have an
equivalent interest rate associated with them. However, it requires knowledge of
the form of the Laplace transform of {T(z), z20} before any statement
regarding the existence of an equivalent interest rate can be made. A
characterization which does not require knowledge of the Laplace transform

would be more useful.

The ability to separate the exponent of the Laplace transform of the

stochastic process into functions of r and z is one characteristic of stochastic
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processes with stationary and independent increments, as the following theorem

indicates.

Theorem 7 If {T(u), u 20} is a stochastic process with stationary and
independent increments, and {T(z), z2>0} is a monotonically increasing
stochastic process such that T (2) = 7 (h(z)) for some nonnegative increasing

function h, then there exists an equivalent interest rate for both {7 (u), u >0}

and {T (z), 2z 20}.

Proof If {7 (u), u2>0} has stationary and independent increments, then
Ele7"7(+9)] = E[e~""()]E[e~""(*)] for all u,v20. This implies that there
exists a function g (r) such that E[e~"7(*)] = ¢=9(")¥ for all u >0 [7].

If T(z) = 7(h(z)), then E[e~"TG)|=E[¢~""(A(2))] =¢-9(r)A(*), By Lemma

6, an equivalent interest rate exists for both stochastic processes, and is given by

r*____(_l_gr -

9°(0)

It is important to note that under the conditions of Theorem 7, the
equivalent interest rates associated with {7 (u), u 20} and {T(z), 2z 20} are
identical. Thus, knowledge of the equivalent interest rates associated with
stochastic processes possessing stationary and independent increments indicates
knowledge of the equivalent interest rates associated with a much larger class of
stochastic processes. This is of particular interest since many practical problems
can be modelled or approximated using the transformation of a stochastic process
with stationary and independent increments suggested in Theorem 7. Section 5

of this paper contains an example of such a problem.

The following theorem states that when E[T(z )] is continuous in z, the

conditions for Theorem 7 are both necessary and sufficient.
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Theorem 8 Let {T(z), 220} be a monotonically increasing stochastic
process such that E[T(z)] is continuous in z. There exists an equivalent
interest rate, r*, if, and only if, there exists a stochastic process {7 (u), u >0}

with stationary and independent increments and a nonnegative increasing
function h such that T (z) = 7 (h(2)).

Proof Suppose E [T (z)] is continuous in z and an equivalent interest rate
exists. By Lemma 6, there exist functions g and A such that
E[e~"T()] = ¢~9(r)A(s),  Purthermore, since E[T(z)] = ¢ ’(0)h(z), and
E[T (z)] is nonnegative, increasing, and continuous, h(z) is without loss of
generality, nonnegative, increasing, and continuous.

Let h™Y(u) = min{u:h(z)>u}. Since h is increasing and continuous, h~! is
well defined. Let 7(u) = T (h~!(u)). Then
E[e=""(8)] = E[e~rT('(v)))

= ¢~ 9(r)h(h7(u))

= ¢-9(r)u
Thus, the stochastic process {7 (u), u 20} has stationary and independent
increments (7], and T (z) = T (h(z)). The result now follows from Theorem 7.
-
As a result of Theorem 8, if E[T (z)] is continuous in z, the existence of an

equivalent interest rate can be verified without knowing the Laplace transform of

the stochastic process.

4.2. Properties of the Equivalent Interest Rate

When an equivalent interest rate exists, an optimal solution to the stochastic
problem (P) can be obtained by solving the deterministic equivalent problem in

which T(z) = E[T(z)] and # = r*. As such, the single parameter, r*,
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contains all of the information regarding the stochastic process {T (z), z 20}
which is relevant to the decision making process. It is important to understand
the relationship between the original interest rate, r, and the equivalent interest
rate, r*. This understanding may be gained through Jensen’s Inequality, as the
following theorem indicates.

Theorem 9 If an equivalent interest rate exists, r* <r .

rt

Proof Since ¢~ " is a convex function,

E [c—rT(z)] > e—rE[T(z)],
by Jensen’s Inequality. But

E[e_'T(')] = ¢—r'E[T(2)
by hypothesis. Thus,

e~ T'E[T(z)] —rE [T (2)]

2 e

=>r*¥ < r [ ]
We see that the stochastic nature of the time process {T (z), z 20} has the
same effect on the decision making process as reducing the interest rate in a
deterministic problem. Thus, one can evaluate the impact of the stochastic time

process on the optimal solution in terms of this reduction in the interest rate.

Such an evaluation is provided in Section 5.

The following theorem provides a second order approximation of the

relationship between r* and the various moments of {T' (z), z 20}.

- Var [T (z)]
Th W ¥ =1~ 2)
eorem 10 When it exists, r {1 2E(T ()] r}r + o(r?

Proof By Lemma 6, if r* exists, then there exist functions ¢ and h such

that E[c"T(')] = ¢ 9(r)h(z) and r* = Tg%))— By the properties of Laplace

transforms, ¢ is an analytic function, and every derivative of g is well defined at
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all points. It follows that the Taylor series expansion of g about the point r =0

exists. Hence

3
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follows that

Var [T (2
{lﬁzﬁl ’}’”"2" -

From Theorem 10,> we see that for small values of r, r* decreases linearly as
the ratio of the variance to the mean of the stochastic process {T (z),z >0}
increases. The larger this ratio is, the larger the difference between r and r* is.
Similarly, the smaller this ratio is, the smaller the difference between r and r*.
For larger values of r, higher order terms from the Taylor expansion can be used.

This simply involves the use of higher order moments of {T (z), z 20}.

5. Applications

The results developed in sections 3 and 4 can be used to efficiently solve a
large class of problems which cannot be easily solved using currently available
techniques. For example, consider the stochastic version of the capacity
expansion problem under exponential demand in [15]. In this problem, demand is
a geometric Brownian motion process and hence is nonstationary. Since this

stochastic demand is a transformation of Brownian motion, a process with
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stationary and independent increments, there exists a deterministic equivalent
problem and an equivalent interest rate. Thus, the deterministic turnpike results
of [15] can now be used to solve the stochastic problem. This particular
application is discussed in [1] and [8].

The following is a simple production planning example. While this problem
can be solved by well known methods, it is presented here to emphasize the value
of the insights that can be gained through the equivalent interest rate. These

insights generalize to more complicated nonstationary problems.

5.1. Production Planning

In this section, we consider a simple continuous review economic order
quantity model in which all costs are continuously discounted using an interest
rate r. We assume that there are no leadtimes, no shortages are allowed, and
that the demand for product follows a stochastic process {D(t), t 20}. For
simplicity, we assume that the cost to place an order for Q items is given by
A +pQ, where A and p are known positive constants, and that there are no

physical per unit holding costs.

Under these conditions, it is common to replace the stochastic demand by its
expected value, and solve the resulting deterministic problem. To illustrate the
qualitative characteristic of the equivalent interest rate, we consider this problem
with {D(t), t 20} a Poisson process with rate A, so that E[D(t)] = At.
Hadley and Whitin [10] show that when a linear demand function is assumed, the

classic EOQ formula Q, = 24 ) gives a first order approximation to the

P

optimal lot size in the discounted deterministic model.

Since there are no leadtimes, an order would never be placed before the
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inventory on hand has been depleted. Since the demand for product is a
stochastic process, it follows that the times at which orders are placed are
random variables which are determined by the demand process. As such, this
problem provides a very natural application of the results developed in Sections 3

and 4.

Because of the stationarity of this problem, we may, without loss of
optimality, restrict our attention to action sequences in which the same quantity
is ordered whenever an order is placed. For every action sequence, a, let Q (a)
represent the quantity ordered when a is implemented. For this problem, we can
interpret the pseudo-time parameter, 2z, as the cﬁmulative demand for product.

To see that assumptions A1-A4 are satisfied, consider the following:

i) Let C,(z) represent the cumulative undiscounted cost of satisfying the

first z units of demand when the action sequence a is used. Thus,

Q(e)

where [z|* represents the smallest integer greater than or equal to z.

Ca(2) = [ - ] (4 +p@Q (a)],

Note that C,(z) is right continuous, deterministic, and of bounded

variation.

ii) Let {T(z),z20} be the stochastic process defined such that
T(z) = inf {t:D(t)>z}. Then {T(z),220} is nonnegative,
monotonically increasing, right continuous, and E[T(z)] = -%-[z]‘,
where [z]™ is the largest integer less than or equal to z +1. Note that
E [T (z)]<oo for all finite z.

iii) For every action sequence a,let z; , = ({—1)Q(a). Then (z ,)2, is

a monotonically increasing deterministic sequence such that T'(z; ,) is
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the random time at at which the i ®* order is placed.

iv) The present value of the cost of an action sequence a is given by

&,, = i‘c—'r(z‘")A +pQ (a)
' i=1

8

= fe—’r(’)dC,, (2).

0

Because {D(t), t >0} is a Poisson process, {T'(z), z 20} has independent

increments, and it follows that a DEP exists (Lemma 2). Moreover,

L\

E [e—rT (,)] - A+r

Therefore, an equivalent interest rate exists, by

Lemma 6, and is given by

¢ _ —In(E[e=TTE))

E[T(z)]
= L
= An(1+ ’\).
The deterministic problem
Ming.qa)o E[C] = [erITlNdC, ()

is equivalent to the original stochastic problem.

Notice that the time function E[T (2)] = -[i)]‘- is equivalent to using a

deterministic demand function D (t) = At. Thus, the stochastic problem is
equivalent to the deterministic problem in which this linear demand is used, and

costs are continuously discounted using an interest rate r*. A first order

approximation of the true optimal order quantity is given by Q, = « / ZA*p'\
— r
[10].

One can quickly compare the two quantities, Q, and Q,, since they differ
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only in the interest rate used in discounting. In particular,

24 )
Q4 _ rp
Q. 24 A

< 1
because r* {r. Thus, @, <Q,, and we conclude that the appropriate reaction to

uncertainty in the demand process is to order somewhat larger quantities than in

the absence of uncertainty. Moreover, as a result of Theorem 10,

Q _ _ VarlT!z“r
cz—.”\/1 2E[T(2)]

This suggests that even in the absence of leadtimes, a type of buffer stock is

appropriate, and as the ratio of the variance to the mean increases, the buffer

increases.

As previously stated, a regenerative demand process is used in this example
only for the clarity of presentation. To see that less restrictive demand processes
may be used, suppose the demand for product, {D (t), t 20} is defined so that
D(t) = f (d(t)), where {d(t), t 20} is a Poisson process with rate A, and f is
a nonnegative monotonically increasing function. In general, the demand process
{D(t), t 20} is nonregenerative. However,

T(z) = inf{t:D(t)>z}
= inf {t:/ (d(t))>2)
= inf {t:d(t)>f ~!(2)}.
Let 7(u) = inf {t:d(t)>u} and b = f~1. Then T(z) = 7(h(z)). From
Theorem 7, we see that both {D(t),t>0} and {d(t), t 20} share the same
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equivalent interest rate, namely r* = /\ln(1+-;—). Although a closed form

solution may not exist for such a nonstationary demand process, the planning

horizon results developed in [3] may be applicable to such a problem.

5.2. Problem Reformulation

The application of the deterministic equivalent approach to stochastic
problem solving can be extended by the artful reformulation of problems. For
example, consider the traditional buy/keep equipment replacement problem in
which maintenance costs increase randomly with the age of the equipment. The
common formulation of this problem decides, in each period, if the equipment
should be kept or replaced with a new, but otherwise identical, substitute. The
optimal solution of this model requires an adaptive solution procedure since the
decision in period n is a function of the maintenance costs realized. No

deterministic equivalent problem exists for this model.

However, we may reformulate the problem so that decisions are made solely
on the basis of maintenance costs, rather than at prespecified times. That is,
reformulate the problem so that replacements will be made ‘when maintenance
costs reach @°’, rather than ‘in period n’. This model has a nonadaptive optimal

solution and is readily addressed by the techniques developed in this paper.

6. Summary and Conclusion

For a large class of stochastic infinite horizon optimization problems, optimal
solutions can be found by solving an equivalent detérministic version of the
problem. This equivalent problem exists whenever the solution to the stochastic
problem is, without loss of generality, a nonadaptive solution. Under certain

conditions, there exists an equivalent interest rate which permits the replacement
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of the stochastic data by their expectations. When the equivalent interest rate
exists, the deterministic problem is completely analogous to the original
stochastic problem. Thus, the solution of the equivalent deterministic problem
can provide valuable insight into the effect of the stochastic data on the optimal
solution. By noting how the equivalent interest rate depends on the moments or
parameters of the data, one can directly analyze their impact on the optimal

solution.
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APPENDIX

Theorem 5 There exists for every set of cost functions, {C, (z)}“ .0 an
optimal solution which is nonadaptive if, and only if, the stochastic process

{r:(a), 1=1,2,...} has independent increments for all ae A .

Proof If {T;(a), 1=1,2,..} has independent increments for all ae A, the
proof is similar to that of Lemma 2 and is therefore omitted.
Suppose there exists an action sequence a® €A such that {7, (a9, i=1,2,..}
has dependent increments. Then there exists i <j such that AT;(¢% and

AT ; (a% are dependent random variables [6]. Without loss of generality, we

assume

1) for all k<i, ATy (a®) and AT;(a®) are independent random variable,

and

2) for all i<k<j, AT,(a%) and AT;(a) are independent random
variables.

Let A= {aecA:the first j—1 elements of a and a° agree}. Choose
a'e A y—a?, such that the j* element of a® and a? differ. Such a choice can be
made, since T ; (a°) is a decision epoch, and hence, two or more actions must be
available at that time. We now choose a set of cost functions so that only a°
and a! need be considered.
Let C,i(z)=0 for all z 0.

Let



-22-

(
0 z€[0,z; (a9))
¢ = b zelz; (%55 11(a%)
P,
N 2elz; 11(a%),
E, [C -7 AT,-(G‘)]
k

For ae A —{a%al}, C, (z) is chosen so that
C,(2)2C,o(2) for all z, or
C,(2)2C(2) for all z, or both.

Thus, only ¢° and a! need be considered. Finally, since a% A, and ale 4 o, the
first j —1 elements of a® and a! agree. Hence, the optimal sequence of actions is
predetermined until 7 (a 9). As such, we can choose 7 * on the basis of the

expected present value of the costs at 7 (a?).

00

1 —rT (2
_[e T(s)gc, (2)

Let C, s
e J

1l ¢

c—rT,-(a“) ¢

Then Ean = 0, and

C k 1 c—rAT,-(a')
] = -—

E[e_'AT"(a.)

Thus, E[C,J = E[C,)] = 0, and it follows that for all choices of k,
Min, n, {Elat]} =0.

Let S, = {s :E[e—'AT"(°.)| AT (a%) = ,]<E[c"AT:‘(¢')]},
Se = {8:E[e”"i)| a7, (0% = s]>E[e™"%Ti(*)}, and

Sp= {o:| Ele™"T17) a7;(a%) = o]-E[e 74T Y]] >4).
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By Corollary 4, there exists ¢ >0 such that P{AT; (¢°) ¢ S }>¢. Thus,

P{&T; (6% € 5,5} >‘7 or P{AT; (a%) ¢ S,NS¢} >‘? or both.
If P{AT; (0 e S,NSL} > %, choose k <0. Construct a strategy 7 such that

a? if AT;(ag) € S.MNSL

a!l otherwise.

Then E[C,] = E[E[C,| AT, (a")]]

E[e™"4Ti)| a7, (a%e S, NSy

= k 1- P{AT' (GO)CSCHSL}
E[e—'AT"(“‘)]
—r AT ;(a®)) _
<| k] -1+ 2l = 1p(ar, (a%¢5.05; }
E[c—rAT,-(a’)]
<0.

If P{aT;(a®) € S, NS} <£2-, then P{AT;(a% ¢ S, S¢} >%. In this case,

choose k>0, and construct a strategy # such that
@ if A7 (a%eS. NS¢

al otherwise.

The strategies constructed in this manner are strictly better that either of the
relevant nonadaptive strategies. Hence, if {7,(a%), 1=1,2,..} has dependent
increments for some 4% A, there there exists a set of cost functions,
{C, (= )}“‘4 , for which no optimal solution which is nonadaptive exists. Hence,

the result. 1
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