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ABSTRACT Alterations of molecules that mediate dopaminergic signal transduc-
tion have been found in schizophrenia, supporting the hypothesis of altered dopaminer-
gic neurotransmission in this illness. To further explore this hypothesis, the authors
measured transcript expression of three proteins involved in dopamine (DA) signaling
in postmortem dorsolateral prefrontal and anterior cingulate cortex of elderly schizo-
phrenic subjects and a comparison group. The transcript encoding calcyon, a protein
that potentiates crosstalk between D1 DA receptors and Gq/11-linked receptors, was
increased in schizophrenic prefrontal and cingulate cortex by 25%. Transcript levels of
spinophilin, a protein enriched in dendritic spines that modulates excitatory neuro-
transmission, were increased 22% in dorsolateral prefrontal cortex but were unchanged
in anterior cingulate cortex in schizophrenia. Levels of DARPP-32 mRNA, a downstream
effector of dopaminergic neurotransmission, were similar in both groups for both corti-
cal groups. These alterations in spinophilin and calcyon mRNA levels in schizophrenic
prefrontal and cingulate cortex provide further evidence of altered dopaminergic neuro-
transmission in this illness. Synapse 60:271–279, 2006. VVC 2006 Wiley-Liss, Inc.

INTRODUCTION

Numerous studies have implicated dysregulation in
neurotransmitter systems in the pathophysiology of
schizophrenia (Benes, 2000). Dopamine (DA) dysfunc-
tion is often implicated, and one of the most convincing
pieces of evidence for dopaminergic abnormalities in
schizophrenia is the near universal use of DA receptor
antagonists to treat this disorder (Bennett, 1998; Emi-
lien et al., 1999; Lidow et al., 1998). Since antipsy-
chotic medications bind to the D2-like DA receptors, a
compelling hypothesis is that schizophrenia is associ-
ated with abnormal DA receptor expression or func-
tion. Although DA receptor abnormalities have been
found in schizophrenic brain (Abi-Dargham et al., 2002;
Meador-Woodruff et al., 1997; Suhara et al., 2002;
Tuppurainen et al., 2003), results have been inconsis-
tent, suggesting that dysregulation may be more com-
plex than simple abnormality in DA receptor number
or expression.

An alternative hypothesis is that dysfunction in the
molecules that mediate the cellular response to DA
agonist binding may be associated with the pathophys-
iology of schizophrenia. This idea is intriguing in that
many of the same proteins mediate the effects of sev-

eral different neurotransmitter systems, many of which
have been suggested to be dysregulated in this disease.
A hypothesis of abnormal expression or regulation of
DA-interacting proteins in the pathophysiology of schizo-
phrenia is supported by several studies. Recent studies
have found alterations in the levels of the DA-interact-
ing protein, calcyon, in schizophrenic brain (Bai et al.,
2004; Clinton et al., 2005; Koh et al., 2003a). Calcyon
was identified via a yeast two-hybrid screen using the
C-terminus of the D1 DA receptor as bait (Lezcano
et al., 2000). Calcyon potentiates crosstalk between
Gs-coupled D1 DA receptors and Gq/11–coupled recep-
tors of other neurotransmitter systems, leading to
increased intracellular calcium release in response to
DA agonist binding (Lezcano et al., 2000). Calcyon has
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also been shown to regulate the affinity state of D1 DA
receptors (Lidow et al., 2001a).

Another component of the DA signaling cascade,
DARPP-32, has also been reported to be altered in
schizophrenic brain (Albert et al., 2002). DARPP-32
(DA and cAMP-regulated phosphoprotein of 32 kDa) is
phosphorylated in response to DA agonist binding to
the D1 class of DA receptors and dephosphorylated in
response to DA agonist binding to the D2 class of DA
receptors (Greengard, 2001). Phosphorylated DARPP-
32 inhibits protein phosphatase-1 (PP1), which affects
changes to neurotransmitter receptors, voltage-gated
ion channels, ion pumps, and transcription factors
(Greengard, 2001).

Spinophilin is another molecule that may be critical
to the response to DA receptor stimulation. Spinophilin
interacts with the third cytoplasmic loop of the DA D2
receptor (Smith et al., 1999). Spinophilin is enriched in
dendritic spines, a major site of synaptic activity within
the central nervous system (Allen et al., 1997). This pro-
tein binds to both PP1 and the cytoskeleton (Allen et al.,
1997; Satoh et al., 1998). By controlling the localization
of PP1, spinophilin has been hypothesized to control the

actions/responses of PP1 to stimulation of DA receptors,
as well as other types of neurotransmitter receptors
(Hsieh-Wilson et al., 2003).

To test the hypothesis of abnormalities in DA receptor-
interacting proteins in schizophrenia brain, we analyzed
the expression of mRNA encoding calcyon, DARPP-32,
and spinophilin in schizophrenic and control brain. We
undertook our study in the dorsolateral prefrontal cortex
(DLPFC) and anterior cingulate cortex (ACC), since sub-
stantial evidence has suggested a deficit in these regions
in this illness (reviewed in Bunney and Bunney, 2000;
Lewis and Lieberman, 2000).

MATERIALS AND METHODS
Subjects

Eighteen elderly patients with schizophrenia and 11
nonpsychiatrically ill individuals were studied (Table I).
These subjects were all from the Mount Sinai Brain Col-
lection, which we have studied extensively in the past
(Clinton et al., 2003, 2005; Gupta et al., 2005; Ibrahim
et al., 2000; Richardson-Burns et al., 2000). Fresh frozen
blocks of DLPFC (Brodmann area 9) and ACC ([ACC],
Brodmann area 32) were cryostat-sectioned (14 lm).

TABLE I. Demographic and clinical characteristics of schizophrenic and comparison subjects examined postmortem for cortical expression of
dopamine receptor signaling molecules

Subject Sex Age PMIa PH Cause of death Medication

Control
1 F 79 3.0 6.3 Cardiopulmonary failure None
2 F 96 3.3 6.7 Cardio respiratory failure None
3 F 90 4.1 6.0 Cardiopulmonary failure None
4 M 69 4.3 6.3 Unknown None
5 F 64 19.1 6.1 Pulmonary edema None
6 M 93 19.0 6.4 Congestive heart failure None
7 F 102 7.1 6.5 Acute myocardial infarction None
8 F 73 3.4 6.3 Acute myocardial infarction None
9 F 79 7.7 6.5 Acute myocardial infarction None

10 F 84 18.5 6.2 Unknown None
11 M 101 4.7 6.8 Coronary artery disease None
Totalb 3M/8F 85 6 13 8.6 6 6.8 6.4 6 0.2

Schizophrenia
1 F 86 6.9 5.8 Respiratory insufficiency,

renal failure
None in last 6 months

2 F 84 15.6 6.2 Unknown None in last 6 months
3 M 84 6.2 6.5 Cardiopulmonary failure None in last 6 months
4 M 69 4.5 6.4 Cardiac infarction, renal failure Haloperidol, fluphenazine,

trifluoperazine, chlorpromazine
5 F 65 5.8 5.9 Cardiopulmonary failure None in last 6 months
6 F 69 13.7 6.2 Cardio respiratory failure Haloperidol
7 M 87 11.2 6.5 Cardiopulmonary failure Trifluoperazine, chlorpromazine
8 M 68 5.6 6.8 Cardiopulmonary failure None in last 6 months
9 F 79 20.4 7.1 Cardiopulmonary arrest, cancer

of pancreas
Thioridazine, thiothixene

10 M 85 5.3 6.3 Cardiopulmonary arrest Fluphenazine, chlorpromazine
11 M 73 7.9 6.5 Cardio respiratory failure Haloperidol, fluphenazine
12 M 66 12.1 6.5 Acute cardiac failure None in last 6 months
13 F 76 21.2 6.1 Cardiogenic shock Haloperidol
14 M 97 9.3 6.5 Cardiopulmonary arrest Haloperidol
15 M 66 8.4 6.7 Cardiopulmonary arrest Haloperidol, trifluorperazine,

chlorpromazine,
thiothixene, thioridazine

16 F 82 18.8 6.6 Cardiopulmonary arrest None in last 6 months
17 F 79 9.9 6.8 Cardiac arrest None in last 6 months
18 M 68 17.3 6.6 Cardiopulmonary arrest Olanzapine, risperidone,

thiothixene, fluphenazine,
thioridazine

Totalb 10M/8F 77 6 9 11.1 6 5.5 6.4 6 0.3

aPMI, postmortem interval in hours.
bNumbers expressed as mean 6 standard deviation.
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Sections were mounted on Superfrost Plus microscopic
slides (Fisher Scientific, Pittsburgh, PA) and stored at
�808C until use.

In situ hybridization

To generate subclones for riboprobe synthesis, unique
regions of calcyon (Genbank accession number: AF225903,
nucleotides 120–509), DARPP-32 (AF233349, nucleotides
12–274), and spinophilin (AF016252, nucleotides 2423–
2905) genes were amplified from a human brain cDNA
library using PCR. Amplified cDNA segments were ex-
tracted (QIAquick gel extraction kit, Qiagen, Valencia,
CA), subcloned (Zero Blunt TOPO PCR cloning kit,
Invitrogen, Carlsbad, CA), and confirmed by nucleo-
tide sequencing. Linearized subclones were used to
synthesize [35S]-UTP-labeled riboprobes. In situ hybridi-
zation was performed on dehydrated and acetylated
slides, as previously described (Oakman and Meador-
Woodruff, 2004). Two slides per subject were used for
each probe. Hybridization was allowed to occur over-
night at 558C and posthybridization washes were per-
formed. Dehydrated slides were apposed to film (Kodak
BIOMAX MR) along with [14C] standards (Amersham
Biosciences, Piscataway, NJ) for either 14 days (DARPP-
32 and spinophilin) or 11 days (calcyon).

Imaging and statistical analyses

Autoradiographic images were acquired from films
using a CCD camera and NIH Image 1.61. Analysis of
mRNA expression was undertaken on a layer-by-layer
basis. To quantify mRNA expression per cortical layer,
we identified bands of similar expression level (isodense
bands) and determined the mean grayscale value per
band. To determine the correspondence between iso-
dense bands and cortical layer, nissl-stained sections
of representative areas were examined, and the rough
correspondence between each isodense band and layer
are shown (Figs. 2–4). Since the ACC area we studied
(Brodmann area 32) does not have a well-defined
Layer IV (Stark et al., 2004), we have identified this
region of the cortex as a transitional zone between
Layers III and V.

Tissue background values from the underlying white
matter were subtracted from the grayscale values for
each isodense band. Corrected grayscale values were
then converted to optical density and subsequently to
femtomoles of mRNA per gram tissue (fmoles mRNA/g).
The latter values were determined using [14C] stand-
ards, the number of uridine nucleotides in each ribo-
probe, and the specific activity of the [35S] UTP, as de-
scribed previously (Clinton et al., 2003; Mueller et al.,
2004).

For each probe and cortical region, a mean value for
each isodense band was determined for each subject.
Multiple linear regression and correlation analysis
was performed to test for associations between gene

expression and postmortem interval, age, and/or tissue
pH. When significant correlations were detected, we uti-
lized analysis of covariance as our primary statistic.
Otherwise, our dependent measures were analyzed by
factorial analysis of variance with diagnosis and cortical
lamina as independent variables. For all statistical ap-
plications, we used the Statistica (Statsoft, Tulsa, OK)
software package forWindows 2000. For all tests, a ¼ 0.05.

Antipsychotic-treated rat experiments

To test the effects of antipsychotic treatment on cal-
cyon, DARPP-32, and spinophilin transcript expres-
sion, adult male Sprague-Dawley rats (250 g) were
injected with the typical antipsychotic haloperidol, the
atypical antipsychotic clozapine, or vehicle. Subcuta-
neous injections of haloperidol [(2 mg/kg in acidified
dimethyl sulfoxide (DMSO)], clozapine (20 mg/kg in
acidified DMSO), or vehicle (acidified DMSO) in 250 ll
were performed once daily for 28 days. The pH of the
solution was 4.5. The rats did not appear to experience
any negative reactions to the injections, other than the
transient discomfort associated with the actual injec-
tion. Rats were sacrificed 24 h after the last injection.
Brains were extracted, immediately frozen, and sub-
sequently cryosectioned into 15 lm coronal sections.
Sections were mounted on Superfrost Plus microscope
slides (Fisher Scientific, Pittsburgh, PA), desiccated,
and stored at �808C until use. In situ hybridization,
image analysis, and statistical analyses were performed
as described above, with the following exceptions: (1)
film development after hybridization was 2 days for
spinophilin and 5 days for calcyon and DARPP-32; (2)
mRNA levels were determined for the entire thickness
of frontal cortex (not per individual layer); and (3) data
were analyzed via one-way ANOVA; the independent
and dependent variables were treatment and mRNA
concentration, respectively.

RESULTS

Calcyon mRNA was abundantly expressed in DLPFC
and ACC, and both areas exhibited a band of high ex-
pression corresponding to Layer III (Fig. 1). Calcyon
mRNA levels were increased in schizophrenic cortex;
there was a significant main effect of diagnosis for
DLPFC (F ¼ 10.0, df ¼ 1, P < 0.002) and for ACC (F ¼
11.5, df ¼ 1, P < 0.001). No significant diagnosis-by-
layer interaction was found in either cortical region.
Calcyon transcript expression in schizophrenic cortex
was increased by �25% across all layers, with the
highest increase (�32%) in Layer II.

Analysis of DARPP-32 transcript expression in
DLPFC and ACC revealed DARPP-32 mRNA in all corti-
cal layers, with slightly increased expression in Layers
V and VI (Fig. 2a). In the DLPFC, we detected an asso-
ciation between DARPP-32 mRNA expression and pH
(r ¼ 0.20, P < 0.02). Schizophrenic and control cortex
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exhibited similar levels of DARPP-32 transcript expres-
sion (Fig. 2b), and no significant effect of diagnosis was
found for either DLPFC or ACC.

Spinophilin mRNA was present in cortex, albeit at
lower levels than that of DARPP-32 or calcyon (Fig. 3).
All cortical layers expressed spinophilin transcript;
Layers II, V, and VI exhibited slightly higher message
levels (Fig. 3a). In DLPFC, we found an association
between spinophilin mRNA expression and age (r ¼
0.22, P < 0.006) and pH (r ¼ 0.28, P < 0.0008). Using
ANCOVA, we detected an increase in DLPFC spinophilin
mRNA in schizophrenics compared with controls (F ¼
8.4, df ¼ 1, P < 0.004; Fig. 3b). No significant diagnosis-
by-layer interaction was found. The increase in spinophi-
lin mRNA in schizophrenic DLPFC was �22% across all
cortical layers, with the largest increase (33%) in Layer
II. In ACC, we found an association between spinophilin
mRNA expression and PMI (r ¼ 0.29, P < 0.0001). In
contrast to DLPFC, spinophilin transcript levels in schizo-
phrenic and control ACCwere similar (Fig. 3b).

To determine whether the observed differences
between schizophrenic and control mRNA levels were

possibly due to the effect of antipsychotic drugs com-
monly used to treat schizophrenia, we studied the effect
of two antipsychotic medications, haloperidol and cloza-
pine, on mRNA levels in cortex. Adult rats treated
with these medications for 4 weeks exhibited calcyon,
DARPP-32, and spinophilin transcript levels similar to
vehicle-treated animals (Fig. 4). Thus, antipsychotic
treatment had no effect on calcyon, DARPP-32, or spino-
philin mRNA levels in adult rat frontal cortex.

DISCUSSION

The main findings of this study are increased tran-
script expression of calcyon and spinophilin mRNA in
DLPFC of schizophrenic patients and increased ex-
pression of calcyon mRNA in ACC. These increases
are not likely to be medication effects, as rats treated
with the antipsychotics haloperidol or clozapine dem-
onstrated no change in mRNA in frontal cortex for
either of these molecules studied.

Our results of increased calcyon transcript in schizo-
phrenic cortex are in agreement with previous studies

Fig. 1. Calcyon mRNA expression in DLPFC and ACC. Represen-
tative in situ hybridizations of schizophrenic cortex (a). mRNA
expression in each cortical layer was assessed via identification of
isodense bands (a–d). The corresponding cortical layers are shown at
right. Quantification of calcyon mRNA in control and schizophrenic

cortex (b). Calcyon transcript was upregulated in the cortex of schizo-
phrenia subjects. Both cortical areas exhibited a significant main
effect for diagnosis; schizophrenics (n ¼ 14[DLPFC], n ¼ 16[ACC]),
controls (n ¼ 8[DLPFC], n ¼ 11[ACC]).
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demonstrating increased calcyon in schizophrenic
brain at the transcriptional and translational level.
Upregulated protein levels have been found in the
DLPFC of schizophrenic cases from the Stanley Foun-
dation Collection (Koh et al., 2003a), as well as pre-
frontal cortex of schizophrenic cases from the Mount
Sinai/Bronx V.A. Medical Center Brain Bank (Bai
et al., 2004). Using real-time RT-PCR analysis, Bai
et al. (2004) found significantly increased mRNA levels
in patients from the Mount Sinai/Bronx V.A. Medical
Center Brain Bank, the same brain collection as used
in this study. Thus, using two different methodologies
to examine mRNA levels, this study and that of Bai
et al. (2004) found increases in prefrontal cortical cal-
cyon mRNA expression. In addition to these results in
prefrontal cortex, schizophrenic cases from the Mount
Sinai/Bronx V.A. Medical Center Brain Bank demon-
strate increased calcyon mRNA in ACC (this study)
and thalamus (Clinton et al., 2005). Collectively, these
studies provide convergent evidence of increased cal-

cyon mRNA and protein in schizophrenic brain. Our
experiments in rat and those of Lidow et al. (2001b) in
primate suggest that calcyon transcript and protein
are not regulated by antipsychotic treatment and that
the changes in schizophrenic brain may be associated
with the illness itself.

In control and schizophrenic DLPFC and ACC, cal-
cyon mRNA was expressed throughout all cortical
layers, with increased expression in layers II/III, simi-
lar to that seen in primate (Oakman and Meador-
Woodruff, 2004) and in rat (Zelenin et al., 2002). Thus,
our studies suggest abundant expression of calcyon in
Layer III pyramidal cells, as described by Lezcano
et al. (2000), but also may indicate expression in other
cell types. In addition, the increased calcyon mRNA in
schizophrenic cortex was throughout all cortical layers,
and not confined to one cortical layer.

Since calcyon has been found to interact with the D1
DA receptor (Lezcano et al., 2000), the increased cal-
cyon levels in schizophrenic brain may impact DA D1

Fig. 2. DARPP-32 mRNA expression in DLPFC and ACC of schizophrenic and control patients.
Representative transcript expression in the two cortical areas studied (a). Analysis of DARPP-32 tran-
script expression revealed no significant difference in DARPP-32 mRNA expression in schizophrenic vs.
control cortex (b). In addition, there was no interaction between diagnosis and layer for either cortical
region studied; schizophrenics (n ¼ 15[DLPFC], n ¼ 16[ACC]), controls (n ¼ 9[DLPFC], n ¼ 11[ACC]).
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receptor signaling. D1 DA receptor functioning is
abnormal in the schizophrenic prefrontal cortex
(reviewed in Goldman-Rakic et al., 2004; Laruelle
et al., 2003), as evidenced by altered D1 DA receptor
binding and impaired cognitive functioning, which is
likely D1 receptor mediated (Abi-Dargham et al., 2002;

Okubo et al., 1997). However, the precise function of
calcyon in mediating D1 DA receptor signaling re-
mains to be elucidated. In addition, studies in rat
(Zelenin et al., 2002) and in primate (Oakman and
Meador-Woodruff, 2004) have found considerable dis-
parity in the expression patterns of calcyon and the
D1 DA receptor, with calcyon exhibiting a much wider
expression pattern than would be expected for a mole-
cule solely involved in D1 DA receptor signaling. Con-
sequently, further studies are needed to determine the
exact function of calcyon in D1 receptor signaling and
to determine whether calcyon plays a role in mediating
the signal transduction of other neurotransmitter systems.

Analysis of DARPP-32 mRNA expression in human
prefrontal cortex found low-level widespread distribu-
tion of this transcript throughout Layers II-VI of the cor-
tex, similar to that described previously by Brené et al.
(1994). DARPP-32 protein in monkey cerebral cortex
has been localized to neurons, primarily in layers V–VI
and also in layers II–III (Berger et al., 1990; Ouimet
et al., 1984, 1992), similar to the distribution of DA re-
ceptor-positive neurons (Brené et al., 1995). Comparison
of DARPP-32 transcript expression levels in schizo-
phrenic vs. control brain found no difference between
the two groups in either of the cortical regions exam-

Fig. 3. Spinophilin transcript expression in schizophrenic and control cortex. Representative in situ
hybridizations from DLPFC and ACC (a). Quantification of spinophilin mRNA revealed increased
expression in schizophrenic cortex in DLPFC, but not ACC (b); schizophrenics (n ¼ 14[DLPFC], n ¼
14[ACC]), controls (n ¼ 9[DLPFC], n ¼ 11[ACC]).

Fig. 4. Effect of antipsychotic treatment on calcyon, DARPP-32,
and spinophilin mRNA. Adult rats were treated for 4 weeks with clo-
zapine, haloperidol, or vehicle. Quantification of calcyon, DARPP-32,
and spinophilin mRNAs in frontal cortex revealed no change in tran-
script levels after antipsychotic treatment.
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ined. Our investigation of DARPP-32 mRNA levels in
thalamus also found no difference between schizo-
phrenics and controls (Clinton et al., 2005). In contrast,
assessment of DARPP-32 protein levels in DLPFC via
Western blot found schizophrenic subjects exhibited
decreased DARPP-32 protein levels compared with con-
trol subjects (Albert et al., 2002). Thus, DARPP-32 may
be altered in schizophrenics at a translational, but not a
transcriptional, level. The present study and a previous
study also in rat (Grebb et al., 1990), as well as examina-
tion of Alzheimer’s subjects treated with haloperidol
(Albert et al., 2002), suggest antipsychotics do not alter
DARPP-32 expression.

The expression pattern of spinophilin mRNA was
similar to that of DARPP-32—low levels were found
throughout Layers II through VI of the cortex. Simi-
larly, in monkey prefrontal cortex, spinophilin protein
is widely expressed throughout all cortical layers (Muly
et al., 2004). Spinophilin mRNAwas increased by �22%
in schizophrenic DLPFC compared with control. In con-
trast, no difference was found between mRNA levels in
ACC of schizophrenic vs. control brain.

In agreement with a previous study examining the
effects of short-term antipsychotic treatment of rats on
spinophilin transcript expression (Law et al., 2004a),
we found no effect of antipsychotic treatment on spino-
philin mRNA levels in rat frontal cortex. However, a
previous study found long-term exposure (�1 year) to
haloperidol resulted in a �25–30% decrease in spino-
philin protein in monkey prefrontal cortex (Lidow et al.,
2001b). Since long-term antipsychotic treatment is likely
more comparable with that received by schizophrenic
patients, DLPFC mRNA levels could actually be more
upregulated in schizophrenia than reported here.

In contrast to our finding of increased spinophilin
transcript in schizophrenic cases in DLPFC, a study
utilizing Northern blot to analyze spinophilin tran-
script expression in DLPFC found no change in spino-
philin message levels compared with control (Weickert
et al., 2004). Spinophilin mRNA levels in thalamus of
schizophrenic patients from the Mount Sinai Medical
Center Brain Bank were found to be increased (Clinton
et al., 2005). In contrast, spinophilin mRNA was de-
creased in several regions of schizophrenic hippocam-
pal formation (Law et al., 2004b). The only study to
examine protein levels of spinophilin in schizophrenic
brain found no difference between schizophrenic and
control prefrontal cortex in Stanley Foundation Collec-
tion tissue (Koh et al., 2003a).

One possible explanation for the differing results be-
tween studies is that the amount of spinophilin mRNA
may not reflect the amount of spinophilin protein. For
example, transcription of spinophilin mRNA may be
increased in an unsuccessful attempt to maintain a
higher level of protein. An additional explanation for
these disparate findings is that changes in spinophilin
expression may be region-specific; previous studies

have suggested impaired connectivity between the
DLPFC and the mediodorsal nucleus of the thalamus
in schizophrenia brain (reviewed in Lewis and Lieber-
man, 2000). Consequently, our findings of altered spi-
nophilin expression in thalamus (Clinton et al., 2005)
and in prefrontal cortex suggest abnormal spinophilin
expression may occur within the context of this circuit.

The interaction of spinophilin with the D2 DA recep-
tor has been hypothesized to link the D2 receptor to
downstream signaling molecules (Smith et al., 1999).
Currently, more evidence exists for D2 DA receptor ab-
normalities in schizophrenic striatum rather than pre-
frontal cortex (see Laruelle et al., 2003, for a review).
However, recent studies suggest prefrontal D2 DA re-
ceptors may modulate of glutamatergic transmission
(Wang and Goldman-Rakic, 2004; Wang et al., 2004),
which may be abnormal in schizophrenic brain (Laruelle
et al., 2003). These more recent studies suggest an addi-
tional site where D2 receptor function could be abnormal
in schizophrenic prefrontal cortex. Another protein that
interacts with the DA D2 receptor, NCS-1, has also been
found to be upregulated in schizophrenic brain (Bai
et al., 2004; Koh et al., 2003b). Thus, the increased spi-
nophilin mRNA in schizophrenic brain found in our
study and others (Clinton et al., 2005; Law et al., 2004b), as
well as the alterations in NCS-1, suggest D2 receptor sig-
nalingmay be altered in schizophrenic prefrontal cortex.

Another possible interpretation of altered spinophi-
lin is that it reflects a change in the number of dendri-
tic spines, and previous studies have used quantifica-
tion of spinophilin protein as an assessment of dendri-
tic spine number (Hao et al., 2003; Tang et al., 2004).
Dendritic spine density has been reported to be altered
in schizophrenic brain (Garey et al., 1998; Glantz and
Lewis, 2000). Quantification of dendritic spine density
of golgi-impregnated pyramidal neurons revealed a de-
crease in Layer III in schizophrenic brain in both the
superior temporal cortex (Garey et al., 1998) and the
prefrontal cortex (Glantz and Lewis, 2000). These
studies on altered spinophilin mRNA and dendritic
spine density suggest neurons in the DLPFC may have
altered or impaired connectivity in schizophrenic brain.

In conclusion, this study provides further support
for the hypothesis that proteins involved in DA recep-
tor signaling are abnormal in schizophrenic brain, as
proposed by Koh et al. (2003a). This and previous
studies suggest that some of the abnormalities of dopa-
minergic neurotransmission in schizophrenia may be
the result of aberrant expression and/or functioning of
proteins such as spinophilin and/or calcyon.
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