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S U P P L E M E N T A R T I C L E

Multilevel Analysis of Infectious Diseases

Ana V. Diez Roux and Allison E. Aiello
Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor

Traditional study designs, such as individual-level studies and ecological studies, are unable to simultaneously
examine the effects of individual-level and group-level factors on risk of disease. Multilevel analysis overcomes
this limitation by allowing the simultaneous investigation of factors defined at multiple levels. Areas in which
multilevel modeling can be applied to sexually transmitted infection (STI) research include examining how
both group-level and individual-level factors are related to individual-level STI outcomes, assessing interactions
between individual-level and group-level constructs, and exploring how factors at multiple levels contribute
to group-to-group differences in rates of disease. In this article, we review the fundamentals of multilevel
modeling, the applications of multilevel models for the examination of STIs, and the key challenges associated
with using multilevel modeling for infectious-disease research.

Over the past few decades, epidemiological studies have

focused, for the most part, on the identification of indi-

vidual-level risk factors for disease. The underlying as-

sumption in this approach has been that the causes of

disease can be found at the level of individuals. This

individual-centered approach has been reflected in be-

havioral and biomedical models of disease causation

and reemerges today in the notion that genetic factors

play a major role in the etiology of disease. Populations

are usually viewed as collections of individuals, rather

than as meaningful entities with inherent properties

that may be related to the likelihood that individuals

within them develop disease. Recently in epidemiology,

however, interest has been increasing in recovering the

population or group dimension and in reconsidering

the types of variables, types of study designs, and types

of analytical approaches needed to develop explanations

of the causes of disease that incorporate individual-level

and population-level factors [1–4]. The growing con-

sensus is that, with regard to both scientific validity and

the practical implications for prevention of disease, in-
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vestigations of the causes of diseases need to include

factors defined at multiple levels. The importance of

multilevel determinants has been especially highlighted

in recent reviews of the epidemiology of sexually trans-

mitted infections (STIs), for which the influence of pop-

ulation-level factors has long been recognized [5–8].

Multilevel analysis recently has emerged as an an-

alytical strategy that may be useful in incorporating

factors defined at multiple levels in epidemiological

analyses [9–11]. This article will review the role of pop-

ulation-level factors in infectious-disease epidemiolo-

gy, summarize the fundamentals of the multilevel ap-

proach, and briefly review recent applications of this

approach in infectious-disease and STI research. We

conclude with a discussion of the strengths and limi-

tations of multilevel analysis in the study of infectious

diseases and the challenges raised by its use.

POPULATION-LEVEL (OR GROUP-LEVEL)
FACTORS IN INFECTIOUS-DISEASE
EPIDEMIOLOGY

The notion that population-level factors or, more ge-

nerically, group-level factors are important in under-

standing the distribution of disease has long been pres-

ent in the study of infectious-disease epidemiology. The

classic example is the notion of herd immunity—that

is, the idea that an individual’s risk of contracting an

infectious disease depends, in part, on the level of
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immunity in the group or population to which he or she be-

longs [12]. Herd immunity, a group-level property, is important

in understanding the reasons for not only group-level differ-

ences in the incidence of disease but also an individual’s risk

of disease. Thus, group-level factors are important even when

the objective is to draw inferences regarding the causes of dis-

ease in individuals. In 1916, in the context of studying malaria,

Ross [13] alluded to the relevance of group-level factors in

infectious diseases in his theory of dependent happenings or

events, in which the frequency of the event depends on the

number of individuals already affected. More recently, Halloran

and Struchiner [14] have discussed the implications of depen-

dent happenings, with regard to study design and inferences

in epidemiology.

The phenomenon that the probability of an individual de-

veloping an outcome depends in part on the prevalence of the

outcome in the group to which he or she belongs also may

apply to health-related behaviors. For example, an adolescent’s

likelihood of smoking may depend on the extent of smoking

in his or her peer group. On a larger scale, a person’s likelihood

of smoking may depend on smoking levels in the society to

which he or she belongs. The prevalence of the behavior may

generate and, in turn, be influenced by social norms (a group-

level factor) regarding its acceptability and desirability. Norms

and the prevalence of the behavior may, in turn, influence and

be influenced by group- or population-level factors, such as

cigarette advertising and legislation regarding smoking in public

places. The influence of social norms also applies to behaviors

directly linked to the transmission of infectious diseases, such

as sexual behaviors. However, the population- or group-level

factors relevant to infectious diseases are not limited to those

involving the contagion or contagion-like processes described

above. Examples of other population-level factors that may be

relevant to STIs include the availability and cost of services

(e.g., sex education, condoms, or treatment clinics), legislation

and enforcement of legislation regarding commercial sex work-

ers, and the educational and occupational opportunities of

women. Group-level factors may affect each of the components

of the reproductive ratio of an infectious disease (i.e., the rate

of transmission, the duration of infectiousness, and the number

of contacts per unit of time). For example, the rate of trans-

mission of HIV may be influenced by the prevalence of condom

use in the group, the duration of infection may be influenced

by the availability and cost of treatment clinics within a geo-

graphic area, and the number of contacts per unit of time may

be influenced by norms and patterns of sexual contacts at the

group level.

In addition, population- or group-level factors also may

modify the relationship between individual-level risk factors

and risk of disease [15]. For example, the increase in the risk

of acquiring an STI that is associated with a given increase in

the number of sex partners may be very different in groups

with different structures of sexual contacts (e.g., in groups with

varying degrees of assortative mating or of sexual contacts with

members of other groups). The effects of individual-level var-

iables also may differ depending on the prevalence of the out-

come in the population; for example, the relative risk of in-

fection that is associated with the number of sexual contacts

may increase as the rate of infection in the population increases.

In another example of the interaction between group-level and

individual-level factors, the association between commercial sex

work and the risk of contracting gonorrhea may differ on the

basis of the availability of STI clinics in the neighborhood.

A key consequence of the presence of group-level determi-

nants of infectious diseases is that interventions may have both

individual- and group-level effects. For example, a vaccination

program may affect an individual’s risk of disease through an

individual-level effect (the effect of vaccination on an individ-

ual’s risk of disease) and through a group-level effect (the effect

of community-wide vaccination on an individual’s risk of dis-

ease, even if he or she is not vaccinated). Halloran and Stru-

chiner [14] have referred to these effects as “direct” and “in-

direct” effects, respectively. In fact, the presence of indirect

effects is the rationale for preventing an epidemic through tar-

geted vaccination of especially vulnerable individuals. Although

vaccination has group-level consequences, it is a type of inter-

vention administered to individuals. Other types of interven-

tions may operate directly on group-level factors affecting all

individuals in the group. An example is the drainage of a swamp,

to reduce the mosquito population (and, hence, the transmission

of mosquito-borne diseases) in a given community. In this case,

the intervention is defined at the group level, and no individual-

level analogue exists. Thus, the only estimable effect is the effect

of the group-level intervention. However, controlling for indi-

vidual-level factors, such as the use of bed nets, may be important

in estimating this group-level effect or in investigating whether

the effect of the group-level intervention on the risk of disease

differs by individual-level attributes.

Traditional individual-level studies and ecological studies are

unable to simultaneously examine the role of individual- and

group-level factors in the risk of disease. For example, an in-

dividual-level study that focused on estimating the effects of

vaccination by comparing rates of disease between those vac-

cinated and those not vaccinated, within a given community,

would completely miss the group-level effect of percent vac-

cinated (the indirect effects described by Halloran and Stru-

chiner [14]). By failing to consider the effects of community-

wide vaccination, erroneous conclusions could be drawn re-

garding the individual-level effects of vaccination that could be

expected in other contexts, because the individual-level effect

(direct effect) may differ depending on the prevalence of vac-

cination in the community (because of the indirect effect of
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community-wide vaccination on the risk of disease among

those not vaccinated) [16]. On the other hand, an ecological

study of several communities that related the percentage of

vaccinated individuals to disease rates would be unable to dis-

tinguish between the individual-level effects of vaccination and

the effects of the percentage of vaccinated individuals in the

communities. Multilevel analysis overcomes these limitations by

allowing simultaneous examination of factors defined at mul-

tiple levels.

TYPES OF GROUP-LEVEL VARIABLES

Several different types of group-level variables may be relevant

to infectious-disease epidemiology. Group-level variables char-

acterize group-level constructs. Groups can be defined in many

different ways. For example, a group can be the residents of a

country or a neighborhood, classmates in a school, or a group

of friends. Group-level variables have been classified into 2

types, derived variables and integral variables [17]. Derived

variables are constructed by mathematically summarizing the

characteristics of individuals in the group. Examples of derived

variables that may be of particular relevance to STIs include

the age composition of the group (which may be a marker for

mixing patterns), the group prevalence of sexual behaviors

known to be associated with transmission of disease (which

may influence the probability of an individual adopting that

behavior, owing to norms or peer pressure), and the prevalence

of the STI (which may modify the effect of an individual-level

behavior on the risk of disease). Integral variables differ from

derived variables in that they are not summaries of the char-

acteristics of individuals in the group. Examples of integral

variables of particular relevance to STIs include community

availability of STI clinics, community availability and price of

condoms, and features of contact patterns at the group level

[18–20]. The term “structural variables” has been used to refer

to several different types of integral variables, including those

that capture relationships or interactions between members of

a group (e.g., characteristics of social networks within the

group) [21], as well as features of communities that range from

economic policies to physical environments (e.g., the avail-

ability of health services) [22].

FUNDAMENTALS OF MULTILEVEL ANALYSIS

Multilevel analysis is an analytical approach that is appropriate

for data with nested sources of variability—that is, data in-

volving units at a lower level, or micro-units (e.g., individuals),

nested within units at a higher level, or macro-units (e.g., peer

groups, schools, or neighborhoods) [9, 10, 23–29]. It allows

the simultaneous examination of the effects of group- and indi-

vidual-level variables on individual-level outcomes, while ac-

counting for the nonindependence of within-group observa-

tions. Multilevel analysis also allows the examination of both

between- and within-group variability, as well as how group-

and individual-level variables are related to variability at both

levels. Thus, multilevel analysis can be used to draw inferences

regarding the causes of interindividual variation (or the rela-

tionship of group- and individual-level variables to individual-

level outcomes), but inferences also can be made regarding

intergroup variation, whether such variation exists in the data,

and to what extent it is accounted for by group- and individual-

level characteristics. Moreover, in multilevel analysis, groups and

contexts are not treated as unrelated but are conceived as com-

ing from a larger population of groups about which inferences

can be made. By bringing together group- and individual-level

variables and examining variability both within and between

groups, multilevel analysis avoids the inferential fallacies that

may occur when a relevant level is ignored [4]. In infectious-

disease epidemiology, multilevel analysis can be used to ex-

amine how both group- and individual-level factors are related

to individual-level infectious-disease outcomes, how factors at

both levels interact, and how factors at both levels contribute

to group-to-group differences in disease rates.

The statistical models used in multilevel analysis are referred

to as “multilevel models” [26, 28, 29] or “hierarchical models”

[24, 30]. These models (or variants of them) have appeared

previously in the literature, under a variety of names, includ-

ing “random-effects models” or “random-coefficient models”

[31–33], “covariance-components models” or “variance-com-

ponents models” [34, 35], and “mixed models” [36]. The fol-

lowing is a simplified example for the case of a normally dis-

tributed dependent variable, a single individual-level predictor,

and a single group-level predictor. Analogous models can be

described for dependent variables that are not normally dis-

tributed [23, 24, 28, 30], and multiple individual- and group-

level predictors can be added.

For multilevel analysis involving 2 levels (e.g., individuals

nested within groups), the multilevel model can be concep-

tualized as a 2-stage system of equations. In the first stage (level

1), a separate individual-level regression is defined for each

group or higher-level unit:

2Y p b + b I + e , e ∼ N(0, j ) , (1)ij 0j 1j ij ij ij

where Yij is the outcome variable for the ith individual in the

jth group, Iij is the individual-level variable for the ith individual

in the jth group, b0j is the group-specific intercept, and b1j is

the group-specific effect of the individual-level variable. Indi-

vidual-level errors (eij; sometimes called “micro-errors”) are

assumed to be independent and identically distributed, with a

mean of 0 and a variance of j2. Regression coefficients (b0j and

b1j) are allowed to vary from one group to another.

In the second stage (level 2), the group- or context-specific

regression coefficients defined in equation 1 (b0j and b1j in this
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example) are modeled as functions of group-level (or higher-

level) variables:

b p g + g G + U , U ∼ N(0, t ) (2)0j 00 01 j 0j 0j 00

and

b p g + g G + U , U ∼ N(0, t ) , (3)1j 10 11 j 1j 1j 11

where and Gj is the group-level variable,Cov (U , U ) p t0j 1j 10

g00 is the common intercept across groups, g01 is the effect of

the group-level predictor on the group-specific intercepts, g10

is the common slope associated with the individual-level var-

iable across groups, and g11 is the effect of the group-level

predictor on the group-specific slopes. In the equations for level

2, errors (U0j and U1j; sometimes called “macro-errors”) are

assumed to be normally distributed, with a mean of 0 and

variances of t00 and t11, respectively. The covariance between

intercepts and slopes is represented by t01. Macro-errors are

assumed to be independent across contexts and independent

of micro-errors [27]. Thus, multilevel analysis summarizes the

distribution of the group-specific coefficients in terms of 2

parts: a “fixed” part, which is common across groups (g00 and

g01 for the intercepts and g10 and g11 for the slopes), and a

“random” part, which is allowed to vary from group to group

(U0j for the intercept and U1j for the slope).

By including an error term in group-level equations 2 and

3, these models allow for sampling variability in the group-

specific coefficients (b0j and b1j) and also for the fact that the

group-level equations are not deterministic (i.e., not all relevant

macro-level variables may have been included in the model).

The underlying assumption is that group-specific intercepts and

slopes represent random samples from a normally distributed

population of group-specific intercepts and slopes or, alter-

natively, that the macro-errors are exchangeable, that is, that

the residual variation in group-specific coefficients across groups

is unsystematic.

An alternative presentation of the model fitted in multilevel

analysis is to substitute equations 2 and 3 into equation 1:

Y p g + g G + g I + g G I + U + U I + e .ij 00 01 j 10 ij 11 j ij 0j 1j ij ij

The model includes the effects of group-level variables (g01),

individual-level variables (g10), and their interaction (g11) on

the individual-level outcome Yij. These coefficients (g01, g10, and

g11), which are common to all individuals regardless of the

group to which they belong, are often called the “fixed coef-

ficients” (or “fixed effects”). The model also includes a random-

intercept component (U0j) and a random-slope component

(U1j). The values of these components vary randomly across

groups; hence, U0j and U1j are referred to as the “random co-

efficients” (or “random effects”). The variances in levels 1 and

2 (j2, t00, t11, and t10) are called the “(co)variance components.”

The parameters of the above equations (fixed coefficients, ran-

dom coefficients, variances of the random coefficients, and re-

sidual variance) are estimated simultaneously, by using iterative

methods.

Many variants of the more general model illustrated above

are possible. For example, only group-specific intercepts (b0j)

may be modeled as random (these models have been called

“random-effects models”). When covariate effects (b1j in the

example above) are modeled as random, these models have

been called “random-coefficient models.” When some of the

coefficients are fixed and others are random, these models have

been called “mixed-effects models” or simply “mixed models.”

Multilevel models also can account for multiple nested contexts

(or levels) [24, 28], allowing fixed and random coefficients to

be associated with variables measured at different levels of the

data hierarchy being analyzed. They can be modified to allow

for nonhierarchical, overlapping, or cross-classified contexts

(e.g., children nested simultaneously within neighborhoods and

schools) [37], and they can be fitted to binary or count out-

comes, by specification of the level 1 model as a logistic or

Poisson model [23, 24, 28, 30].

In contrast to ecological studies, multilevel analysis incor-

porates individual-level information. This allows group-level

effects to be estimated after adjustment for individual-level var-

iables and also accounts for differences in the individuals in

the groups, when group-to-group variability is examined. In

contrast to traditional individual-level studies, multilevel analy-

sis incorporates group-level variables, allows the effects of indi-

vidual-level variables to vary from group to group, and ex-

amines not only interindividual variability but also intergroup

variability. For example, a study of the determinants of trans-

mission of STIs among adolescents could examine how school-

level factors (e.g., sex education, condom availability, or density

and structure of social networks) are related to the risk of

infection among students, after controlling for individual-level

factors such as the number of sex partners that each student

has. Differences in the relationship between number of sex

partners and risk of disease across schools and the extent to

which this relationship is modified by school-level factors also

could be examined. The study could also investigate the extent

to which school-to-school differences in incidence rates are

attributable to individual-level factors (i.e., the individual char-

acteristics of students attending the different schools) or to

school-level factors. For example, multilevel analysis could be

used to investigate how school-to-school variability in risk of

disease changes as individual-level and school-level variables

are added to the model (by investigating changes in t00 [equa-

tion 2] as variables are added). In another example, a multilevel

model could be used to estimate how community-to-com-

munity variability in incidence of AIDS changes as information
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on individual-level risk behaviors and community-level mea-

sures of condom availability or effects of needle-exchange pro-

grams are added to the model. The same model could be used

to examine the relationship between community availability of

condoms and risk of developing AIDS, after controlling for

individual-level confounders.

EXAMPLES OF RECENT APPLICATIONS
OF MULTILEVEL ANALYSIS IN INFECTIOUS-
DISEASE AND STI RESEARCH

Empirical applications of multilevel analysis in the study of

STIs (or infectious diseases) remain rare. A PubMed and Med-

line search (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) in-

corporating combinations (in pairs) of the phrases “multilevel

model” and “hierarchical linear model” with “STI,” “HIV,” and

“infection” performed in September 2003 found only a few

articles that reported use of multilevel models ( ) [38–N p 11

48]. Most of these studies focused on behavioral or functional

outcomes, rather than on biological or disease end points. They

applied multilevel analysis primarily to the examination of the

effects of group-level and individual-level factors on individual-

level outcomes or to the analysis of multiple measures for in-

dividuals over time (for which both individual-specific and

measurement occasion–specific variables are of interest). The

group-level factors examined mostly referred to characteris-

tics of intervention sites (including treatment characteristics

and site-specific prevalences of infection), rather than to char-

acteristics of potentially relevant social groups, such as peer

groups or social networks. For example, Tinsman et al. [39]

used multilevel models to examine the effects of community-

based HIV outreach services for high-risk substance abusers

and individual client characteristics on the persuasion of at-

risk clients to receive HIV tests and to enter structured sub-

stance-abuse treatment centers. The analysis included clients

nested within outreach projects. Characteristics of the outreach

projects, such as whether the site provided HIV testing or gave

referrals, and client characteristics such as age, use of cocaine

or crack, and injection drug use (IDU) in the previous 30 days

were examined in relation to HIV testing and entry into treat-

ment. In a multisite study of IDU, Wang et al. [44] investigated

how individual-level variables such as sex, age, and use of a

shooting gallery and group-level variables such as HIV sero-

prevalence and mean level of IDU, by project site, were related

to needle transfer. In a study examining patterns of HIV-as-

sociated risk behaviors among patients in 96 drug-treatment

programs in 11 US cities, Broome et al. [46] used multilevel

modeling to examine how individual-level factors (e.g., sex, use

of cocaine, and antisocial personality disorder) and prevalence

of AIDS at the drug-treatment site (a group-level factor) were

related to HIV-associated risk behaviors. Dausey and Desai [47]

used multilevel modeling to examine the impact of substance

abuse, by patients with or without mental illness, on HIV-

associated risk behaviors at 71 national substance-abuse treat-

ment sites. Although multilevel models were used to adjust for

clustering within the 71 treatment sites, site-level variables were

not examined.

Multilevel modeling also has been used to examine repeated

measures in HIV, STI, and infectious-disease research. In these

applications, the individual level and the measurement occa-

sions nested within it (which is analogous to groups and the

individuals nested within them) are of interest [38, 40–43, 48].

In another application of multilevel modeling with repeated

measures, Rosel et al. [45] predicted future changes in incidence

of AIDS into 2005, using multiple historical measures of in-

cidence of AIDS in 19 communities from 1983 to 1986. In

summary, applications of multilevel analysis have only recently

begun to emerge in the infectious-disease literature. Extending

the use of multilevel analysis, however, will require careful con-

sideration of several key issues. Two of these issues (defining

relevant groups and group-level variables and problems related

to study design and data sources) are common to the study of

both infectious and chronic diseases. Two additional issues

(modeling dependencies and dynamic relationships) also are

present in the study of both infectious and chronic diseases

but are of particular relevance to infectious diseases.

DEFINING GROUPS AND GROUP-LEVEL
VARIABLES

Key challenges in the use of multilevel analysis in infectious-

disease epidemiology are identifying the levels that are relevant

to the research question of interest, specifying the relevant con-

structs or variables at each level, operationalizing the relevant

groups, and measuring the relevant group-level variables. De-

fining the theoretical model guiding the research, including the

relevant levels and the constructs at each level, is fundamental

if meaningful information is to be obtained from multilevel

analysis. Even after the theoretical model has been developed,

defining or operationalizing the relevant groups is often a chal-

lenge. In some cases, such as the investigation of school-level

effects, the demarcation of groups may be straightforward. In

other cases, such as for peer groups or neighborhoods, bound-

aries may be fuzzy and difficult to define. In some situations,

the group relevant to a particular health outcome may be difficult

to determine. For example, in studying group effects on behaviors

among adolescents, is the relevant “group” the school, the class-

room, the friend network, or the neighborhood? In addition,

groups of varying sizes may be relevant for different research

questions. The couple may be the relevant group or context for

some research questions, whereas the neighborhood or even the

city as a whole may be relevant for other questions. Defining

relevant levels may be especially complex for an outcome like

transmission of STIs, for which a variety of nested and nonnested
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groups or contexts of varying sizes may be relevant. For example,

the group of friends, the school, the neighborhood, and the city

of residence are 4 contexts of possible relevance to incidence of

STIs in adolescence. Neighborhoods are nested within cities;

however, schools may or may not be nested within neighbor-

hoods, and groups of friends may or may not be nested within

schools or neighborhoods.

Conceptualizing and measuring the group-level variables of

interest are other key challenges. What features of schools or

peer groups are relevant to the behaviors of adolescents, and

how should these features be measured? Some measures may

be relatively simple, such as the availability of condoms in the

school or the presence of a sex-education program. Others may

be much more complex. For example, how should social norms

or the structure of contacts within a group be measured? Al-

though health research has become very sophisticated at mea-

suring individual-level properties, the measurement of group-

level or population-level attributes potentially related to health

is still in its infancy. Two approaches recently used in the social

sciences to measure attributes of one type of “group” (a neigh-

borhood) included systematic observation of neighborhoods

by trained raters and surveys of neighborhood residents [49–

51]. The observations of multiple raters and multiple survey

respondents for each neighborhood were aggregated, to construct

neighborhood-level measures by using multilevel techniques.

Geographic information systems can be used to develop area-

based measures of the availability of health-related resources,

such as health clinics, which then can be used as predictors in

multilevel analyses of neighborhood health effects. Other meth-

odological approaches may be necessary to capture complex

group properties of special relevance to STI research, such as the

density and structure of networks within a group [52].

STUDY DESIGN AND DATA SOURCES

To date, most applications of multilevel analysis in the health

field have used data collected for other purposes, usually during

traditional individual-level studies to which other sources of

data on group characteristics have been appended. As a result,

both the structure of the data and the quality of the group-

level information available are often limited with regard to

multilevel analysis and may hamper the ability to detect group-

level effects. The use of multilevel analysis with data originally

collected with only individual-level studies in mind has 2 im-

portant limitations. The first is related to the number of groups

represented in the data and the number of observations per

group. Power in multilevel analysis depends on both the num-

ber of groups and the number of observations per group. The

relative importance of the number of groups and the number

of individuals per group depends on the specific question of

interest [26, 53]. The second limitation is related to the avail-

ability of relevant group-level data and the validity and reli-

ability of the measures available. As we have noted above, the

measurement of group-level constructs is still in its infancy. In

contrast, individual-level measurements are often very sophis-

ticated. As a result, gross misspecification of group-level at-

tributes occurs (owing to misspecification of both groups and

group-level variables), compared with the specification of indi-

vidual-level factors for which group-level effects are often ad-

justed. The growing interest and familiarity with multilevel

analysis are likely to promote the design of studies with mul-

tilevel analysis in mind, in which special attention would be

given to the most appropriate data structure for the multilevel

question of interest and to the definition and characterization

of groups.

ACCOUNTING FOR AND MODELING
DEPENDENCIES

A common critique of standard epidemiological approaches in

infectious-disease research is that studies do not account for

dependencies between outcomes for individuals [14, 54, 55].

Dependencies can occur in several ways. The probability of

contracting disease for a given individual may be dependent

on the frequency of disease among other individuals in the

same group, because group prevalence or incidence of infection

influences the likelihood that a given individual will come into

contact with an infected person. The degree of contagiousness

of infected individuals in the group also may influence an in-

dividual’s likelihood of acquiring the infection. Complex pat-

terns of dependencies may arise because a given individual’s

risk of infection may be dependent on the risk of those with

whom he or she regularly interacts, as well as on the type and

frequency of the interactions. Thus, the degree of dependency

between outcomes may differ for different pairs or sets of in-

dividuals within a group, depending on contact patterns. Al-

though dependencies also may be present for chronic diseases

(through the “contagion” of behaviors discussed above), the

presence of complex dependencies at multiple levels is a de-

fining feature of infectious-disease outcomes.

Multilevel analysis accounts for dependencies between out-

comes for individuals within groups through the incorporation

of group-level variables that individuals in a group share and

by allowing for random effects and random coefficients at the

group level. To the extent that dependencies between outcomes

within a group are adequately captured by the individual- and

group-level variables and the random coefficients included in

the model, multilevel models will yield valid estimates of group-

and individual-level effects and their SEs. However, in some

infectious-disease applications, the patterns of dependencies

may be complex (e.g., the pattern of dependencies may vary

from person to person within the group, on the basis of each

person’s unique location within a sexual network) and may

not be fully captured by the relatively simple multilevel models
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described in this article. Work that examines the extent to which

the types of dependencies present in infectious diseases can be

adequately captured in multilevel models is needed. The extent

to which ignoring certain types of dependencies leads to invalid

results may differ on the basis of the research question.

Multilevel models are very flexible in the incorporation of

random effects and coefficients to account for dependencies

(e.g., random effects and coefficients can be different for in-

dividuals with different individual-level characteristics within

a group). However, they do not explicitly model the contact

patterns and dynamic relationships that give rise to these de-

pendencies within a group or how these dependencies influence

the course of an epidemic in a population over time, as do

simulation models of infection transmission [56].

MODELING DYNAMIC RELATIONSHIPS

Like usual regression approaches commonly used in epide-

miology, multilevel analysis does not easily allow investigation

of dynamic and reciprocal relations between predictors or be-

tween predictors and outcomes. For example, multilevel mod-

els do not model the possibility that individual-level properties

(or individual-level relations between variables) may influence

group characteristics and that these emergent group charac-

teristics may, in turn, shape individual-level independent var-

iables. These types of effects may be particularly important

when examining changes over time. For example, an individual-

level intervention, such as vaccination at time 1, may result in

modifications of group properties (herd immunity) at time 2,

which may, in turn, modify the effect of the individual-level

intervention (vaccination) on risk of disease at a future time.

Modifications to multilevel models that allow for these dynamic

processes have been proposed [57, 58], but their investigation

remains a challenge.

Multilevel analysis does not provide the same information

as approaches that employ mathematical models of transmis-

sion of disease to study the dynamics over time of an infectious

disease in a population. Approaches based on transmission dy-

namics study the changes that occur in a dynamic system (a

population) when features of the system change. Patterns of

disease in populations, as opposed to the determinants of dis-

ease in individuals, are the main focus of interest [54, 55].

Mathematical models of the transmission dynamics of infec-

tious diseases (based on different scenarios regarding, for ex-

ample, contact patterns and transmission probabilities) can be

used to estimate how a specific change at the population level

modifies the dynamics of transmission of disease and, hence,

the incidence or prevalence of disease [59, 60]. In contrast, in

multilevel analysis, interest centers on estimating group and

individual effects on individual-level outcomes, on studying

interactions between individual and group characteristics, and

on estimating between- and within-group variability in out-

comes. Although the effects of group-level variables such as the

structure of social contacts in a group (which may be predictors

of the dynamics of transmission of disease) can be examined,

the actual temporal dynamics of transmission itself are not

modeled. The appropriateness of multilevel analysis depends

on the question of interest. Strategies that directly model the

nonlinear dynamics of transmission systems may be more ap-

propriate for research questions that pertain to predictors of

changes in patterns of disease in populations over time [54].

Both methods can be thought of as complementary. For ex-

ample, simulation models of transmission dynamics may yield

insights into group-level or population-level variables that are

relevant to infectious diseases and that can be examined in

empirical multilevel analyses, including both individual-level

and group-level predictors. Further work that contrasts the data

requirements for multilevel analysis versus transmission models

and that explicates differences in the types of questions that

can be addressed with each method and the insights that each

approach can yield would be of great value to infectious-disease

epidemiology.

CONCLUSION

Epidemiologists increasingly recognize the need to examine

both macro- and microlevel factors in studying the causes of

infectious and chronic diseases. Researchers studying STIs have

long been aware of the role that population-level factors play

in shaping epidemics and risk of disease among individuals.

Multilevel analysis has recently emerged as a powerful analyti-

cal tool that allows the simultaneous investigation of how

population-level (or group-level) and individual-level factors

contribute to disease outcomes. The presence of complex de-

pendencies between outcomes may make the application of

multilevel analysis in infectious-disease research more complex

than it is in chronic-disease research, because of the need to

adequately capture these dependencies in the model. In addi-

tion, there may be questions of particular relevance to infectious

diseases (such as factors associated with transmission of disease)

that may not be adequately investigated through multilevel

analysis alone. In thinking about the multilevel determinants

of infectious diseases, distinguishing between the statistical

technique of multilevel analysis and the more general issues of

investigating determinants of outcomes at multiple levels is

important. The latter is likely to require a multiplicity of an-

alytical approaches, of which multilevel analysis is one example.
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