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ABSTRACT 

I investigated the effect of different degrees of sampling effort and taxonomic 

resolution on macroinvertebrate assessment indicator metrics. Specifically, I examined 

the relationship between a typical rapid assessment approach involving a low-effort 

sampling (LES) and a more thorough and intensive sampling method, or a high-effort 

sampling (HES) across a set of watersheds with varying degrees of agricultural impact. 

Seven macroinvertebrate indicator metrics were significantly different (α = 0.05) 

between low- and high-effort samplings, but response patterns of the indicator metrics 

were strongly correlated between effort levels. Likewise, metrics based on different 

levels of taxonomic resolution were significantly correlated each other; however, based 

on t-tests, metric scores between family- and genus-levels were inconsistent. 

Normalizing regression models using landscape features were employed to assign 

standardized impairment status to each site. The models for indicator metrics using 

HES or genus level identification had higher R
2
 and F-ratios than did LES or family 

level identification. However, there was no significant difference (α= 0.05) in 

normalized indicator scores between levels of sampling effort or taxonomic resolution. 

Normalized impairment classifications were also significantly (α= 0.05) correlated 

among all combinations of sampling effort and taxonomic resolution. Assessments 

produced using very different degrees of effort yielded almost identical results when 

metric results were normalized. LES and family level identification is more cost-



 vi 

effective since they require less effort and time. However, the higher statistical 

significance and precision of HES or genus level resolution suggests that where 

precision is a determining factor, a higher level of sampling effort should be considered.  
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I. INTRODUCTION 

The need for monitoring and assessment programs to monitor, manage, and 

protect current ecosystems and natural resources is increasing in proportion to 

industrial development and population size. Natural systems face a wide scope of 

anthropogenic impacts including hydraulic modifications of channel characteristics for 

flood control, destruction of habitat by point and non-point source pollution, and 

conflicting land use interests (Seelbach and Wiley 1996, Hughes and Hunsaker 2002, 

MDNR 2002, HRWC 2003, Brenden et al. 2006, Riseng et al. 2006). Human activities 

not only directly influence the biological diversity and population balance of natural 

systems (Merritt and Cummins 1996, Allan et al. 1997, Lammert and Allan 1997, Wang 

et al. 2001, Wang et al. 2003, Riseng et al. 2004), but also affect human quality of life 

(Bradley and Altizer 2007, Esbah 2007). Decision makers, resource managers, and 

community planners need to initially evaluate current environmental conditions in 

order to develop appropriate strategies to protect resources and properties (Rabeni and 

Sowa 1996, Higgins et al. 1999, Seelbach et al. 2002, Riseng et al. 2006).   

To quantify environmental change, monitoring and assessment methods have 

developed in many ways including fundamental surveys, integrated assessments, and 

development of models to predict environmental impacts (Hughes et al. 1986, Cairns 

and Pratt 1993, Merritt and Cummins 1996, Seelbach et al. 2002, Wiley et al. 2002, 

Baker et al. 2005). State agencies, federal agencies, and environmental groups have 
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used various ecological indicators; such as soil contaminants, air quality, water 

chemistry, and the presence/absence or abundance of biological organisms to assess 

environmental conditions (Merritt and Cummins 1996, Olsen et al. 1999, Fore and 

Yoder 2003). Macroinvetebrate assemblages, in stream and river studies, have often 

been a preferred indicator of environment conditions due to their sensitivity to 

pollution, relative immobility, ease of collection, and quantity of taxa and individuals 

(Hellawell 1986, Rosenberg and Resh 1993, Merritt and Cummins 1996). As a result, 

the macroinvertebrate assemblages have played an important role in the development 

of many analytical methods and indicator metrics to assess biological changes resulting 

from anthropogenic impacts (Hilsenhoff 1987, Johnson et al. 1993, Resh and Jackson 

1993, Wiley et al. 2002, Fore and Yoder 2003). 

Different levels of effort in field sample collection are one of the most pivotal 

factors affecting indicator metrics. The question of how much to sample affects costs in 

time and money (Yoon et al. 1998, Cao et al 2002), accuracy in ecological analysis 

(Morin 1997), and quality of resulting management and protection plans (Fore and 

Yoder 2003). Sampling effort includes sampling devices, work effort, taxonomic 

resolution, specific habitat selection, sample size, and study site characteristics (Merritt 

and Cummins 1996, Wiley et al. 2002, Fore and Yoder 2003). The sampling effort 

necessary to provide appropriate data has been addressed by several studies (Metcalfe-

Smith and Maio 2000, Larsen et al. 2001, Cao et al. 2002, Fore and Yoder 2003). 

Several studies suggest that emphasis should be placed on level of effort that enhances 
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accuracy and precision for predicting current condition and possible changes (Merritt 

and Cummins 1996, Larsen 1997, Wiley et al. 2002, Fore and Yoder 2003). However, 

others note that excessive sampling effort can result in wasted time and money (Brewer 

and McCann 1982, Yoon et al. 1998) especially if it does not enhance the interpretation 

of data. 

An explicit comparison of different degrees of sampling effort can clarify both 

efficiency of sampling and data accuracy. Sampling for macroinvertebrate assemblages 

has been often classified as either qualitative or quantitative, which are well explained 

in many documents (U. S. EPA 1998, Merritt and Cummins 1996, MDEQ 1997, Fore 

and Yoder 2003). Previous studies have compared effects of sample size (Brewer and 

McCann 1982, Yoon et al. 1998), sampling area, subsampling procedures (Vinson and 

Hawkins. 1996), and sampling devices (Kroger 1972, Mason 1976) on aquatic insect 

communities and taxa richness. While descriptive comparisons are often done for 

different methodologies (Merritt and Cummins 1996, Olsen et al. 1999, Fore and Yoder 

2003), quantitative comparisons of different degrees of sampling effort to test for 

practical difference in biological data and to evaluate monitoring data sets are rare 

(Wiley et al. 2002, Riseng et al. 2006).  

A variety of assessment modeling methods has been developed to predict 

reference conditions thereby helping to evaluate current status of streams and rivers 

due to anthropogenic impacts (Turak et al. 1999, Olden and Jackson 2001, Wiley et al. 

2002, Riseng et al. 2006). Many assessments are challenged by scarcity of historical 
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data for estimating reference conditions, are implemented with limited data, or include 

wide scales of reference conditions (Seelbach et al. 2002, Wiley et al. 2002, Riseng et 

al. 2006). Recently, in the Great Lakes region (USA), regional ecological normalization 

has been useed to help clarify assessment assumptions and integrate multiple types of 

indicator metrics (Wiley et al. 2002). This normalization uses a linear model to predict 

reference condition from biological assemblages and a suite of landscape variables 

expected to influence ecological condition. The effects of different degrees of sample 

collection effort and taxonomic resolution on the normalization approach have not yet 

been examined (Wiley et al. 2002, Riseng et al. 2006). 

In this study, I investigated the effects of different degrees of field collection 

effort and taxonomic resolution on assessment metrics. Specifically the relationship 

between a typical rapid assessment approach, the Michigan Department of 

Environmental Quality (MDEQ) Procedure 51 protocol, and the more effort intensive 

collection methods employed by the Michigan River Inventory (Seelbach and Wiley 

1996) and the Huron River Watershed Council (Wiley et al. 2002, HRWC 2003) were 

examined. Thus, my first objective was to compare samples for taxonomic composition 

and assessment results of all indicator metrics produced by these different levels of 

sampling effort and taxonomic resolution. For this objective, I hypothesized that 

additional effort or higher resolution of taxonomic analyses would produce more 

precise assessment data of all indicator metrics. My second objective was to provide 

advice for resource managers and researchers with expected results that different 
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degrees of effort in sample collection and taxonomic resolution affect efficiency and 

accuracy of assessments.  
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II. METHODS 

1. Study Area 

A total of 52 sites were sampled for macroinvertebrate assemblage data at five 

representative basins in Lower Peninsula of Michigan and northern Ohio (Figure 1) to 

compare the effects of different degrees of sampling effort (low-effort sampling, LES 

and high-effort sampling, HES) and taxonomic resolution (family- and genus-level) on 

sample taxonomic composition and assessment indicator metrics. The study sites were 

located in five watersheds in the Midwestern U.S. characterized by different proportion 

of agricultural land use, water temperature, and stream flow (Table 1, Figure 1 and 2): 

Crane Creek (OH), Mill Creek (MI), and three tributaries of Muskegon River (MI), 

Bigelow Creek, Brooks Creek, and Cedar Creek. In particular, these five watersheds 

were distinctly characterized by different proportion of agricultural land use, water 

temperature, and stream flow. 

Crane Creek (13 sites) is a small agricultural tributary located in the western 

basin of Lake Erie that flows northeasterly. The stream length and drainage area were 

approximately 32.2 km long and 143.5 km
2
, respectively (Wells 2001). Topology of 

Crane Creek is relatively flat from the head water to the estuary (Kasat 2006). Mean 

percentages of agricultural and urban land uses were 84.1% (SD= 4.18, n=13) and 

6.28% (SD= 1.77, n=13) (Table 1) and tributaries of the upper watershed are primarily 

converted to agricultural ditches (Ohio DNR 1996, Kasat 2006).  
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Mill Creek (11 sites), located in Michigan’s southeastern Lower Peninsula, is 

the largest tributary (approximately 374.7 km
2
) of the Huron River. For these sites, 

agricultural land use averaged 40.67% (SD= 15.63, n=11) while urban land use 

averaged 5.11% (SD= 1.96, n=11) (Table 1). However, the Mill Creek watershed has 

increasing pressure from local urbanization and population growth (Seelbach and 

Wiley 1996, HRWC 2003). The surficial geology of Mill Creek is nearly 50 percent 

glacial till and approximately 25 percent each glacial outwash and end moraine (Hay-

Chmielewski et al. 1995). Mill Creek hydrology is a mix of runoff and groundwater 

contributions due to a combination of rolling till plain topography that generates runoff 

and prevents extensive infiltration and higher basin slope that helps to provide 

groundwater to stabilize baseflow (Seelbach and Wiley 1996). 

The Muskegon River (28 sites), located in western mid-Michigan, is the 

second longest river and the third largest watershed in Michigan (MRWA 2005). 

Agricultural and urban land use dominated the watershed (33.4 % and 9.6 %, 

respectively) and urban land use was relatively minor (9.6 %) (MCD 2004, Riseng et al. 

2006). Study sites were located in three of the primary tributaries of the lower portion 

of the river; Bigelow Creek, Brooks Creek, and Cedar Creek (Table 1, Figure 1 and 2). 

Sites on three studied watersheds had an average of 35.0 % (SD= 19.75, n=28) 

agricultural and 3.5 % (SD= 2.22, n=28) urban land uses, similar to the Muskegon 

River watershed as a whole. 
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2. Levels of Sampling Effort and Taxonomic Resolution 

To investigate the effects of different degrees of sampling effort on taxonomic 

composition and assessment metrics of macroinvertebrates, I examined the relationship 

between a typical rapid assessment approach involving a low-effort sampling (LES) 

and the more effort intensive collection method (high-effort sampling, HES) used by 

the Michigan Rivers Inventory (MRI) (Seelbach and Wiley 1996, Wiley et al. 2002, 

HRWC 2003). Field sampling with LES and HES was conducted at the same time and 

location for each site. The reach length was 12 times the average stream width and 

ranged from 50m to 250m. Detailed descriptions of macroinvertebrate sampling 

methods are provided in elsewhere (LES in MDEQ 1996, Merrit and Cummins 1996, 

MDEQ 1997; HES in Seelbach and Wiley 1996, Riseng et al. 2006). 

The low-effort sampling (LES) is described in MDEQ Procedure 51 (MDEQ 

1996, and MDEQ 1997). The LES is used for characterizing the structure of 

invertebrate communities in terms of relative abundances of each taxon rather than 

absolute density (Moulton et al. 2002). Survey for this study was conducted in 

accordance with the Great Lakes Environmental Assessment Section (GLEAS) 

Procedure 51 (MDEQ 1997). D-frame dip nets (250 μm mesh) were used to sample 

macroinvertebrate assemblages for 30 minutes at each site by one person. Kicking, 

dipping, and sweeping were used for general sampling with the dip net, and hand-

picking was used for areas with boulders, debris, and logs. Samples from all habitats 
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were combined in a basket and then 100 organisms were randomly selected from the 

composite sample for further analysis (Merritt and Cummins 1996, MDEQ 1997, 

Riseng et al. 2006). The 100 selected organisms were preserved in 70 % ethanol and 

returned to the laboratory for identification and enumeration (Merritt and Cummins 

1996). 

The objective of high-effort sampling (HES) is to obtain as many different 

macroinvertebrate taxa as are present in a sampling reach (Fore and Yoder 2003). The 

HES was conducted over 2 person-hours per reach, while larger streams were received 

proportionally more effort. All habitats in the reach were sampled. In practice one 

person-hour each was targeted toward erosional or depositional habitat, but sometimes 

center and edge if only one type of habitat occurred. A variety of sampling methods 

were used including D-frame dip nets with 250 μm mesh, kick screens, and hand 

picking. Collectors recorded taxon name and relative abundance from erosional and 

depositional habitat types on site field sheets and representative specimens were placed 

into vials by habitat type for lab validation of taxonomy (Riseng et al. 2006). 

In order to investigate the effects of different level of taxonomic resolution on 

sample taxonomic composition and assessment indicator metrics, macroinvertebrates 

from low- and high-effort samplings were identified to family- and genus-level in the 

laboratory. Generally aquatic insects were identified to family- and genus-level while 

all other groups were identified to family- or order-level (Annelida, Crustacea, and 

Mollusca). Then, numbers of taxa for each indicator metric were counted to compare 
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the effects of family- and genus-level taxonomic identification on assessment metrics. 

All identified macroinvertebrate taxa were counted and classified into seven 

indicator metrics: number of total taxa (I-totaxa), number of EPT (Ephemeroptera, 

Plecoptera, and Tricoptera) taxa (I-EPT), average Macroinvertebrate Biotic Index 

(MBI) taken from Hilsenhoff or EPA established biotic index values (I-MBI; Hilsenhoff 

1987, USEPA 2006), number of sensitive taxa (I-sens), number of metabolic conformer 

taxa (I-metc), number of surface dependent taxa (I-surf), and number of surface 

dependent taxa divided by number of total taxa (I-suta). A tolerance value for each 

taxon ranged from 0 to 11 (Hilsenhoff 1987, USEPA 2006) and the average MBI score 

of each site was calculated by averaging sum of a published tolerance value for each 

taxon collected (Riseng 2006). These seven macroinvetebrate indicator metrics were 

used as the basis for my comparisons of sample taxonomic overlap, linear regression 

models, and normalized assessment scores and classifications for different degrees of 

sampling effort and taxonomic resolution (Wiley et al. 2002, Riseng et al. 2006). 

3. Assessment Process and Data Analysis 

My regional models included variables at both site and catchment scale to 

develop the best linear models for all macroinvertebrate indicator metrics. Site-based 

variables were measured in the field and included stream width, reach slope, water 

temperature (2005), and stream flow. For mean July water temperatures, I used field 

collected temperatures for each site in Crane Creek, OH (Kasat 2006) and used 
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predicted July water temperatures from landscape-based Krieging models (Brenden et 

al. 2006) for all Michigan stream sites.  

Catchment scale data were used as primary control factors in my regional 

modeling (Roth 1994, Allan et al. 1997, Wiley et al. 2002, Seelbach et al. 2002, Wang 

et al. 2003, Riseng et al. 2006) and I summarized the catchment scale landscape 

variables (drainage area, land use, and geology) using Geographic Information System 

(ESRI 2005). The GIS maps were delineated by the Michigan and Ohio Departments of 

Natural Resources (MDNR and ODNR) from U.S. Geological Survey 1:24,000 scale 

topographic maps and modified for each site using 1:250,000 scale resolution (Wiley et 

al. 2002, Baker et al. 2005, Riseng et al. 2006). Catchment and riparian buffer (100m) 

areas were applied to summarize proportion of land use categories (urban, agriculture, 

forest, range, wetland, forested wetland, non-forested wetland, and water) and surficial 

geology categories (coarse-till, outwash, and ice-contact) by using land-cover and 

geology maps from 1998 MRI System and from Division of Geological Survey, ODNR 

(Brenden et al. 2006, Riseng et al. 2006). Also, I calculated the proportions of urban 

land cover above 10% (Brabec et al. 2002) and agricultural land cover above 25% to 

capture only strong stressor effects of highly developed land covers (Riseng et al. 

2006). Forest land use was not used for models due to the strong inverse correlation 

with agricultural data. 

The above environmental data were placed into two categories: non-stressor 

(natural) and stressor variables. Natural landscape variables which could influence 
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stream invertebrate assemblages were drainage area, mean July water temperature, 

stream slope and width, stream discharge, low to high flow ratio, and geology. 

Anthropogenic stressor variables that potentially affected stream invertebrate 

assemblages were urban and agricultural land uses (Brabec et al. 2002, Riseng et al. 

2006). 

I used multiple linear regression in a regional ecological normalization process 

using a multiple linear model to produce assessment scores for degrees of sampling 

effort and taxonomic resolution (Wiley et al. 2002, Baker et al. 2005, Riseng et al. 

2006). I constructed MLR models for each macroinvertebrate metric and effort-

resolution combination using a 2x2 factorial combination of sampling effort and 

taxonomic resolution (LES & family, LES & genus, HES & family, and HES & genus). 

Each MLR was constructed from independent site-, catchment- and buffer-scale 

(100m) variables (Wiley et al. 2002) having ecological, biological, and statistical 

significance for the specific macroinvertebrate indicator variable. Independent 

variables included nonstressors such as drainage area, mean July water temperature, 

stream discharge, ratio of low to high flow, and stream width and stressor variables 

such as agricultural and urban land use in the catchment and buffer. MLR models were 

selected that maximized R
2
 and significance of regression coefficients and used for 

calculation of expected ecological condition. All indicator variables used for MLR 

models were significant at p <0.05 in the model. Before using the independent 

variables in the models, the integer 1 was added to the variable and then transformed to 
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natural log form to meet assumptions of normality for all variables.  

I calculated normalized assessment scores for each indicator metric using the 

MLR models for the expected condition of each site, then calculated the difference 

between expected and actual condition. Reference condition scores were estimated by 

setting stressor variables (agricultural and urban land use) in MLR models to zero. I 

then calculated deviation values for each indicator metric by subtracting the expected 

value from the observed value. For I-MBI and I-surf, the deviation values were 

calculated by subtracting the observed value from the expected value for each site 

because an increase in those taxa indicates a decline in ecological condition. Finally, 

the deviation values were scaled by dividing the deviation by the standard deviation of 

the modeled reference expectation to produce a normalized score scaled by standard 

deviation units.  

A composite normalized score was calculated to represent final assessment 

condition for each site by averaging the normalized scores for some significant and 

stable indicator metrics. These metrics included number of total taxa, number of EPT 

taxa, number of metabolic conformer taxa, and MBI. A normalized score close to zero 

indicated no impact by anthropogenic stressors because the difference between the 

observed and expected values was near zero. Positive or negative normalized scores 

indicated that a site was better or worse than expected based on the predictive model. I 

established a general assessment classification based on normal distributions and 

standardized scores (Z-scores). Normalized scores above 0.5 were assigned 
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“exceptional,” scores between -0.5 and 0.5 were assigned “good,” scores below -0.5 

and above -1.0 were assigned “threatened,” scores below -1.0 and above -2.0 were 

assigned “poor,” and scores below -2 were assigned “very poor.”  

Independent samples t-test and Pearson correlation were used to compare the 

raw macroinvertebrate data sets and normalized scores between and among all 

indicator metrics for different degrees of sampling effort and taxonomic resolution 

using SPSS 12.0 (SPSS, Inc. 2003). Also, Chi-Square test was used for comparison of 

impairment classification among a 2x2 combination of sampling effort and taxonomic 

resolution. Multiple linear regression models, box plots, and statistical summaries 

(mean, median, standard deviation, minimum, and maximum) were performed in 

Datadesk (Velleman and Velleman 1988).  
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III. RESULTS 

Different degrees of sampling effort influenced taxa numbers of each indicator 

metric. Numbers of collected taxa using HES had greater numbers of taxa compared to 

the numbers using LES for all indicator metrics from 52 studied sites (Table 2, Figure 

3). Independent samples t-tests showed that macroinvertebrate data of each indicator 

metric between low- and high-effort samplings were significantly different (α = 0.05, 

df = 102) at both family- and genus-level identification (Table 3). This indicated that 

different degrees of sampling effort affected number of taxa for each indicator metric 

and HES included more taxonomic data than the LES, while number of families and 

genera increased with sampling effort.  

Different levels of taxonomic resolution were inconsistent in describing the 

effect of family- and genus-level identification on taxonomic composition. Different 

levels of taxonomic resolution showed that mean taxa numbers or values were 

significantly higher at genus levels than at family level except for I-MBI (Table 2, 

Figure 3). Different levels of taxonomic resolution also influenced number of taxa for 

each indicator metric in HES (Table 3). However, taxa numbers in LES had 

inconsistent independent samples t-test results for each indicator metric between 

family- and genus-level identification. These results indicated that family-level 

identification was more efficient than genus-level identification in low effort sampling, 

but genus-level identification provided more detailed taxonomic information than 
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family-level identification in HES.  

Different degrees of sampling effort and taxonomic resolution did not affect I-

MBI. Means and medians of the MBI scores were not significantly different (α = 0.05, 

df = 102) between different degrees of sampling effort and between taxonomic 

resolution (Table 3). I-MBI produced the same results regardless of degrees of 

sampling effort and taxonomic resolution because a tolerance value of taxon at family 

level was calculated by a composite averaging tolerance value of collected genera in 

the family.  

I-surf and I-suta did not show consistent correlations to other indicator metrics 

(Table 4). Compared to the significant difference for number of taxa between different 

degrees of sampling effort and taxonomic resolution, all indicator metrics except for I-

surf and I-suta were significantly correlated to each other reflecting similar 

relationships to stream conditions (α = 0.05, n = 52). I-surf and I-suta showed positive 

correlations to I-MBI, and these indicators had negative correlations to other indicator 

metrics (Table 5). MLR models for metrics of I-surf and I-suta were also not developed 

because ecologically reasonable models with significance of p < 0.10 could not be 

constructed with available data.  

HES and genus-level identification produced a more detailed taxonomic 

composition than LES and family-level identification. Total number of taxa at each site 

using LES and family-level identification overlapped highly with the taxa list using 

HES or genus-level identification, respectively (Table 5). At family level, 81.22% of 



 17 

mean total taxa collected using LES were also collected using HES, while only 55.31% 

of those collected using HES were also collected using LES. At genus level, 75.45% of 

mean total taxa collected using LES were also collected using HES while only 48.28% 

of those collected using HES were also sampled using LES. Therefore, LES and 

family-level identification did not provide as much detail for biological data of 

macroinvertebrate assemblages compared to HES and genus-level identification. 

MLR models of HES had better fits and used landscape variables that have 

more ecological meaning than those of LES. Model statistics of constructed regression 

models for each indicator metrics showed that models of HES had higher R
2
 values and 

F-ratios (α = 0.05, n = 52) than those of LES at both taxonomic levels (Table 6 and 7). 

In the MLR models, I-EPT, I-MBI, and I-metc included nearly similar landscape 

variables at both LES and HES (Table 6). However, I-totaxa and I-sens at HES were 

supported by more landscape variables than at LES. MLR models for the HES 

explained over 65.4% of the variance (Table 7), indicating that the HES models 

produced better fits to the data, represented by higher R
2
s and F-ratios, than LES 

models. This also indicated that models of HES were explained better with landscape 

variables and more detailed data than those of LES.  

MLR models for each indicator metric showed significant effects (α = 0.05, n 

= 52) with different levels of taxonomic resolution. Indicator metrics for genus-level 

identification had higher R
2
 values and F-ratios than those for family-level 

identification at both different levels of sampling effort (Table 7). The model statistics 
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explained that genus-level identification influenced MLR models and explained more 

of the variance than family-level identification. Therefore, accuracy of MLR models 

with landscape variables was improved when genus-level identification was used rather 

than family-level identification. 

Normalized scores and composite scores were not influenced by different 

degrees of sampling effort. Mean normalized scores at HES were lower than those at 

LES for both levels of taxonomic resolution except for I-MBI at genus-level 

identification (Table 8, Figure 4). However, statistical significance (α = 0.05, df = 102) 

indicated that normalized scores of all indicators had no differences between LES and 

HES except for I-sens (Table 9). Normalized scores for all indicator metrics showed 

highly significant correlations (α = 0.05, df = 102) regardless of degrees of sampling 

effort at both family and genus levels (Table 10). Chi-square tests showed that 5 

categories of impairment classification were not significantly different (α = 0.05, df = 

102) among 2x2 factorial combinations of sampling effort and taxonomic resolution. 

Also, about 52 % and 60 % of impairment classification between degrees of sampling 

effort gave the same results at family- and genus-level identification, and about 79 % 

and 85 % between levels of taxonomic resolution gave the same results at LES and 

HES, respectively (Table 11). The normalization process could show consistent 

significant correlation among indicator metrics despite data transformation. 

Normalized assessment scores for each indicator metric were not significantly 

different (α = 0.05, df = 102) between family- and genus-level identification at both 
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degrees of sampling effort (Table 9). Normalized assessment scores for each indicator 

metric showed strong correlations (α = 0.01) between levels of taxonomic resolution at 

both degrees of sampling effort (Table 10). Also, about 52 % and 60 % of impairment 

classification between levels of taxonomic resolution were matched at LES and HES, 

respectively (Table 11). Therefore, family-level identification was more efficient to 

produce normalized assessment scores while genus-level identification produced better 

model statistics. 

Macroinvertebrate data and MLR models were significantly affected by 

different degrees of sampling effort and taxonomic resolution, indicating that HES and 

genus-level identification included more taxa information. Therefore, HES and genus-

level identification explained more accurate data for biological and ecological 

interpretation than LES and family-level identification. However, normalized 

assessment scores and impairment classifications for each indicator metric were not 

significantly different (α = 0.05, df = 102) between different degrees of sampling effort 

and taxonomic resolution. This indicated that LES and family-level identification was 

more efficient to produce normalized assessment scores with less sampling and 

identification intensity.  
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IV. DISCUSSION 

High-effort sampling and genus-level identification affected taxonomic 

composition and ecological models, but did not affect assessment scores and 

impairment classification by the ecological models. Regional ecological normalization 

using linear models can adjust statistically distinct biological data sets from different 

degrees of sampling effort and taxonomic resolution and then produce an almost 

similar final assessment. Regional normalizing model has been recently used as an 

alternative assessment (Wiley et al. 2002, Baker 2005 et al., Riseng et al. 2006), 

because previous monitoring and assessment approaches have had limitations in 

predicting a reference condition and comparing various assessment results (Gallant et 

al. 1989, Claessen et al. 1994. Seelbach et al. 2002, Wiley et al. 2002, Riseng et al. 

2006). Several recent studies also have shown that the normalizing model that can 

integrate multiple types of data and indicator metrics, determine the effect of different 

spatial scales, and communicate relative risks of impairment (Wiley et al. 2002, Riseng 

et al. 2006). Comparison of different levels of sampling effort (LES and HES) and 

taxonomic resolution (family- and genus-level identification) demonstrate that the 

normalizing models can integrate multiple types of data from different methods (Wiley 

et al. 2002). 

In addition, the MLR models suggest that multiple types of methods can be 

modeled and interpreted with landscape features (Wiley et al. 2002, Riseng et al. 2006). 
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Each indicator metric used almost similar landscape-scale variables to construct an 

MLR model with four combinations of sampling effort and taxonomic resolution. 

Inclusion of these similar independent variables using different levels of both sampling 

effort and taxonomic resolutions indicated that landscape-scale features strongly 

influenced macroinvertebrate assemblage regardless of sampling design. Colleted 

biological data directly reflected the condition of a catchment area. The theory of using 

catchment and landscape features has been proposed by various studies (Hynes 1975, 

Frissell et al. 1986, Allan et al. 1997, Poff 1997, Wang et al. 2003) and has been used 

recently for various assessment, recruitment, and management studies (Wiley et al. 

2002, Baker 2005, Riseng et al. 2006).  

In this study, normalization was also used to rescale differences in biological 

data from both different degrees of sampling effort and taxonomic resolution (Wiley et 

al. 2002, Baker et al. 2005, Riseng et al. 2006). Normalization is generally used for 

mathematical transformation and to produce unitless scores in order to facilitate 

interpretation. Independent samples t-test results showed that macroinvertebrate 

indicator metrics were significantly different (α = 0.05) due to different levels of 

sampling effort. However, normalized scores did not show any significant difference (α 

= 0.05) between different degrees of sampling effort. This comparison of raw and 

normalized data sets demonstrates that normalization using the MLR models did well 

in moderating differences of sampling methodologies (Wiley et al. 2002, Baker et al. 

2005). Normalized scores for each indicator metric showed highly significant 
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correlations between different levels of sampling effort and taxonomic resolution , as 

did raw data indicator metrics.  

Different degrees of sampling effort affect observed taxon richness. The higher 

compositional overlap observed with HES can describe more detailed and accurate 

sample taxonomic composition than LES, suggesting that different degrees of sampling 

effort affected the sample taxonomic composition differently. Other studies have shown 

that LES can be used to easily detect general impairment status (Merritt and Cummins 

1996), while HES can help to represent a more extensive impact on local environment 

(Moulton et al. 2002, Fore and Yoder 2003). However, normalized scores of each 

indicator metric using regression models did not show any significant difference 

between different levels of sampling effort. Also, impairment classification based on 

composite scores showed no significant differences between different degrees of 

sampling effort at both family and genus levels. Since regression models of indicator 

metrics of HES had higher R
2
 values and significant F-ratios, using HES can increase 

stability of sampled data and minimize sampling errors among studied sites. The 

resulting regression models can be used to explain more exact effects of landscape 

variables on biological data. 

Impairment classifications showed final impairment status for each site and 

how assessment results were different using four methodological combinations of 

sampling effort and taxonomic resolution. The impairment classification between 

different degrees of sampling effort (52 % at family level and 60 % at genus level) and 
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taxonomic resolutions (79 % at LES and 85 % at HES) was well matched between 

sampling efforts, while one category difference of impairment classification was 

mostly observed in comparison of impairment classification. The classification 

difference might have several causes: anthropogenic pressures, analysis error, or 

sampling error. The first two may be related to macroinvertebrate abundance, which 

affects statistical accuracy and is influenced by natural variability (Gerrodette 1987, 

Buckland et al. 2000, Fore and Yoder 2003). Most sites in this study were from 

categories of threatened to very poor composition, due to high anthropogenic 

development. As a result, populations were quite low. The number of indicator taxa 

collected could be significantly different using higher sampling effort and taxonomic 

resolution. Second, difference of impairment classification was related to specific 

dominant taxa and relative abundance of some specific indicator taxa group. Also, 

indicator metrics of both different degrees of sampling effort were designed to consider 

total number of indicator taxa so that assessment result would only be dependent on 

number of indicator taxa: a site with equal number of indicator taxa, but with different 

relative abundance of individuals would be hard to explain. Finally, types of substrates 

or sampling devices might also affect sample collection (Resh 1979, Merritt and 

Cummins 1996). Low-effort sampling (LES) could be restricted to subsample 

macroinvertebrate samples from a basket in which all samples were mixed with various 

materials of stream substrates, such as thick algae, debris, mud, and leaves. Conversely, 

in high-effort sampling (HES), all invertebrate taxa could be collected whenever 
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sampled. However, normalized scores from both samplings were not significantly 

different each other despite the above concerns. 

Almost all metrics showed similar results through all analyses except indicator 

metrics related to surface dependent taxa. I used two indicator metrics for the surface 

dependent taxa: number of surface dependent taxa (I-surf) and relative abundance of 

the surface dependent taxa (I-suta). I could not develop MLR models related to surface 

dependent taxa, due to poor fit of the data (α = 0.10). In addition, compared to other 

indicator metrics, the statistical analyses could not show clear correlation and 

independent samples t-test results for comparisons of different levels of sampling effort 

and taxonomic resolution. The potential for sampling bias for the surface dependent is 

obvious because most taxa in this group are free to move and to escape from the 

collector unlike other indicator taxa and collectors’ methodology can influence 

collection of the surface dependent taxa. While this indicator is currently generally 

used in monitoring and assessment programs in Michigan, these results suggest that the 

surface dependent taxa should be rejected as a reliable indicator. 

The indicator metric for sensitive taxa should also be reconsidered for 

normalized assessment scores. Normalized scores of sensitive taxa showed significant 

difference (α = 0.01) between low-effort (LES) and high-effort (HES) sampling at both 

family- and genus-level identification, whereas other indicators had no significant 

difference in normalized assessment scores. Sensitive taxa were limited to some 

specific families that included many sensitive genera. Determination of sensitive taxa is 
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relatively subjective, but these can be crucial both to reflect instream conditions and 

related landscape variables in regression models. Each taxon was identified as 

“sensitive” based on published tolerance values (USEPA 2006) at genus level. In this 

study, only a few sensitive taxa were ever collected at each site and counts of the 

sensitive taxa was strongly affected by sampling effort. Thus, this might have 

influenced the regression models which produced biased scores like the surface 

dependent taxa.  

One of most important questions is whether differences in accuracy and 

efficiency of different degrees of sampling effort and taxonomic resolution can lead to 

different assessment results. For degrees of sampling effort, LES can be more cost-

efficient because this sampling effort spends less time on sampling, fewer invertebrates 

are collected for identification, and less human effort is needed. LES produced the 

same normalized assessment scores and impairment classification as HES, but LES had 

less information of sample taxonomic composition. However, assessment results from 

HES are supported by better sample taxonomic composition, stronger statistical 

significance, and more landscape variables than from LES. Thus, the HES may have 

less risk for temporal and seasonal environmental changes, so that HES with higher 

accuracy can show more reliable assessment estimation of current condition (Li et al. 

2001, Fore and Yoder 2003). For levels of taxonomic resolution, genus level also 

showed relatively higher sample taxonomic composition and accuracy for MLR models 

with statistical evidence than family level. However, the family level was more 
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efficient in producing normalized assessment scores due to less time effort for 

identification. The genus-level identification would be recommended for assessment 

modeling based on landscape features because some indicators are based on each 

species rather than a family, which frequently might result in analytical errors to 

explain ecological landscape effects on biological assemblages. 
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Table 1. Summary of landscape and stream characteristic variables used for normalizing linear regression models.   

 

Total sites 

(n= 52) 

Bigelow Creek 

(n= 5) 

Brooks Creek 

 (n= 14) 

Cedar Creek 

 (n= 9) 

Crane Creek 

 (n= 13) 

Mill Creek 

 (n= 11) 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Drainage area (km2) 70.33 87.80 37.41 21.41 48.17 50.44 58.07 41.81 40.94 36.98 158.25 147.62 

Stream Slope 0.0016 0.0017 0.0026 0.0027 0.0019 0.0014 0.0010 0.0009 0.0008 0.0009 0.0021 0.0022 

Width (m) 5.65 4.25 4.97 2.96 4.22 2.83 7.56 4.74 5.21 5.04 6.73 4.65 

Estimated Temperature 

(2005) 
13.19 4.22 10.52 1.52 12.36 2.52 14.58 2.14 17.67 4.10 9.01 2.50 

Predicted July mean 

temperature (ºC) 
19.09 3.07 17.48 0.57 16.52 0.72 16.18 0.93 22.80 2.16 21.11 0.59 

Percentage agricultural land 

>0.25 within watershed 
44.71 0.31 0.00 0.00 50.88 5.19 15.16 23.4 84.1 4.18 34.85 24.31 

Percentage agricultural land 

within watershed  
48.46 26.34 8.13 3.71 50.88 5.19 25.21 16.3 84.1 4.18 40.67 15.63 

Percentage agricultural land 

within 100m buffer 
39.07 29.04 2.71 0.57 30.70 6.62 19.37 13.3 84.0 6.85 29.32 14.53 

Percentage urban land within 

watershed 
4.55 2.34 1.27 0.13 4.52 2.57 3.26 0.97 6.28 1.77 5.11 1.96 

Percentage urban land within 

100m buffer 
4.12 2.89 0.59 0.04 4.13 2.98 2.40 1.06 7.10 2.55 3.61 1.32 

Percentage non-forest wetland 

within 100m buffer 
4.58 4.33 2.68 0.26 4.42 2.21 8.06 6.46 0.55 0.17 7.57 3.51 

Flow (m3/s) 0.37 0.49 0.40 0.35 0.29 0.36 0.53 0.47 0.07 0.06 0.68 0.74 

Q90Y/Q10Y (Low and high 

flow yield ratio) 
0.18 0.14 0.44 0.09 0.11 0.03 0.35 0.14 0.08 0.00 0.10 0.03 

Q75 (m3/s) 0.35 0.37 0.33 0.21 0.21 0.23 0.48 0.41 0.24 0.21 0.59 0.53 

Q90 (m3/s , low flow) 0.24 0.25 0.28 0.19 0.13 0.15 0.39 0.35 0.16 0.15 0.35 0.32 

 

 

 



 39 

Table 2. Means and medians of macroinvertebrate taxa for each indicator metric with each 

level of sampling effort and taxonomic resolution (n=52). LES indicates low-effort sampling 

and HES indicates high-effort sampling. 

Dependent variable 
Sampling 

effort 

Taxonomic 

resolution 
Mean Median SD Min Max 

# Taxa LES Family 14.13 14.50 3.70 5.00 21.00 

  Genus 15.54 16.00 4.41 5.00 24.00 

 HES Family 21.73 22.00 5.47 8.00 32.00 

  Genus 25.35 26.00 7.22 9.00 39.00 

# EPT LES Family 4.50 4.00 2.89 0.00 10.00 

  Genus 5.40 4.50 3.67 0.00 13.00 

 HES Family 6.56 6.50 3.76 0.00 14.00 

  Genus 8.58 9.00 5.01 0.00 18.00 

MBI LES Family 5.91 6.00 1.19 3.28 8.54 

  Genus 5.83 5.90 1.24 3.39 8.42 

 HES Family 5.82 5.67 1.09 3.64 8.64 

  Genus 5.70 5.64 1.18 3.27 8.93 

# Sensitive LES Family 2.40 2.00 2.30 0.00 9.00 

  Genus 3.62 3.00 3.16 0.00 10.00 

 HES Family 3.96 4.00 3.24 0.00 13.00 

  Genus 6.15 5.00 5.21 0.00 19.00 

# Surface dependent LES Family 2.12 2.00 1.32 0.00 5.00 

  Genus 4.54 4.00 3.12 0.00 14.00 

 HES Family 4.54 4.00 2.10 1.00 11.00 

  Genus 9.62 9.00 4.76 1.00 21.00 

# Surface Dependent /# Taxa LES Family 0.15 0.13 0.10 0.00 0.44 

  Genus 0.29 0.28 0.19 0.00 0.82 

 HES Family 0.21 0.20 0.08 0.05 0.39 

  Genus 0.38 0.37 0.15 0.08 0.70 

# Metabolic conformers LES Family 3.63 3.00 2.77 0.00 9.00 

  Genus 4.17 3.00 3.22 0.00 11.00 

 HES Family 5.58 5.00 3.66 0.00 15.00 

  Genus 6.85 7.00 4.50 0.00 16.00 
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Table 3. Independent T-tests of macroinvertebrate indicator metrics between LES and HES at 

each taxonomic resolution and between levels of taxonomic resolution at each sampling 

effort. 

 t-test for Equality of Means 

 t df 
Sig  

(2-tailed) 

Mean 

Differece 

Std. Error 

difference 

LES vs. HES in family level      

   # Taxa -8.294 102 0.000 -7.596 0.916 

   # EPT -3.128 102 0.002 -2.058 0.658 

   Macroinvertebrate Biotic Index (MBI) 0.374 102 0.709 0.084 0.223 

   # Sensitive -2.828 102 0.006 -1.558 0.551 

   # Surface dependent -7.039 102 0.000 -2.423 0.344 

   # Surface dependent / # Taxa -3.134 102 0.002 -0.056 0.018 

   # Metabolic conformers -3.048 102 0.003 -1.942 0.637 

LES vs. HES in genus level      

   # Taxa -8.357 102 0.000 -9.808 1.174 

   # EPT -3.686 102 0.000 -3.173 0.861 

   Macroinvertebrate Biotic Index (MBI) 0.568 102 0.571 0.134 0.236 

   # Sensitive -3.001 102 0.003 -2.538 0.846 

   # Surface dependent -6.430 102 0.000 -5.077 0.790 

   # Surface Dependent /# Taxa -2.437 102 0.017 -0.082 0.033 

   # Metabolic conformers -3.485 102 0.001 -2.673 0.767 

Family vs. genus level in LES      

   # Taxa -1.759 102 0.082 -1.404 0.798 

   # EPT -1.395 102 0.166 -0.904 0.648 

   Macroinvertebrate Biotic Index (MBI) 0.331 102 0.742 0.079 0.238 

   # Sensitive -2.233 102 0.028 -1.212 0.543 

   # Surface dependent -5.154 102 0.000 -2.423 0.470 

   # Surface dependent / # Taxa  -4.665 102 0.000 -0.141 0.030 

   # Metabolic conformers -0.914 102 0.363 -0.538 0.589 

Family vs. genus level in HES      

   # Taxa -2.877 102 0.005 -3.615 1.257 

   # EPT -2.325 102 0.022 -2.019 0.868 

   Macroinvertebrate Biotic Index (MBI) 0.583 102 0.561 0.129 0.222 

   # Sensitive -2.576 102 0.011 -2.192 0.851 

   # Surface dependent -7.035 102 0.000 -5.077 0.722 

   # Surface Dependent /# Taxa -7.180 102 0.000 -0.166 0.023 

   # Metabolic conformers -1.577 102 0.118 -1.269 0.805 
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Table 4. Pearson correlations among macroinvertebrate indicator metrics between degrees of 

sampling effort at each taxonomic resolution and between levels of taxonomic resolution at 

each sampling effort. One star indicates significance at p ≤ 0.05, and two stars indicate 

indicates significance at p ≤ 0.01. 
 Family level, HES 

 # Taxa # EPT MBI # Sens # Sudep # Su/Ta # Metc 

Family level, LES        

   # Taxa 0.475** 0.481** -0.511** 0.510** 0.071 -0.166 0.496** 

   # EPT 0.604** 0.814** -0.775** 0.735** -0.023 -0.404** 0.823** 

   MBI -0.475** -0.805** 0.857** -0.767** 0.068 0.400** -0.826** 

   # Sensitive (# Sens) 0.409** 0.671** -0.707** 0.768** -0.062 -0.323** 0.729** 

   # Surface dependent (# Sudep) -0.020 -0.261 0.190 -0.150 0.295* 0.390** -0.273 

   # Surface dependent / # Taxa (#Su/Ta) -0.157 -0.406** 0.338* -0.322* 0.284* 0.461** -0.420** 

   # Metabolic conformers (#Metc) 0.562** 0.804** -0.782** 0.766** -0.046 -0.405** 0.847** 

 Genus level, HES 

 # Taxa # EPT MBI # Sens # Sudep # Su/Ta # Metc 

Genus level, LES        

   # Taxa 0.573** 0.584** -0.529** 0.471** 0.187 -0.120 0.559** 

   # EPT 0.671** 0.826** -0.775** 0.728** 0.179 -0.251 0.835** 

   MBI -0.550** -0.813** 0.875** -0.805** -0.170 0.203 -0.839** 

   # Sensitive (# Sens) 0.503** 0.734** -0.796** 0.761** 0.134 -0.207 0.756** 

   # Surface dependent (# Sudep) 0.133 -0.039 0.080 -0.062 0.300* 0.258 -0.136 

   # Surface dependent / # Taxa (#Su/Ta) -0.072 -0.260 0.249 -0.224 0.247 0.345* -0.344* 

   # Metabolic conformers (#Metc) 0.616** 0.811** -0.781** 0.735** 0.156 -0.238 0.854** 

 Genus level, LES 

 # Taxa # EPT MBI # Sens # Sudep # Su/Ta # Metc 

Family level, LES        

   # Taxa 0.959** 0.636** -0.305* 0.512** 0.243 -0.113 0.585** 

   # EPT 0.696** 0.980** -0.804** 0.797** -0.169 -0.428** 0.962** 

   MBI -0.473** -0.831** 0.964** -0.844** 0.108 0.269 -0.843** 

   # Sensitive (# Sens) 0.697** 0.809** -0.718** 0.872** 0.065 -0.205 0.819** 

   # Surface dependent (# Sudep) 0.218 -0.224 0.306* -0.139 0.820** 0.806** -0.235 

   # Surface dependent / # Taxa (#Su/Ta) -0.139 -0.431** 0.376** -0.299* 0.712** 0.880** -0.417** 

   # Metabolic conformers (#Metc) 0.676** 0.961** -0.808** 0.811** -0.163 -0.409** 0.979** 

 Genus level, HES 

 # Taxa # EPT MBI # Sens # Sudep # Su/Ta # Metc 

Family level, HES        

   # Taxa 0.972** 0.747** -0.546** 0.486** 0.622** 0.085 0.678** 

   # EPT 0.801** 0.978** -0.844** 0.803** 0.321* -0.180 0.960** 

   MBI -0.658** -0.864** 0.971** -0.847** -0.290* 0.080 -0.883** 

   # Sensitive (# Sens) 0.678** 0.835** -0.864** 0.915** 0.287* -0.133 0.867** 

   # Surface dependent (# Sudep) 0.464** 0.065 -0.006 0.016 0.839** 0.720** 0.009 

   # Surface dependent / # Taxa (#Su/Ta) -0.098 -0.419** 0.352* -0.300* 0.551** 0.827** -0.439** 

   # Metabolic conformers (#Metc) 0.751** 0.951** -0.864** 0.842** 0.302* -0.165 0.977** 
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Table 5. Means and medians of compositional overlap (%) of each taxonomic class with LES and HES at family and genus levels 

(n indicates total number of sites collected). 

 
LES 

 
HES 

Mean Median SD Min Max  Mean Median SD Min Max 

Family level            

    Total (n=52) 81.22 82.58 11.94 50.00 100.00  55.31 54.07 13.21 27.27 92.31 

    Ephemeroptera (n=47) 91.77 100.00 18.79 25.00 100.00  71.38 66.67 24.78 25.00 100.00 

    Plecoptera (n=29) 93.10 100.00 17.55 50.00 100.00  66.67 50.00 27.82 33.33 100.00 

    Trichoptera (n=44) 91.78 100.00 16.37 50.00 100.00  63.60 66.67 27.26 16.67 100.00 

    Odonata (n=47) 82.27 100.00 24.67 33.33 100.00  67.45 50.00 29.10 16.67 100.00 

    Coleoptera (n=50) 88.67 100.00 20.60 50.00 100.00  62.40 50.00 29.17 20.00 100.00 

    Heteroptera (n=49) 93.88 100.00 16.56 50.00 100.00  58.43 50.00 29.88 16.67 100.00 

    Diptera (n=52) 92.72 100.00 16.79 50.00 100.00  55.06 50.00 23.75 20.00 100.00 

    Others (n=52) 76.84 76.39 21.97 22.22 100.00  60.78 60.00 23.18 16.67 100.00 

            

Genus level            

    Total (n=52) 75.45 75.00 13.14 50.00 100.00  48.28 46.95 12.80 21.74 92.31 

    Ephemeroptera (n=47) 92.16 100.00 18.88 25.00 100.00  67.29 66.67 23.82 20.00 100.00 

    Plecoptera (n=29) 93.10 100.00 17.55 50.00 100.00  63.39 50.00 26.77 25.00 100.00 

    Trichoptera (n=44) 82.49 100.00 21.84 25.00 100.00  50.11 50.00 22.83 11.11 100.00 

    Odonata (n=47) 75.53 100.00 27.11 33.33 100.00  57.08 50.00 28.60 14.29 100.00 

    Coleoptera (n=50) 77.13 100.00 27.75 33.33 100.00  49.34 40.00 29.10 14.29 100.00 

    Heteroptera (n=49) 86.73 100.00 22.56 33.33 100.00  50.82 50.00 28.14 16.67 100.00 

    Diptera (n=52) 86.54 100.00 19.88 50.00 100.00  49.15 50.00 25.27 16.67 100.00 

    Others (n=52) 76.31 75.00 22.04 22.22 100.00  60.33 60.00 23.11 100.00 100.00 
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Table 6. Independent variables and coefficients used for best-fit normalizing linear regression models for each indicator metric. 

One star indicates significance at p ≤ 0.05, and two stars indicate indicates significance at p ≤ 0.01. 

Dependent 

variable 

Sampling 

effort 

Taxonomic 

resolution 

R2  

(%) 
SE 

Independent variables 

Constant Drainage area  Stream Slope Width  

Field 

Measured 

temperature 
(2005) 

Predicted 
July mean 

temperature 

Proportion of 

Ag. >0.25 

within 
watershed 

# Taxa LES Family 30.2 0.2375 2.4170** 0.0761*      

  Genus 42.0 0.2369 2.4078** 0.0980*      

 HES Family 46.1 0.2077 2.4980** 0.2166**      

  Genus 46.3 0.2371 2.6592** 0.2186**      

# EPT LES Family 67.6 0.3964 4.2295** 0.4371**    -1.1422** -1.7775** 

  Genus 72.0 0.4055 4.3617** 0.5076**    -1.1957** -2.0193** 

 HES Family 77.4 0.3701 6.0241** 0.6405**    -1.8462** -1.7551** 

  Genus 79.4 0.3947 5.1958** 0.5294**    -1.3583**  

MBI LES Family 64.6 0.1150 1.1276** -0.0809* -43.5615** -0.1228*  0.3384** 0.5043** 

  Genus 64.5 0.1212 1.2282** -0.1208* -34.1674** -0.1632**  0.3559*  

 HES Family 70.4 0.0919 1.4486** -0.1216** -23.7438**   0.2365* 0.2669** 

  Genus 72.8 0.1004 1.3182** -0.0967** -36.7059** -0.1334*  0.3077* 0.2693** 

# Sensitive LES Family 46.0 0.5298 4.0389**    -1.0034**  -1.2455** 

  Genus 50.2 0.5959 4.8808** 0.2600**    -1.352* -1.623** 

 HES Family 65.4 0.4635 7.0065** 0.1616*    -1.5443** -3.5714** 

  Genus 66.4 0.5286 7.9785** 0.2844**    -1.9153** -3.2185** 

# Metabolic 

conformers 
LES Family 69.0 0.4172 4.2744** 0.3869** 96.3228*   -1.2125** -1.8240** 

  Genus 71.6 0.4230 4.8879** 0.4154** 83.6071*   -1.4018** -1.9576** 

 HES Family 80.7 0.3553 5.9866** 0.6242** 91.5142**   -1.9128** -1.7797** 

  Genus 78.9 0.4118 6.6205** 0.6732** 80.0852*   -2.1022** -1.9865** 
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Table 6. Cont. 

Dependent 

variable 

Sampling 

effort 

Taxonomic 

resolution 

Independent variables 

Proportion 

of Ag. 

Within 
watershed 

Proportion 

of Ag. 
Within 

100m 

buffer 

Proportion 

of Urban 

within 
watershed 

Proportion 

of Urban 
within 

100m 

buffer 

Porportion of 

Nonforest 

wetland within 
100m buffer 

Discharge 

Ratio of 

streamflow 

yield 
(90%/10%)  

Streamflow 

75 % 

Streamflow 

90 % 

# Taxa LES Family    -2.7264* 2.0960*     

  Genus    -3.2750* 2.8268**     

 HES Family    -4.3121** 2.0509* -0.4876*    

  Genus    -5.4691** 2.1772* -0.4501*    

# EPT LES Family         -1.5204* 

  Genus         -1.6926* 

 HES Family         -2.2969** 

  Genus  -2.5036**       -1.5383** 

MBI LES Family     1.3703*    0.6292** 

  Genus 0.2934*  2.2597*     0.6786**  

 HES Family    1.4670*     0.4621** 

  Genus    1.8363*     0.6471** 

# Sensitive LES Family          

  Genus          

 HES Family          

  Genus       -3.5714**   

# Metabolic 

conformers 
LES Family         -1.4690* 

  Genus         -1.4666* 

 HES Family         -2.2993** 

  Genus         -2.4073** 
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Table 7. Regression model statistics of each indicator metric for a 2x2 factorial combination 

of sampling effort and taxonomic resolution.  

Dependent variable 
Sampling 

effort 

Taxonomic 

resolution 

R2  

(%) 
SE df F-ratio # variables 

# Taxa LES Family 30.2 0.2375 48 6.92 3 

  Genus 42.0 0.2369 48 11.6 3 

 HES Family 46.1 0.2077 47 10.1 4 

  Genus 46.3 0.2371 47 10.1 4 

# EPT LES Family 67.6 0.3964 47 24.6 4 

  Genus 72.0 0.4055 47 30.3 4 

 HES Family 77.4 0.3701 47 40.1 4 

  Genus 79.4 0.3947 47 45.3 4 

MBI LES Family 64.6 0.1150 44 11.5 7 

  Genus 64.5 0.1212 44 11.4 7 

 HES Family 70.4 0.0919 45 17.9 6 

  Genus 72.8 0.1004 44 16.8 7 

# Sensitive LES Family 46.0 0.5298 49 20.8 2 

  Genus 50.2 0.5959 48 16.1 3 

 HES Family 65.4 0.4635 47 22.2 4 

  Genus 66.4 0.5286 47 23.2 4 

# Metabolic conformers LES Family 69.0 0.4172 46 20.5 5 

  Genus 71.6 0.4230 46 23.2 5 

 HES Family 80.7 0.3553 46 38.5 5 

  Genus 78.9 0.4118 46 34.3 5 
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Table 8. Means and medians of normalized scores of each indicator metric for a 2x2 factorial 

combination of sampling effort and taxonomic resolution (n=52).  

Dependent variable 
Sampling 

effort 

Taxonomic 

resolution 
Mean Median SD Min Max 

Composite scores LES Family -1.3416 -1.4928 1.2001 -4.7534 1.1087 

  Genus -1.4779 -1.6224 1.1578 -4.9025 1.1418 

 HES Family -1.5320 -1.4265 1.2612 -5.2163 1.6173 

  Genus -1.6343 -1.5955 1.3041 -5.1286 1.2520 

# Taxa LES Family -0.4735 -0.1610 1.0514 -3.5215 1.0075 

  Genus -0.5702 -0.5229 1.0737 -3.7266 1.3049 

 HES Family -0.8651 -0.9288 1.1625 -4.0128 1.6570 

  Genus -0.9620 -0.9370 1.1985 -3.9022 1.7295 

# EPT LES Family -1.6818 -1.6701 1.5392 -6.1423 1.0753 

  Genus -1.7855 -1.9218 1.5612 -6.1947 1.1394 

 HES Family -1.7032 -1.4982 1.5202 -6.5538 1.1108 

  Genus -2.0439 -1.8316 1.6631 -7.0725 0.6143 

MBI LES Family -1.6268 -1.8564 1.4815 -4.7396 1.8116 

  Genus -1.8779 -1.9659 1.2827 -4.5700 1.3842 

 HES Family -1.7429 -1.6826 1.4569 -4.6326 2.8630 

  Genus -1.7808 -1.7533 1.4714 -4.4455 2.8327 

# Sensitive LES Family -1.1291 -0.9788 1.2547 -5.2310 1.5407 

  Genus -0.9667 -1.0201 1.1924 -3.4670 1.3605 

 HES Family -2.5342 -2.7110 1.9739 -8.1283 1.2287 

  Genus -2.1857 -2.3141 1.7768 -5.5911 1.7262 

# Metabolic conformers LES Family -1.5846 -1.6210 1.4601 -5.2418 1.0606 

  Genus -1.6779 -1.6964 1.5067 -5.5479 1.1405 

 HES Family -1.8168 -1.6229 1.5779 -6.0788 1.6385 

  Genus -1.7507 -1.4350 1.5442 -5.7839 1.0239 
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Table 9. Independent T-tests of normalized scores for each indicator metric between LES and 

HES at each taxonomic resolution and between family and genus levels at each sampling 

effort. 
 t-test for Equality of Means 

 t df 
Sig  

(2-tailed) 

Mean 

Differece 

Std. Error 

difference 

LES vs. HES in family level      

   Composite ((# T + # E + # M + MBI)/4) 0.788 102 0.432 0.190 0.241 

   # Taxa (# T) 1.802 102 0.075 0.392 0.217 

   # EPT (# E) 0.701 102 0.943 0.021 0.300 

   Macroinvertebrate Biotic Index (MBI) 0.403 102 0.688 0.116 0.288 

   # Sensitive (# S) 5.005 102 0.000 1.597 0.319 

   # Metabolic conformers (# M) 0.779 102 0.438 0.232 0.298 

LES vs. HES in genus level      

   Composite ((# T + # E + # M + MBI)/4) 0.647 102 0.519 0.157 0.242 

   # Taxa (# T) 1.756 102 0.082 0.392 0.223 

   # EPT (# E) 0.817 102 0.416 0.258 0.316 

   Macroinvertebrate Biotic Index (MBI) -0.359 102 0.720 -0.097 0.271 

   # Sensitive (# S) 4.108 102 0.000 1.219 0.297 

   # Metabolic conformers (#M) 0.243 102 0.808 0.073 0.299 

Family vs. Genus level in LES      

   Composite ((# T + # E + # S + MBI)/4) 0.589 102 0.557 0.136 0.231 

   # Taxa (# T) 0.464 102 0.643 0.097 0.208 

   # EPT (# E) 0.341 102 0.743 0.104 0.304 

   Macroinvertebrate Biotic Index (MBI) 0.924 102 0.358 0.251 0.272 

   # Sensitive (# S) 0.367 102 0.714 0.087 0.236 

   # Metabolic conformers 0.321 102 0.749 0.093 0.291 

Family vs. Genus level in HES      

   Composite ((# T + # E + # S + MBI)/4) 0.407 102 0.685 0.102 0.252 

   # Taxa (# T) 0.418 102 0.676 0.097 0.232 

   # EPT (# E) 1.090 102 0.278 0.341 0.313 

   Macroinvertebrate Biotic Index (MBI) 0.132 102 0.895 0.038 0.287 

   # Sensitive (# S) -0.795 102 0.429 -0.291 0.366 

   # Metabolic conformers -0.216 102 0.829 -0.066 0.306 
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Table 10. Pearson correlations of normalized scores among macroinvertebrate indicator 

metrics between degrees of sampling effort at each taxonomic resolution and between 

taxonomic resolution at each level of effort. One star indicates significance at p ≤ 0.05, and 

two stars indicate indicates significance at p ≤ 0.01. 

 Family level, HES 

 Com # Taxa # EPT MBI # S # M 

Family level, LES       

  Composite (Com) 0.787** 0.465** 0.739** 0.744** 0.726** 0.773** 

  # Taxa (# T) 0.329* 0.372** 0.215 0.372** 0.403* 0.228 

  # EPT (# E) 0.758** 0.433** 0.777** 0.655** 0.670** 0.752** 

  Macroinvertebrate Biotic Index (MBI) 0.765** 0.357** 0.719** 0.779** 0.714** 0.771** 

  # Sensitive (# S) 0.475** 0.263 0.365** 0.602** 0.621** 0.419** 

  # Metabolic conformers (# M) 0.773** 0.442** 0.726** 0.698** 0.668** 0.803** 

 Genus level, HES 

 Com # Taxa # EPT MBI # S # M 

Genus level, LES       

  Composite (Com) 0.798** 0.526** 0.733** 0.768** 0.765** 0.766** 

  # Taxa (# T) 0.374** 0.417** 0.271 0.410** 0.381** 0.256 

  # EPT (# E) 0.789** 0.488** 0.791** 0.683** 0.748** 0.783** 

  Macroinvertebrate Biotic Index (MBI) 0.699** 0.395** 0.602** 0.797** 0.696** 0.646** 

  # Sensitive (# S) 0.673** 0.429** 0.635** 0.657** 0.722** 0.628** 

  # Metabolic conformers (# M) 0.774** 0.478** 0.730** 0.682** 0.713** 0.809** 

 Genus level, LES 

 Com # T # E MBI # S # M 

Family level, LES       

  Composite (Com) 0.977** 0.640** 0.949** 0.739** 0.728** 0.936** 

  # Taxa (# T) 0.587** 0.967** 0.480** 0.213 0.390** 0.436** 

  # EPT (# E) 0.929** 0.516** 0.982** 0.652** 0.674** 0.914** 

  Macroinvertebrate Biotic Index 

(MBI) 
0.869** 0.358** 0.806** 0.906** 0.732** 0.809** 

  # Sensitive (# S) 0.721** 0.681** 0.605** 0.581** 0.748** 0.610** 

  # Metabolic conformers (# M) 0.930** 0.500** 0.920** 0.667** 0.660** 0.980** 

 Genus level, HES 

 Com # Taxa # EPT MBI # S # M 

Family level, HES       

  Composite (Com) 0.976** 0.763** 0.929** 0.808** 0.830** 0.934** 

  # Taxa (# T) 0.720** 0.974** 0.658** 0.426** 0.485** 0.560** 

  # EPT (# E) 0.922** 0.622** 0.964** 0.695** 0.791** 0.931** 

  Macroinvertebrate Biotic Index 

(MBI) 
0.846** 0.552** 0.710** 0.939** 0.814** 0.770** 

  # Sensitive (# S) 0.831** 0.614** 0.752** 0.803** 0.897** 0.756** 

  # Metabolic conformers (# M) 0.921** 0.613** 0.902** 0.731** 0.782** 0.967** 
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Table 11. Impairment classification based on normalized composite scores from four 

combinations of sampling effort and taxonomic resolution.  

 Genus level, LES 

 Exceptional Good Threatened Poor Very poor Total 

Family level, LES       

  Exceptional 1 2 0 0 0 3 

  Good 0 8 4 0 0 12 

  Threatened 0 0 4 0 0 4 

  Poor 0 0 2 13 3 18 

  Very poor 0 0 0 0 15 15 

  Total 1 10 10 13 18 52 

 Genus level, HES 

 Exceptional Good Threatened Poor Very poor Total 

Family level, HES       

  Exceptional 2 0 0 0 0 2 

  Good 0 6 2 0 0 8 

  Threatened 0 1 4 1 0 6 

  Poor 0 0 1 16 1 18 

  Very poor 0 0 0 2 16 18 

  Total 2 7 7 19 17 52 

 HES, family level 

 Exceptional Good Threatened Poor Very poor Total 

LES, family level       

  Exceptional 0 3 0 0 0 3 

  Good 2 4 2 4 0 12 

  Threatened 0 0 2 2 0 4 

  Poor 0 1 2 9 6 18 

  Very poor 0 0 0 3 12 15 

  Total 2 8 6 18 18 52 

 HES, genus level 

 Exceptional Good Threatened Poor Very poor Total 

LES, genus level       

  Exceptional 0 1 0 0 0 1 

  Good 2 4 1 3 0 10 

  Threatened 0 1 4 5 0 10 

  Poor 0 1 2 8 2 13 

  Very poor 0 0 0 3 15 18 

  Total 2 7 7 19 17 52 
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Figure 1. Map showing sampling site locations on Bigelow Creek, Brooks Creek, Cedar Creek, Crane Creek, and Mill Creek. 
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Figure 2. Land uses of each watershed used for this study. 
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Figure 3. Boxplots show number of taxa for each macroinvertebrate indicator metric 

collected by different degrees of sampling effort and taxonomic resolution (n=52). Indicator 

metrics of MBI shows the average MBI scores and # Surface dependent/# Taxa shows 

relative ratios of number of surface dependent to number of total taxa.  
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Figure 4. Boxplots show normalized assessment scores for each macroinvertebrate indicator 

metric collected by different degrees of sampling effort and taxonomic resolution (n=52).  

 

 


