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CHAPTER 1  
 

INTRODUCTION 
 

 

1.1 Overall Goal 

 

The overall goal of this research was to apply multicriterion optimization methods to 

platform decisions for families of ship variants while explicitly taking into account fleet-

wide savings.  In this context, a platform is the set of common elements used in more 

than one ship class.  The Optimal Design Laboratory of the Department of Mechanical 

Engineering at the University of Michigan has developed analytical methods for making 

optimal platform decisions in consumer products and the automotive industry.  This 

research has adapted these methods and extend them to utilize the multicriterion 

optimization approach necessary to effectively treat naval fleet design problems.  The 

methodology was then tested through modeling and application to determine the optimal 

common platform and ship designs to use for the missions of the U.S. Coast Guard’s 

Deepwater Fleet. 

 

1.2 Motivation 

 

A common practice within the automotive industry is to use the same frame, engine, etc. 

for perhaps a light sport utility vehicle, a sedan and perhaps other variants within an 

automobile manufacture’s line of vehicles.  If this practice is so widely used in the 

automotive industry, why is it not utilized in naval ship design?  In ship design, common 

hull blocks, main engines, engine rooms, ship service generators, sensors and weapons 

could be used to provide commonality and savings across multiple ship variants.  Savings 

can be obtained in training of personnel, logistical support, procurement, detailed design 
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development, and construction costs.  The use of optimally determined platforms may 

offer part of the solution for an affordable fleet in the future. 

 

Traditionally naval ship design has been performed on a ship class by ship class basis.  

Ships are generally designed in order to maximize their mission effectiveness without 

consideration of the detailed design of other ships in their fleet; an exception being 

compatible communications and weapons control.  As ship designs have progressed, 

ships are being developed with more systematic commonality in mind.  Different ship 

classes will have certain systems that are common to each other. The motivation behind 

this is to improve interoperability and decrease costs associated with design, 

development, construction and operation of the ships.  Despite the use of commonality, 

the shipbuilding industry has yet to utilize platform design techniques as a standard of 

practice. This research develops a logical methodology to establish the optimal platforms 

within a family, or fleet, of ships.   

 

The strategic design question is how many and which elements should be included in the 

platform definition to maximize savings without excessive degradation of the 

performance of the variants in the family. The use of commonality in design often comes 

with compromises in mission effectiveness of individual designs.  A multicriterion design 

optimization decision results – how to maximize the savings through the use of the 

platform while also maximizing the performance of each of the variants within the 

family.  In order to use platforms in ship design, one must develop a way to measure the 

effects of commonality decisions on each variant’s performance.  This research develops 

a system of measuring the change in performance associated with the use of a platform 

and comparing this to the resulting fleet-wide cost savings. 

 

1.3 Previous Product Family Work 

 

The development of rational, analytical methods for the definition of platforms has been 

the subject of a number of recent research efforts.   Simpson provides an extensive survey 

on these efforts [Simpson 2004].  Here only some basic relevant work is reviewed. 
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At the University of Michigan, the Optimal Design Laboratory of the Department of 

Mechanical Engineering has developed optimization-based methodologies for making 

optimal platform decisions.  Fellini et al. used information from the optimization of 

individual product variants to determine optimal platforms [Fellini et al. 2004].  Further 

work by these same authors evaluated commonality decisions while controlling 

performance losses.  Sharing of product components was based on designer-specified loss 

tolerances [Fellini et al. 2005].  By combining two previous approaches, Fellini, 

Kokkolaras, and Papalambros developed a methodology that identifies an initial set of 

shared components for a platform and then evaluates that platform using performance 

loss standards [Fellini et al. 2006] under the tacit assumption that more platform content 

is better.  Sensitivity measures were used to establish the platform content to consider 

without requiring detailed cost savings estimation.   

 

At M.I.T.’s Engineering Design Laboratory, Gonzalez-Zugasti, Otto, and Baker used a 

general optimization formulation that balances the advantages of sharing components 

with the constraints of individual product variants to form an interactive, team-based 

negotiation model for designing a product family based on a common platform 

[Gonzalez-Zugasti et al. 1998].  In addition, Gonzalez-Zugasti and Otto explored 

methodologies for designing families of products built onto modular platforms 

[Gonzalez-Zugasti and Otto 2000].  These authors rely heavily on design team input 

throughout their product platform design methodology.  In this methodology, the design 

team meets to decide which portions of the individual designs should be used as 

platforms.  From this decision, product variants are developed.  The variant designs are 

optimized with regard to performance and cost constraints.  The optimization is 

performed on the variants on a “one at a time” basis rather than optimizing them 

concurrently. 

 

Simpson, Maier, and Mistree have also focused their attention on product family design 

[Simpson et al. 2001].  Their primary focus was on scale-based product families derived 

from product platforms that can be derived from functional and manufacturing 

considerations.  This methodology has been extended several times.  Nayak, Chen, and 
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Simpson developed robust design concepts to formulate a variation-based platform 

design methodology [Nayak et al. 2002].  Messac, Martinez, and Simpson used a 

physical programming approach to optimize designs [Messac et al. 2002].  In these 

papers, the authors consider performance and production considerations, but do not 

explicitly mention cost savings considerations.   

 

Fujita and Yoshida proposed a simultaneous optimization method for module 

combination and module attributes of multiple products. Their work optimized the 

combinatorial pattern of commonality and similarity, optimized similarities on scale-

based variety, and optimized the continuous module attributes [Fujita and Yoshida 2004].  

Considerations were made for performance, cost and profit of the design variants based 

on a fixed modular architecture.  Design trends in the optimization were used to help 

narrow the number of design variants.  

 

1.4 Related Ship Design Optimization Work 

 

In 1992, the U.S. Navy began an initiative titled “Affordability through Commonality” 

[Bosworth and Hough 1993, Cecere et al. 1995].  The goal of this initiative was to lower 

the cost of fleet ownership through the use of increased commonality.  The Navy defined 

commonality as using modularity, equipment standardization and process simplification.  

The authors argue that the use of commonality would ultimately lower all life cycle costs 

associated with design, construction and operation of the Navy’s ships.  Although the 

Navy is using this new fleet ownership strategy, it does not appear that a formal 

methodology has been developed to aid cost-effective commonality decision-making.  

 

Brown and Salcedo presented a ship design optimization methodology based on life cycle 

cost and mission effectiveness [Brown and Salcedo 2003].  They developed a 

methodology for exploring the many variations that are possible in a given ship design.  

By using various combinations of combat systems, engine selections, hull form 

parameters, manning, endurance, and mobility, they efficiently explored the design space 

for non-dominated designs.  The designs are compared using life cycle costs and a 
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measure of mission effectiveness.  A Multiple-Objective Genetic Algorithm (MOGA) 

optimization was used to search the design space. Their work did not consider the design 

of a family of ship variants, but rather gives the methodology for the optimal design of 

one ship class.  

 

Zalek, Parsons and Papalambros used a multicriterion evolutionary algorithm to search 

the design space for monohull forms optimized with respect to calm water powering and 

seakeeping [Zalek et al. 2006a, Zalek et al. 2006b, Zalek 2007].  Their experience in 

developing a multicriterion evolutionary algorithm was a starting point for this research. 

 

1.5 Contribution of Research 

 

The proposed research project will serve to benefit the Naval Architecture and Marine 

Engineering and Mechanical Engineering design communities in several areas.  

 

Previous work in multiobjective optimization has adopted methods to change the 

multicriterion problem into a single criterion optimization [Fellini et al. 2005].  In that 

research, they reformulated the multicriterion problem by changing one of the objectives 

into a constraint.  The research presented here does not utilize a similar reformulation of 

the optimization problem. Rather, it develops a methodology to solve the multicriterion 

optimization directly.   

 

In order to solve the optimization problem, a multicriterion evolutionary algorithm was 

developed as part of this proposed research.  The solution obtained by the evolutionary 

algorithm is the Pareto front.  This Pareto front will help designers make design decisions 

based on commonality savings and the resulting performance losses of the variants.   

 

Another extension of previous Optimal Design Laboratory research is the development of 

an explicit platform fleet cost savings model. Until now, the actual cost savings 

associated with platform decisions has not been taken into account directly.  Most of the 

effort of the research was in developing a methodology for making commonality 
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decisions using performance loss as the main constraint [Fellini et al. 2005].  This 

research looks more closely at the cost savings that various commonality decisions would 

bring. By comparing cost savings with performance loss a designer can objectively 

determine how much the use of common components would benefit the cost of a fleet of 

vessels.  Platform decisions can then be made based on both cost effectiveness and 

performance loss. 

 

So far, most all of the work in the commonality design and optimization field has been 

related to consumer goods and, more specifically, the automotive industry.  This research 

will expand these concepts to be used on a larger-scale marine application.  Although the 

Navy has considered some aspects of these optimization issues in the past as part of its 

“Affordability through Commonality” program, this research provides a way for 

designers to design families of ships vice individual ship classes.  This research is the 

first multi-ship class design optimization of its kind.  The formal optimization of the 

design of two ship classes simultaneously using platforms and cost considerations has not 

been done before. 

 

The final component of this research is a case study to test the methodology developed 

herein.  The case study is conducted using the U.S. Coast Guard’s Deepwater Fleet 

mission requirements and operations scenarios.  The two ship classes that will be 

considered are the Maritime Security Cutter Large (WMSL), formerly known as the 

National Security Cutter (NSC), and the Maritime Security Cutter Medium (WMSM), 

formerly known as the Offshore Patrol Cutter (OPC).  These ship classes serve this 

research well based on the significant overlap of their missions and designs.   
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CHAPTER 2  
 

MULTICRITERION OPTIMIZATION THEORY 
 

 

2.1 Basic Theory 

 

“When an optimization problem involves more than one objective function, the task of 

finding one or more optimum solutions is known as multicriterion optimization.” [Deb 

2001]. Single criterion optimization problems can be formulated as: 

 

  minimize  F(x) = f1(x) x = [x1,x2,…,xn]T

      

subject to hi(x) = 0, i= 1,…,I 

gj(x) ≥ 0,  j = 1,…,J    (2.1) 

 

where f1 is a single scalar objective function or criterion and the vector x represents the 

design independent variables.   

 

In most real world applications, optimization problems often involve multiple competing 

objectives. The multicriterion or multiobjective optimization problem can be formulated 

as 

   

  minimize  F(x) = [f1(x), f2(x), f3(x),…, fK(x)] T x = [x1,x2,…,xn]T

      

subject to hi(x) = 0, i = 1,…,I 

  gj(x) ≥ 0,  j = 1,…,J    (2.2) 
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where f1, f2, f3,…, fK  represent the multiple objective functions and x again represents the 

design independent variables. 

 

Some of the multiple objective functions usually conflict with one another.  As one 

objective function is improved some of the other objective functions often suffer.  

Therefore, compromises must take place in order to reach acceptable levels of 

satisfaction among each of the objective functions.  Because of these compromises, the 

results of a multicriterion optimization problem differ from that of a single criterion 

optimization problem.  A single criterion optimization will generally have only one 

globally optimal solution.  A multicriterion solution will have many possible solutions.  

A given solution may be optimal for one of the objective functions, but not the others.  If 

some of the objectives are conflicting, satisfying one objective will lead to a sacrifice of 

one or more of the others.  No solution will be the best for all the objectives.  The result 

of a multicriterion optimization is a Pareto optimal set.   

 

The Pareto optimal set is composed of the non-dominated set of solutions to the problem.  

Each design on the Pareto front is such that no criterion can be improved without 

sacrificing another.  An example of a convex two criterion optimization solution is shown 

Figure 2.1. 
                                      f2’ = f2/f2

o

 

Pareto Front 

f1
o

f2
o

f1’ = f1/f1
o

Figure 2.1 Multiobjective Optimization Solution 
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In Figure 2.1, f1 and f2 represent the two objective functions to be minimized.  The Pareto 

front is usually bounded by the optimum solutions for f1 and f2 obtained considering their 

objective functions one at a time, f1
o and f2

o, respectively.   

 

Since the objective is usually to determine which single design is the best for a particular 

problem, one must examine ways to choose a design from the Pareto optimal set.  There 

are several accepted ways to accomplish this.  The two methods that will be considered in 

the proposed research are the Min-Max solution and the Nearest to the Utopian solution.   

 

2.2 Min-Max Solution 

 

The Min-Max solution method provides a result that formally compromises between the 

competing design criteria by providing equal fractional loss relative to the best that could 

be achieved for those criteria.  The un-weighted Min-Max solution uses a scalar 

preference function [Parsons and Scott 2004], 

  

    P[fk(x)] = max [zk(x)] 
            k      (2.3) 
 

where zk are the relative increments (loss) between the fk(x) and associated fk
o, 

 

    zk(x) = | fk(x) - fk
o | / | fk

o |.    (2.4) 

 

Using the Min-Max solution method, the maximum is taken over the K criteria to obtain a 

preference function, P. The scalar preference function P is then minimized over all x 

considering the constraints.  Figure 2.2 illustrates the Min-Max solution for a problem 

with K=3 criteria. 
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Figure 2.2 Min-Max Solution for K=3 Problem 
 

The preference function P or the maximum of the zk can be viewed in Figure 2.2. The 

max(zk) is composed of three sections: the leftmost section is the segment of z1 up to its 

intersection with z2.  The center section is the segment of z2 that is between its 

intersections with z1 and z3.  The rightmost segment is the portion of z3 that starts at the 

intersection with z2 and continues to the right.  The minimization of P over all x is then 

determined to be at the point where z2 = z3.  It is typical for the two criteria that control 

the conflict (f2 and f3) to have equal fractional loss zi at the solution with lower zi for the 

other criteria as shown. 

 

2.3 Nearest to the Utopian Solution 

 

The utopian solution is the best possible design that could be achieved with respect to 

both objective functions.  This solution is not attainable, however, because of the 

constraints.  The nearest to the utopian solution suggests that a good compromise 

between objective functions would be the point on the Pareto front that lies closest to the 

utopian solution in normalized criterion space.  Figure 2.3 illustrates a nearest to the 

utopian solution. The optimization of the design is performed by minimizing the distance 

d from the utopian point to the Pareto front. 
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Pareto Front 

f2
o

f1
o

Utopian Point 

d

f2’ =f2/f2
o

f1’ = f1/f1
o

Figure 2.3 Nearest to Utopian Point Solution 
 

2.4 Problem Formulation 
 
For the purposes of this research, the objective functions, f1, f2, f3,…, fK , will be limited to 

three. The objective functions will be: 

  

  f1(x1, xc) – Ship A Mission Effectiveness/Average Ship Cost 

  f2(x2, xc) – Ship B Mission Effectiveness/Average Ship Cost 

  f3(x1, x2, xc) – Net Fleet Savings from Commonality 

 

where f1 and f2 are subject to the ship design constraints for their respective design as 

specified by naval architecture practice and the customer.  The objective function f3 is the 

total fleet savings realized through the use of the commonality. 

 

The design independent variable vector x is composed of the following: 

 

   x1 = Ship A design independent variables 

   x2 = Ship B design independent variables  

   xc = Commonality components. 

 

The performance or mission effectiveness of the two different ship classes (i=1, 2) is 

related to their specific missions (j=1,…,n). The ability of each ship i to successfully 
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accomplish each mission j is assumed to depend upon k performance characteristics yk. 

The contribution of each of these performance characteristics k to the success in each 

mission j is characterized by a fuzzy membership function or utility 0 ≤ Uijk(yk) ≤ 1.   The 

overall mission effectiveness or performance per average ship cost is then obtained by 

minimum correlation inference as follows. 
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where MPij is the percent of time that vessel i is engaged in mission j and Costi is the 

average acquisition cost of vessel i.  

 
The cost of the ship will be estimated using common ship construction cost estimating 

methods.  The cost used in the objective functions will be the average cost of all the ships 

in the fleet. The primary benefit of only considering the construction cost is that it will 

penalize a ship from being over designed. Using components that are more effective than 

necessary to meet the ship’s mission at a higher cost will not benefit a ship’s design.   

 

The net fleet savings function, f3(x) will take into consideration all fleet-wide costs 

directly associated with the use of common components.  To demonstrate the 

methodology, these are limited to bulk purchase savings and construction learning curve 

savings.  The savings function will consider all ships in each design class as contributing 

to the total fleet savings.  The global effect of commonality on the cost of the entire fleet 

of ships involving the two classes A and B is used. 

 

The design constraints consist of the typical standards that a ship must comply with in 

order to be safe and effective.  For this research considerations were made for basic 

stability, weight-displacement balance and a volume check.  Other design constraints 

may dictate operational capabilities that the ships must meet involving such systems as 

electronics, weapons, radar, helicopter capabilities and small boats. 
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The commonality components will be comprised of a set of integers that specify which 

ship components will be common between both ship classes.  If a given commonality 

component is designated as common, both ships will be constrained to use that 

component. Each commonality component will have two or three component choices. By 

varying the number and combinations of the commonality components, the design space 

will be populated.   

 

Common components in the design optimization will consist of weapon systems, ship 

service generators, cruise engines, superstructure and midship section. The various 

combinations of these commonality components will be used to determine which set of 

common components will result in the Pareto optimal designs for Ship A and Ship B.  

 

As the various combinations of commonality are applied to the designs, the optimization 

program will begin to fill out the three object Pareto front or Pareto surface.  Figure 2.4 

shows a schematic of the expected discrete Pareto Front that will be obtained for the 

multicriterion optimization. 

 

Every set of commonality components l should result in a solution for Ship Al and Ship 

Bl that will be located on a line of commonality.  If a single ship were being considered 

for both missions, this line would be the two-objective Pareto front for Ship Al 

performance/cost and Ship Bl performance/cost.  For specific commonalities, A1 and B1 

might share Ship A’s midship section only, Ships A2 and B2 might share Ship A’s 

midship section and cruise engine and so on. As more things become common amongst 

the ships, the savings can increase and the ship designs will tend toward each other on the 

Pareto surface as more effectiveness is sacrificed for commonality.  Once every item on 

the ship is determined to be common, the result will be one design for both missions. This 

design is shown as point C in Figure 2.4.  Once every combination of common 

components is used in the optimization, the discrete Pareto front will be fully populated.  

The Pareto front will not be continuous because of the discrete nature of the commonality 

variable.  Rather, the Pareto front is will be a collection of discrete points as shown in 

Figure 2.4. 
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Figure 2.4 Expected Discrete Pareto Front 
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CHAPTER 3  
 

U.S. COAST GUARD FLEET DESIGN MODELING 
 

 

3.1 Ship Synthesis Model 

 

For the purposes of this research, a ship synthesis model was needed. Since the goal of 

the optimization program would be to generate scores of ship variations with minimal 

input, the synthesis model had to be simple in nature. The goal was to find, adapt, or 

develop a synthesis model that had a limited number of basic conceptual design level 

inputs. If the model had too many required inputs, the need to estimate values to fill in all 

the inputs would be great and the results would likely suffer. A simple ship synthesis 

model would be adequate in providing initial point design characteristics needed for basic 

cost estimates and performance evaluations. 

 

The ship synthesis model used in this research was adapted from the Performanced Based 

Cost Model used by the U.S. Coast Guard Engineering Logistic Center.  The model was 

developed by the Naval Surface Warfare Center Carderock Division as a means to do 

comparative ship studies [Naval Surface Warfare Center 1998].  The model is capable of 

synthesizing frigate-sized, deep-water, white-hull cutters and reporting both acquisition 

and operational and support costs.   

 

The model was developed using previously developed models of relevant ship types.  The 

ship synthesis algorithms are based on a combination of SHOP 5 and ASSET algorithms.  

SHOP 5 is a Canadian developed model for monohull frigates and destroyers based on 

NATO frigates.  ASSET is the Advanced Surface Ship Evaluation Tool used extensively 

within NAVSEA and represents a mixture of first principle algorithms as well as 

regression analysis of historical U.S. combatant ship data, included the U.S. Coast 
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Guard’s WMEC 270 class of ships [ASSET 2005].  The model provides reasonable 

results for deep-water cutters with displacements of 1500 Long Tons or greater.  

 

The Cost Estimating Relationships (CERs) for the basic construction costs were 

developed by SPAR Associates Inc. and are based on the U.S. Coast Guard’s WHEC 

378, WMEC 270, and WMEC 210 classes of ships. Additional CERs were adapted from 

the CERs that were developed for the U.S. Coast Guard’s Great Lakes Icebreaking 

estimate.  All costs are reported in constant year 1998 U.S. dollars.  

 

The inputs to the U.S. Coast Guard model are design and performance based and allow 

the user to examine the effects of  21 variations in design.  From the inputs, the program 

calculates ship dimensions, powering requirements, electrical load, auxiliary systems 

weight estimate, outfit and furnishing weight estimate, variable loads, and 

habitability/personnel space volumes. This information is used to determine the weight of 

each Ship Weight Breakdown Structure (SWBS) group, lightship displacement, growth 

margins, ship loads, and full load displacement. A volumetric check is also performed to 

ensure adequate space is allotted for necessary compartment volumes.  Once the ship is 

balanced and has adequate volume, the program calculates the procurement costs for the 

lead ship and follow-on ships as well as operating and support costs for the life of the 

ships.  

 

Several key factors made this synthesis model a good choice for use in this research.  

First, it was created for the purpose of studying the same types of ships as used as case 

studies for the research.  The synthesis model also provided cost information which is 

important to the research.  The weight-based cost model in the program is a real 

estimation tool that is used to evaluate costs of real designs. Another advantage that this 

model had over others was that the inputs are basic.  A full understanding of the ship and 

its specifics is not needed in order to create a ship using this program.  Detailed design 

information is not needed to evaluate the ships’ cost and performance. The research 

focuses on the initial conceptual design information.  Finally, the program is straight 
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forward and understandable.  The methodology and flow of calculations is easy to follow 

and could easily be adapted to the research. 

 

In order to make the ship synthesis model more suited to be used in the research a 

number of changes were made. First, since the model was originally programmed in 

Microsoft Excel, it was reprogrammed in C++.  The adapted synthesis model was 

changed to require fewer inputs than the Coast Guard model.  Table 3.1 shows the 

independent variable used in the two models.  

 
Table 3.1 Ship Performance Characteristic Inputs 

 

Coast Guard Synthesis Model Adapted Synthesis Model 
Power plant type Power plant type 
Prismatic coefficient Midship section coefficient 
Block coefficient Block coefficient 
Froude length constant (circle M) Length 
Beam/draft ratio  
Maximum speed or shaft horsepower Maximum speed 
Nr of main engines  
Nr of cruise engines  
Nr of diesel-generator sets  
Total accommodations   
Range @ cruising speed Range @ cruising speed 
Cruising speed  
Endurance dry stores  
Endurance chilled stores  
Endurance frozen stores  
Endurance general stores  
Helicopter hangars (1=yes, 0=no) Number of helicopter hangars 
 Weapon system type 
Combat system weight input  
Combat system variables loads input  
WG700 weapons weight  
Ratio of superstructure volume to hull volume  

 

The Coast Guard model allows the user to change any of the inputs listed in Table 3.1 

independent of the others. The synthesis model that was adapted for this research limited 

the number of independent variables to the eight listed.  By limiting the number of inputs 

to eight, the user can control the variable design space more easily and limit the number 
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of possible ship variants to a manageable number.  The remaining variables are made 

dependent on the eight input variables and follow logical ship design practice.   

 

The ship synthesis model was also extended to ensure that its outputs satisfied a few 

naval architecture constraints. These include a more refined weight-displacement check, a 

basic stability check, and a more robust volume check. 

 

The iterative process starts with initial guesses for beam, draft, and superstructure 

volume. As the synthesis model conducts calculations for weights, the initial guesses are 

updated and the iterative process continues until the calculated displacements of 

successive iterations are within one half of a percent of each other. As the vessel weight 

changes, the buoyancy requirement is met by modifying the draft.   

 

The beam of the ship is dependent on the required stability of the ship.  Chapter 11 of 

Ship Design and Construction [Parsons 2003] defines the transverse metacentric height 

(GMT) using, 

 

KGBMKBM TTG ⋅−+= 03.1     (3.1) 

 

where the 3% increase in KG is included to account for free surface effects.  The vertical 

center of buoyancy (KB) is calculated here using Wobig’s regression equation, 

 

   VPCTKB ⋅−= 285.078.0/      (3.2) 

 

The metacentric radius is calculated as follows, 

  

   ∇= /TT IM        (3.3) B

  

where the transverse area moment of inertia of the waterplane, IT, is estimated using, 
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          (3.4) 

he waterplane transverse inertia coefficient, CI, is found using the D’Arcangelo formula, 

  

3LBCI IT =

 

T

 

0410.01216.0 −⋅= WPI CC      (3.5) 

 is increased, if necessary, until the stability requirement is met, 

       (3.6) 

here the required GM  is set at 7% of the beam. 

res that the ship is sized correctly and that 

ere is no extra volume on the ship. 

 

 

The beam

 

 TT

 

GMquiredGM Re≥

w T

 

The hull volume check is performed at each design iteration.  The required volume of 

each space is calculated and compared to the total volume of the ship. If the required 

volume is less than that of the actual ship’s volume, the superstructure volume is 

decreased and vice versa.  This calculation ensu

th

 

Occasionally the design inputs, as a set, may be unrealistic and not able to produce a 

working design.  There are a few safeguards that prevent these sets of inputs from being 

considered in future analysis. These safeguards are designed to stop calculations when it 

is found that the given inputs will not generate a practical design. Two occurrences have 

been found to happen when unrealistic ship requirements are made. The first occurs when 

the required horsepower is greater than the available horsepower of the engines in the 

database.  The engine database consists of over forty gas turbines and diesel engines. 

The engines range in horsepower from 600 to over 57,000 hp.  If the required horsepower 

for maximum speed is greater than 57,000 hp, the program will stop calculations and 

abort that design.  This usually occurs when the ship continues to grow in size from one 

iteration to another causing the design to diverge toward an infinite displacement.  Given 

the discrete nature of the engine sizes, the synthesis will at times iterate between two 

designs. When this occurs, the iterations will continue indefinitely bouncing from one 
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solution to the other without converging to within one half of a percent of successive 

weights.  In order to limit the possibility of this happening, more engines were added to 

the database. However, there is still a chance that some designs won’t converge 

completely. If a design conducts 100 iterations without convergence, the calculations are 

stopped and the design is aborted.  Through repeated runs, it was found that most good 

esigns converge in less than 10 iterations.   

 a weight-based 

cost model that is based on previously constructed ships and their costs.  

d

 

Once a ship’s displacement converges the ship’s characteristics are fully defined.  At this 

point the cost model is used to determine the costs associated with each ship in the class. 

An average ship cost is calculated by summing the cost of each ship in the class and 

dividing by the number of ships in the class. The cost is determined using
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CHAPTER 4  
 

MULTICRITERION EVOLUTIONARY OPTIMIZATION 
 

 

4.1 Design Space Search 

 

There are many well established methodologies for solving a multicriterion optimization 

problem.  This research uses an evolutionary (real-coded genetic) algorithm to search the 

design space [Goldberg 1989, Michalewicz 1996, Deb 2001, Oscyczka 2002].  The use of 

a genetic algorithm overcomes some of the difficulties experienced by classical nonlinear 

programming solution methods. Classical solution methods all have similar difficulties.  

These difficulties include [Deb 2001]: 

 

1. Inability to find more than one Pareto-optimum solution per simulation run. 

2. Not all Pareto-optimal solutions of non-convex criteria space problems can be 

found with some algorithms.  

3. A prior knowledge of the problem is required in order to assign suitable 

weights/preferences to the objectives. 

 

In order to use the various classical methods to solve multicriterion optimization 

problems, many of the methodologies require that the problem be converted to a single 

objective optimization.  The solution that is obtained is specific to the 

weights/preferences used in the conversion.  In order to obtain a different solution, the 

user must change the weights/preferences and rerun the single objective optimization 

problem.  This process has to be repeated over and over in order to fully populate a 

Pareto-optimal solution set [Parsons and Scott 2004]. 
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In order to select the proper classical solution method, a prior knowledge of what type of 

solution is expected may be necessary. Some solution methods are limited to only 

working on convex objective spaces. Should these methods be used on a non-convex 

solution, “shadows” may form which will omit certain sections of the Pareto-optimal set 

of solutions.   

 

The weighting or factoring of some of the problems is a difficult part of the solution 

process.  In many cases, this weighting seems to be very arbitrary.  Since the solutions 

are greatly dependent on the weighting this may not be the best way to achieve an 

optimal solution, especially if objective preferences are not clearly known for the given 

problem.  Another common problem with assigning weights/preferences to classical 

solution methods is that evenly spaced weights do not typically correlate to evenly spaced 

solutions on the Pareto front.  This may make it difficult to obtain a diverse population of 

possible solutions for a given optimization. 

 

In multicriterion optimization problems, it is very desirable to accomplish two tasks with 

each simulation run.  First, it is desirable to find multiple optimal solutions; hopefully 

enough to fully map the Pareto front.  Second, it is desirable that these solutions be 

diverse in that they will be widely spread in order to define the entire non-dominated 

solution front.  The capability to address these two tasks are a unique feature of the use of 

genetic algorithms to solve multiobjective optimization problems.  By searching the 

entire design space, the genetic (binary-coded) or evolutionary (real-coded) algorithms 

are not limited as to whether the objective space is convex or nonconvex.  In addition, 

genetic algorithms are generally not dependent on weights/preferences which drive the 

search towards single solutions.  Therefore, genetic algorithms do not utilize user 

determined weights/preferences. 

 

By using a diversity operator, genetic algorithms can ensure that they have at each 

generation a population of solutions spread across the entire Pareto front [Zalek et al. 

2006a].  These diversity operators measure each solution’s distance to the nearest 

solutions.  If the distance is small, the fitness value of that solution is penalized and that 
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solution is disadvantaged relative to other solutions.  By repeating these steps, the 

population will spread out evenly across the Pareto front giving the designers more 

choices as they begin to make more advanced design decisions. 

 

Classical solutions also have difficulties converging to a globally optimum solution.  In 

these methods, the algorithms usually start from a random guess.  From there, they use 

the objective function and constraints to guide the search to the optimum solution (direct 

search methods) or they also use first- or second-order derivatives of the objectives and 

constraints (gradient-based methods).  The direct search methods tend to be slow because 

of the number of evaluations necessary to achieve convergence.  The gradient-based 

methods are generally quicker, but become more less effective as the object functions 

become non-differentiable or discontinuous.  The difficulties involved with each of the 

two search methods can be summarized as follows. 

 

1. Convergence depends on the chosen initial guess; 

2. Algorithms may get stuck in local or suboptimal solution areas; 

3. Algorithms are not universally effective in solving all optimization problems; 

4. Algorithms are not efficient in handling problems in a discrete search space. 

 

Genetic algorithms do not face the obstacles that classical methodologies face with regard 

to convergence.  Because of the stochastic nature of how they search the design space, 

the initial guesses have very little to do with the results.  The use of natural analogy 

genetic principles enables a well-tuned genetic algorithm to efficiently search the entire 

objective space without getting stuck in local or suboptimal locations.  Another way that 

the genetic algorithms overcome these problems is that the solution method is 

continuously evolving a population of multiple solutions vice one.  Once a genetic 

algorithm finds an optimal solution, it won’t stop but will genetically alter its solutions 

and continue searching for more non-dominated solutions. 

 

Because of the aforementioned reasons for using genetic and evolutionary algorithms, the 

Department of Naval Architecture and Marine Engineering at the University of Michigan 
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has undertaken several research projects which utilize genetic algorithms in the solution 

of single and multiple objective optimization [Li 1997, Li and Parsons 1998, Li and 

Parsons 2001, Zalek et al. 2006a, Nick et al. 2006, Daniels and Parsons 2006]. Zalek’s 

research used an evolutionary algorithm approach to a multiobjective problem [Zalek et 

al. 2006a, Zalek et al. 2006b, Zalek 2007].  The experience and methods obtained 

through these projects has been extended in this research. 

 

4.2 Problem Formulation without Commonality 

 

In the marine design problem studied here, the following multicriterion design 

optimization will be used. 

 

- Maximize the mission performance of the OPC mission ship relative to the 

average ship cost for the entire fleet 

- Maximize the mission performance of the NSC mission ship relative to the 

average ship cost for the entire fleet. 

 

The problem can be formulated as 

   

  maximize  F(x) = [f1(x), f2(x), f3(x),…, fK(x)] T x = [x1,x2,…,xn]T

      

subject to hi(x) = 0, i = 1,…,I 

  gj(x) ≥ 0,  j = 1,…,J    (4.1) 

 

where f1, f2, f3,…, fK  represent the multiple objective functions and x represents the 

design variables.  In this initial case study, the objective functions, f1, f2, f3,…, fK , will be 

limited to two. The objective functions will be: 

  

  f1(x1) – OPC Mission Ship Effectiveness / Average Ship Cost 

  f2(x2) – NSC Mission Ship Effectiveness / Average Ship Cost,  
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where f1 and f2 are subject to the ship design constraints for their respective designs as 

specified by naval architecture practice and the customer.  The objective functions used 

relate to effectiveness and cost; a benefit/cost ratio. For this application, the constraints 

have been included in the synthesis model and are, therefore, not explicitly stated in the 

problem formulation.  

 

As mentioned in the previous chapter, the independent variables have been limited to 

eight. They are power plant type, midship section coefficient, block coefficient, length, 

maximum speed, range at cruise speed, helicopter capacity, and weapon system type.  

 

Mission effectiveness measures how well a design meets the mission requirements for the 

ship.  The effectiveness of each design is modeled using fuzzy utility functions.  The 

utility of a given ship design represents how well it performs a specific mission. It is 

important to note that if a design exceeds its design requirements, it will not receive more 

credit and since the cost of exceeding requirements will be higher, the value of its 

objective function will decrease due to its over design for its intended mission. 

 

The cost of the ship will be modeled using common ship construction cost methods.  The 

cost in the objective functions is the average cost of building a fleet of ships of that 

design. The primary benefit of considering the average ship construction cost is that it 

will penalize a ship from being over designed. Using components that are more effective 

than necessary for its mission at a higher cost will not benefit a ship’s design.   

 

4.3 Basic Optimization Process 

 

An evolutionary (real-coded Genetic Algorithm) optimization process [Goldberg 1989, 

Michalewicz 1996, Deb 2001, Osyczka 2002]  was designed to provide the Pareto front 

with a diverse set of solutions, which represent the best possible solutions to the 

multicriterion problem.  The solutions should represent the entire range of independent 

variables in order to ensure that all possible solutions have been considered.  The basic 
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optimization process used in this research is illustrated in Figure 4.1. The details of each 

portion of this algorithm are described in the following subsections.   
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Figure 4.1 Basic Optimization Process 
 

The optimization process is a multicriterion evolutionary algorithm bas

Zalek’s work [Zalek et al. 2006a]. His experience and lessons learned w

in the initial formulation of this research.  Zalek’s algorithm was based p

[Deb 2001] and Zitzler [Zitzler et al. 2003] along with some original co

developed for the specific nature of his work.  Many of the procedu

research are standard methodologies that are common in the use 

algorithms.  However, Deb’s influence can be seen in the nondom

algorithm and in the tournament selection method used.  The use of a
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elitism operator was taken from the Strength Pareto Evolutionary Algorithm (SPEA) 

work of Zitzler.   

 

4.3.1 Initial Ship Parameters 

 

The initial population of ships, P0, consists of randomly generated combinations of the n 

independent variables, xi
j.   The random parameters are generated using the following 

standard equation, 

   

   ()1,0( j
upper

j
lower

j
i xxrandomx −⋅+= )j

lowerx    (4.2) 

   

Each set of parameters is input into the ship synthesis model and a ship is developed.  Not 

all combinations of inputs will generate a feasible ship. If a ship is not feasible, a new set 

of parameters is developed and synthesized. The process continues until the minimum 

population of ships, N, has been created.   

 

4.3.2 Population at Generation t 

 

The population at any given generation t is set to have a minimum number of ship 

variants, N.  There is no maximum on the number of solutions in the archive. This was 

done to ensure that nondominated solutions were not inadvertently left out of the solution 

set. By allowing the population to grow without a maximum, the user is able to search the 

variable space more efficiently and effectively.  If an artificial criteria were used to limit 

the size of the population, as done by Zitzler, nondominated solutions may be lost and 

never recovered.  In order to maintain elitism, the population at t>0 consists of the 

previous generation’s archive and the offspring that are created in the current generation.   

 

4.3.3 Individual Synthesis 

 

Each set of solution parameters is input into the ship synthesis model during each 

generation. The synthesis model was described in detail previously. 
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4.3.4 Performance/Average Ship Cost 

 

The goal of the optimization is to maximize the performance over average ship cost. One 

aspect of this maximization is to select ships that perform their missions well.  The 

performance measurement of a given solution is calculated using fuzzy utility functions. 

The utility functions represent how effective ship i would be in performing its assigned 

missions j given its individual capabilities. Each objective function will be divided up by 

the number of individual missions j that each ship i is expected to perform. Each mission 

has performance attributes yk that contribute to the successful performance of the mission. 

The performance attributes are assigned a fuzzy utility 0 ≤ Uijk(yk) ≤ 1 that represents 

what percent of a given mission the ship can perform with that performance attribute yk. 

Fuzzy minimum correlation inference is used to assign an overall effectiveness for each 

mission [Kosko 1992].  The percent of time that each ship i spends performing mission j 

(MPij) is multiplied by the minimum utility for that mission. The values used for the MP 

were obtained from the projected operational profiles of the OPC and NSC [USCG 

Internal]. The j mission utilities are then summed to yield the overall mission 

performance and this is divided by the average cost of each ship 
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A ship that has the capability to perform all of its missions well will have a high measure 

of performance approaching one. However, the ability to perform these missions comes 

at a price.  The more capable a ship is, the higher the cost of the ship.  By dividing the 

performance by cost the algorithm prevents ships from being overly capable. There is a 

fine balance between capabilities and cost. Overly capable ships will prove costly and the 

performance over average ship cost will suffer as a result. On the other hand inexpensive 

ships will not be as mission capable and they too will have poor performance over cost. 
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4.3.5 Diversity Calculations 

 

In order to ensure that a wide range of solutions is generated along the entire Pareto 

Front, diversity calculations are performed. The diversity calculations measure a given 

solution’s distance from its nearest neighboring solutions.   

 

There are three common methods of ensuring solution diversity. They are the Kernel 

method, nearest neighbor method, and histogram methods as described by Zitzler [Zitzler 

et al. 2003].  Kernel methods take the distances between solutions as an argument. The 

distances (di) are calculated from each individual solution to all the other solutions then 

they are put through a Kernel function, K, and summed. The sums of the Kernel 

functions, K(di), represent the solution density. The nearest neighbor technique used here 

takes the distance of a given point to its k nearest neighbors in order to estimate the 

solution density.  The histogram method uses a grid to define the density of solutions. 

The density is determined by calculating the number of solutions in a given box of the 

grid.   

 

Using a method similar to that utilized by Zalek [Zalek 2007], the distance to the nearest 

three neighbors is calculated. The diversity operator D(xi) can be calculated in either 

objective function space or independent variable space. Depending on the nature of the 

optimization there may be a difference in the performance of these two methods. A 

comparison of the two methods was performed in this research to determine which 

method is more suitable for this optimization and this study will be discussed in the next 

chapter.  Distances, dij, between solutions in n-dimensional space are calculated using, 

  

   2211 )(...)( n
j

n
ijiij xxxx −++−= .  d   (4.4) 

raw 

 

 

The average of the three closest solutions, Draw, is calculated and then normalized by 

dividing by the maximum value of D for all solutions in the population. 
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hbor. By only using the three 

versity is calculated.   

akes 

e. 

 

 

 as the elitism operator for the algorithm. 

inated by any other solutions are called the nondominated set 

 

 

Using the three nearest neighbors ensures that pairs of solutions that are each others 

neighbors will not be penalized for have a single close neig

nearest neighbors a localized di

 

Identical solutions are not considered in the calculation of diversity. By eliminating 

duplicate solutions, the diversity of the population is more easily maintained.  Duplicate 

solutions run the risk of dominating the genetic processes and creating additional 

duplicates.  The goal of creating a broad range of solutions along the Pareto front m

identical solutions an undesirable outcom

 

4.3.6 Archiving

 

The archiving of best solutions serves three important purposes. First, it creates the pool 

of potential parents for tournament selection and the evolutionary generation of offspring.  

Second, it allows for the measurement of how much the Pareto front is progressing from

one generation to the next. Finally, it serves

 

The archive is developed using standard dominance sorting techniques. Each solution in 

the population is compared to every other solution to check for dominance. Dominance 

occurs when a solution, x1, is no worse than another solution, x2, in all objectives and the 

solution, x1, is strictly better than the other solution, x2, in at least one objective.  When 

both of these conditions occur, a solution is said to dominate the other solution.  The set 

of solutions that are not dom

of solutions. 

 

The archive is generally made up of the nondominated set of solutions. However, during 

the early generations it may consist of lower ranked solutions in order to reach a 
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minimum number of solutions.  As the solutions become more refined, the number of 

nondominated solutions increases and eliminates the need to carry lower ranked solutions 

in the archive.  There is no maximum to the size of the archive. If the Pareto front were 

limited in size, the fine details of the Pareto front might not become apparent.  Interesting 

trends along the front might not become visible with a limited number of data points. 

hese trends might include knuckles or even gaps in the front as will be seen.   

.3.7 Termination Criteria 

e optimization to continue as long as it is creating new solutions along 

e Pareto front.   

.3.8 Genetic Operators 

T

 

4

 

The optimization process has two conditions under which it will terminate. The user can 

set a maximum number of generations, t*. When the program completes t* generations it 

will stop and output a final archive, A*.  By selecting a maximum number of generations, 

the user prevents the optimization from running indefinitely.  A second stopping 

condition exists when the archive becomes stagnant. The solutions in the archive carry 

markers which indicate if they have been carried over from previous generations or if 

they are newly generated offspring. If 99% of the solutions from one archive to the next 

are the same, the program stops and outputs a final archive.  This saves computation time 

and only allows th

th

 

4

 

The archived solutions in A make up the potential parent solutions in the mating pool.  

Once the archive has been created, those solutions are compared in a tournament 

selection process [Michalewicz 1996, Li and Parsons 1998]. In tournament selection, 

archived solutions are randomly paired together. Each pair of solutions is compared using 

two tests. The first test asks if either solution dominates the other. If one solution 

dominates the other, the dominant solution is placed in the mating pool. If neither 

solution dominates the other, another test is performed. In this test, each of the objective 

criteria are added together along with the solution’s diversity value. The sum of these 

values is compared to the sum of the values from the other solution in the pair. The 
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solution with the higher sum is selected for the mating pool.  In earlier generations, the 

first test is more likely to determine which solution in a pair will become a parent. As the 

archive is filled entirely with nondominated solutions, the second test tends to distinguish 

between the two solutions.  In essence, early in the optimization process, the goal is to 

generate more nondominated solutions. Later in the process the goal shifts to creating 

ore diverse solutions.   

 create an offspring. Arithmetic crossover is 

pplied to the real number variables using, 

      (4.7) 

osen and if α is greater than or equal to 0.50, the 

alue of the second parent is chosen.  

 part is the mutation rate Rmut, and the second is the mutation 

agnitude, Mmut.   

m

 

The optimization process creates a minimum of k child solutions per generation. As the 

archive grows beyond the minimum, more child solution will be developed in proportion 

to the size of the archive. For every child that is created two parents are needed. The 

crossover operator is used on the parents to

a

 
j
parent

j
parent

j
child xxx 21 )1( ⋅−+⋅= αα 

 

The weighted parent blending factor α is randomly selected between 0 and 1. This serves 

as a means to weigh which parent more heavily influences the characteristics of the 

offspring. If α is exactly 0.50 then the resultant variable will be exactly half way between 

that of the parents. For discrete variables, α  is used again. In this case, if α is less than 

0.50, the value of the first parent is ch

v

 

One problem with the crossover operator is that the child solutions will always be 

between the parent solutions, which does not aid in the generation of a diverse set of 

solutions. As a result, the optimization process also utilizes a mutation operator that 

allows for a more global search of the variable space.  There are two parts to the mutation 

operator. The first

m
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y looks to fill in 

e gaps between existing solutions creating a more refined Pareto front. 

hile other may not be 

utated at all. The mutation of real variables is performed using, 

  if .   (4.10) 

tation is attempted. Failed mutations do not count toward the total number 

  

 

The mutation is set up similar to Zalek’s work in that the rate of mutation starts out small 

with a large mutation magnitude for earlier generations. This allows for a broad search of 

the variable space.  As the generations progress toward the termination condition, the rate 

of mutation is increased exponentially, while the mutation magnitude is decreased 

exponentially.  This allows for a more local search for new design solutions. By 

searching closer to existing solutions, the optimization process essentiall

th

 

The mutation operation is randomly applied the entire set of child solutions with 

replacement. Some solutions may be mutated multiple times w

m
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If the mutated value falls outside of the selected limits for that variable, it is discarded 

and another mu

of mutations,   

  

knRMutationsofNumber mut ⋅⋅=     (4.11) 

 

ber. An alternative method might be to set them as constants or vary them 

ed will be discussed in the next chapter. 

 

where n is number of independent design variables and k is number of child solutions. 

 

Many variations to the genetic operations are possible; a few variations were studied in 

this research. For example, the mutation rate and magnitude vary exponentially with the

generation num

linearly.  The analyses perform
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4.4 Case Study 

 

A two-objective case study was performed to test the methodology incorporated into the 

optimization program.  The study utilized the U.S. Coast Guard’s Deepwater Fleet. 

Specifically, the Operational Requirements of the Maritime Security Cutter Large 

(WMSL), formerly known as the National Security Cutter (NSC), and the Maritime 

Security Cutter Medium (WMSM), formerly known as the Offshore Patrol Craft (OPC), 

were used to create a multicriterion optimization problem.  (The first NSC was actually 

launched in September 2007 and the OPC is currently being designed.) The mission 

requirements for these two real classes of ships will be used extensively in this research 

to examine the validity of the optimization methodologies.  Table 4.1 shows the actual 

esign characteristics of both ships [USCG Website 2006].  (Note: Changes in designs 

may have taken place d.) 

Table 4.1 A Comparison o n Characteristics 
 

N  

d

since the information in Table 4.1 was obtaine

 
f Desig

Characteristics SC OPC 
Number of cutters 8 25 
Length overall 418' Estimate 350' 
Maximum beam Es ' 54' timate 51
Navigational draft 21' E ' stimate 21
Displacement 4300 LT Estimate 3000 LT 
Sprint speed 28 kts 26.5 kts 
Sprint speed range 2,600 nm 1,550 nm 
Sprint speed endurance 3.91 days (94 hrs) 2.5 days (60 hrs) 
Economical speed 8 kts 9 kts 
Economical speed range 12,000 nm 9,000 nm 
Endurance 60 days 45 days 
Propulsion plant 2 Diesels, 1 Gas Turbine 4 Main Diesel Engines 
Bow thruster Yes Yes 
Gun for weapon system 5  5  7mm Gun 7mm Gun
Gunfire control Mk-160/Mk 46/SPQ-9B Mk-160/Mk /SPQ-9B46
Operating days away from port 230 230 
Mission days/year 200-220 200-220 
Berthing capacity limit 148 106 
Number of helicopter hangars 2 2 
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In this portion of the case study, the mission requirements of the two ships were 

combined into one ship requirement.  The goal of the study was to find the Pareto optimal 

set of solutions that would satisfy the mission needs of both ships. In other words, if only 

one class of ships that maximized its ability to satisfy both ships’ missions were to be 

uilt, what would the Pareto front look like. 

pecifications may have taken place since the 

formation in Table 4.2 was obtained.) 

 
Table 4.2 Independent Variable Ranges 

 

ent Variables Variable Ranges 

b

 

For the purposes of this case study, the design parameters for the eight independent 

variables were set to approximately +/- 10% of the actual ship design characteristics as 

set by the Performance Specifications [USCG Internal]. The design ranges can be seen in 

Table 4.2. (Note: The Performance S

in

Independ
Power plant type 1 or 2 
Midship coefficient 0.75-0.99 
Block coefficient 0.45-0.85 
Length 270'-470' 
Max speed 19-31 knots 
Range @ cruising speed 8000-14000 nm 
Number of helicopter hangars  1 or 2 
Weapons system type 1, 2, or 3 

 

The Power plant type inputs are 1 or 2 which represent either a four (two cruise, two 

sprint) diesel engine (CODAD) plant or a two cruise diesel engine and one sprint gas 

turbine (CODOG) plant, respectively. The Weapons system type inputs of 1, 2, or 3 

represent a 46 mm gun, a 57 mm gun, or both a 57 mm gun and Phalanx Close In 

eapon System (CIWS).   

.5 Fuzzy Utility Functions 

The utility functi ble 4.3. 

W

 

4

 

on values for a baseline solution were set according to Ta

 35



Table 4.3 Definition of B  Optim tility Functions 
 

C Utilities C Utilities 

aseline ization U

  OP NS
Mission Attribute k) yk) yk Utility U(y yk Utility U(

Defense aximum speed M <20 0 <26 0 
    20-22 (V-20) -28 (V-26) 0.5* 26 0.5*
    >22 8 1 >2 1 
  Number of hangars 1 1 1 1 
    2 1 2 1 
  Weapon system 1 1 1 0.6 
    2 1 2 0.8 
    3 1 3 1 
  Range <9000 00 0 <120 0 
    >9000 1 >12000 1 
Drug aximum speed M <20 0 <22 0 
    20-22 -20) -28 67*(V-22) 0.5*(V 22 0.16
    >22 8 1 >2 1 
  Number of hangars 1 0.85 1 0.5 
    2 1 2 1 
  Weapon system 1 1 1 1 
    2 1 2 1 
    3 1 3 1 
  Range <9000 9000 00 12000 R/ <120 R/
    >9000 1 >12000 1 
LMR aximum speed M <20 0 <22 0 
    20-22 -20) -28 7*(V-22) 0.5*(V 22 0.166
    >22 8 1 >2 1 
  Number of hangars 1 0.92 1 0.57 
    2 1 2 1 
  Weapon system 1 1 1 1 
    2 1 2 1 
    3 1 3 1 
  Range <9000 9000 00 12000 R/ <120 R/
    >9000 1 >12000 1 
AMIO aximum speed M <20 0 <26 0 
for OPC -22 -20) -28 (V-26)   20 0.5*(V 26 0.5*
     or   >22 8 1 >2 1 
 GDO Number of hangars 1 0.85 1 0.5 
 for NSC   2 1 2 1 
  Weapon system 1 1 1 0 
    2 1 2 0 
    3 1 3 1 
  Range <9000 R/9000 <12000 0 
    >9000 1 >12000 1 
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Each ship has four primary missions. The OPC and NSC each perform the National 

Defense, Drug Iinterdiction and Living Marine Resources (LMR) missions. The OPC 

also conducts the Alien Migration Interdiction Operations (AMIO) while the NSC 

performs General Defense Operations (GDO) [US Coast Guard Memorandum 1995, US 

Department of Transportation Memorandum 1996]. For each mission four ship attributes 

were selected to describe each ship’s ability to perform these missions. The four 

attributes were maximum speed, number of helicopter hangars, weapon systems and 

endurance range.  [It is important to note that the values/functions found in Table 4.3 do 

ot necessarily reflect the opinions of the U.S. Coast Guard. They were established by the 

oses.] 

Coast Guard 

emorandum 1995, US Department of Transportation Memorandum 1996]. Figure 4.2 

n

author for academic purp

 

4.5.1 National Defense 

 

The Coast Guard is “a military service and a branch of the armed forces of the United 

States at all times” as established by the United States Code (USC) (14 USC 1).  It is 

required to “maintain a state of readiness to function as a specialized service in the Navy 

in time of war” (14 USC 2) and to operate as a service to the Navy when directed to by 

the President (14 USC 3). It is also authorized to assist the Department of Defense in 

performance of any activity that the Coast Guard is qualified (14 USC 141, 145).  In 

1994, the Coast Guard’s defense missions were more clearly defined to include Maritime 

Interception Operations and Deployed Port Operations, Security and Defense. The 

National Defense mission is accomplished using surveillance, detection, interception and 

sustained presence. These abilities are accomplished with a combination of maximum 

speed, aerial asset capabilities, weapon systems and range [US 

M

through 4.5 show the assigned fuzzy utility for each of the ship attributes. 

 

The utilities shown in Figures 4.2 through 4.5 show the relative importance of each 

attribute in accomplishing the National Defense mission for each vessel. From these 

graphs, it can be seen that achieving the required maximum speed for each ship is 

important although some variance is accepted. At least one helicopter hangar is 
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absolutely necessary to perform the mission. Weapon system 1 fulfills the OPC’s role in 

the mission, but only satisfies a portion of the NSC’s role. In order to maintain a 

stained presence for the National Defense mission both ships must meet their minimum 

required ranges.   
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Figure 4.2 Maximum Speed Utility for the National Defense Mission 
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F  igure 4.3 Helicopter Hangar Utility for the National Defense Mission
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Figure 4.4 Weapon System utility for the National Defense Mission 
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Figure 4.5 Range Utility for the National Defense Mission 

 

4.5.2 Drug In

 

The Coast Guard is the lead agency for maritime drug interdiction.  Drug Interdiction 

operations rely heavily on the ability to detect, intercept and board vessels for compliance 

with U.S. and International law.  These boardings are essential in deterring and 

interdicting drug shipments at sea. By maintaining a presence on the high seas, smugglers 

are required to develop new, more costly methods in order to continue the illegal 

transport of drugs [US Coast Guard Memorandum 1995, US Department of 

Transportation Memorandum 1996].  Figure 4.6 through 4.9 show the fuzzy utility values 

for each of the four ship attributes being used to assess each ship’s mission performance 

in the Drug Interdiction mission. 

 

terdiction 
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Figure 4.6 Speed Utility for the Drug Interdiction Mission 
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Figure 4.7 Helicopter Hangar Utility for the Drug Interdiction Mission 
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Figure 4.8 Weapon System Utility for the Drug Interdiction Mission 
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Figure 4.9 Range Utility for the Drug Interdiction Mission 
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Figures 4.6 through 4.9 show the importance of each ship attribute in accomplishing the 

Drug Interdiction mission.  For this mission the maximum speed of the vessel is not as 

important as for the National Defense mission as shown by the more gradual slope for the 

NSC. The number of helicopter hangars is more important for this mission. In order to 

conduct a wide range of surveillance on the high seas, the fast aerial assets will be used 

extensively. Weapons are generally not too important to this mission and only act as a 

means for intimidation if close contact with the smugglers is made.  Because a majority 

of the Drug Interdiction mission occurs in the Caribbean, land is always nearby. 

Therefore, ships have the ability to refuel more often which makes the need for a long 

range less important. 

 

4.5.3 Living Marine Resources 

 

The U.S. Coast Guard provides law enforcement support to the conservation and 

management of our Nation’s living marine resources. These resources are vital to the

agile ecosystem as well as the $67 billion (1995 estimate) that they annually contribute 

to the U.S. economy through commercial and recreational fisheries. In order to protect 

these resource .S. Exclusive 

 

s and range in the enforcement of 

 

fr

s, the Coast Guard must maintain a presence in the U

Economic Zone (EEZ) and its borders. In order to deter illegal or unauthorized activities 

harmful to this maritime resource, the Coast Guard must detect and intercept vessels for 

boarding and inspections [US Coast Guard Memorandum 1995, US Department of 

Transportation Memorandum 1996]. Figures 4.10 through 4.13 show the need for

maximum speed, aerial capabilities, weapon system

fisheries laws. 
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Figure 4.10 Maximum Speed Utility for the Living Marine Resource Mission 
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Figure 4.11 Helicopter Hangar Utility for the Living Marine Resource Mission 
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Figu n re 4.12 Weapon System Utility for the Living Marine Resource Missio
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Figure 4.13 Range Utility for the Living Marine Resource Mission 

 45



The fuzzy utility values for the Living Marine Resource mission are very much the same 

as for the Drug Interdiction mission since the missions are very similar. The only 

difference is in the importance of having a s ond helicopter hangar. This attribute is not 

quite as important for the Living Marine ssion as the utility shows. 

 

4.5.4 A

 

ls carrying migrants and intercept them is crucial to 

 success of this mission [US Coast Guard Memorandum 1995, US Department of 

he General Defense Operation (GDO) mission is a broad category. In addition to the 

n described earlier, possible general defense missions might 

clude surveillance, forward presence, amphibious ready group escort, sealift protection, 

ec

Resource mi

lien Migration Interdiction Operations 

The OPC is also tasked with the Alien Migration Interdiction (AMIO) mission. This 

mission is conducted in order to enforce U.S. migration laws. The need for this mission 

has grown significantly in the past 20 years. Basically, it is designed to deter the illegal 

flow of migrants into the U.S. In order to accomplish this mission, the Coast Guard must 

maintain a presence in areas where migration is likely. In addition to maintaining a 

presence, the ability to detect vesse

the

Transportation Memorandum 1996].  Figures 4.14 through 4.17 show the utilities 

associated with OPC attributes for the AMIO mission. 

 

4.5.5 General Defense Operations 

 

T

National Defense missio

in

sea lines of communication control, noncombatant evacuation, naval special forces 

warfare, combat operations, anti-terrorism and disaster relief.  These operations are 

normally in support of the Navy [US Coast Guard Memorandum 1995, US Department of 

Transportation Memorandum 1996].  Figures 4.14 through 4.17 show the utilities 

associated with NSC attributes for the GDO mission. 
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Figure 4.14 Maximum Speed Utility for the AMIO/GDO Missions 
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Fig s ure 4.15 Helicopter Hangar Utility for the AMIO/GDO Mission
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Figure 4.16 Weapon System Utility for the AMIO/GDO Missions 
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s Figure 4.17 Range Utility for the AMIO/GDO Mission
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T PC M i fuzzy utility values are the same as those for the Drug he O ’s A IO m ssion 

terdic on m ty values closely resemble 

ose u d for he Na onal D nce is the fuzzy utility 

ssigned for the weapon system. Because of the need to operate in higher threat 

In ti ission.   The NSC’s GDO mission fuzzy utili

th se  t ti efense mission.  The main differe

a

environments, the NSC must be equipped with offensive and defensive warfare 

capabilities.  Speed and range are important because of the likelihood of steaming with 

the Navy. 
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CHAPTER 5  
 

MULTICRITERION OPTIMIZATION WITHOUT COMMONALITY 
 
 

The purpose of this chapter is to analyze the multicriterion optimization problem of 

designing vessels to meet both the NSC and OPC missions in a single vessel class design.  

This initial investigation provided an opportunit

 

y to test the synthesis model and the 

optimization algorithm, develop an understanding of the tradeoffs in vessels designed for 

these two missions, and revealed candidates for commonality between classes designed 

for each of the individual missions. 

   

The optimization was run with the following minimum settings: archive size-50, 

population size-150, and number of offspring per generation-100. The maximum number 

of generations was set at 200 and a termination condition of <1% new solutions in the 

archive was used. Given these parameters, the optimization program was run and results 

analyzed. 

 

5.1 Population History 

 

A population history was generated for this baseline solution. At generation 108, the 

termination condition was met and the program stopped. Figure 5.1 shows the results of 

the baseline run in object function space.  The populations of solutions at generations 0

4, and 108 are shown.  Population 0 shows the results of the random selection of input 

alues in either objective function. Many of the solutions have zero NSC effectiveness. 

, 

5

variables. The ships are spread throughout the objective space. This illustrates the 

effectiveness of the random input generation function used in the optimization process. 

The goal of population 0 is to randomly generate a variety of ships that represent a broad 

range of possible ship designs.  This initial population generally does not have high 

v
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Population 54, midway through the optimization, shows a progression of the designs 

toward higher objective function values.  The initial formation of a Pareto front can be 

seen as more nondominated solutions have been created.  The crossover and mutation 

operations appear to be effective in searching the design space for possible solutions. 

Mutation rates are increasing and the mutation magnitudes are decreasing.  This allows 

for a more localized search of the design space and the start of a more clearly defined 

Pareto front.  Population 108, the final set of solutions, shows a very distinct formation of 

a Pareto front. The Pareto front is densely populated as the search for new solutions has 

become more localized through the use of the genetic and diversity operators. The 

solutions cover a broad range of inputs which is a strong indication that the diversity 

operator has successfully served its purpose.   

 

Overall, the optimization run demonstrates the behaviors that were expected of it. The 

run took approximately 4 minutes to complete on a 1.73 GHz PC running a compiled 

++ code. C
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Figure 5.1 Population History of a Baseline Optimization Run 
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One interesting trend that appears in Figure 5.1 is the formation of a line roughly 

perpendicular to the middle of the Pareto front. Upon examination, this line is revealed to 

be the transition point from designs with one helicopter hangar to designs with two 

hangars. All of the designs on that line and to its right have one hangar. Designs to the 

left of the line have two hangars.  

 

5.2 Baseline Run Characteristics 

 

By only plotting the nondominated solutions from the baseline run some more interesting 

characteristics can be seen.  Figure 5.2 shows the Pareto front of the baseline 

optimization run. Point A shows the best NSC mission design and point D shows the best 

OPC mission design. The solutions found between point A and D make up compromise 

solutions. Two interesting areas appear in the Pareto front. Region B shows a gap in the 

Pareto front. This gap consistently appears in all runs. This gap is caused by the change 

from two he he remova

generators to outfit the ships. The knuckle seen at point C is the transition from one 

generator t ange by a 

latively large amount. This translates to a change in cost and eventually leads to the 

licopters to one and the resulting reduction in beam possible with t l 

of one of the parallel hanger bays.  This transition will be described in more detail in later 

sections. A knuckle in the Pareto front can be seen at point C. This knuckle can be subtle 

like in Figure 5.2 or more distinct in other runs. The cause of this knuckle is due in large 

part to ship service generator selection. The synthesis model uses data from real 

o another. The weight and size of the generators at this transition ch

re

knee in the Pareto front.  By populating the ship service generator database with a greater 

variety of generators, this knuckle could possibly be eliminated.  However, the existence 

of this knuckle shows the methodology’s sensitivity to the discrete data supplied. 
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Table 5.1 Design Characteristics for Baseline Run 

 

Point 
L 

ft 

B 

ft 

Vmax 

kts 

Range 

nm W H C G 
OPC 

Perf

NSC 

Perf

Cost 

$mil 

OPC/ 

Cost 

NSC/ 

Cost

A 401 54 28.0 12035 3 2 9 3 100.0 99.1 139.9 0.715 0.709 

B 

(left) 352 54 26.3 9076 1 2 9 3 100.0 62.2 111.4 0.898 0.559 

B 

(right) 340 42 25.4 9082 1 1 7 1 89.7 47.6 87.9 1.020 0.542 

C 

(left) 304 41 22.8 9097 1 1 7 1 89.7 11.4 76.7 1.169 0.148 

C 

(right) 315 41 22.6 9162 1 1 7 0 89.7 8.2 73.8 1.215 0.111 

D 323 42 22.1 9142 1 1 7 0 89.7 1.8 72.5 1.236 0.024 

 

Numerous runs were performed to ensure that the optimization program produced 

repeatable results. Due to the stochastic nature of the evolutionary optimization 

algorithm, individual runs are not identical to each other. However, the trends displayed 

on the Pareto front are very repeatable as seen in Figure 5.3. Here four individual runs 

were performed and the plots of the final Pareto fronts are displayed on the same graph.  

The upper left hand portion of the graph shows a very strong similarity among the four 

runs all the way down to approximately 1.1 on the OPC performance/cost axis. At this 

point, the data points become a bit more sparse and the different runs show some minor

differences. There is a tend he upper left portion of the 

curve. The reason for this is in the nature of the optimization. Basically, a ship that is 

lty for excessive cost. Ships 

at are good at performing the NSC mission will also serve the OPC mission very well. 

 

ency for more designs to appear in t

over designed will meet its mission requirements with a pena

th

On the other hand, ships that serve the OPC mission efficiently do not generally perform 

well in the NSC mission. As a result, the ships at the upper left portion of the curve tend 

to do better in tournament selection than the lower right ships. The diversity operator 

helps even this out some, but not without some unbalance in the results. Some efforts 

were made to alleviate this and these will be discussed in later sections. Overall, there is a 

strong correlation within the four individual runs. 
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Figure 5.3 Repeatability Study using Baseline Optimization Conditions 

 

In order to fully understand the results, a series of plots was created that show the affects 

of the independent variable values on the shape and regions of the Pareto front.  Figures 

5.4 through 5.8 show the trends of the independent variables length, maximum speed, 

endurance range, weapons systems, and number of helicopters in the optimization results. 

 

The results of all of these plots are intertwined through the overall ship designs. For 

example, the gap in n from one hangar 

designs to two hangar designs. When a second hangar is added, the required beam 

necessary to accommodate the two hangars is 54’. Ships with one hangar tend to have a 

 the middle of the Pareto front is the transitio

beam of about 42’. This drastic increase in beam requires the ships to increase in length 

in order to meet the speed requirements. In addition to the second hangar, the gap also 

shows an increase in maximum speed from one side to the other. Again the desire to 

increase speed necessitates some increase in length. The gap represents an increase in 

length of about 10’ as seen on the length study curve. The range requirement is higher for 

the NSC than it is for the OPC, therefore, the range increases from right to left on the 
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Pareto front. The selection of weapon systems shows an interesting trend. Only ships that 

are near the optimal design for the NSC have the most advanced weapons system. Near 

that end point, the weapon system becomes the controlling factor in the overall utility 

and, therefore, the selection of the more advanced system becomes optimum. 

 

The makeup of the set of solutions for the baseline condition is very broad. About half of 

the solutions have one hangar. Weapons system 3 was selected on only 12% of the ships 

with weapons system 1 on the rest.  The lengths ranged from 294’-412’, speeds from 22-

28 knots and ranges from 8000-12000 nm.  
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Figure 5.4 Detailed Study of Baseline Optimization Results for Ship Length 

 
The distribution of length along the Pareto front generally increases from right to left. 

However, the length does not increase monotonically as can be seen in Figure 5.4.  The 

performance values and cost of the solutions are made up of many characteristics. Some 

of these characteristics complement each other nicely while others do not. This results in 

a fine balance of factors each having their own affect on the performance values and cost 

of the solutions. 
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Figure 5.5 Detailed Study of Baseline Optimization Results for Ship Speed 

 
Figure 5.5  front is 

onotonic except for the solutions marked with an A. These ships have slightly smaller 

speeds that the solution to the immediate right of those marked A. More explanation on 

the reason for this will be found in the discussion of Figure 5.6 which follows. 

 shows that the distribution of maximum speed along the Pareto

m
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the range generally increases from right to left along the Pareto 

ont. Figure 5.6 shows a small cluster of solutions that do not follow the expected trend.  

A

 
led Study of Baseline Optimization Results fo

 
Although not monotonic, 

fr

The ships labeled with an A are the only solutions along the Pareto front with ranges less 

than 9000 nm. As mentioned previously, they also have a lower maximum speed than the 

ship to their immediate right. As a result, they will have lower OPC performance and 

NSC performance values than the ship to their right. However, since they have smaller 

ranges and maximum speeds, they will cost slightly less which results in higher 

performance over cost values than the ship on their right. The solutions that make up 

cluster A are not influenced solely by their small ranges. Their performances are also 

driven by maximum speed and number of hangars. Again, the fine balance of 

characteristics allowed for these distinctly different solutions to occur. 
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Figure 5.7 Detailed Study of Baseline Optimization Results for Ship’s Weapons System 
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Figure 5.8 Detailed Study of Baseline Optimizati
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5.3 Speed Utility Study 

ions and as shown in Figure 5.9.  This 

hange did little to change the results from the baseline case as seen in Figure 5.10.  This 

cific region where this occurred is near the upper left hand portion of Figure 5.10.  

Because of the sparse distribution of results and the stochastic nature of the optimization, 

the results in this area were not quite as good as the baseline. The gap near the middle of 

the Pareto front shows a slight improvement over the baseline results. Again, this is a 

result of the stochastic nature of the optimization.   

 

To illustrate the sensitivity of the optimization methodology to the choice of the fuzzy 

utility functions by the designer, the utility function values were modified for each of the 

four mission attributes (speed, number of helicopter hangars, weapon systems, and 

range). 

 

The first utility functions that were modified were for maximum speed. The baseline 

NSC National Defense and General Defense Operations speed utilities shown in Figure 

4.2 and 4.14  were made broader by varying them at a rate of 0.1667*(V-22) for speed 

between 22 and 28 knots as for the other NSC miss

c

shows that maximum speed was not controlling influence on the optimization. The 

modified results also show a change in the distribution of solutions along the Pareto front. 

One spe
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Figure 5.9 Modified NSC Speed Utility 
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Figure 5.10 Speed Utility Study 
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5.4 Helicopter Hangar Utility Study 

 

Modifications were made to the utility functions assigned to the number of hangars.  The 

baseline helicopter utility values for one helicopter on the NSC shown in Figures 4.7, 

4.11, and 4.15 were increased from 0.50, 0.57 and 0.50 to 0.75, 0.82 and 0.75 for the 

Drug Interdiction, Living Marine Resources, and General Defense Operations (GDO) 

missions, respectively.  Figure 5.11 shows these utilities graphically.  The result of this 

change was somewhat dramatic. All solutions had only one hangar due to its higher value 

and all used weapon system 1. The lengths of the solutions ranged from 298’-349’. All 

ranges were around 9000 nm and the maximum speed of all solutions was 26 knots.  By 

increasing the utility for the one hangar, the optimization tended toward one very distinct 

type of ship. Figure 5.12 shows the results compared to the baseline results. The shape of 

the curve shows the effect of having solutions with only one hangar on the optimization. 

The lower left hand ships were unchanged, but the mid-plot ships show an increase in the 

NSC objective function. This is due to the increase in NSC performance for one hangar 

solutions and the significant decrease in cost associated with only one hangar.  
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Figure 5.11 Modified NSC Helicopter Hangar Utility 
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Figure 5.12 Helicopter Hangar Utility Study 
 

Next the baseline utility functions for the OPC’s one hangar case shown in Figures 4.7, 

4.11, and 4.15 were decreased from 0.85, 0.92 and 0.85 to 0.75, 0.82 and 0.75 for the 

Drug Interdiction, Living Marine Resources, and the Alien Migration Interdiction 

Operations (AMIO) missions, respectively.  The modified OPC utilities are shown in 

Figure 5.13. The results showed that OPC performance in each solution was maximized. 

All solutions had two hangars. The weapons systems breakdown was 10% for weapons 

system 3, 2% for weapon system 2 and the rest were weapon system 1.  The length, speed 

and range characteristics ranged similar to the baseline condition.  Figure 5.12 shows that 

the solution is similar to the two hangar baseline solutions on the left end of the Pareto 

front. Because all solutions have two hangars, the OPC performance increases over that 

of the baseline’s one hangar solutions. However, the effect of the increase beam on cost 

reduces the OPC objective function value in that region of the curve.  
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Fig ity 

on of their individual modifications.  

 

 

ure 5.13 Modified OPC Helicopter Hangar Util
 

The third modification to the helicopter hangar utility was to make them equal for both 

ships. The OPC and NSC utilities for one hangar were 0.75, 0.82 and 0.75 for the Drug 

Interdiction, Living Marine Resources, and AMIO/GDO missions, respectively.  The 

number of hangars in the Pareto front solutions were split roughly in half.  Weapon 

system 1 was used in all but 1 solution. The lengths were very limited ranging from 321’-

346’, speeds ranged from 22-26.5 knots, and the range was around 9000 nm for all 

solutions. Recall that the typical baseline results have one hangar solutions in the lower 

right portion of the plot and two hangar solutions in the upper left.  For this scenario that 

was switched. The lower right hand ships had two hangars while the upper left hand ships 

had one. This trend follows closely what was learned in the other helicopter hangar utility 

scenarios. Figure 5.12 shows the results of having equal helicopter hangar utilities for 

both ships as being a combinati
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5.5 Weapon System Utility Study 

 

The baseline weapon system utility was modified by lowering the NSC National Defense 

utilities for weapon system 1, 2, and 3 shown in Figure 4.4 from 0.6, 0.8, and 1.0 to 0.25, 

0.50 and 1.0, respectively. The modified fuzzy utility functions can be seen in Figure 

5.14.  The results were very similar to the baseline optimization as shown in Figure 5.15. 

The NSC performance was less for the lower right hand portion of Pareto front due to the 

decrease in utility for weapon system 1 solutions. 
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Figure 5.14 Modified NSC Weapons Utility for the National Defense Mission 
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Figure 5.15 Weapons System Utility Study 

 

5.6 Range Utility Study 

 

astly, the range utility functions were changed.  The first change was to make the 

b seline National Defens e NSC and the National 

 as shown in Figures 4.5 and 4.17, decrease 

ore gradually. Rather than have the range utility equal zero for less than the required 

 a slight increase in the objectives as a result of the increase in 

range utility. 

 

L

a e and GDO missions’ range utility for th

Defense mission’s range utility for the OPC,

m

range, it was changed to decrease as a percent of the required range as seen in Figure 

5.16. The result was similar to the baseline except approximately half of the solutions 

used weapon system 3. Figure 5.17 shows the effect of this change as compared to the 

baseline solution. The upper left hand portion of the graph shows an increase in utility 

associated with the increased number of weapon system 3 solutions. The lower right 

portion of the plot shows
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Figure 5.17 Range Utility Study 
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A second change increased the steepness of the range utility. Rather than taking the 

utility as a percent of the required range, the utilities were changed to have double slope 

as seen in Figure 5.18. This resulted in lower utilities overall. The biggest effect that this 

had was to drive the ship lengths up. About 85% 

had 2 helicopter hangars. Weapon system 3 was used in about a third of the solutions. 

Figure 5. lution is 

milar to the baseline at the most upper left

falls below the baseline once the ranges fall below 12000 nm. The remainder of the front 

bjective function values as a result of the 

of the ships were over 400’ long and 

17 clearly shows the large number of solutions at the upper left. The so

si  hand region of the Pareto front, but quickly 

has similar shape to the baseline, but has lower o

steeper range utility. 
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agnitudes were examined to ensure that the selected 

ethod was best suited for this study.  As mentioned in Chapter 4, the mutation rate 

Figure 5.18 Modified Range Utilities 2 for the National Defense and Gener
Missions 

 

5.7 Mutation Rate and Magnitude Studies 

 

The mutation rate and mutation m

m
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increases exponentially as defined in eq. 4.8 while the mutation magnitude decreases 

exponentially as defined in eq. 4.9. The purpose of this is to search globally early in the 

optimization and more locally later in the optimization. The goal during the early 

generations is to establish a broad range of solutions while initially developing a Pareto 

ont. As the optimization moves forward, the goal is to refine the Pareto front and 

nt 

aking it more densely and diversely populated.   

ther mutation strategies were investigated and compared to the exponential methods. 

fr

establish any unique characteristics it may have. This is accomplished by using a more 

localized search that works to increase the number of solutions on the Pareto fro

m

 

O

Linear and constant mutation rates were examined in this study and can be seen in Figure 

5.19.   
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Figure 5.19 Mutation Rate Study Results 

 

The linear mutation rate varied using 

   )15.050.0()*(15.0)( −⋅+= t
ttRmut     (5.1) 

while the constant values used were 0.15, 0.35 and 0.50.   
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Initial analysis of the plot shows a good correlation among the results. However, as more 

runs were performed some concerns developed.  Each of the constant mutation rate 

values had a tendency to result in stopping at the <1% new solutions termination 

condition prior to filling the archive with nondominated solutions.  Thus, some rank 2 

solutions appeared in the final archive, which reduced the number of Pareto solutions 

below the minimum desired number of 50. This result was deemed unacceptable and 

constant mutation rates were not examined further.   

 

With little difference being noticed in the results of the linear and exponential mutation 

ates, further analysis was performed.  After completing ten sets of optimizations for both 

near and exponential mutation rates, some interesting results were observed. Table 5.2 

hows the statistical data for the number of generations to termination and number of 

hips in the final archive for the ten runs.  The run using an exponential mutation rate 

ere far more consistent in their performance. The efficiency of the exponential mutation 

ate was also more apparent throughout the ten runs. The linear mutation rates had a 

ignificantly different number of ships and generations from one run to the next. The 

onsistency of the exponential mutation rate is viewed as a positive characteristic of its 

erformance and, therefore, makes it more suitable for this application. 

Table 5.2 Statistical Data from Mutation Rate Study 
 

 Linear Exponential 

r

li

s

s

w

r

s

c

p

 

Average Number of Generations 139 101 
Average Number of Ships in Archive 152 100 
Average Optimization Run Time (minutes) 7 4 
StDev Number of 20  Generations 51 
StDev Number of Ships 42 10 

 

Both linear and exponential mutation magnitudes were also studied to determine which 

method is better for this application. A plot comparing the results can be seen in Figure 

5.20.  
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Figure 5.20 Mutation Magnitude Study 
 

The plots show that the linear mutation magnitude does not do a consistently good job at 

optimizing the solutions in the lower right hand portion of the object function space for 

ve individual optimizations. There is no obvious reason why this happens. One possible 

explanation is that the e is a bit slower than 

for the exponential case. This allows the exponential m

design space sooner in the optim

the l n magnitud he ability to c te a fine search the design 

space

fi

 rate of decline in magnitude for the linear cas

agnitude to do a finer search of the 

% new solution termization. The <1 ination occurs before 

inear mutatio e has t omple  of 

.  

 

5.8 Diversity Operator Study 

 

Chapter 4 discussed how the diversity operator calculates the distance of each solution to 

the nearest three solutions. This calculation is performed using an n-dimensional distance 

in variable space.  A series of eight (four each) optimization runs were performed to 

compare the results of calculating diversity in the independent variable space versus 
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calculating it in objective function space. The results in Figure 5.21 show that there is 

little to no difference in the use of either method for this problem.  Runs Var 1-4 have 

diversity calculated in the independent variable space, while runs Object 1-4 have it 

calculated in object function space. 
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Figure 5.21 Variable Space vs. Objective Space 

 

5.9 Normalized versus Raw Data Study 

 

During the dominance check and the tournament selection, the optimization algorithm 

uses normalized performance over cost values for the two objective functions. A series of 

eight  (four each) optimizations was performed to determine if using the normalized 

values produced better results than using the raw objection function values.  Figure 5.22 

shows the results of this comparison.  Both methods have areas of the curve where they 

appear to perform better at optimizing solutions. The raw data method seems to 

consistently find better solutions in the lower right hand area of the Pareto front. In the 

upper left hand portion of the front, the raw data method does not always find results that 
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maximum length is only ~360’, well short of the maximum allowable length of 470’ and 

the best NSC mission design length of 401’. The normalized method results seem to 

xtend further up to the left of the front. Many of the normalized method solutions have 

lengths >410’. By rea  more in other ways. 

They will have different weapon systems, more helicopter capabilities, longer ranges and 

generally greater m  speeds. However in ethod is a bit 

in t in the lower right hand portion of the front.   

e

ching these longer lengths the ships will vary

aximum  contrast, the normalized m

consisten
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Figure 5.22 Normalized vs. Raw Data Results 

 

The primary reason for this difference in the two methods has to do with the tournament 

selection criteria.  Once enough generations have been run to completely fill the archive 

with nondominated solutions, the tournament selection relies on the sum of the objective 

functions and diversity to distinguish between solutions. Using the raw data method, the 

sums tend to favor the OPC type ships (lower right hand portion of the front) due to their 

erically higher (≅1.2) raw performance/cost values. The normalized method tends to 

SC type ships (upper left hand portion of the front) on a relative basis since 

lute magnitude of the performance values are normalized. The tournament 

num

favor the N

the abso
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selection tends to pick the favored solution when an OPC and NSC type solution are 

compared.  Figure 5. s using the different 

methods along the entire range of solutions a  

are f ch method

23 shows the sum of the objective function

nd clearly shows which portions of the curve

avored by whi . 
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Figure 5.23 Comparison of Normalized versus Raw Data Method Tournament Selection Sums 
 

The n ethod ships tend to consistently h re diverse solutions than the 

raw data  solutions. e same e, the raw data method ships tend to be more 

onsistent from run to run in the lower right hand portion of the front. It is difficult to 

ormalized m ave mo

 method   At th  tim

c

decide which is more important. For this application, the ability to achieve a diverse 

solution set was felt to outweigh the need for more consistent results in the lower right 

hand portion of the front. If the solutions are not diverse in all independent variables, then 

the optimization will not effectively serve its purpose. Therefore, using the normalized 

results for tournament selection was judged more suitable for this application. 
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5.10 Min-Max Solution /Nearest to the Utopian Solution 
 
Chapter 4 described two methods to determine which solutions along the Pareto front 

may be the best compromise solutions if only one ship class were to be designed to 

satisfy both missions. The Min-Max solution and the Nearest to the Utopian solution 

have been chosen to be viable methods for this research. 

 

The Min-Max solution method for the baseline optimization is shown in Figure 5.24. 

 defined in eq. 2.4 are superimposed on the normalized 

aseline run results. The intersection point of the z1 and z2 curves, the minimum of the 

earest to the Utopian solution.  The Min-Max solution is also shown as the intersection 

the Pareto front in this re-scaled normalized object function 

ace.  The two standard compromise designs are significantly different in this particular 

Here the values for zk(x) as

b

maximum zi, gives the Min-Max solution for this optimization.  This solution can also be 

found from the intersection of the (0.5, 0.5) to (1.0, 1.0) line and the Pareto front in the 

normalized objection function space.   This solution achieves about 78% of the best 

object function value possible for each mission.  

 

The Nearest to the Utopian solution for the baseline optimization run can be seen in 

Figure 5.25.  The baseline solution is the same as throughout Chapter 5. Figure 5.25 

shows the results as normalized and scales the x and y axes to be the same length.  This 

modified view of the results gives a more real perspective of which solution is the 

N

of the 45 degree line and 

sp

case. 
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5.11 Commonality Options 
 
Further evaluation of the baseline optimization results showed some important trends 

relative to possible commonality choices.  Figure 5.26 shows a breakdown as to which 

areas of the Pareto front had certain components as common. The different areas show 

the different combinations of weapon systems, ship service generators and cruise engines. 

All baseline Pareto front ships were made up of one of the four possible combinations of 

ese three components.  th
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ealed several key factors to guide the determination of what 

omponents should be considered for common use. For components such as generators 

and cruise engine only a few different choices were ever selected fro

atabases.  In addition, the superstructure volume produced by the synthesis model 

 number of hangars. Once the number of hangars was 

etermined, the superstructures had little volume variation. Thus, the volumes of the 

superstructures could be easily made common as either the smaller (one hangar) size or 

the larger (two hangar) size. A similar trend was noticed with hull depth and beam 

Figure 5.26 Natural Commonality within Pareto Front Solutions 
 

The baseline results rev

c

m their respective 

d

closely correlated with the

d
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ranges. Solutions tended to have two sets of depth and beam depending on the number of 

hangars prese ice to make common. 

Further details  this research will be discussed in 

Chapter 6. 

nt. Thus, midship section became a logical cho

 of the commonality choices used in
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CHAPTER 6  
 

MULTICRITERION OPTIMIZATION WITH COMMONALITY 
 

 

6.1 Problem Formulation with Commonality 

 

The problem formulation with commonality is similar to the optimization seen in Chapter 

4. The only difference is that a fleet commonality savings objective, also to be 

maximized, is added. 

 

maximize  F(x) = [f1(x1, xc), f2(x2, xc), f3(x)] T  

subject to hi(x) = 0, i = 1,…,I 

f1 and f2 are subject to the ship design constraints for their respective designs as 

x = [x1, x2, xc]T = [x1,x2,…,xn]T

      

  gj(x) ≥ 0,  j = 1,…,J    (6.1) 

 

where f1, f2, f3  represent the multiple objective functions and x represents the design 

independent variables.  The objective functions are: 

  

  f1(x1, xc) – OPC Mission Ship Effectiveness /Average Ship Cost 

  f2(x2, xc) – NSC Mission Ship Effectiveness /Average Ship Cost 

  f3(x1, x2, xc) – Net Fleet Savings  from Commonality 

 

where 

specified by naval architecture practice and the customer.  The specific formulation of f1 

and f2 was discussed in Chapter 4. 
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The problem constraints that are used are not explicitly stated. Instead, they are integ

sis model as part of the optimization process. The weight-

isplacement balance, basic stability requirements and volume check were all discussed 

in Chapter 3. 

 

The ship design variables in x1 and x2 were discussed in Chapter 3 and remain the same.  

The commonality variable vector or commonality string, xc, will be introduced below

6.2 Basic Opti

 

In order to add ocess seen in Chapter 4 needed to 

be extended.   designs with a particular 

commonality. These elements include a commonality string, parallel optimization runs, 

the archiving of en d dominance sort 

hich includes all three design objectives.  The complete optimization process can be 

fic descriptions of each of the new elements will be 

iscussed in detail in subsequent sections of this chapter. 

mponents.  Each of these 

 possible common design components will have multiple options for commonality.  The 

e for each optimization run. An example of a commonality 

ring is 

xc = [0 2 0 1 3]T. 

 

 components that are considered for the use in common in this 

ommonality string.  These five elements can be whatever the designer feels would be 

good candidates to make common among a family of designs.  In this exa

rated 

into the ship synthe

d

. 

 

mization Process 

 commonality, the basic optimization pr

A few elements were added to create families of

dpoints, the fleet savings calculation and a secon

w

seen in Figure 6.1.  The speci

d

 

6.2.1 Commonality Strings 

 

This optimization uses a string of n possible common design co

n

commonality string designates which design components to make common along with 

which component option to us

st

 

There are five design

c

mple, 0 

 80



 

indicates that the component will not be common while non-zero numbers indicate that 

commonality w n component is not required to 

be common, th t chooses to optimize the 

design.  So, co  above example 

family of des  have any number of options for 

commonality. s the second option for component 

two and design e and three, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

ill be used for that component.  If a desig

e optimization is free to use whichever element i

mponents two, four and five will all be common for the

igns.  Each of the components may

The commonality string above designate

ates that component four and five use options on

Commonality String,  
 xci

 
 

 
 

 
Figure 6.1 Basic Optimization Process with Commonality 

 
If each of the n possible components has the same number of commo

the number of possible commonality strings will be (m+1)n, which 

possibility that a component may be considered not common.  If the 

varying numbers of options for commonality then the number of poss

strings is (m1+1)(m2+1)…(mn+1). 

iC =

Single Criterion Optimization 
Process – OPC (Figure 4.1)

Archive Endpoints, 
and iC

OPCE  iC
NSCE

1

Single Criterion Optimization 
Process – NSC (Figure 4.1)

Fleet Savings Analysis, 3f

Dominance Sort using 
1f , 2f  and 3f
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i = i+
nality options, m, 

accounts for the 

components have 

ible commonality 



 

For this study, the number of common components used was five. The five common 

omponents are weapon systems, ship service generators, cruise engines, superstructure 

and midship section.  The selection of these components was designed to provide a broad 

range of possible commonality.  Each of these elements affects the designs in a differen

way.  

 

h possible common component, the number of different options to choose from 

was determined from

criterion optim cussed in detail 

in Chapter 5.   

 

There are three possible weapon system   Using weapon 

systems for co independent variable.  By 

ply designating which one is to be used, the synthesis model designs a family of ship 

 obviously have some impact on the designs, but does not affect the design too 

s options are listed in sequence in Table 6.1.  

 
Table 6.1 Common Weapon System Characteristics 

 

Weapons Ltons 

mmunition 

weight in Ltons 

Combat Systems 

Weight in Ltons 

c

t 

For eac

 the optimal characteristics revealed by the results of the two-

ization runs without commonality.  These results were dis

s that can be used in each design.

mmonality is relatively simple because it is an 

sim

variants using only the designated weapon system. The difference from one weapon 

system to another is primarily through its weight and cost. The weight of the weapon 

system will

much. The weapons system

Weapons weight in A

46mm gun 11.22 10.10 73 
57mm gun 14.04 11.40 75 

57mm and CIWS 23.48 23.48 84 
 

The ship service generators are a little more complex in their impact in the overall 

ships. Since the choice of ship service generators is a dependent variable, its 

implementatio  generator is 

designated as c our and the 

ship synthesis be used in each design. However, if the 

generators are sis selects the number of generators 

design 

of the 

n is different from that of the weapon systems. If no

ommon, the number of generators used in each design will be f

 will select a generator to 

designated as common, the ship synthe
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required to me hips. The effect of the generators 

goes beyond j ting for the weight of the 

enerators, the synthesis must also allocate space for the generators in the design. The 

enerator Characteristics 
 

SPC (FP)  

in lb/HP-hr 

Total wt of DG 

in Ltons 

Length of DG set 

in feet 

et electrical load requirements of the s

ust weight considerations. In addition to accoun

g

two objective baseline runs that were discussed in the previous chapter showed that only 

three of the twelve generators in the database were ever used in Pareto front designs.  The 

characteristics of these generators are listed in sequence in Table 6.2. 

 
Table 6.2 Common Ship Service G

kW Rating Engine RPM 

250 1800 0.39 5.07 6.0 
304 1200 0.35 8.00 7.9 
444 1800 0.38 6.89 7.6 

 

The cruise engines showed another aspect of the use of commonality. The choice of 

ruise engines limits the number of possible designs that could meet the cruise speed 

 made for weapon system and generator did not have firm 

quirements associated with them. While they may have impacted the mission 

he synthesis model may not work as intended. Even though this process is 

ot an efficient way to create designs, it is more reliable in creating good designs that 

meet the requi y used only 

c

requirement.  The choices

re

performance of the designs, they were not required to meet a design requirement as seen 

with the cruise engines.  Similar to the ship service generators, the choice of cruise 

engine is a dependent variable and cannot simply be designated without further 

consideration.  The ship synthesis was permitted to run as if no commonality were 

chosen. Once it had a ship designed, it checked to see if the engine used was the desired 

common engine. If it were, the design was kept. If not, the design was discarded. This 

process allowed for the iterative ship design process to take place while ensuring that the 

cruise engines satisfied the cruise speed requirements. During the iterative process, the 

synthesis model changes engines as needed to ensure the correct engine is being used for 

each design. If the common cruise engine is forced into the design, the iterative process is 

disrupted and t

n

red commonality. The two objective baseline cases consistentl
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two types of cruise engines on the Pareto front designs. Their characteristics are shown in 

Rating in lb/HP-hr in Ltons in feet in feet 

Height 

in feet 

Volume 

in ft3

sequence in Table 6.3. 

 
Table 6.3 Common Cruise Engine Characteristics 

 

HP SPC (FP)  Weight Length Width 

1931 0.34 3.95 9.48 4.25 4.68 188.4 
2481 405 0.34 7.6 13.11 4.98 6.2 

 

To this point, all the commonality components have dealt with specific shipboard 

quipment.  In order to show another side of commonality in design, construction savings 

ith the volume of the superstructure make 

p a commonality component.  By using the superstructure as a common component both 

independent variables and dependent variables are being designated. The number of 

helicopter hangars is an independent variable while the beam and volume of the 

superstructure are dependent variables calculated in the iterative ship synthesis model. 

The synthesis was allowed to calculate the beam and superstructure volume as if no 

commonality was being used. Once calculated, the values were overwritten to the 

necessary values for the designated commonality and the process was continued. The 

characteristics associated with the two common superstructure choices can be seen in 

sequence in Table 6.4. 

 

 

 

e

was considered. Two areas of commonality, superstructure and midship section, were 

used to show the effectiveness of this optimization methodology.  

 

As noted in Chapter 4, the baseline runs showed that all the ships on the Pareto front 

basically had one of two narrow ranges of superstructure volume. The superstructure is 

primarily a function of the number of helicopter hangars on the ship.  In addition to the 

number of hangars, the beam of the ship (B) is also related to the design of the 

superstructure.   These characteristics along w

u
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Table 6.4 Common Super tructure Characteristics 

Designation 
Volume  

in ft3

Beam  

t

Number of  

Helico

s
 

in fee pter Hangars
Small 60,000 40 1 
Large 113,000 54 2 

 

he final component that was considered to be common was the midship section of the 

ld enable the use of a common hull block(s) near amidships in both 

above, the depth and beam of the ship were 

etermined in the iterative process and changed when necessary to satisfy the 

tion Characteristics 

Depth  Beam  

in feet 

Number of Helicopter 

Hangars 

T

ships. This wou

designs.  Again, the size of the midship section was largely dependent on the number of 

helicopter hangars on the ships. Other midship section related characteristics included the 

midship coefficient (Cm), depth of the hull (D) and the beam of the ship. Again, this 

commonality component consists of independent (number of hangars and Cm) and 

dependent variables (D and B).  Similar to 

d

commonality requirement.  The characteristics used for the common midship sections are 

listed in sequence in Table 6.5. 

 
Table 6.5 Common Midship Sec

 

Designation Cm in feet 
Small 0.99 23 40 1 
Large 0.99 27 54 2 

 

Given the five possible commonality components and the choices associated with each, 

the total number of possible commonality strings was 432. However, some of these had 

conflicting requirements. For example, a large superstructure requires two helicopter 

hangars and a 54’ beam while a small midship section requires one hangar and a 40’ 

beam. Obviously both of these requirements cannot be satisfied at the same time. So 

options with this combination were eliminated from consideration. Similarly, a small 

superstructure and large midship section was also eliminated as infeasible.  Other 

combinations of commonality were eliminated because they were counterintuitive. For 
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example, designs using the smaller cruise engine could not adequately power ships with 

the large midship sections or large superstructures.  As a result, the optimization program 

would spend excessive time trying to populate itself with ships of this nature. Instead of 

looking for ships that are infeasible, the optimization eliminated these inconsistent 

combinations of commonality.  As a result of eliminating infeasible commonality 

choices, there were only 288 commonality strings remaining.  

 

6.2.2 Optimization Process 

 

The optimization process is similar to the one seen in Figure 4.1. A few changes were 

ade, however, in order to make this process more efficient in solving the three criterion 

optimization process.  The most obvious change is that the optimization is run for the 

PC and NSC mission designs in parallel rather than at the same time. Since finding only 

the endpoints  it is possible 

missions.  

6.2.4 Fleet Savings 

 

In each optimization in which commonality was applied, a fleet savings was calculated. 

By using common engines and/or weapon systems, savings can be found in a variety of 

m

O

of the two objective Pareto front is the goal for this problem,

to optimize for each objective at a higher precision when independent of the other.  The 

dominance sorting and tournament selection processes are performed using only the 

respective objective for each mission ship.  This single objective sorting allows for an 

efficient search for the best OPC ship and the best NSC ship for each commonality string. 

 

6.2.3 Archive Endpoints 

 

Each individual optimization produces the two objective  Pareto front endpoints for each 

commonality string.  Since this optimization can be run for any number of ship classes, 

the number of endpoints will be equal to the number of ship classes that are being 

considered.  The endpoints are the ship designs that have the highest value of 

performance over cost for each of the required 
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ways. For example, savings can be realized is in crew training, spare parts, generation of 

manuals, and in engineering integration of components.   

 

If a fleet of ships all have a particular common component, training of crew members can 

be simplified. If a crew member were to transfer from one class of ship to another he/she 

would not have to be retrained on the engine or weapon system resulting in a savings of 

time and money.  Instead of having to conduct training on multiple engines or weapon 

systems for crew members within a fleet of ships, only one school would be necessary for 

each. Savings could be realized in training facilities and staff.   

 

Depending on the location of the home ports of the ships within the fleet, commonality 

can lead to a significant savings in spare parts. If ships of two classes of ships are located 

near each other, the need for two sets of spare parts can be eliminated.  This results in a 

savings in purchasing the spare parts as well as storing the spare parts. Shore based 

maintenance may also be a source of commonality savings in that they will only have to 

service one type of engine or weapon system.   

gn at installation, 

inistrative savings can be made.  Engine manufacturers generate owner’s manuals for 

each ship. T

If a of ships le to use  same superstructure idship section design, savings 

can be found in the construction learning curve as well f the 

ships. As shipyards construct sections of  there ar ssons learned that helps them 

becom ore effi . Thi iency ve them e and m

the co truction p ess. The m ommon pieces that they construc e more they will 

learn and significant savings can be made th gh this f comm lity.   

 

When an engine or weapon system is installed on a ship there is a nonrecurring cost 

associated with that installation.  If commonality is used in a fleet of ships, the cost of 

this installation will only occur once and can be spread out over the entire fleet of ships. 

If no commonality is used, the cost may occur for each class of ships and be spread out 

over smaller numbers of ships. In addition to engineering desi

adm

he cost of this can be reduced if only one type of manual is needed.  

 

fleet is ab  the or m

 as the design of those areas o

a ship, e le

e m cient in their work s effic will sa  tim oney in 

ns roc ore c t, th

rou form o ona

 87



 

The f t savings m deled in this case study was based on either the savings as a result of 

bulk purchasing or the savings associated with a construction learning curve. The savings 

model was limited to these two types of s . The following sections will expl

ings for each commonality option was calculated. As a designer learns more 

ey will be located, 

d to the fleet savings model.  

ization was run 

using very small parameter ranges that focused on each of the endpoints of the baseline 

curve. In doing so, it ensured that the ships designed were best suited for their specific 

missions. This resulted in baseline ships for both the National Security Cutter (NSC) and 

the Offshore Patrol Craft (OPC) missions.  The commonality savings also incorporates a 

percent savings associated with bulk purchasing. Figure 6.2 shows the assumed rate of 

decreased cost as a function of number of units purchased for weapon systems 1 and 2.  

The assumed savings for using weapon system 1 or 2 common was linear from zero for 

one ship to 10% at 33 ships. 

 

The fleet savings associated with using common weapon systems 1 and 2 is the sum of 

the NSC Fleet Savings  

 

                     (6.2) 

 

nd the OPC Fleet Savings 

 

lee o

avings ain how 

the fleet sav

about the ships and how they will be operated, manned and where th

other types of savings can be adde

 

6.2.4.1 Weapon System Savings 

 

The savings associated with the commonality of the weapon systems was limited to the 

bulk purchase for the entire fleet. In calculating the fleet savings for the use of a common 

weapon system, the cost of the fleet of ships with commonality was compared to the cost 

of a fleet of ships that were designed with no commonality.  The optim
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where 

wg700Cost – material cost of one weapon system 

#NSCs – number of NSCs in class (8) 

#OPCs – number of OPCs in class (25) 

#ships – total number of ships being built (33). 

The superscript 0 represents the NSC and OPC designs that were designed without 

commonality. The superscript i represents the current ship being considered.  
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Figure 6.2 Weapon System 1 and 2 Cost Savings Schedule 

 

Figure 6.3 shows the rate of decreased cost as a function of the number of units 

urchased for weapon system 3. The assumed savings for using weapon system 3 was p

linear from zero for one ship to 20% at 33 ships. 
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The fleet savings associated with using common weapon system 3 is the sum of the NSC 

Fleet Savings  
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and the OPC Fleet Savings 
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where 

wg700Cost – material cost of one weapon system 

#NSCs – number of NSCs in class (8) 

#OPCs – number of OPCs in class (25) 

#ships – total number of ships being built (33). 
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Figure 6.3 Weapon System 3 Cost Savings Schedule 
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6.2.4.2 Ship Service Generator Savings 

The savings associated with using common ship service generators was performed in 

uch the same way as the weapon system. A cost schedule was created based on the 

umber of units purchased an ce between the ships with no 

number of generators 

urchased is shown in Figure 6.4. The assumed savings associated with using a common 

ip service generator was from zero for four generators to 10% at 132 generators total 

n all 33 ships. 

 

The fleet savings associated with using a common ship service generator is calculated as 

the sum of the resulting NSC savings 

 

 

m

n d the savings was the differen

commonality and those with common generators. Because the number of generators is 

not constant for all ships, however, the savings had to include the number of generators 

purchased.  The assumed cost schedule as a function of the 

p

sh
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and the OPC savings 
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(6.7) 

where 

wg300Cost – material cost of ship service generators for one ship 

#NSCs – number of NSCs in class (8) 

#OPCs – number of OPCs in class (25) 

#Gens – number of generators (varies).    
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Figure 6.4 Ship Service Generator Cost Saving Schedule 

 

6.2.4.3 Cruise Engine Savings 

 

Again, a cost schedule was created for the savings associated with using common cruise 

engines. Figure 6.5 shows the assumed cost schedule as a function of number of engines 

purchased. The cost savings associated with u

f

 

ing a common cruise engines is ca  sum 
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where 

0.6 – fraction of wg200 that is for engines 

wg200Cost – material cost of propulsion system 

HPRatio – fraction of ship power used for cruise engines 

#NSCs – number of NSCs in class (8) 

#OPCs – number of OPCs in class (25) 

#ships – total number of ships being built (33). 

y = -0.0023x + 1.0023
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6.2.4.4 Superstructure and Midship Section Savings 

 

The savings assumed for the common superstructures and midship sections was limited to 

construction labor costs.  By applying a learning curve to the labor cost of construction, 

savings can be calculated by summing the savings for the NSC and the OPC.  For a 

common superstructure, the savings was based upon the assumed fraction of the weight 

group 100 cost that is superstructure and the assumed learning curve rate. The NSC 

common superstructure savings is  
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and the OPC common superst ture savings

 

⎢
⎢ 100(*#
(

*
wgNSCs

+∑ *100())(** 0
8

0 SSRatioCostwgLearnSSRatio
#

ships *0
NSC SSRaost + *#0

NSC wOPCsio *100 0
OPC SSRaCost

s =1i

ruc  is 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢ +

#
*#*100(*#

(
# 00

NSCNSC

ships
OPCsSSRatioCostwgNSCsships

⎢
⎢

⎣

⎡
−

∑

∑∑

=

==

))(*
*100

)(*100((**((
*

33

1

00

25

1

0
8

1

0

i

OPCOPC

i
OPCOPC

i
NSCNSC

Learn
SSRatioCostwg

atioCostwgLearnSSRawg
OPCs  

*0 SSR0tio100Cost ))Learn+))
#

(6.11) 

where 

wg100Cost – material cost of a ship hull and superstructure 

SSRatio – ratio of superstructure weight to ship weight 

Learn – Learning Curve rate 

#NSCs – number of NSCs in class (8) 

#OPCs – number of OPCs in class (25) 

#ships – total number of ships being built (33). 

 

The midship section hull blocks savings was calculated in the same way assuming that 

20% of the group 100 cost can be made common.  The NSC common midship section 

savings is 
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where 

wg100Cost – material cost of a ship hull and superstructure 

MSRatio – ratio of midship section weight to ship weight (0.2) 

Learn – Learning Curve rate 

Another form of savings m igns may have a 

mponen ving it mmon.  with 

the we on systems, ship vice generators and c se engines, b

the superstructures and m   Wh  occurs, the re ings is 

calculated as described in

 

6.2.4.5 Total Fleet Savings

6.2.5 Dominance Sorting 

 

At this point in the three-criterion optimization, the endpoint archive has two designs for 

each commonality string. One design represents the best NSC mission design and the 

other represents the best OPC mission design for the designated commonality. The fleet 

savings for each pair of ship classes has been calculated relative to the pair of ship classes 

that were designed with no commonality.  In order to determine which of these designs is 

com

#NSCs – number of NSCs in class (8) 

#OPCs – number of OPCs in class (25) 

#ships – total number of ships being built (33). 

 

 

The total fleet savings that results from the use of commonality in the designs was 

calculated by summing up each of the savings associated with each of the common 

components. 

 

mon co

ap

t despite not ha

 the equations above.   

 ser

idship sections.

ay also occur. In some instances, a pair of des

 

 required to be co

en this

rui ut is very unlikely with 

This can occur

sulti  savng



 

the best, another dominance sort was performed. In the two-criterion part of the 

optim p inance sorting was used to determ

the Pareto front and to help select potential parents d each generation. The 

dominance sort was performed each generation until the optimization was complete. In 

that dominance sort, ships were compared using the first two objective criteria of the 

optim

 

f1(x1) –  OPC Mission Ship Effectiveness /Average Ship Cost  

  2 2

 

In the three-criterion case, each commonality string was optimized individually to 

duce the two Pareto front endpoints co ponding  these two objective functions. 

th g results were never 

pared to each other.  With a value calculated for the associated fleet savings, the 

inance sorting can be made using all three ob

Cost  

 f2(x2, xc) – NSC Mission Effectiveness /Average Ship Cost 

 f3(xc) – Net Fleet Savings fro ommo ty 

 are compared to each other to determine whether they are dominated 

or not.  A ship is not dominated if at least one of one of its objective criteria is greater 

than that of the other ship. The ships were compared to each other in pairs. Each pair will 

have an NSC m avings, which is the 

same for both ships in the pair. Dominance was determined by comparing the NSC 

mission designs using f1, the OPC mission design using f2, and each pairs’ f3. The 

solut  final three-criterion 

discrete Pareto front anticipated in Figure 2.4. 

 

ization rocess, dom ine which designs were on 

uring 

ization.  

(xf ) –  NSC Mission Ship Effectiveness /Average Ship Cost  

pro

To 

com

dom

 

 

 

 

As before, the ships

rres  to

is point in the overall process, the individual commonality strin

jective criteria. 

f1(x1, xc) – OPC Mission Effectiveness /Average Ship 

m C nali

ission design, an OPC mission design and a fleet s

ions that make up the nondominated set of solutions are the
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CHAPTER 7  
 

FLEET OPTIMIZATION WITH COMMONALITY 
 

 

7.1 Case Study 

Similar to the two-objective case study shown in Chapter 5, the optimization was run 

ith the following minimum settings: archive size-50, population size-150, number of 

offspring per generation-100. The maximum number of gen tions wa

the term ation cond  was not us  order to ensur hat the P

individual ru rogre  the s m . 

 

This chapter ill rs tl  a re th u r the f a i ret eto ce 

r the three-objective commonality optimization for the vessels designed for the NSC 

s. The results 

roup themselves into three sections. The uppermost section consists of 128 NSC 

desi the 

 makes up the 288 OPC designs. The reason that the NSC designs are split into 

t e o  re e m i  e r  i e d   

 

The 160 NSC designs in the m o p v ai de n  aracteristics. First, 

of os de n a ll r u  s al m

designated as common.  The remaining 16 designs have no commonality designated for 

w

era s set at 200 and 

in ition ed in e t areto fronts of each 

n p ssed ame a ount

 w  fi t ou ine nd p sent e res lts fo in l d sc e Par surfa

fo

and the OPC missions.   The analysis methodology and the detailed results will then be 

analyzed in more detail in the remaining sections. 

 

7.2 Final Unique Design Pareto Set Results 

 

Figure 7.1 shows the endpoints for each of the 288 commonality string

g

gns.  The middle section consists of 160 NSC designs. The remaining section near 

bottom

wo s ctions is due t  the natu  of th  com onal ty that is b ing fo ced nto th esigns.

iddle f the lot ha e cert n fi ing ch

144  th e sig s have  sma  supe struct re, a m l idship section or both 
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the superstructure or the midship section but have the smaller cruise engine designated as 

common. These three characteristics are all indicative of smaller vessels. All 160 designs 

have only one helicopter hangar, which is a requirement for the small superstructure and 

idship section commonalities.  In order to meet the cruise speed requirement, the use of 

the the 

to be the dr

pe or A  result, all NSC de

m.  The weapons systems and generators selected for these designs do not influence this 

m

smaller common cruise engine tends to need smaller vessels. Because of the way 

fuzzy utility functions have been set, the single hangar tends 

signs with one hangar have ranges near 9000 

iving 

rf mance factor. s a

n

tendency toward the middle of the graph. If the fuzzy utility functions were modified 

different results may be achieved.   

 

 
 

Figure 7. z ndp s prio  Dominance Sorting

hen the results in Figure 7.1 are subjected to a dominance sorting to obtain those design 

pairs in the discrete Pareto Set anticipated in Figure 2.4 and then analyzed in detail to 

 1 Optimi ation Run E oint
 

r to

W
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best NSC design and the best OPC designs, 

proved results from the study in Chapter 5, are shown on the zero Fleet 

Savings from

air that produced the best Fleet Savings.    The attractive design pair NSC6 and OPC6 

that provide the best Fleet Savings that co e  t u nc g t e 

drop in NSC perform  t s  o m w h c te ers e.  

lts will be analyzed further below.  

 

 
Figure 7.2 Pareto Front Showing Distinctly Different Ships Only 

 

Table 7.1 shows the corresponding commonality strings and the resulting OPC and NSC 

solutions that make up this final discrete Pareto front.  The designations are for the 

commonality assignment for the Weapons System (CW), ship service generators (CG), 

reveal those unique vessel designs there remain only twelve pairs of ship designs.  Figure 

7.2 shows the final Pareto front composed of the best OPC and best NSC baseline ships 

and the twelve pairs of non-dominated ships determined to be distinctly different in the 

overall results shown in Figure 7.1.  The 

slightly im

 Commonality base plane.   Also identified are the NSC10 and OPC10 design 

p

uld b  achieved wi ho t i urrin he larg

ance tha result  from the m ve fro  t o eli op r hang  to on

These resu

OPC10 OPC6 

st NSC Design

NSC

NSC10

Best OPC  

Design

Be

6 



 

cruise engines (CC), superstructure (CS), and midship sections blocks (CM).  The N here 

indicates that no comm

 
Table 7.1 Pareto Front Commonality Strings with Corresponding OPC and NSC Ship Numbers 

 

CW CG CC CS  OPC Ship # NSC Ship # 

onality was assigned.     

CM
N 1 3 3  N N N 
N 1 N N Large 4 4 
N 1 6  N Large N 6 
N 1 N Large Large 7 7 
1 1 1 Small Small 10 10  
1 1 N N N 12 12 
1 1  Sm 13 13  1 N all 
1 1 1 Sm l 14 14 al N 
1 1 1 N N 16 16 
2 1 N N N 20 20 
3 1 N N N 21 21 
3 1 N all N 22 22 Sm

 

7.3

 

On

It i

Mu

com

 Analysis of Results of All Feasible Commonality Strin

e at it is always good. 

s accepted that in using c mon com nts there will be a loss in performance. 

ch research has been done to measure how much performance will be lost in applying 

mon components to d gns. Howe , the lo in performance is assumed to be 

outw d t ponents.  This cost 

savings is the driving force behind the use of commonality in d gn. Figure 7.3 is the 

same 3-D plot seen in Figure 7.1 from a different perspective.  

gs 

assumption that is often made with the use of commonality is th

om pone

esi ver ss 

eighe  by he cost savings associated with using common com

esi
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Figure 7.3 Optimization Run Endpoints prior to Dominance Sorting – Alternate View 
 

This new perspective more clearly shows that

28 de s t e n ur  th tim ion process, a negative net fleet savings 

occurred. This negative fleet sa  s  OPC.  The OPC that 

was designe w o n c o   t a e e i w n , 

generator and cruise engine used in the solutions.  These components enabled the OPC to 

m  it pe rm c q e . m e i ti s o  o se 

omponents are forced into the design through commonality, the OPC will still meet its 

r 3, the OPC had 

egative weapon system savings in just over half of the commonality strings (144 

occurrences). Common generators 1 and 3 resulted in negative generator savings for the 

 not all commonality is good. In 127 of the 

izat8 sign  tha  wer  fou d d ing e op

vings is a re ult of over designing the

d ith ut a y omm nality had he le st xp ns ve eapo system

eet s rfo an e re uir ments   If ore xpens ve op on  f r each f the

c

performance requirements but at more cost. Even though bulk savings will occur, the cost 

of the more expensive components will be more expensive overall. The result is that if 

the more expensive weapon systems, generators or cruise engines are made common, the 

OPC will have a negative savings. By using common weapon system 2 o

n
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OPC the 

 negative cruise engine savings as well (118 occurrences).  Making the 

superstructure commo e re ed  n r c r a g eit . 

A mm  m sh  s s i g  m ip v g o 7 e 28 rs 

o ips hi cc re c im r i tio w nd 

b t a uar r o th l id se io w s m 23 ).  

The the 

ommon midship section sizes. The larger midship section was sized so that the midship 

sections of all baseline opti zation solutio e ler. This was don ens at 

it would not limit the size of the ships in the optim n h sm l  c n p 

ction was made slightly larger than the smallest OPC designs in the baseline run.  

 is important to realize that just because the savings may be negative for one or more of 

es  of 

ships will be negative.  For the weapon systems, generators and cruise engines only the 

O  d n a g vi . T NS es f   se ign  

positive savi s lu o  a system 2 h n f t on  

sa gs as a p v e h a a  f the OPC design.  In addition, 

 siti  sav ngs e ch ved in other common com nts, the overall savings could 

f each of the components that are considered for 

ommonality among the designs, some are more influential than others. Table 7.2 shows 

th e 

omponents with the greatest potential for large commonality savings are ship service 

ge a  s g   superst r e g g po e w e 

sm les en to an u  engines are designated as common. The cruise engines and 

g rat  ca als ha a  v i lu g e r st e en or 

 (144 occurrences).  Similarly when the larger cruise engine was made common, 

OPC had a

n n ver sult  in a egative supe stru tu e s vin s for her ship

 co on id ip ection re ulted n a ne ative idsh  sa in s f r 8  of th 8 pai

f sh . T s o ur d ea h t e the large  midsh p sec n as common (64 times) a

a ou  q te f e time when the sma ler m ship ct n a co mon  times

 reason that these pairs resulted in a negative savings is due to the designation of 

c

mi ns wer  smal e to ure th

m iizatio . T e a ler ommo idsh

se

Again, this was done in order to not force the OPC designs into being smaller in size and 

possibly making lots of designs infeasible. All of this translates into more cost for the 

slightly oversized midship sections. 

 

It

th e components does not necessarily mean that the overall fleet savings for that pair

PC esig s h d ne ative sa ngs he C d igns or each of tho  des s had a

ng va e. F r a common we pon , t e et lee weap system

vin  w alw ys ositi e d spite t e neg tive s vings or 

if po ve i  w re a ie pone

still be positive. 

 

Because of the relative costs o

c

e relative importance of each component in its potential to create savings. Th

c

ner tors, crui e en ines and ructu e.  Th se lar e savin s are ssibl hen th

al t g era rs d cr ise

ene ors n o ve l rge negati e sav ngs va es.  Usin  th  la ge cruis gine 
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generator as common will result in the greatest negative savings values.  A common 

superstructure, which always results in a positive savings, has the largest savings when 

the smaller option is used.  The midship section and weapon systems have a much 

maller impact on savings, either positive or negative.  Again, smaller options tend to 

resu ass 

T 7 el  In nc om n v s

a ngs 

s

lt in positive savings and larger options tend to result in negative options due to cl

over design. 
able .2 R ative flue e of C ts on Sa ing  pone

 

Positive S vi  Negative Savings  
Component Relative Importance Component Relative Importance 
Generators 1.000 Cruise Engines 1.000 

Cruise Engines 0.748 Generators 0.864 
Sup u e .4 e 15 erstr ctur  0 65 Midship S ction 0.1

Mids S io . ea y m 9 hip ect n 0 100 W pon S ste  0.02
Weapon System 0.016 Superstructure 0.000 

 

7.4 Analysis of Groupings on the Discrete Pareto Front  

 

Once the dominance sorting is performed, the discrete three-dimensional Pareto front 

appears as shown in Figure 7.4, which consists of 20 pairs of non-dominated ship 

designs.   
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Figure 7.4 Discrete Pareto Front 

emselves into four 

ands.  The four bands appear at Fleet Savings values of 0-0.01, 0.42-0.46, 0.55-0.76 and 

0.94-1.00.  Figure 7.5 shows the plot from

 
 

 

 
If the plot in Figure 7.4 is rotated, it shows that the solutions group th

b

 a different perspective. 
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Figure 7.5 Pareto Front – Alternate View 
 

The band labeled A consists of two pairs of solutions. One of the pairs is the baseline 

ase which has no commonality and therefore no fleet savings. The other solution has c

weapon system 1 designated as common.  The common weapon system results in small 

fleet savings. Table 7.3 shows the commonality make-up of group A (N indicates no 

commonality). 

 
Table 7.3 Commonality Summary for Group A 

 

 Weapon System Generator Cruise Engine Superstructure Midship Section
1 N N N N N 
2 1 N N N N 

 

The next group of solutions, B, consists of six pairs of solutions. The small common 

generator appears in all but one pair of solutions. Additionally, the weapon systems and 

A 
B 

C 

D 



 

midship sections may be common which result in relatively small impacts on savings 

compared to the common ship service generator. In addition to the common midship 

section, the sixth pair actually had weapon system 1 and the smaller cruise engines 

common despite their not being designated as common. This natural commonality 

allowed this solution to achieve the highest fleet savings in group B. Table 7.4 shows a 

commonality summary of the ships in group B. 

 
Table 7.4 Commonality Summary for Group B 

 

 Weapon System Generator Cruise Engine Superstructure Midship Section
1 3 1 N N N 
2 N 1 N N Large 
3 N 1 N N N 
4 2 1 N N N 
5 1 1 N N N 
6 N N N N Small 

 

Group C consists of seven pairs of ships. Table 7.5 shows the commonality breakdown of 

group C.  Every pair of ships in group C has at least two common components, five pairs 

end that becomes evident for the higher 

es in group C is the use of smaller options of commonality. As discussed 

have three while one has four common components. The small common ship service 

generator appears in all seven pairs. Natural commonality appeared in the fifth and 

seventh pairs of ships.  Both ships in the fifth pair use weapon system 1 while both ships 

in pair seven use the smaller cruise engines.  In both cases, the overall fleet savings 

benefits from this natural commonality.  One tr

savings valu

previously, the OPC tends to have negative savings when larger components are used. In 

some cases these negative values can be outweighed by other common components. This 

can be seen in the half of group C with lower fleet savings. In order to obtain higher fleet 

savings values, smaller components must be designated as common.  
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Table 7.5 Commonality Summary for Group C 
 

 Weapon System Generator Cruise Engine Superstructure Midship Section
1 N 1 N Large Large 
2 3 1 N Large N 
3 N 1 N Large N 
4 1 1 1 N N 
5 N 1 1 N Small 
6 all 1 1 1 N Sm
7 1 1 N N Small 

 

The final group, D, has seven pairs of ships. In this group  s s i m  

sel  th aller component options. Large i

using comm sh se g or cru e engines and superstr c  

pa hip ed ea s  a  the a r c is in ard of w r 

o a i te o  T  re ired use of the sm pe ture de 

e NSC ships tend to be smaller and thus they were optimized with the smaller cruise 

. Again, this natural commonality resulted in high fleet 

vings values for each of the pairs. Table 7.6 shows the commonality components for 

, fleet aving s maxi ized by

ecting e sm mpact savings is obtained by routinely 

on ip rvice enerat s, is u tures. All seven

irs of s s us  w pon sy tem 1 nd  sm lle ru e eng e reg less hethe

r not it w s des gna d cas mmon. he qu all su rstruc ma

th

engines and weapon systems

sa

the ships in group D. 

 
Table 7.6 Commonality Summary for Group D 

 

 Weapon System Generator Cruise Engine Superstructure Midship Section
1 N 1 1 Small N 
2 1 1 1 Small N 
3 N 1 N Small N 
4 1 1 N Small N 
5 1 1 1 Small Small 
6 1 1 N Small Small 
7 N 1 1 Small Small 

 

7.5 Similarity Analysis of Discrete Pareto Front 

 

Despite having different commonality strings, two ships may have virtually the same 

characteristics. This occurs when one ship has no commonality designated for one or 

more components and the other ship uses commonality for those components. The ships 

 107



 

without the commonality may optimize to similar characteristics. Take for example the 

commonality strings 111NN and N1NNN.  Both strings have no commonality designated 

for the superstructure or the midship section and both use a common ship service 

generator. The commonality designations for weapon system and cruise engine are 

different for the two ships. One chooses no commonality while the other chooses option 1 

or both weapon system and cruise engine.  When the best NSC and best OPC designs are 

fo n 

system and cruise engine for the second ship are both designed to be choice 1 then the 

two ships will be virtuall e s  ship. This m o

at the same me. One may be very similar to another ship while the other is very different 

fro

 

In order to make ratio l c ison of simil y betwe  ships,  n-dimensional 

dis ce fo ula  use o d fferent the ships are from a practical naval 

architecture viewpoint.  

 

f

und for these commonality strings, how different will they really be?  If the weapo

y th ame ay not be the case f r the NSC and OPC 

 ti

m the corresponding ship in a pair. 

 a na ompar arit en an

tan rm was d t etermine how di

n

n
j

n
ijix1(
x

x
x

x
Similarity

max

2

1
max

21 )()
1 +

−
−   1) 

 

The formula calculates how similar two ships are to each other. It would not be 

appropriate to compare all ships to each other. If two ships do not have the same 

commonality designations for superstructure and midship section, they should not be 

compared. By designating either of these components as common, the ship will use the 

associated values. The ship synthesis will have been overridden to ensure commonality. 

Because of this alteration of the design, a ship that does not have its superstructure or 

midship section designated as common cannot be similar to one that does.  

 

The Pareto set of solutions consisted of 20 pairs of ships.  Comparisons were possible for 

seven combinations of superstructure and midship section commonality.  Of these seven 

combinations, only six were found in the Pareto set of solutions. Table 7.7 shows the 

commonality combinations and which ship numbers coincide with each. 

x−
...+= ( .7
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Table 7.7 Possible Commonality Combinations for Similarity 
 

Group Superstructure Midship Section Ship Numbers 
1 N N 1-3-11-12-16-20-21 
2 N Small 2-8-13-17 
3 N Large 4 
4 Small N 5-9-14-18 
5 Small Small 10-15-19 
6 Large N 6-22 
7 Large Large 7 

 

The ships in each group of the same commonality combination were compared using the 

similarity equation (eq. 7.1).  The results for the OPC and designs can be seen in Table 

7.8. 
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Table 7.8 Similarity Values for OPC Designs 
 
Ship #  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
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1 1.000                                         

2   1.000                                       

3 0.976   1.000                                     

4       1.000                                   

5         1.000                                 

6           1.000                               

7             1.000                             

8   0.977           1.000                           

9         0.951       1.000                         

10                   1.000                       

11 0.980   0.991               1.000                     

12 0.954   0.974               0.973 1.000                   

13   0.994           0.978         1.000                 

14         0.995       0.948         1.000               

15                   0.999         1.000             

16 0.972   0.991               0.990 0.981       1.000           

17   0.989           0.973         0.991       1.000         

18         0.991       0.960         0.987       1.000       

19                   0.985         0.985       1.000     

20 0.666   0.666               0.666 0.665       0.666       1.000   

21 0.331   0.332               0.332 0.333       0.333       0.664 1.000 

22           0.333                               1.000



 

Each ship across the top of Table 7.8 is compared to each of the ships in its respective 

group.  The value shown is a measure of similarity of the two solutions.  The higher the 

similarity value, the more similar the ships are to each other. Each ship can only be 

compared to the ship at the top of the column and not to other similar ships within that 

column. Analysis of Table 7.8 shows that that there are ten distinctly different OPC 

solutions on the Pareto front.  Each group can be analyzed individually to examine the 

similarities in there designs. Tables 7.9 through 7.14 show the characteristics of the OPC 

solutions from each group.  

 
Table 7.9 Group 1 Characteristics for the OPC (Superstructure-N, Midship Section-N) 

 
Ship 

# CW CG CC 
L 

(ft) 
B 

(ft) Cb Cm 
Vmax 
(kts) 

Range 
(nm) W H C G 

Perf/ 
Cost 

Fleet 
Savings 

1 N N N 276 38 0.469 0.987 22.02 9036 1 1 7 0 0.999 0.000 
3 N 1 N 280 38 0.460 0.988 22.26 9042 1 1 7 0 0.999 0.439 
11 1 N N 279 38 0.460 0.990 22.09 9015 1 1 7 0 1.000 0.007 
12 1 1 N 286 38 0.451 0.989 22.1 9000 1 1 7 0 0.996 0.446 
16 1 1 1 282 38 0.458 0.987 22.13 9037 1 1 7 0 0.997 0.708 
20 2 1 N 279 38 0.466 0.989 22.02 9025 2 1 7 0 0.99 0.441 
21 3 1 N 293 38 0.458 0.989 22.09 9032 3 1 7 0 0.95 0.427 

 

Table 7.9 shows that ships 20 and 21 have weapon system 2 and 3, respectively, making 

them distinctly different from the other solutions in this Group 1. The remaining ships all 

have weapon system 1 and Table 7.8 shows that the similarity between them is very 

strong. Therefore, ships 1, 3, 11, 12 and 16 are all virtually the same design with ship 16 

having the highest values for performance over cost and fleet savings. The three best 

solutions from Group 1 that are distinctly different are ships 16, 20 and 21. 

 
Table 7.10 Group 2 Characteristics for the OPC (Superstructure-N, Midship Section-Small) 

 

Ship 
# CW CG CC 

L 
(ft) 

B 
(ft) Cb Cm 

Vmax 
(kts) 

Range 
(nm) W H C G 

Perf/ 
Cost 

Fleet 
Savings 

2 N N N 280 40 0.462 0.990 22.01 9002 1 1 7 0 0.997 0.451 
8 N 1 1 276 40 0.472 0.990 22 9004 1 1 7 0 0.997 0.752 
13 1 1 N 280 40 0.463 0.990 22.12 9026 1 1 7 0 0.997 0.76 
17 1 1 1 283 40 0.464 0.990 22.14 9024 1 1 7 0 0.993 0.757 
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As shown in Table 7.8, the four solutions in Table 7.10 are virtually the same design. 

Ship 13 has a slightly better performance over cost with equal fleet savings making it the 

best of the four ships.  Table 7.11 shows the characteristics of the lone ship in Group 3.  

 
Table 7.11 Group 3 Characteristics for the OPC (Superstructure-N, Midship Section-Large) 

 
Ship 

# CW CG CC 
L 

(ft) 
B 

(ft) Cb Cm 
Vmax 
(kts) 

Range 
(nm) W H C G 

Perf/ 
Cost 

Fleet 
Savings 

4 N 1 N 279 54 0.450 0.990 22.08 9056 1 2 11 0 0.875 0.435 
 

A strong correlation between ships 5, 9, 14 and 18 was seen in Table 7.8. Table 7.12 

shows that all of the designs in this Group 4 have very similar characteristics. Ship 9 has 

the highest performance over cost but lacks in fleet savings. Ship 14 has a performance 

only slightly less than ship 9 but has the highest fleet savings making it the best overall 

design in group 4.  

 
Table 7.12 Group 4 Characteristics for the OPC (Superstructure-Small, Midship Section-N) 

 

Ship 
# CW CG CC 

L 
(ft) 

B 
(ft) Cb Cm 

Vmax 
(kts) 

Range 
(nm) W H C G 

Perf/ 
Cost 

Fleet 
Savings 

5 N 1 N 292 40 0.462 0.990 22.15 9013 1 1 7 0 0.959 0.954 
9 N 1 1 281 40 0.480 0.989 22.06 9003 1 1 7 0 0.962 0.943 

14 1 1 N 293 40 0.461 0.989 22.08 9008 1 1 7 0 0.958 0.956 
18 1 1 1 290 40 0.466 0.990 22.13 9020 1 1 7 0 0.959 0.945 

 

Table 7.13 shows that Group 5 has three very similar designs. Of these designs, ship 10 is 

determined to be the best. Ship 10 has a strong performance over cost and a slightly 

better fleet savings than the other ships in the group.  

 
Table 7.13 Group 5 Characteristics for the OPC (Superstructure-Small, Midship Section-Small) 

 

Ship 
# CW CG CC 

L 
(ft) 

B 
(ft) Cb Cm 

Vmax 
(kts) 

Range 
(nm) W H C G 

Perf/ 
Cost 

Fleet 
Savings 

10 N 1 1 293 40 0.463 0.990 22.04 9008 1 1 7 0 0.957 1.000 
15 1 1 N 293 40 0.462 0.990 22.04 9004 1 1 7 0 0.958 0.998 
19 1 1 1 290 40 0.468 0.990 22.02 9004 1 1 7 0 0.958 0.992 
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The similarity values in Table 7.8 show that there are two distinctly different ships in 

Group 6. Table 7.14 shows that ship 6 has weapon system 1 while ship 22 has weapon 

system 3 making them distinctly different. Table 7.15 shows the characteristics of the 

lone ship in Group 7.  

 
Table 7.14 Group 6 Characteristics for the OPC (Superstructure-Large, Midship Section-N) 

 

Ship 
# CW CG CC 

L 
(ft) 

B 
(ft) Cb Cm 

Vmax 
(kts) 

Range 
(nm) W H C G 

Perf/ 
Cost 

Fleet 
Savings 

6 N 1 N 353 54 0.450 0.990 22.03 9006 1 2 7 0 0.878 0.615 
22 3 1 N 350 54 0.451 0.990 22.02 9011 3 2 8 0 0.843 0.599 

 
Table 7.15 Group 7 Characteristics for the OPC (Superstructure-Large, Midship Section-Large) 

 
Ship 

# CW CG CC 
L 

(ft) 
B 

(ft) Cb Cm 
Vmax 
(kts) 

Range 
(nm) W H C G 

Perf/ 
Cost 

Fleet 
Savings 

7 N 1 N 349 54 0.450 0.990 22.04 9018 1 2 8 0 0.868 0.552 
 

Similar analysis can be performed for the NSC solutions. Similar to Table 7.8, the 

similarity values for the NSC ships can be seen in Table 7.16. Again, the ships are 

grouped together based on which superstructure and midship sections were designated as 

common. 
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Table 7.16 Similarity Values for NSC Designs 

Ship #  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
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1 1.000                                         

2   1.000                                       

3 0.968   1.000                                     

4       1.000                                   

5         1.000                                 

6           1.000                               

7             1.000                             

8   0.975           1.000                           

9         0.971       1.000                         

10                   1.000                       

11 0.330   0.327               1.000                     

12 0.326   0.321               0.926 1.000                   

13   0.977           0.953         1.000                 

14         0.973       0.992         1.000               

15                   0.981         1.000             

16 0.111   0.105               0.423 0.454       1.000           

17   0.990           0.966         0.987       1.000         

18         0.864       0.857         0.864       1.000       

19                   0.986         0.994       1.000     

20 0.667   0.665               0.660 0.652       0.324       1.000   

21 0.972   0.993               0.327 0.322       0.105       0.665 1.000 

22           0.995                               1.000



 

Analysis of Table 7.16 shows that that there are eleven distinctly different NSC solutions 

on the Pareto front.  Each group can be analyzed individually to examine the similarities 

in there designs. Tables 7.17 through 7.22 show the characteristics of the NSC solutions 

from each group. 

 

Table 7.16 shows that there are four distinct NSC solutions in group 1.  Table 7.17 shows 

that the ships in Group 1 can be sorted by weapon system and number of helicopter 

hangars. Ships 1, 3 and 21 all share the same components. Ship 21 has the slightly higher 

performance over cost value, however, ship 3 has a higher fleet savings. Ship 3 seems to 

be the best choice. Ship 16 and 20 are each distinctly different than each of the other 

designs.  Ships 11 and 12 show strong similarities to each other. Ship 11 is a little 

different in that it uses a different ship service generator than the other because it was not 

designated as common. Despite having the best performance, ship 11 is not the best 

design of these two ships when savings is considered. Instead, ship 12 is the best overall 

design with  high performance over cost and fleet savings values.  Group 1 has four 

distinctly different superior designs: 3, 12, 16, and 20. 

 
Table 7.17 Group 1 Characteristics for the NSC (Superstructure-N, Midship Section-N) 

 

Ship 
# CW CG CC 

L 
(ft) 

B 
(ft) Cb Cm 

Vmax 
(kts) 

Range 
(nm) W H C G 

Perf/ 
Cost 

Fleet 
Savings 

1 N N N 399 54 0.453 0.989 28 12016 3 2 9 3 1.000 0.000 
3 N 1 N 412 54 0.455 0.988 28.01 12019 3 2 9 0 0.982 0.439 

11 1 N N 374 54 0.465 0.989 28 12090 1 2 9 3 0.92 0.007 
12 1 1 N 366 54 0.452 0.988 27.65 11292 1 2 9 0 0.869 0.446 
16 1 1 1 333 39 0.457 0.988 25.42 9015 1 1 7 0 0.745 0.708 
20 2 1 N 399 54 0.453 0.990 28 12032 2 2 9 0 0.928 0.441 
21 3 1 N 410 54 0.457 0.989 28.01 12069 3 2 9 0 0.983 0.427 

 

Table 7.18 confirms that the four NSC designs in Group 2 are very similar. Of these four 

ships there is only a slight difference in their lengths and ranges. Other than that they are 

virtually the same.  Ship 13 is the best design based on the higher performance over cost 

value.  Table 7.19 shows the characteristics of the lone ship in Group 3.  
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Table 7.18 Group 2 Characteristics for the NSC (Superstructure-N, Midship Section-Small) 
 

Ship 
# CW CG CC 

L 
(ft) 

B 
(ft) Cb Cm 

Vmax 
(kts) 

Range 
(nm) W H C G 

Perf/ 
Cost 

Fleet 
Savings 

2 N N N 293 40 0.510 0.990 25.44 9024 1 1 7 1 0.705 0.451 
8 N 1 1 290 40 0.522 0.990 25.45 9001 1 1 7 0 0.707 0.752 

13 1 1 N 299 40 0.501 0.990 25.45 9000 1 1 7 0 0.707 0.76 
17 1 1 1 296 40 0.506 0.990 25.43 9011 1 1 7 0 0.707 0.757 

 
Table 7.19 Group 3 Characteristics for the NSC (Superstructure-N, Midship Section-Large) 

 

Ship 
# CW CG CC 

L 
(ft) 

B 
(ft) Cb Cm 

Vmax 
(kts) 

Range 
(nm) W H C G 

Perf/ 
Cost 

Fleet 
Savings 

4 N 1 N 410 54 0.457 0.990 28.01 12020 3 2 9 0 0.983 0.435 
 

Table 7.16 showed a very strong similarity in the Group 4 designs which is confirmed by 

Table 7.20.  Ship 18 has a different length than the others but is virtually the same 

otherwise.  Ship 14 has both the highest performance over cost and fleet savings value 

making it the best design in Group 4. 

 
Table 7.20 Group 4 Characteristics for the NSC (Superstructure-Small, Midship Section-N) 

 

Ship 
# CW CG CC 

L 
(ft) 

B 
(ft) Cb Cm 

Vmax 
(kts) 

Range 
(nm) W H C G 

Perf/ 
Cost 

Fleet 
Savings 

5 N 1 N 346 40 0.464 0.990 25.3 9008 1 1 7 0 0.701 0.954 
9 N 1 1 350 40 0.450 0.989 25.25 9001 1 1 7 0 0.71 0.943 

14 1 1 N 347 40 0.450 0.987 25.21 9009 1 1 7 0 0.707 0.956 
18 1 1 1 291 40 0.450 0.989 25.45 9003 1 1 7 0 0.697 0.945 

 

Ships 10, 15 and 19 which compose Group 5 are nearly identical in terms of 

characteristics as shown in Table 7.21.  Ship 10 is the best overall design with the highest 

performance and savings values. 

 
Table 7.21 Group 5 Characteristics for the NSC (Superstructure-Small, Midship Section-Small) 

 
Ship 

# CW CG CC 
L 

(ft) 
B 

(ft) Cb Cm 
Vmax 
(kts) 

Range 
(nm) W H C G 

Perf/ 
Cost 

Fleet 
Savings 

10 N 1 1 306 40 0.450 0.990 25.43 9002 1 1 7 0 0.69 1.000 
15 1 1 N 302 40 0.459 0.990 25.42 9001 1 1 7 0 0.69 0.998 
19 1 1 1 303 40 0.456 0.990 25.44 9003 1 1 7 0 0.69 0.992 

 116



 

Table 7.22 shows that Group 6 ships 6 and 22 are very similar. Both ships have the same 

value for performance over cost while ship 6 has a higher fleet savings making it the 

better choice. Table 7.23 shows the characteristics of the lone ship in Group 7.  

 
Table 7.22 Group 6 Characteristics for the NSC (Superstructure-Large, Midship Section-N) 

 
Ship 

# CW CG CC 
L 

(ft) 
B 

(ft) Cb Cm 
Vmax 
(kts) 

Range 
(nm) W H C G 

Perf/ 
Cost 

Fleet 
Savings 

6 N 1 N 395 54 0.452 0.989 28.01 12013 3 2 9 0 0.935 0.615 
22 3 1 N 395 54 0.451 0.990 28.01 12069 3 2 9 0 0.935 0.599 

 
Table 7.23 Group 7 Characteristics for the NSC (Superstructure-Large, Midship Section-N) 

 
Ship 

# CW CG CC 
L 

(ft) 
B 

(ft) Cb Cm 
Vmax 
(kts) 

Range 
(nm) W H C G 

Perf/ 
Cost 

Fleet 
Savings 

7 N 1 N 394 54 0.451 0.990 28 12005 3 2 9 0 0.936 0.552 
 

A final analysis of the similar designs for both the OPC and the NSC revealed that there 

are twelve distinctly different pairs of designs on the final discrete Pareto front. Based on 

the groupings listed in Table 7.7, the best OPC and NSC designs from each group were 

examined and matched with their corresponding ship based on common components. 

There were three ships that did not have a corresponding ship that was considered the 

best in its group. As a result OPC ship 3, and NSC ships 21 and 22 were included to 

ensure an even number of OPC and NSC solutions.   

 

7.6 Analysis of Final Discrete Pareto Front 

 

Figure 7.2, repeated here as Figure 7.6, shows the final discrete Pareto front composed of 

the best OPC and best NSC baseline ships and the twelve pairs of ships determined to be 

distinctly different on the discrete Pareto front shown in Figure 7.3.   
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Figure 7.6 Pareto Front Showing Distinctly Different Ships Only 

 

Table 7.24, a repeat of Table 7.1, shows the corresponding commonality strings and the 

resulting OPC and NSC solutions that make up this final Pareto front.  

 
Table 7.24 Pareto Front Commonality Strings with Corresponding OPC and NSC Ship Numbers 

 

CW CG CC CS CM OPC Ship # NSC Ship # 
N 1 N N N 3 3 
N 1 N N Large 4 4 
N 1 N Large N 6 6 
N 1 N Large Large 7 7 
1 1 1 Small Small 10 10 
1 1 N N N 12 12 
1 1 1 N Small 13 13 
1 1 1 Small N 14 14 
1 1 1 N N 16 16 
2 1 N N N 20 20 
3 1 N N N 21 21 
3 1 N Small N 22 22 

OPC10 OPC6 

Best NSC Design

NSC6 

NSC10

Best OPC  

Design



 

The results seen in Table 7.24 show some interesting trends. First, each pair of ships 

remaining on the final Pareto front has the small ship service generator designated as 

common. As seen in Table 7.2 common small generators have the greatest influence on 

fleet savings. Generally speaking, the use of the small generators has little to no impact 

on performance. It may add weight, and therefore cost, to NSC ships that need more than 

four generators to meet the electrical load requirements. However, the performance will 

not suffer and the net fleet savings will benefit greatly from this choice. 

 

There is no clear cut best choice for common weapon systems. Five of the twelve pairs of 

ships on the Pareto front have weapon system 1, which provides for good savings with 

some loss in performance for the NSC. Weapon system 2 can be seen in one pair of ships 

and has a slight positive affect on savings and a loss of performance for the NSC. 

Weapon system 2 does not benefit the OPC’s performance while increasing its cost.  Two 

pairs of ships have weapon system 3.  Weapon system 3 has a negative fleet savings 

while completely satisfying the requirements of the NSC. Again, the OPC suffers with 

the use of weapon system 3 because on increased cost with no performance gain. The 

remaining four pairs do not designate a common weapon system and no fleet savings is 

realized from the weapon system. However, the NSC and OPC will be able to meet 

requirements without unnecessary costs. 

 

Eight of the twelve pairs do no designate a common cruise engine. Even though the ships 

will not benefit from the cost savings, this can be good. Each ship is able to optimize its 

performance when able to use the engine that is best suited for its requirements. One third 

of the designs have the small cruise engine as common. This maximizes cruise engine 

savings. However, the performance of the NSC tends to suffer from the use of the small 

cruise engines. As mentioned previously, a small cruise engine tends to require a smaller 

ship in order to meet the cruise speed requirements. By forcing the NSC to be smaller its 

performance declines. Its range has to be smaller and it can only have one helicopter 

hangar. The OPC is not affected in this manner.  
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As seen in Table 7.2, common superstructures never result in a negative fleet savings.  

Only five of the twelve solutions realize a savings from the use of a common 

superstructure. Generally speaking, the smaller common superstructure does not hinder 

the performance or cost of the OPC. The smaller common superstructure will again limit 

the NSC in size and this will cause a decline in performance. The larger superstructure 

adds unnecessary costs to the OPC without a comparable increase in performance. By not 

designating a common superstructure, the OPC and NSC designs can be optimized to 

maximize there performance and cost. However, no superstructure savings can be 

realized. 

 

The common midship section has little effect on savings, but can influence performance 

and cost. Similar to the superstructure, the small midship section hinders the performance 

of the NSC. The larger midship section benefits the NSC while at the same time adding 

cost and possibly hurting the performance of the OPC. A common midship section was 

designated in only 4 of the twelve pairs of ships on the final Pareto front.  

 

Analysis of the results illustrates how finely balanced the three objectives can be. What 

tends to benefit the fleet savings the most hurts the performance of the NSC. At the same 

time, what maximizes the NSC performance tends to not produce large savings and 

increase the cost of the OPC. In order to maximize all three objective functions a balance 

in common components must be made. 

 

Perhaps the most attractive pair of designs from this study is the two designs indicated as 

OPC6 and NSC6 on Figure 7.6.  This pair of designs is commonality 3 in Group C of 

Table 7.5 and OPC ship 6 and NSC ship 6 in Table 7.24.  This pair of designs has the 

smaller ship service diesel generators and the large superstructure in common. This pair 

has the highest fleet savings from commonality possible before the NSC designs take a 

large loss in performance/cost and, thus, this might be the most likely choice for a design 

team.  This commonality achieves 61.5% of the maximum fleet savings considered, but 

the performance of the OPC and NSC remain at 100% of their maxima.  The 

characteristics of OPC ship 6 and NSC ship 6 are shown in Table 7.25 along with OPC 
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ship 10 and NSC ship 10, also indicated on Figure 7.6, which have the highest net fleet 

savings on the final Pareto front.  It is worth noting that because of the strong similarity 

of OPC ship 10 and NSC ship 10, consideration should be made to build a single ship to 

perform both ship missions.  A single ship would achieve even more fleet savings as all 

components would be common. 

 
Table 7.25 Design Characteristics for Selected Ships on the Final Pareto Front 

 

Point 
L 

(ft) 
B 

(ft) 
Vmax 
(kts) 

Range 
(nm) W H C G 

OPC 
Perf 

NSC 
Perf 

Cost 
($mil) 

Fleet 
Savings 
($mil) 

OPC6 353 54 22.03 9006 1 2 7 0 100 0.382 88.4 45.7 
NSC6 395 54 28.01 12013 3 2 9 0 100 100 141.0 45.7 
OPC10 293 40 22.04 9008 1 1 7 0 89.7 0.657 72.6 74.4 
NSC10 306 40 25.43 9002 1 1 7 0 89.7 47.6 91.0 74.4 

Best OPC 276 38 22.02 9036 1 1 7 0 89.7 0.243 69.6 0 
Best NSC 399 54 28 12016 3 2 9 3 100 99.9 131.8 0 

 

7.7 Repeatability of Results 

 
Initial attempts to obtain good reliable results used a method similar to the optimization 

without commonality seen in Chapters 4 and 5.  An entire Pareto font was found for each 

combination of commonality components. The OPC and NSC endpoints for each 

commonality optimization were then used to calculate savings and the three objective 

dominance sort was performed.  This method proved to be flawed in that the results were 

not adequately repeatable. Because of the stochastic nature of the optimization, it was 

very possible that the true endpoints of the Pareto front might not be found. Instead some 

of the endpoints came up short. As a result, the three objective dominance sort would 

eliminate good combinations of commonality based on there low values. Each of these 

runs would take about 24 hours to complete on a 1.73 GHz PC running a compiled C++ 

code and the results varied greatly. 

 

The first attempt to remedy this was to find three sets of endpoints for each combination 

of commonality.  Once all endpoints were found, the code would perform a repairing of 

endpoints in order to create the best possible pair of endpoints possible for each 
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commonality string.  Next, the fleet savings was calculated and the dominance sort was 

performed. Although the results were better, they still had a strong variation in which 

combinations would appear on the Pareto front.  Another problem with this method was 

that it took about 3 x 24 = 72 hours to complete. Table 7.26 shows the distribution of 

results for this optimization method. 

 
Table 7.26 Distribution of Results for Full Optimization Method – 3 Iterations – 200 Generations 

 

CW CG CC CS CM Run 1 Run 2 Run 3 Run 4 Run 5 
1 1 1 N N X X X X X 
1 1 N N N X X X X X 
2 1 N N N X  X X  
3 1 N N N X X X X X 
3 1 2 N N    X  
          

1 1 1 N Large X X X X X 
          

1 1 N N Large    X  
3 1 2 N Large X X X X  
3 1 N N Large X    X 
N 1 2 N Large   X   
          

1 1 1 Small N X X X X X 
          

1 1 1 Small Small X X X X X 
2 1 1 Small Small   X   
          

1 1 N Large N X X X X X 
2 1 N Large N X X  X  
3 1 N Large N  X  X  
N 1 N Large N X     
          

1 1 N Large Large   X X  
2 1 N Large Large     X 
3 1 N Large Large     X 
N 1 N Large Large  X    
    Pairs Found in Run 12 11 12 14 10 
    Total Combinations 21 21 21 21 21 
    % Found 57.1% 52.4% 57.1% 66.7% 47.6% 

 

This Full Optimization Method was run five times. For each run the distinctly different 

set of solutions were found.  For the five runs there were a total of 21 combinations of 

commonality found on the final Pareto surfaces.  On average, each run was able to find 
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12 of those combinations, or 57.1%.  The results for these five runs can be seen in Figure 

7.7. 

 

 
 

Figure 7.7 Pareto Front of Full Optimization Method (5 Runs) 
 

The NSC endpoints are very closely packed together for the five sets of data on the plot. 

This shows a good correlation of results for the NSC. However, Figure 7.7 also shows the 

variation of data points for the OPC endpoints. The OPC data points for the five different 

runs are more widely distributed. Less repeatability can be seen in this area.  

 

The Parallel Optimization Method described in Chapter 6 proved to have more repeatable 

results while taking less time to complete each run. Instead of finding the entire Pareto 

front for all 288 combinations of commonality, this method searches for each endpoint 

individually. One downfall to this method is that two optimizations must be run for each 

commonality string. However, there is a much greater confidence that the endpoints are 
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as close to the maxima as possible without an exhaustive search.  In addition to the 

improvement in repeatability, this method took about 47 hours to complete. 

 
Table 7.27 Distribution of Results for Parallel Optimization Method – 200 Generations 

 

CW CG CC CS CM Run 1 Run 2 Run 3 
1 1 1 N N X X X 
1 1 N N N X X X 
2 1 N N N X X X 
3 1 N N N X X X 
N 1 N N N X X X 
                
1 1 1 N Small X X X 
                
1 1 N N Large   X   
N 1 2 N Large    X 
N 1 N N Large X X   
                
1 1 1 Small N X X X 
                
1 1 1 Small Small X X X 
                
1 1 N Large N   X X 
2 1 N Large N   X X 
3 1 N Large N X X X 
N 1 N Large N X    
                
2 1 N Large Large   X   
N 1 N Large Large X X   

        Pairs Found in Run 12 15 12 
     Total Combinations 17 17 17 
        % Found 70.6% 88.2% 70.6% 

 

Table 7.27 shows the distribution of results for the three Parallel Optimization runs.  The 

results show a stronger correlation of results from one run to another. The three 

optimization runs found 16 total combinations of commonality on the final Pareto 

surfaces. On average, each individual run found 13 of those 17 commonality strings on its 

final Pareto surface, or 76.4%.  The results for these three runs can be seen in Figure 7.8. 
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Figure 7.8 Pareto Front of Parallel Optimization Method - 200 Generations (3 Runs) 
 

The Parallel Optimization Method shows a good correlation of data for both the NSC and 

OPC endpoints. The data points for both ships are tightly clustered together indicating 

that this method has good repeatability. 

 

Further efficiency might be possible with some sacrifice in results by decreasing the 

number of generations per commonality string. Table 7.28 shows the effects of using 50, 

100 and 150 generations.  The time required to perform runs using 50, 100 and 150 

generations is about 14, 25 and 36 hours, respectively.  Thus, significant time savings can 

be obtained if some sacrifice in results is acceptable. 
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Table 7.28 Distribution of Results for Parallel Optimization Method – Varying Generations 
 

          
50 

Gens 
50 

Gens 
50 

Gens 
100 

Gens 
100 

Gens 
100 

Gens 
150 

Gens 
150 

Gens 
150 

Gens 
CW CG CC CS CM Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 

1 1 1 N N X X X X X X X X X 
1 1 2 N N X           
1 1 N N N  X X X X X X X X 
2 1 1 N N X           
2 1 N N N   X X X   X X  
3 1 1 N N X           
3 1 N N N  X X X  X   X 
N 1 N N N      X   X X  
                            
1 1 1 N Small X X X X X X X X X 
                            
1 1 N N Large X X  X X X X X X 
2 1 N N Large       X   X 
3 1 2 N Large  X  X       
3 1 N N Large      X    X  
N 1 2 N Large   X         
N 1 N N Large       X X  X 
                            
1 1 1 Small N X X X X X X X X X 
                            
1 1 1 Small Small X X X X X X X X X 
N 1 1 Small Small       X    
                            
1 1 1 Large N         X   
1 1 N Large N X X X X X X  X X 
2 1 N Large N X   X X X X  X 
3 1 N Large N    X  X X  X 
N 1 N Large N  X X   X    X  
                            
1 1 N Large Large    X X      
2 1 N Large Large   X         
3 1 N Large Large         X  X 
N 1 N Large Large X X  X X X X   
 Pairs Found in Run 11 11 11 14 14 14 14 11 13 
  Total Combinations 18 18 18 20 20 20 19 19 19 
   % Found 61.1% 61.1% 61.1% 70.0% 70.0% 70.0% 73.7% 57.9% 68.4% 

 

Figures 7.9 through 7.11 show the final Pareto fronts for the Parallel Optimization 

Method using 50, 100 and 150 generations, respectively. 
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Figure 7.9 Pareto Front of Parallel Optimization Method - 50 Generations (3 Runs) 

 

 
Figure 7.10 Pareto Front of Parallel Optimization Method - 100 Generations (3 Runs) 
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Figure 7.11 Pareto Front of Parallel Optimization Method - 150 Generations (3 Runs) 
 

In order to quantify the improvement in the endpoints objective values, the results for 

each commonality string were examined and compared to the other methods. Table 7.29 

compares the performance /cost values of the Parallel Optimization Method to the Full 

Optimization Method. The performance/cost values for all 288 commonality strings were 

compared to the highest values of all 15 Full Optimization runs (5 runs with 3 iterations 

each).  Table 7.29 shows that each subsequent increase in the number of generations 

increased the performance/cost values for the endpoints. This increase in values was 

consistent throughout the entire 288 optimizations as shown by the small standard 

deviations for each number of generations. The 200 generation runs increased, on 

average, 253 OPC endpoints and 197 NSC endpoints. This is nearly all of the OPC 

endpoints and about 70% of the NSC endpoints.  
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Table 7.29 Comparison of Results for Parallel Optimization Method – Varying Generations 
 

    OPC NSC 
50 Gens Average % of Baseline Values 99.6% 99.3% 

  Standard Deviation of Average % for all 288 Commonality Strings 0.767 1.647 
  # of Improved Endpoint Values out of 288 Possible Endpoints 73 106 

100 Gens Average % of Baseline Values 100.3% 99.7% 
  Standard Deviation of Average % for all 288 Commonality Strings 0.713 1.653 
  # of Improved Endpoint Values out of 288 Possible Endpoints 182 156 

150 Gens Average % of Baseline Values 100.5% 100.0% 
  Standard Deviation of Average % for all 288 Commonality Strings 1.030 1.491 
  # of Improved Endpoint Values out of 288 Possible Endpoints 239 189 

200 Gens Average % of Baseline Values 100.6% 100.1% 
  Standard Deviation of Average % for all 288 Commonality Strings 0.786 1.475 
  # of Improved Endpoint Values out of 288 Possible Endpoints 253 197 

 

By searching for only the endpoints, the Parallel Optimization Method improves the 

objective values, repeatability and efficiency of the optimization. Ideally the optimization 

would be more repeatable, but due to the stochastic nature of the process there will 

always be some variance in the results. 
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CHAPTER 8  
 

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 
 

 

The methodology developed and demonstrated in this research should prove to be a 

valuable tool in making good commonality decisions.  It provides a logical procedure for 

the use of commonality in design while taking into consideration performance loss, cost 

and fleet savings.  In much of the literature about the use of commonality there is a basic 

recognition that the use of common components in design hinders the performance of a 

product. This loss in performance is accepted because of the savings associated with 

using common parts.  Prior to this research, the amount of savings is never really 

quantified. Instead, it has usually been assumed that the use of commonality always 

results in savings.  This research showed that positive savings is not always realized.  If 

poor commonality decisions are made in design, products could cost more and perform 

less. 

 

The mission performance model relied on the use of fuzzy utility values. Performance 

was determined using four design characteristics for each of four mission area and 

applying the corresponding fuzzy utility value to each. Sensitivity studies showed that the 

choice of these utilities can have significant impact on the resulting optimal designs. A 

designer could also modify this model to include more design characteristics or even 

more mission areas. The fuzzy utilities could be replaced with another tool, such as 

Brown’s Measures of Performance (MOP) which are essentially fuzzy utilities [Brown 

and Salcedo 2003], for awarding value to a given design characteristic. In short, the 

mission performance good easily be expanded or modified to meet the needs of a given 

designer. 
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Commonality decisions were limited to five components in this work. Each of these 

components was integrated into the design in a slightly different manner to show the 

versatility of the methodology and modeling. In this research there were a finite number 

of commonality options from which to choose. As a result, an exhaustive search was used 

to determine which commonality choices were the best.  If more commonality choices 

were available, another genetic algorithm could be used to more efficiently search for the 

dominant commonality combinations. 

 

Bulk purchasing and construction learning curves were used to determine the savings 

associated with the use of commonality.  The savings model was intentionally kept 

relatively simple. Other forms of savings could be realized as well. These could include 

training of personnel, technical design costs, administrative savings, facility costs and 

spare parts.  The type of savings and the number of different factors to consider varies 

with each product being designed. A designer may choose to make the savings model 

very elaborate when detailed information of these other forms of savings is available or it 

may be kept simple as seen in this research. 

 

Using the logical methodology described in this research will enable a designer to present 

much more complete analysis of commonality decisions in design.  Designers can expand 

the optimization model in many ways to adapt it to their particular needs. Regardless of 

how crude or elaborate it may become, the overall process can follow that developed 

here.   

 

The case study used to test the methodology revealed some interesting insights into the 

naval architecture aspects of the optimal use of commonality in this situation.  These are 

summarized here. 

 

1.  The optimization was sensitive to the discrete nature of the cruise engine and 

ship service generators databases.    The resulting two-dimensional Pareto 

front contained gaps resulting from the shift from one generator to another 
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within the database.   Adding additional generators to provide a more 

continuous array of generators is expected to reduce this tendency. 

 

2. The results were sensitive to the specific assignments of the fuzzy utilities for 

the effect of the performance characteristics on the vessel missions and there 

is a fine balance among the independent variables in achieving an optimum 

solution.  This indicates that the methodology is sensitive to the problem 

definition and that there is considerable value in formal optimization in this 

situation. 

 

3. Even though there were a large number of cruise engines and ship service 

generators in the respective databases, only two cruise engines and three ship 

service generators were ever present in the designs on the two-objective 

Pareto front.   This provided a logical and effective way to reduce the number 

of options for the commonality study. 

 

4. The synthesis model included the use of either Combined Diesel and Diesel 

(CODAD) propulsion plants or Combined Diesel or Gas Turbine (CODOG) 

plants.  Even though the current NSC design uses a CODOG plant, the 

analysis produced only CODAD designs for the Pareto front design for both 

the NSC and the OPC missions.   This is attributed to the consideration of 

acquisition cost and not life-cycle cost in the denominator of the 

performance/cost measure, which was a decision made to ensure 

independence of the performance over cost and the fleet savings objectives.   

Testing with life-cycle cost in place of acquisition cost did produce some 

Pareto front designs, at the left NSC end, with CODOG plants. 

 

5. The use of performance over cost is key to ensuring that a design is penalized 

for the over-design of the less capable vessel being considered for 

commonality.  This is a normal commercial approach to design, but not 

necessarily the approach used in naval design where performance is usually 
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given a higher priority than cost. This shift in measuring performance may be 

important for naval ship affordability in the future. 

 

6. The overall design of the vessels considered in the case study was heavily 

driven by the choice of the number of helicopter hangers since the aerial 

assets are key to the mission performance of these vessels.   This shift from 

designs with one helicopter hangar to designs with two parallel helicopter 

hangars also affected beam, length through the speed requirement, 

superstructure volume, etc.  The discrete jump in the Pareto front at this 

transition produced a significant discrete shift in vessel size and cost.  The 

final discrete three-objective Pareto front includes two distinct bands of NSC 

mission designs resulting primarily from the use of one or two helicopter 

hangars. 

 

7. The vessels on the Pareto front in the two-objective study were generally 

monotonic in the major characteristics from the low capability OPC end of the 

Pareto front to the more capable NSC end of the front, but not always.   In 

some cases for length, speed, and range this was not the case indicating the 

fine balance within the overall design to produce a non-dominated design. 

 

8. The use of common (smaller) ship service generators provided the largest fleet 

savings; the use of common (smaller) cruise engines provided the next largest 

fleet savings. 

 

9. The study of the designs on the two-objective Pareto front revealed that the 

designs tended to have one of two basic superstructure sizes depending upon 

the number of helicopter hangars.   This led to the consideration of a common 

superstructure as one of the commonality options.  The use of a common 

superstructure always produced a fleet savings. 
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10. The study of the designs on the two-objective Pareto front revealed that many 

of the designs tended to have essentially the same midship sections (beam, 

depth, CBMB, etc.).   This led to the consideration of common midship section 

hull blocks as one of the commonality options.  This did not, however, 

provide important fleet savings. 

 

11. Most likely the best design choice for the case study would be the pair of 

designs on the discrete Pareto front (designs NSCB6 B and OPCB6 B in Figure 7.6) 

that result in the greatest fleet savings while still maintaining the high 

performance/cost for the NSC mission design possible with the use to two 

helicopter hangars.  These design achieve 61.5% of the possible savings while 

achieving 100% of the mission performance for both designs. 

 

12. The pair of designs resulting in the highest fleet savings through commonality 

(designs NSCB10 B and OPCB10 B in Figure 7.2) were so close in basic 

characteristics, as shown in Table 7.25, that there should probably be a single 

vessel design for both missions with the additional savings from total 

commonality. 

 

The optimization methodology can be extended further with respect to its designated use, 

use of more common components, and the use of more elaborate cost savings functions.  

The methodology described in this research can be applied to non-Naval ship classes, the 

automobile industry and other consumer products.  Each of these industries can benefit 

from the use of this logical optimization methodology.  The case study that was used in 

this research used Coast Guard ships. Commercial ship design can also be applied to this 

methodology helping to lower the cost of portfolios of designs.  This research limited the 

number of possible common components to five. Further investigation could be 

conducted which examines the use of other common components.  The cost savings 

functions were limited to bulk purchasing and construction learning curves. As 

mentioned above, there are many other forms of savings that could be realized through 
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the use of commonality.  More research is possible in the examination and application of 

these forms of savings.    
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