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ABSTRACT

The general conclusions regarding the space-charge distribution
in a cutoff magnetron which were first presented in the Technical Report
No. 10 have now been very well established by experimental observations.
The report submitted here developes the statistical theory quantitatively
by successive approximations. A first-order approximstion of the distri-
bution in phase space is obtained in closed form. A nonphysical singu-
larity in this distribution is eliminated in the second=-order distribution,
which requires rough approximations or numerical methods for its solution.
A qualitative discussion of the second-order distribution and a comparison
with avallable experimental dats are included.

In addition, an idealized spproximation is discussed which is an
intuitively more satisfactory basis for a small-signal theory than the
Brilliouin distribution.

The important conclusions are (1) that the space charge in the
nonoscillating magnetron extends continuocusly to the anode and (2) that
the radial distribution is not very different from that of an oscillating
magnetron at small or moderate amplitudes of oscillation.
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STATISTICAL THEORY OF THE MAGNETRON SPACE CHARGE

I, Introduction

The space charge in an electron tube is essentially a dilute gas
formed by discrete electrons., Theoretical models for the behavior of such
space charge may therefore be borrowed from classical statistical mechanics.
However, in most tubes the "life time" or transit time of an electron be~-
tween electrodes is so short that simpler models suffice to give an adequate
description. The most powerful tools of statistical mechanics are available
and helpful primarily for the analysis of systems in or approaching thermo=-
dynamic equilibrium.

The state of a cut-off magnetron comes closer to such an equili-
brium than most electron configurations in vacuum tubes. There is evidence
that a sizeable fraction of the electrons remain in the gas for periods of
time that are extremely long compared to the time of flight, say, from the
cathode or potential minimum to a point as close to the anode as the mag-
netic field permits, and back again. Under these circumstances even very
weak interaction between the electrons may radically modify the distribution
of the electron gas in the space between anode and cathode. The steady-
state distribution will be approached more slowly, if the interaction or
random fluctuations of potential are extremely small, but until this state
is reached, the distribution must drift towards it.

Statistical mechanics offers a convenient language for the dis-

cussion and qualitative description of this problem, even if a complete
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quantitative solution may appear extremely difficult. Once the problem is
approached from this point of view, it becomes immediately clear that the
various space=-charge distributions originally proposed have very low entropy
and are extremely unlikely ever to occur in an actual tube, except possibly

as highly transient states.

II. Phase-Space Description of the Space-Charge Distribution

In a magnetic field of the flux density B = curl A, the general-
ized momentum of an electron of mass m and charge - is defined as the

vector

p =mu - q_eA (l)

if the electron is moving with velocity u.
The nonrelativistic energy of the electron in an electric field
of the scalar potential V is then
2
[p + qu] - qV (2)

-

i

1
W = 5 mu - qu =

Iet us consider a plane magnetron with its cathode plane at
y = 0 and anode at y = d; the uniform magnetic flux density directed

along the positive z-axls may be represented by a vector potential

A = By (3)
parallel to the x-axis. If for the moment conservation of energy and
momentum is assumed along the orbit of an electron in the magnetron, the
electron "energy state" may be said to be completely specified by the
components PP, and its energy W. These are the "constants of the
motion," while the potential energy -qu and the momentum component py
vary along the orbit. Actually, the conservation laws do not hold for

each electron individually; close encounters between electrons and small
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fluctuations of the potential perturb the orbits and may be said to produce

transitions from one energy state to another.

The simplicity of the plane configuration may be maintained and
still the dimensions kept finite by the conventional trick of cyclic boundary
conditions. An electron leaving in the positive x-direction may be thought
of as regppearing from the negative x-direction; the same rule may be applied
to the z-dimension.

The space-charge distribution and dynamics may be described by the
electron density in phase space or p-space, il.e, the six-dimensional space

with the coordinates x, y, 2, Pys Pos and P,. For the purpose of the present

y
analysis a subspace Yy, Py P will permit the study of all the essential

y
phenomena and boundary surfaces of the problem.
Each energy state is represented by an orbit in a ypy-plane of
this space. Only one such curve is associated with each point,
For any given potential distribution V(y) the regions in phase

space directly accessible to electrons emitted from the cathode can be

mapped. Equation (2) may be written

i = p =+ % +p,% = (o, +aBy)¥+p 7+

2
yo z - 2mq V (3)

z
where pyo is the y-component of the electron momentum at the moment it
crogsses the plane y = O. This equation may conveniently be written in
dimensionless form by dividing y by the anode-cathode distance d, the mo-

mentum by qud, and the potential by the cutoff voltage

qu2d2
Vv, = — (%)
giving the result
2 2 2 _ 2 2 2 _
Py * Py P, = +¥)T 4T 4R, -V (5)

All points in phase space that satisfy this equation with a real
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2 are accessible to electrons from the cathode

positive or zero value of pyo
emitted with the required momentum. Rearranging the terms we obtain

2 _ 2 2 _
0<pyy =Py +¥ -V+2py . (6)

The equality sign gives the equation for the boundary surface of
the accessible region. For constant y this equation represents a parabola
in a pxpy-plane. In the plane py = 0 the boundary is defined by the

relation

o, 25(H2.y) . (1)

Similarly a region can be specified for which all electron orbits

intersect the anode plane y = 1. The corresponding equations are

0 < pya2 = Py2 +y2 -1 -V + v, + 2px(y - 1) (8)
-(l—y2)+Va-V 1 V.-V
Py = 2(1 - y) -2 [I—:T;- - v+ l)J : (9)

These boundaries are shown qualitatively in Fig. 1. The solid
lines refer to the cathode-accessible region, the broken lines to the anode-
accessible region,

The shape of the region inaccessible from the cathode is that of
a distorted cone with its apex on the pX-axis, which is a generatrix of
the surface, This does not mean that electrons on this part of the axis
cannot escape from the cathode; they do, tangentially to the pxpyﬁplane,
and describe something like an elliptic orbit in a ypy-plane on the surface
of the cone. The orbit that reaches the anode forms the intersection be-
tween the boundaries of the cathode-accessible and anode-accessible regions.
It is the base plane of a distorted double cone, one apex of which is on

the line y = 0, p_ = 0, the other on the line y = 1, p_ = O.

y Yy
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If the cathode is a good emitter operating under space-charge-
limited conditions, the region between the cathode and the potential
minimum will be in an approximate equilibrium Jjust as in any diode at
current densities far below saturation. We shall set y = O at the poten-
tial minimum rather than at the cathode and assume that the space-charge
density automatically adjusts itself for zero potential gradient at this
point.

The population in the cathode-accessible region 1s determined by
the Maxwell-Boltzmann distribution at the potential minimum. The population
of the anode-accessible region is virtually zero, since the anode does not
emit electrons, and any electron appearing there will be captured by the
anode in less than one orbital period.

Between these two regions there 1s a volume characterized by the
act that electrons may remain there for very long periods of time. Con-
equently, as long as there exists any process whatsoever by which momentum

can be transferred between electrons in a random fashion, this "secular
region" will gradually fill up with electrons until the density reaches a
podnt where the outflux back to the cathode-accessible region and forward
to the anode-accessible region equals the influx from the cathode region.
When this condition is attained, a stable state has been established. This
secular space charge, the existence of which has been experimentally con-
firmed, has a decisive influence on the distribution of potential and charge
in the cutoff magnetron. It is therefore desirable to find a mathematical
model to describe the flow of electrons through the secular region, in
order that these distributions may be understood and predicted. We shall
attempt to do this in a subsequent section.

In an electron gas the exchange of momentum between particles is
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appreciably different from the corresponding process in an ideal gas formed
by neutral molecules of relatively large cross sections. In the neutral
gas two-body collisions constitute the predominant mechanism. In the elec-
tron gas two-body and three-body interaction may also produce appreciable
momentum changes but only rather infrequently. The electric field of each
electron, however, extends far beyond the effective collision cross section,
and the sum of the fields of all the electrons in random motion gives a
fluctuating rather than a constant potential at each point in space. These
fluctuations are extremely small but they are continuous and may have a
cumulative effect on the orbit of an electron. Both these two processes
contribute to the transitions that make the electrons drift into and through
the secular region. The transition probabilities depend in both instances:
on the population of the volume elements in phase space rather than on the
difference in potential. The drift is consequently in a certain sense a
diffusion process. The orbital convection currents that exist in the
secular region are important factors in the establishment of the steady
state, but they do not cross the boundaries. The drift of an electron
through this region from one boundary to the opposite @ne can only take
place through a long sequence of transitions from one energy state to
another,

It is interesting to consider the phase=-space distribution of the
classical magnetron solutions. The single-stream Brillouin solution is
concentrated into a single line along the y-axis in the (y’Px’Py) space
(Fig. 1) from the origin to the Hull radius Yy The lowest-order double-
stream solution occuples a single, nearly elliptic orbit in the ypy—plane,
also confined to values of y smaller than Vg These highly concentrated
configurations have very low entropy, or in other words, are highly

improbable in any physical multiparticle system that is left to itself for
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any appreciable time. Mathematical models for the behavior of magnetrons
based on such states may be useful for the prediction of physical phenomena

only in limited areas, such as pulsed operation.

III. Approximate Determination of the Space-Charge Distribution

The suggestion that the current in a cutoff magnetron is produced
by a process closely analogous to diffusion is the key to several approximate
methods of evaluating the space-charge distribution. The justifications for
this suggestion are

1. Only "transition current" (no "orbital current") crosses the
boundaries of the secular region, which can easily be subdivided into com-
partments for which the same statement holds.

2. The momentum changes are isotropic, i.e., the transition
probabilities are independent of sign and direction. Except at the anode
and cathode, conservation of momentum holds for the gas as a whole, though
not for each electron.

3. The infinitesimal momentum changes have by far the largest
probability, so that nearly all transitions may be considered taking place
between adjacent volume elements in phase space.

Under these conditions, the current is proportional to the concen-
tration gradient parallel to the momentum axes in phase space. The detailed
process by which the transitions take place, "preoscillations", potential
fluctuations, etc., is immaterial, as long as 1t is compatible with these
postulates. The space-charge distribution is independent of the "diffusion
coefficient", which however determines the time required to establish a
steady state and the amount of current flowing.

The simplest diffusion model of the cutoff magnetron is one-

dimensional; the space-charge density falls linearly from the potential



-9-
minimum to zero at the anode. In the normalized variables this model is

represented by the equations

_ 3 -
=5V (1-v) (10)
V=2V (32 -y°) (11)
- 2 a y 2
or in dimensional variables
3V e
p = —==(y - 4), (12)
ds
Va
V = — (3dy® - y°). (13)
233

Although quantitatively a rather crude approximation, this model
gives a much more realistic picture of the steady state of a nonoscillating
magnetron than the Brillouin and the double-stream models. It is a single-
stream model, and as such it is the steady-state counterpart of the transient
Brillouin model. It implies that all the electrons drift through the secular
region along the axis of the double cone. It is true that the density is a
maximum there; nontheless, this model is obviously an enormous oversimplifi-
cation. There is actually a continuous distribution of well-populated
elliptic orbits about the axis. Close to the electrodes a substantial
fraction of the current is orbital, and consequently a smaller concentration
gradient is required there to give the transition current necessary for
continuity.

Closer approximations may be obtained by solving the diffusion
problem in the three-dimensional phase space of Fig. 1. The solution may be

obtained in four successive operations.
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1. Calculate the boundaries of the secular region in
phase space.
2. Set the electron density equal to zero at the
boundaries of this region and find the "funda=-
mental mode of diffusion" through the secular
region, excited by a singular source at the apex
of the cone.
3. Study the input boundary zone between the populated
part of the cathode-accessible region and the
secular region (i.e., nonsingular excitation).
4, Integrate the density over all momentum coordinates
to obtain the density distribution in real space.
Self-consistency difficulties are involved, since the first
operation requires knowledge of the potential distribution, which is availa-
ble only after the fourth operation. A procedure of successive approxima-
tions may be followed, beginning with an assumed potential distribution. If
the process converges reasonably fast, the result of the first cycle of
operations may be accepted as an approximate solution.
The state represented by (10)-(1l) offers itself as a natural
zero-order approximation. However, in order to facilitate the second opera-

tion, we shall choose a constant charge density in real space

p=p,=-V, (14)

and
V=Vy®. (15)

The accessibility boundaries in the ypx-plane are then, according

to (7) and (9),
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P, = % v (Va -1) (from the cathode) (16)
and
P, =-% (y +1) (va - 1) (to the anode) . (17)
In a plane of constant P, the boundaries are in the same way
found to be
/ 2
2 -1/2! _ _a -1
P, + [yl +p,(1-V) J =p,~ (1 -V,) " (cathode) (18)
and

py2 + [yl +p, (1 - va)'l/g} =(p, + 1 -V )1 - va)'l (anode) . (19)

Here the y=-coordinate has been renormalized so as to make these

boundaries and all the corresponding orbit projections circular:

12

y1=y(1-V) (20)

In this momentum scale the distance between anode and cathode
shrinks to zero as the cutoff voltage is approached.

Figure 2 shows the shape of secular region obtained by this simple
model., The populated part of the cathode-accessible region enfolds the top
of the secular reglon near the origin. Everywhere else the density must be
zero along all the boundary surfaces.

Because of the cilrcular orbital currents in the secular region,
all circular volume elements in this region can be considered to have uni-
form density. For this reason an approximately equivalent double cone can be
constructed, the axis of which is perpendicular to the orbital planes (Fig. 3).
Since the altitude and base of the cone remain invariant under this transfor-

mation, the volume of the cone and of all circular volume elements are also
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FIG. 2 MAPPING OF THE SECULAR REGION IN PHASE
SPACE FOR THE FIRST-ORDER CALCULATIONS.
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FIG. 3 VOLUME - PRESERVING TRANSFORMATION OF THE
FIRST-ORDER SECULAR REGION.
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invariant; so is the density of any volume element specified by its orbital
radius and its altitude coordinate Py The diffusion from the apex of the
right-hand cone is, with a slight modification, the solution of Laplace's
equation in spherical coordinates (R,0,p). The density does not vary with
¢. The term representing diffusion in the ©-direction must be cut in half,
because no primary diffusion takes place in the y-direction; any displace-
ment in this dimension is orbital, subsequent to a change in momentum. The

solution is

72 72
p=A4R  + puR Pn(cos ) . (21)

The order n of the Legendre function is such that its first zero

occurs for the half-angle @ of the cone

L -1/2
o = O = arctan(l - Va) / . (22)

Since U5° < @ < 90°, n is between the limits 2.62 > n > 1.
A and p are constants determined by the radial boundary conditions.

If 75 is the larger exponent, the expression

p = BRy/2 P_(cos 6;) (2k)

is the density in the left-hand cone referred to the spherical coordinate
system centered on the apex to the left, where no source is located.

The fundamental diffusion modes described by (21) and (24) cannot
be made to match with respect to density and gradient at the common base
surface of the two cones; an infinite number of modes involving higher-order
Legendre functions are required. However, an approximate result may be
obtained by equating (21) and (24) on the axis (6 = ©8; = 0) and neglecting

the higher-order modes. The coefficients are found to be
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1 2
H =57 Pu (25)
and
75 = 71
1 2
B=(—+1 . A
(5o + 1) py (26)

where Py is the altitude of each half of the double cone.

The approximate density in phase space 1s now known everywhere,
except for the constant factor A. Integration with respect to Py and py
yields the density variation with y. After integration of Poisson's equa-
tion, this constant is obtained from the potential difference between the
anode and the potential minimum,

Since the density is a maximum along the axis of the secular
space, a significant sample of the space-charge distribution may now easily
be obtained by calculating the charge in a narrow conical volume element in
each cone. Projected on the y-axis this charge is shown in Fig. 4 for two
different anode voltages. The final integration is roughly equivalent to
scanning this plot by means of a rather broad aperture function.

The resulting first-order space-charge distribution differs con-
siderably from the one originally assumed; in other words, the solutlon is
still far from selfconsistent. The singularity at y = O is obviously non-
physical. There are two circumstances that contribute to smoothing out the
distribution close to the cathode. The apex of the cone is moved far
towards positive Pys 80O that the exciting Maxwell-Boltzmann distribution
forms an annular source around the cone at Py = O. The second circumstance
is the rapidly growing flaring angle of the "cone" in the direction toward
its base plane (Fig. 5). The first point is most important close to cutoff;

the second becomes particularly significant far from cutoff. The orbits
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FIG. 5 SHAPE OF THE SECULAR REGION IN THE
SECOND APPROXIMATION.
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in the pyy-planes are no more circles; a closer analysis reveals that the
axls of maximum density is displaced in the direction of the anode.

The boundary conditions at the source require an infinite number
of modes corresponding to (21) and (24), the former type between the source
and the base plane, the latter type to the right of the source and to the
left of the base plane of the cone, but the fundamental modes have still
the largest amplitude. Since the "flaring constaent” n now varies with R,
neither the Legendre function nor the radial function of (21) and (24) are

applicable except as rough approximations.

IV. Confirmation and Conclusion

The Justification for the semi-quantitative theory outlined -above
is the intuitive insight it gives in the formation and structure of the
steady-state distribution rather than any accurate prediction of this dis-
tribution for given operating conditions. All the essential features of
the theory are in very good agreement with measured data; from this fact we
may infer that this intuitive insight is correct and useful.

I shall not here review all the available data. Peterson® proved
beyond any reasonable doubt that the population in the secular region may
be several times as large as that in the region accessible from the cathode.
He also found very strong evidence for a double-stream condition in the
cathode-accessible region, which is a necessary conclusion from the discus-
sion of the second-order solution above, i.e., the formation of an annular
source in this region. As a probe he employed a beam of electrons parallel
to the axis of the magnetron. The most complete density data at the time of
writing have been published by Nedd.erman,3 who colliminated and measured the
radiation from traces of gas excited by electron impact. This method gives

excellent data except in the cathode region, where the electron energy is
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too small (< 20 electron volts) to excite the gas particles. Figure 6 is a
sample of Nedderman's data. His magnetron had anode and cathode radii of
0.36 and 0.22 inches, respectively. The dashed curve at the top of the graph
is the Hull-Brillouin density at cutoff. The arrows indicate the edge of the
cloud according to the Brillouin theory. It can easily be verified that the
valley at the left is nearly entirely due to the omission of low-velocity
electrons from the data. The most striking aspects of these data are the
facts that the space-charge extends continuously from cathode to anode and
that there is no conspicuous relation between the space-charge geometry and
the "Hull radius."

Figure 7 has been replotted from Nedderman's data to show the
dependence of the distribution on the magnetic field at nearly constant
voltage. The decrease of the exponent 75 of (d-y) close to the anode, as the
cutoff condition is approached, is indicated by the curves, in agreement with
the theory. The faintly curved line in this graph is the linear approximation
(12) translated to cylindrical geometry.

According to the investigation presented above both theory and
experiment indicate that already in the nonoscillating magnetron essentially
the same radial charge distribution is established as prevails in the oscillat-
ing magnetron, the difference being primarily the variation with the azimuthal
coordinate and the radial rate of flow. This is simply an extrapolation of
the fact that the distribution calculated above is independent of the diffusion
coefficient; the latter determines the current and the time required to reach
a steady state but not the final charge distribution.

A small-signal theory established on the basis of a small perturba-
tion on the Brillouin distribution suffers from the weakness that the whole

space~-charge configuration has to change radically, as soon as oscillations
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start. In other words, there are two reasons for instability, the interac-
tion of the electrons with the circuit, and the breakup of the Brillouin
distribution. If the theory is based on an idealized laminar-flow steady-
state such as the one presented in equations (12) and (13), on the other
hand, these objections are overcome and an intuitively much more satisfactory
foundation has been laid. Crude as this approximstion may be, it is a sig-
nificant improvement as a starting point for a small-signal theory of cw
magnetrons.

The theory and the measurements confirming it also have some
implications as far as the oscillating cw magnetron is concerned. An
efficient magnetron oscillator operates far below the cutoff yoltage; the
oscillating state consequently originates from a space-charge distribution
that outside the potential minimum is only a small fraction of the Brillouin
density. The density can hardly be expected to increase essentially during
oscillation. However, the reduced transit time and the increasingly organ-
ized flow of the electrons at larger amplitudes of oscillation make the
statistical elements less important, so that more specific inferences as to
the space~-charge distribution become doubtful., In this light it may still
be permissible to make the observation that no sharp border line is to be
expectedrat small amplitude levels between a "hub" and the "spokes" of the

revolving space-charge wheel in a cylindrical magnetron oscillator.



APPENDIX

CALCULATION OF THE DENSITY IN THE SECULAR REGION

With reference to Fig. 3 the first problem is to find the density
in a given s0lid angle of a sphere. The current is assumed to be propor-
tional to the density gradient only. The only source is at the origin, i.e.,

the apex of the right-hand cone.

J =D grad p (27)

]

and

divd =0 . (28)

]

The second equation expresses continuity under steady-state conditions.
Considering the fact that no variations occur with ¢, the Laplaclan in
spherical coordinates is

a" =0 . (29)

R2 3- <R2 5e>

This equation must be corrected for the absence of diffusion in

sin O
2 in@E

the y-dimension. Actually, neither the R-component, nor the &-component of
the isotropic flow (29) is orthogonal to the y-direction, but since the
highest densities occur along the axis, which is orthogonal to yy; in the
modified geometry, we may on an approximate basis apply a correction to the
6-component only by multiplying the second term in (29) by one half; from
symmetry each one of two Cartesian dimensions in a plane perpendicular to R
accounts for exactly half the radial current in this plane. The lack of
orthogonality between R and y; .could be taken into account by means of another
factor somewhat larger than one and dependent on the half-angle & of the cone.
The equation (29), modified by the first-mentioned correction factor,

separates into the equations:
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9% dp
3252R+2R-5R—R-q2pR=O (30)
R
and
_ 3
o5 (o xD)r et e =0 - (51)

which have the solution given in equation (21) above. The separation con-
stant q® satisfies the relations
¥ +7-9°=0 (32)

and
n(n + 1) = 2¢% . (33)

After the integration constants have been determined, (25) and (26),
the y-variation of the fundamental diffusion mode is obtained by integration
over the right and left halves of the secular region between the limits

equivalent to y; and y; + dy:.

p(y1) dyy =f pRZ sin 6 AR d6 dg

CYI:dyl)
+ f PR1% sin ©; dR; do; do, (34)
(y1,4y1)
where
y1 = R(cos © cos @ + sin © cos ¢ cos Q) « (35)

The most serious discrepancy between the resulting density dis-
tribution and the one assumed to begin with 1s the extremely rapid variation
and high density obtained close to the potential minimum. The exponent 7;
may have values down to about -1.6. As a basis for the discussion of the
second-order secular region (Fig. 5), let us assume that the density varies

inversely as the 3/2 power of the distance from the singular point. For
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physical reasons the density at the potential minimum is matched to this
distribution a finite distance y_ from the singularity. The "virtual"
singularity thus falls at y = ¥, outside the region under study. Integrat-
ing Poisson's equation with the obvious boundary conditions at y = 0, we

obtain the potential in the vicinity of the minimum
1/2 -1/2 1/2
V(y)=0{2(y+yo)/-y-yo/-2yo/}- (36)

Consequently the boundary of the region accessible from the

cathode in the pxy—plane is

= -%‘yo'l/g]-%y . (37)

The corresponding boundary for anode-accessibility is

/2 1 -1/2
(v + YO) (2 + yo)yo _ % yo'l/z] - %-(y +1). (38)

pxsc[

These boundaries have the qualitative appearance shown in Fig. 5.

y -1

The axis of the secular region along which the density 1s largest
can be found from the fact that py has its maximum for the value of y cor-

responding to this axis. For given Py the equation of such an orbit is

(pX + )2 + py2 - V(y) = const. (39)
Consequently
-2p 31?1=2(J@ iy - =0 (o)
Yy dy X dy
or

p=%%‘§-y . (k1)
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This equation represents a line in the ypx-plane, which is the
axis of the secular region for a given potential distribution V(y). We
now want to compare the ordinates y; on this line with the ordinates y, on

the line (7) representing the accessibility boundary:

BV g <y(Y2) ) y2 . (42)

In these equations let us introduce the potential

e
1
mh*

V(y) = v, - el (43)
and compute the ratio
-2 >1f 2
¥y VPY:LP -2 TP~
2;_ _2 =1 p=2 (J—l-)-l-)
<1l p<?2

The inequalities are found by small variations from the condition
p = 2, which represents the circular orbits used in the first-order
calculations above.

In the first-order sample shown in Fig. 4 the discontinuity in the
derivative always gccurs at y = 1/2 because of the circular orbits assumed.
In Fig. T, on the other hand, the rapid change in slope happens closer to
the anode, particularly far from cutoff, i.e., where the exponent differs

the most from 2, in good agreement with the second-order theory.
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