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ABSTRACT
An algorithm for distributed scheduling of tasks on the processors and
devices of a computing system is presented and its correctness is proved.
The algorithm is predicated on a computing system in which each device on
the system is regarded as an autonomous processor responsible for its own
scheduling decisions. The algorithm precludes the need for explicit syn-
chronization among the system processors or for an interrupt facility. Inter-

processor task switching is performed through a queueing mechanism.



INTRODUCTION

Processor and input-output device scheduling on computer systems has
traditionally been based on the concept of the central processing unit which
has full control of and responsibility over all activity in the system. The
central processing unit is the only device in a computer system with the capa-
bility of exercising control over other processors. It is the only processor
in the system with control paths to other devices (for I/O instructions) and
from other devices (for interrupts), and it is the only processor with a suffi-
ciently sophisticated order code to make scheduling decisions.

The scheme has been quite successful. However, as devices in a computing

system become more complex in design, greater in number, and more diverse in

form, the centralized control of the system has become awkward. In addition, mul-
tiprocessor computer systems have raised the question of which central proces-
sor is to be responsible for system scheduling. One response to these diffi-
culties is the distribution of control more broadly through the computing

system. Front-end computers now quite commonly handle complex communication links
to present the central processor with a simple input stream. Computer system
architectures have been developed in which smaller general purpose processors
supplement the central processing unit, and perform many of the scheduling

and ancillary tasks on its behalf [1,2]. Other computer systems have been



developed in which a large community of mini-computers are organized about

a shared main memory [3,4]. Concepts of distributed control are particularly
significant in mini-computer design, since mini-computers are being designed
with interfaces which often allow several distinct processors to be easily
and economically interfaced in a variety of ways.

This paper is predicated on a concept of a computing system with distri-
buted control, in which each device in the system is viewed as a processor,
responsible for scheduling its own work [5]. Each processor (or device) must
choose a task for execution from available tasks, execute it, and pass it to
the next processor the task requires. To do this each processor must have a
sufficient order code to execute a scheduling algorithm and to fetch a task
for execution. Interaction (for the purpose of processor scheduling) is
accomplished through shared queues of task control blocks. Thus, no net-
work of control paths among the processors is needed. Since each processor
performs its own scheduling, interrupts can be eliminated as a mechanism for
control of the asynchronously operating processors.

This paper presents an algorithm which, when executed by each proces-
sor on the system, will manage the execution of tasks, scheduling them on
various processors of the system (as needed) with a minimum of interference
among the processors due to scheduling activity. The correctness of the

algorithm will be proven.



INTER-PROCESSOR PROTOCOL

The architecture being proposed permits, and in fact requires, that the
scheduling of tasks on the system processors be distributed through the
system; that is, all processors, including I/0 devices must schedule their
own work. I propose that this be accomplished through the following basic
algorithm (see figure 1).

Each processor will operate in a simple loop, fetching a Task Control
Block (TCB) from its own work queue, executing the task until the.task re-
quests another processor, and inserting the TCB onto the requested processor's
work queue. This is, in essence, the basic algorithm used by current systems
for round-robin CPU scheduling, except that I have extended it to permit
the TCB to be inserted onto a different processor's work queue. Thus, the
work queue is analogous to the CPU queue of a traditional operating system,
and, if the processor is a CPU, it is identical.

Each processor on the system will own a work queue, and will normally
be the only processor permitted to remove a TCB from its work queue. Any
processor may add to the work queue of any other processor (or even to its
own). This forms the basis for most inter-processor communication.

For this queue manipulation we need to establish a protocol which will
satisfy several requirements. Since all processors must execute it, it
must employ a rudimentary instruction set. The protocol must avoid logical
difficulties which might arise from several processors manipulating the
same work queue simultaneously. Finally, it must minimize the interference
among processors. It is also extremely desirable that the algorithm be
simple enough so that its correctness may be readily established.

The algorithm I propose for this purpose is presented in flowchart

form in figure 2 and in (fictitious) assembly language form in figure 3.



The algorithm requires some explanation. First, some assumptions: Each
TCB begins with the sequence: 1link pointer (to the next TCB) followed by
a pointer to the user program for this task. A null pointer (representing
the end of a queue) is represented by the number zero (0). A minus one
(-1) as a pointer represents a condition where the proper address has not
yet been set, and may be found in the Z register of the processor
which set the pointer. Finally, when the user enters the scheduling routine
(at RETURN), he will leave the address of the next processor his task requires
in register X, and the address of his own next instruction in register Y.
The work queue described above is in reality divided into two queues. On
one of these, WORKQ, TCB's are inserted at the top by any processor, and
it is emptied by the owning processor zeroing WORKQPTR, where the address
of the top TCB is stored. The top TCB is always the most recently inserted.
The other queue, PVTQ, consists of TCB's that have been waiting for the pro-
cessor longer than those on the previous queue. PVTQPTR is the pointer to the
first TCB in this queue. At the top of this queue is the oldest TCB,
and the top TCB is removed for running when the processor schedules a task.
When this queue empties, it is renewed by the owning processor which takes
the WORKQ and reorders it backwards (by reversing its pointers). It takes
the top TCB to run, and places the remainder of the queue onto PVTQPTR. Thus,
if we view the two queues as one, starting from the top of PVIQ to its
bottom, followed by the TCB's in WORKQ from the bottom to its top, the TCB's
encountered represent the logical work queue from the oldest TCB to the
newest.

The code proposed uses a simple instruction set with very little arith-
metic capability. Two instructions used may not be obvious: INC (increment)

merely increments a register. SWP (swap) exchanges the value in a register



with that in a word of memory, during which time no other processor is
allowed access to the specified memory location. This latter instruction
is at the heart of the algorithm, since it eliminates the need for inter-
processor synchronization. It accomplishes this by doing a queue insertion
or removal without the possibility of examination or modification of the
queue in an intermediate state.

One should be aware that this is intentionally a very limited algorithm.
Simplicity has been preserved with some effort in order to establish an
algorithm which can be shown practical for a very simple processor. Other-
wise, the system would be impractical on economic grounds. Note that the
processor is not required to have any complex addressing or any arithmetic
capability.

The scheduling provided by the algorithm is strictly FIFO over each
processor (of which round-robin is a special case). One can extend this
to any other scheduling algorithm, by having a processor always empty the
WORKQ before scheduling any task. Then with all the TCB's on his PVTQ,
he may manipulate them and choose among them as he sees fit. This would,
however, involve a penalty in increased processing time and complexity of

the algorithm.

CORRECTNESS OF INTER-PROCESSOR PROTOCOL
I will now prove the correctness of the scheduling algorithm. The
proof will depend on two observations. First, no processor may add to the
work queue (WORKQ) of another processor except at its top. Second, if
we regard a -1 as an indirect pointer (in a logical sense), then at no time
is the structure of the work queue incomplete or broken. Further, the

logical structure is never changed except for insertions at the top, and by
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complete removal of the work queue by the owning processor.

The proof below refers to the algorithm in figure 3, as applied to
the data structure of figure 5. Figure 4 represents the logical structure
which is elaborated by the physical structure in figure 5. Note that a,
is the address of the most recently inserted TCB, and a, is the address
of the least recently inserted TCB (the oldest) and the one which should

be scheduled next.

The following notation will be used in the proof: x, y, z will
represent the values held in registers X, Y, Z respectively. a; repre-
sents the address of the ith TCB, and bi represents the address of its
user's code. c(ai) will be used to represent the value of the contents
stored at address a;, or more generally, c( ) will be used to specify
the contents of the address given inside the parenthesis. When referring
to the values of variables at a given step, the values at the end of the
step will be implied, unless otherwise stated.

Consider the beginning of the algorithm. We have:

STEP RESULTS COMMENTS
1 y=a, 0 iff PVTQ is empty (null pointer)
2 y=a, Branch on non-empty queue (PVTQ)

Now, assume a is zero so that we execute step 3 next. The case anfo will
be considered later (in which case y#0 and the branch to step 16 is taken).
At step 3, y=0. Therefore, when the swap is performed, it empties the
work queue by zeroing its pointer. Thus:

y=a,

¢ (WORKQPTR)=0
4 y=a, Branch back iff WORKQ null



If WORKQ and PVTQ are both empty, then there is no work to be done, and

the processor loops here waiting for a TCB to arrive at WORKQ. No TCB can
arrive on PVIQ, since no other processor can reference PVTQ. Thus the loop
between steps 3 and 4 will cause the processor to wait only until there is
work for it to do. Now, the processor will reach step 5 only with y=a1#0.
Note that after step 3, further changes to the work queue just obtained

will not affect the algorithm, since other processors no longer have access

to it. Further additions to the work queue will be to a new queue established

at step 3 as empty by the insertion of 0 into WORKQPTR.

STEP RESULTS COMMENTS

5 x=a, or 0 or -1, x=0 iff a; is the last element on
y=a; queue, x=-1 iff another processor is

inserting a new value for a;

6 x=a, or 0 or -1,  poonch iff x=-1 (loop)

y=a,
7 X=a, or 0, Branch iff x=0

y=a,

Step 6 causes the processor to loop (back to step 5) if x=-1. This is a
special flag indicating that the processor inserting this TCB into the queue
has not completed the linkage and the value of the pointer has not yet been
set properly. Since this flag is preset by the other processor (at step 28)
before the TCB is linked into the queue (at step 30), the flag will be there
until the pointer is properly set. Steps 5 and 6 will be repeatedly executed,
until the flag is cleared by the insertion of the address a,- Thus, at step
7, x can only have values of a, or 0. A value of zero signals the end of
the queue, and implies that the queue is only one TCB long. In this case
step 7 causes a branch to step 18, which situation will be examined later.
Assume that step 8 is to be executed after step 7 (and therefore x=a2).

With the processor about to execute step 8 of the algorithm, it has

performed the tests to guarantee that PVIQ is empty, and WORKQ holds at



least two TCB's. Moreover, it has emptied the WORKQ by setting WORKQPTR

to 0, and must reverse the order of the TCB's on the queue_it has obtained
in order to set up PVIQ from it. The last TCB on the current queue, however,
will not be put onto PVIQ, since this TCB is the candidate for immediate
execution. Note that the queue links are now as indicated in figure 4

(i.e. c(ai) = a5, for i=1,2,...,n-1). With the links reversed, TCB1 will

be at the bottom of the list, and therefore, steps 8 and 9 set c(al) = 0.

STEP RESULTS COMMENTS
8 z=0, X=a,, y=a,
9 z=0, X=a,, Y=3 End of PVTQ now flagged
and c(a1)=0

Steps 10 through 15 represent the algorithm for reversing the pointers in
the queue. It will be executed once for each pointer to be reversed, or
n-1 times. It is entered each time with y=a; and X=a, ;- After step 9,

this invariant is satisfied with i=1,

before 10 X=a. 1, Y=a,
10 z=a; 5> -1, or 0 -1 is not set flag, 0 signals end of queue,
loop back on not set flag
X=a. ., y=a,
i+l 1
11 z=a; s -1, or. O
=811 TR
12 c(aj,1)=8;, X=3;,45 .
Reverse pointer between a; and 3,1
Y=a3, 278352
13 y=a. ., X=a. .,
1+l 1+l Set up for next loop
258442
14 X=a, o Y73, 4

15 X=a; o, Y=2: .4 Loop back iff x#0



In the above steps, we have not explicitly noted the three possibilities

for c(ai+l) fetched in step 10. Just as was the case at step 5, step 10

may fetch a -1, jn which case steps 10 and 11 are repeated until the flag

is cleared, or it may fetch a 0, which is detected at step 15. This repre-
sents (signals) the end of the queue, and is the termination condition for
the loop (steps 10-15). Note that if x#0, then the loop will repeat. The
condition we set entering step 10 was y=ai, X=a, 1 These conditions are now
satisfied with the value of i increased by 1. Thus the loop will re-execute
for the succeeding TCB in the queue. By the structure of the queue, c(ai) =
a:,1 # 0 for i=1,...,n-1, and c(ai) = 0 for i=n. Thus the loop condition
will be satisfied for i=1,...,n-1, and after the n-1st execution, the
condition will fail. This means that step 12 will reverse the pointers

between a; and a__ ., for i=1l,...,n-1, or more simply, all the pointers on
i

1
the queue will be reversed.

The algorithm will reach step 16 in either of two circumstances.
Either the step before (15) will have failed to branch, since x=0
(thus y=a,, the top of the reversed list), or step 2 will have branched
to step 16, having found a in the top of PVTQ already (thus y=an). In
both cases, y=a ., the.address of a TCB which heads a queue of TCB's which
runs in the order oldest at the top and newest at the bottom. The nth
TCB (the top of the queue) will now be removed and executed, and the re-
mainder of the queue will be saved as PVIQ by inserting c(an) =a into
PVTQPTR. Proceeding:

STEP RESULTS COMMENTS

16 X=a_ ;. y=a_ Get second TCB on reversed list
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STEP RESULTS COMMENTS

17 c(PVTQPTR) = a1
Establish PVTQ

X=a,1° Y7

Step 18 is executed after step 17, or, if WORKQ had a single TCB on it,
after step 7. In either case, PVIQ is properly set up at this point in
the algorithm. In the former case, it was set up by steps 16 and 17. In
the latter case, there had only been a single item on WORKQ, and it has
been selected to run. Thus there are no TCB's left to put on PVTQ and
PVTQPTR should therefore be set to zero. However, PVIQPTR must already
be zero, since it was examined by steps 1 and 2 and found to be zero (or
the branch from step 2 to step 16 would have set up the former case).
Thus, the queues are maintained in order for this processor, and the re-
mainder of the algorithm is concerned with the execution of the TCB whose
address is now in register Y, and following that, its insertion on another
(or possibly the same) processor's work queue.

Since the TCB whose address is in register Y has been removed from
the queues of waiting work, this has had the effect of reducing n by 1,
and this TCB's address should no longer be referred to as a . Let us call
its address ay and the address of this TCB's user code b# for consistency.
Further, we will no longer have need to refer to this processor's queues,
but will need to refer to some processor's queue. Let the variables corres-
ponding to this other processor's queue and WORKQPTR be distinguished by

italicizing their names. Also, for convenience let c(ACTIVE TCB) be denoted

by at. Continuing at step 18

18 at = a,, y = a4
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STEP RESULTS COMMENTS
19 y=a#+1, at=a, Pointer to b#
20 y=b,, at=a, b, is address of user code
21 =
x=A(step 23) Give user return address
y=b#, at=a,
22 x=A(step 23) Branch into user code
y=b#, at=a,

At this point, the user is put into execution, and is provided a return address
in register X. A return by the user to step 23 will be assumed, with register
X set to the address of WORKQPTR for the processor at which the user desires

to execute next, and register Y set to the address of the user code to be
executed on the next processor. Call this address b, since it will be used

to replace b#. Therefore, step 23 will be executed with x = A(WORKQPTR),

and y=b+.

23 z=a,, X = A(WORKQPTR),
=b,

24 z=a,+l, X = A(WORKQPTR), Get pointer to b#
y=b,

25 c(a#+1) = b, Replace b, by b,
X = A(WORKQPTR)

26 z=ay, X = A(WORKQPTR)

27 y=-1, z=a,,
x = A(WORKQPTR)

28 c(a#) = -1, x = A(WORKQPTR) Flag pointer as not set
z=a

#
29 y=a,, z=a,

x = A(WORKQPTR)
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STEP RESULTS COMMENTS
30 z=a, or 0
c(WORKQPTR) = ay Link into WORKQ
y = ay
31 c(a#) = a Finish linking

At step 25, the new user code address was inserted into the TCB. The
actual linking of the TCB into another processor's WORKQ occurs in steps
30 and 31. Before step 30, the only information about WORKQ that this
processor has is the address of the WORKQPTR. Since that address is static,
there can be no interference with the other processor before step 30.
Also, the first work of the TCB is already preset to -1 so that the other
processor will be held up if it tries to get the address of a TCB following
the one to be linked into its WORKQ. After step 30 (before step 31),
the WORK® includes the TCB from this processor as its first entry and is
logically complete if the -1 at location ay is regarded as an indirect pointer
through the Z register of the processor we are examining. Note that while
it is physically incomplete, the owning processor (the processor owning the
work queue affected), will not be affected by the incompleteness, except
to wait when it encouters the -1. Finally step 31 completes the linking
of the TCB, and the owning process may proceed if it is waiting, after at
most a very short wait. Step 32 restarts the scheduling algorithm from its
beginning.

The effect of one circuit through the scheduling algorithm has been
the decrease of n by 1 (the running of one TCB's task, the oldest task),
and the increase of another processor's work queue by the addition of one

TCB. Thus the algorithm is complete and correct.
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CONCLUSION

This paper has presented a scheduling algorithm requisite for the
proper functioning of a computer architecture for distributed control.
The algorithm is based on queue mediated interaction among the processors
and devices in the system. A proof of the correctness of this algorithm
has been given.

The work presented in this paper is part of a larger project whose
goal is to complete the design of a computing system employing distributed
control, and to demonstrate its practicality. To complete the design,
issues of protection, efficiency, reliability, and expandability will be
considered in further research. Finally, the range of applicability of
a computer system of this type will be examined, and the application of

these ideas to computer networks will be considered.
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