AN EXPLICIT FACTORIZATION FOR SOLVING
MULTISTAGE STOCHASTIC LINEAR PROGRAMS
USING INTERIOR POINT METHODS

Derek Holmes
Department of Industrial and Operations Engineering
The University of Michigan
Ann Arbor, MI 48109-2117

Technical Report 93-18
July 1993

An explicit factorization for solving
Multistage Stochastic Linear Programs
using Interior Point Methods.

D. Holmes
Department of Industrial and Operations Engineering

University of Michigan
Ann Arbor, MI 48109-2117

9 June 1993

Abstract: Multistage stochastic linear programs (MSLPs) have a deterministic representation which is
a generalization of a dual block angular program. These programs have been shown in the literature to be
difficult to solve using interior point methods, since they require solutions of very large and dense systems.
Several methods for improving solution efficiencies for two-stage SLPs have been suggested in the literature,
but not for multistage programs. Computational experience suggests that a direct factorization based on the
Sherman-Morrison-Woodbury identity is superior in terms of numeric stability and speed. This paper derives
a multistage generalization of the direct factorization technique and discusses its theoretical properties.

1 Introduction

Many practical problems that are influenced by uncertainty can be modeled as stochastic programs.
Examples of problems that have been formulated include cash and portfolio management models
(Mulvey [1]), electric power generation capacity planning (Louveaux, [2]), and forestry management
(Gassman, [3]). Stochastic programs are multistage in nature, so that they sequentially make
decisions before realization of stochastic parameters over time. Another common characteristic is
that they relate stochasticity linearly to decision variables and costs. Such problems are called
multistage stochastic linear programs with recourse (MSLPs).

One of the most undesirable characteristics of MSLPs is their excessive computational require-
ments. Since the size of these problems grows exponentially with the amount of stochastic infor-
mation included in the formulation and the number of stages (discrete decision points), realistically
sized problems can quickly become computationally intractable. The recent advent of interior point
methods for the solution of large linear programs (Marsten, et.al. [4], Carolan, et. al. [5], and
Monma and Marsten [6]) has held great promise for the efficient solution of these problems.

To be effective however, these algorithms require the efficient solution of a sequence of large,
symmetric, positive definite systems of linear equations. Generally, the solutions to these systems
are obtained by factoring the coefficient matrix into some equivalent triangular matrix and back
solving with some right hand side. The ease with which the factorizations are obtained decreases
significantly as the density of the coefficient matrix increases. Unfortunately, the structure of
MSLPs can lead to quite dense systems, limiting the effectiveness of interior point methods for
their solution.

The purpose of this paper is to propose an efficient factorization technique for solving these
systems. The factorization is simply an extension of the two-stage Birge-Qi factorization (Birge
and Qi [7]), which is based on a generalized version of the Sherman-Morrison-Woodbury formula.
The two stage method has been shown to have a worst case computational complexity at least an
order of the number of variables over that of the standard Karmarkar algorithm. We will show here
that the multistage generalization has the same complexity in the number of variables, but grows
exponentially in the number of stages. This is still troublesome, and methods for getting around
this restriction will be the focus of future research.

2 Preliminaries

2.1 Multistage Stochastic Linear Programs

Here, we will assume that we are trying to solve multistage stochastic linear programs with fixed
recourse. If the number of stages H is finite, general form of this problem is

. T . T i T
min ¢ Yo + Efl (nbxln an+ ”'Efglfl---fg_l (xi};n cyYu)--.)

s.t. Aoyo =bo
Toyo + Wiy, =§ as.

Tyayg1+Whyy =€y as.
u 2y 2o, w2y, 21, t=1,...,H as.

1

where bold face vectors are (possibly) stochastic. Were, the stochastic elements are defined over a
discrete canonical probability space (Z,0(Z), P), where £ =21 ® - ® E, and the S; elements of
Z¢ are {(Tisy Wisytsy €15), 8 = 1,..., St} The requirement that each stochastic constraint must hold
almost surely may be written deterministically by defining a set of constraints for each realization.
The data dependencies for a three stage problem with two realizations in each stage is shown
graphically in Figure 1. The paths of the tree shown in Figure 1 correspond to scenarios that

/ (€1 o1 Wos)
(849 Ty W

\(‘522' Ty W,

;,/ (Cag:Tpq WY
\

(bgsAq) <

(€121 Ty W.

(EopT: 2 W

Figure 1: Multistage deterministic equivalents

describe complete events up to the last stage. Scenarios can also be defined for an intermediate
period ¢ which correspond to paths from the root node of the tree to nodes in the tth stage.

Defining a set of variables for each node in the decision tree, the deterministic equivalent program
can be written as

N; NH
min coyro+ Y PkaCkalkit o+ D Pk HCKHYKH
k=1 k=1
subject to Aot o = bo (1)

TiYaGit)-1 + Wighiz =& i=1,...,N, t=1,...,H
Uj,tzyjyt?_lj,t j=1,...,Nt, t=1,...,H

where

N; = Number of possible outcomes in stage t
N: = Cumulative number of scenarios through stage t,Ny= Ny X XNy
piy = Probability that scenario i of stage t occurs, i = 1,..., N

cit = Cost vector for scenario i of stage ¢

&: = Right hand side vector for scenario 7 of stage ¢

T;+ = Technology matrix for scenario i of stage ¢

Wi+ = Recourse matrix for scenario i of stage t, Wi € R™X™

a(j,t) = [(G-1/N:f +1

Here, a(j,t) finds the predecessor of node j in stage ¢.
The block structure for a two stage problem as well as the three stage problem depicted in
Figure 1 is shown in Figure 2. The two sta.ae deterministic equivalent is called a dual block

w T W
w T W

2 Stage 3 Stage

Jir) Juary uir) puury pur]] 8
=
—|
=

Figure 2: Block structure for deterministic equivalents

angular program. As can be seen from Figure 2, the multistage deterministic equivalent can be
viewed as several dual block angular programs nested within each other. As will be seen in the
next section, dual block angular programs are not well suited for interior point methods.

2.2 Interior Point Methods

In the last decade, several breakthroughs in general purpose linear programming algorithms have
been made using path following methods (Gill, et. al. [8]). Karmarkar [9] pioneered these break-
throughs with the first algorithm that could be proven to converge to an optimal solution in
polynomial, or O(n?*m2L) time, where n is the size of the problem and L is a measure of the
problem’s data. Other variants such as the dual affine scaling algorithm (Adler et.al. [10]) and
the primal-dual method (Megiddo, [11]) have also been shown to converge in polynomial time. By
contrast, the worst case complexity of the simplex method cannot be bounded by a polynomial.

For the purposes of discussion, we focus on the dual affine variant as applied to the dual-block
angular program described above. Consider a linear program in the following standard equality
form:

(P) minimize 'z

subject to Az =b
z22>0

where A € R™*" and has full row rank, b € R™ is a resource vector, and ¢ € R" is the objective
function vector. The dual affine variant finds an optimal solution to the dual (D) to the problem

(P):
(D) maximize b7y
subject to ATy <e¢

where y € ™ is a dual vector to the equality constraints of (P). The algorithm requires an initial
interior point y° that satisfies dual feasibility (,%Tyo < ¢), and successively iterates on a current

point to find another interior point with a better objective function value. The algorithm proceeds
as follows:

1. k = 0. Select a stopping criterion (e.g., Stop if bTyk+1 — pTyk < ¢, where € > 0 is a small
positive number.

2. Stop if optimality criterion is satisfied, otherwise calculate dual slack variables: vk = c— ATy*.

3. Calculate the search direction, which is a function of a Newton step taken toward the “center”
of the feasible region and a steepest descent step in some transformed space:

Let D* = diag{(1/v%),...,(1/vk)}, dy = (A(D*)?AT)"b, and dv = —ATdy
4. Calculate a step size:

(a) Let a = ¥ x min{vf/ — (dv); : (dv); < 0,i = 1,...,m}
Here, 0 < 4 < 1is a step size parameter to insure that the next iterate will remain interior
to the feasible solution set. For most practical purposes, 0.95 < v < 1 is sufficient.

5. Update dual variables, primal variables, and counters:

(a) Let y**1 = y* + ady and z*+! = (D*)2dv
(b) Let k= k+1
(c) Goto 2

Dual Affine Algorithm

The vast majority of the computational effort required in the above procedure is to calculate
the solution to the system (AD?AT)dy = b (the iteration counter will be dropped whenever the
context is clear), or to calculate some factorization of the matrix to enable quick solution of the
system. These computations are common to every interior point algorithm developed thus far
(Shanno and Bagchi, [12]). The matrix M = AD?AT is a large (M € R™*™) symmetric, positive
definite matrix for which several solution methods have been developed (see, e.g. Golub and Van
Loan [13]). Generally speaking, a direct inversion of M is an inefficient solution method, and is
seldom used in large scale implementations.

There are two main strategies for solving the system (AD?AT)dy = b. They are iterative methods
and direct methods.

1. Iterative methods generate a sequence of approximations to dy. Since these methods only
involve vector-matrix multiplication, they are computationally more attractive and require
less storage than alternative solution procedures. Convergence to solutions of these linear
systems can be unacceptably slow, unless special tricks (e.g., matrix preconditioners) are em-
ployed. Examples of iterative methods include the Jacobi, Gauss-Seidel, Chebychev, Lanczos,
and Conjugate Gradient methods. Meijerink and van der Vorst [14] discuss the use of these
methods in interior point algorithms.

9. Direct methods calculate the exact solution to the set of equations (AD?AT)dy = b by factor-
ing the matrix (AD2AT), and using backwards/forwards substitution to find dy. The most

4

common schemes in use are (LU) factorization and Cholesky (LLT) factorization. The effec-
tiveness of these methods are dependent on the use of special data structures and pivoting
rules, and on the characteristics of the coefficient matrix itself. Examples of software imple-
mentations include YSMP (Eisenstadt [15]) and SPARSPAK (Chu, et. al. [16]). Direct and
iterative methods can also be combined by using ideas from the direct solution procedures to
generate an effective preconditioner that improves the convergence of iterative methods.

The ease with which direct methods may be used depends heavily on the amount of fill-in, or density
of the factorized matrix. Matrices which can be rearranged to minimize fill-in can be stored using
less memory, and hence require fewer operations to update the factorization or obtain a solution.
However, matrices that are ill-structured will generate an extremely dense matrix M, and hence
can be quite inefficient to solve.

The density of the matrix (AD?AT) largely depends on the number of dense columns that are
contained in the original matrix A. Unfortunately, the dual block angular program that is the
deterministic equivalent of a two stage stochastic program contains many dense columns. To see
this, let D € R™X™mo and D} € R™X™ be defined by D? = diag {(v})7%,...,(¢,)72} =
0,...,N. Suppose further that T = T,W' = W,1 =1,...,N. Then the required system to solve
can be calculated symbolically as

[AD3AT ADITT ADITT ADTT T

TDIAT TDTT + WDIWT TDTT TDoT”

AD?AT = | TDEAT TDTT TDITT + WDIWT ... TD,TT
| TDZAT TD3TT TDTT ++ TDeTT + WD WT |

Clearly, the presence of the columns associated with the T' matrices creates an extremely dense M
matrix to factorize. For this reason, Arantes and Birge [17] have shown that dual block angular pro-
grams in the primal form are expensive (whenever possible) to solve, even with basic preprocessing
or row reordering to reduce fill-in.

Since multistage stochastic programs are also dual block angular problems, they suffer from the
same fill-in problem that plagues two-stage stochastic programs. Figure 3 shows the block structure
for the multistage program shown in figures 1 and 2. Although the matrix is not completely
dense like its two stage counterpart, it still has a substantial number of nonzeros off the diagonal.
Unfortunately, the AD?AT matrices include columns which have nonzeros near the top and bottom
of the matrix. As a result, we would expect the matrices to be resistant to sparsity reducing
techniques such as row and column reorderings.

Practically, dense projection matrices occur even in problems with relatively sparse T' matrices.
For example, a three stage (two scenario) version of the problem SCAGR7 (see, e.g. Gassman
[18] or Birge [19]) is shown in Figure 4. The left hand figure is the nonzero structure of the
deterministic equivalent’s AAT matrix, and the right hand figure is the nonzero structure of AA”’s
Cholesky factorization (with minimum degree heuristic applied.) As can be seen, the Cholesky
factorizations can be dense and hence computationally difficult to solve.

2.3 Explicit Factorizations of Stochastic Linear Programs

The solution to the set of equations that determine search directions in affine scaling algorithms
may also be accomplished by decompositions specific to the dual block angular structure. Birge and
Qi [7] propose using a generalized version of the Sherman-Morrison-Woodbury formula (reviewed
below) for the inverse of a matrix to eﬂiciently5 obtain the search direction dy. While the full

T W
T W

Constraint Matrix

AD2AT Matrix

Figure 3: AD?A7 block structure for multistage problems.

L—‘+! .l_l ‘-n.‘
-~) - hC ‘e
Flon 3 a3 ~
e gmin I S
. g .3 B - d .
Tﬁ-#’j‘ #}é_‘ ,f ! B! P :.‘
—.'b- PR o - . J‘-
I\l] "'";.F.“-.iu:,t".__ (I netom
e e S — g le
TN TN ') - r -é!r' ! o
L LR -
NI
= g E
e

‘T2 W

SCAGR7 AD?AT Matrix

SCAGR?7 Cholesky Factorization

Figure 4: SCAGR?7, 3 stages, 2 realizations per stage.

calculation of the step size in affine scaling may be performed generally in O(m?n) operations,
the decomposition they propose reduces the computational complexity of the two stage program to
O(n?) operations (assuming n; ~ nforalll = 0,..., N). After reviewing the two stage factorization,
we will posit its theoretical extension to multiple stages and discuss its implementation.

2.3.1 Two stage Birge and Qi factorization

The main result obtained by Birge and Qi notes that the matrix AD2AT may be written as the sum
of a block diagonal matrix D and the product of two similar matrices U and V (defined below).
Given this representation, the Sherman-Morrison-Woodbury formula, which is reproduced here for
convenience, may be used to find the inverse of the matrix. The notation used in the following
follows that of Section 2.2.

Lemma 1 : For any matrices A,U,V such that A and (I + VTA~1U) are invertible,
A+ UV = A Ay +VTA~ WD) VT4 (2)
Proof: See, e.g. Golub and Van Loan [13].

Theorem 1 (Birge and Qi [7], Birge and Holmes [20]) Consider the feasible region of the
dual block angular program

minimize cizo + Yom, Fu

subject to Apzg =50 (3)
Tzivo + lel =bl l:l,N
Zg, Y 20

and its dual solution (4°,...,y"). Let M = AD?AT,S = diag {So,51,...,Sn}, where §; =
WDIWT,1=1,...,N, S = I; € RmoX™o, and D} = diag {(v})72,...,(v},)"2}. Furthermore,
let I and I; be identity matrices of dimension ng and mo, respectively. Also, let

N
G = (Do)2 + ZT[TSl—sz, Gz = —-1‘10(;';11‘1;‘;1

=0

Ao Iz AO “I2
T, 0 Ty 0

U = " .) V = . .
In O Iy O

If Ag and W, has full row rank, forl=1,...,N, G, and M are invertible and
M-l=g-1_g-1p|h Gi'AY || L o L 0]|Gr o @

0 -I 0 G;' || 4 L 0 I

Proof: In the affine scaling algorithm, v is positive, so D is invertible. By assumption, W; has
full row rank, so S is invertible for = 1,..., N and S is invertible. Let D = diag {Do, Iz} and

AODO I2 AODO "IZ
i e R
TNDO 0 TNDo 0

Note that / = UD and V = VD. By construction, M = § + UV. Applying Lemma 1 (the
Sherman-Morrison-Woodbury formula), M is invertible and

M1 = (§40V)™!
= §'-$s-'uD(U+ DTvTstuD)bvTs?
= §' -5 WDD N D+ VIs'u)y D' DhvTs!
= §1-S WD+ vIs-y)tyvTs?
= §1-§lyGg-tvTst

. Gz[Gl Ag]

where

-4y 0
Then

P [40T + T TST'T AF]

- Ao -1
and D2+ VI§-1U = G. So,
M™'=g§"1-§5yg-lvTs! (5)

if and only if (I + VTS-107), or G, is invertible.
G can be expanded as
N
G1 = (Do)® + AoAT +Y_TiS7'TT

=1
By construction, (Do)? and Ao AT are positive definite and symmetric. Since §; is positive definite
forall = 1,...,N, TISTT,T is positive definite and symmetric. The sum of positive definite
matrices is again positive definite, so Gy is positive definite and symmetric. So, G exists, is
symmetric, and can be written as G; = G}/ 2G1/ 2, where G:/ ? is also symmetric. By assumption,
Ao has full row rank, so AOG}/ ? has full row rank. Consequently, G = —A()Gl‘1 A(I; is invertible,

and
clh Gi'AY || L o L 0 f||GTt o
0 -1 0 G; 1 Ay I 0 5L
[6 AT || G+ G ATG AWGTY GTMATGRY | _ | h 0
-4 0 -G71 AoGy! -G;! o L}
Since G is invertible, (5) holds. Consequently, M is invertible and (4) holds. O

Using Theorem 1 to explicitly compute the inverse of the matrix M is not the most efficient way
to determine the search direction dy. However, the system of equations Mdy = b may be efficiently
solved using Theorem 1 by solving (in order)

Sp=2> Gg=VTp Sr=Uq (6)
and setting dy = p — r. To verify that dy = M~1b, note that
dy = p-r=8"1%-5"1Uq

= [§71-57U(GVISTh

- M-l
_Mb8

Further simplification of the second equation of (6) may be made by symbolically expanding G into
its components Gy and Ag. Let ¢7 = (q{,q%w), where ¢; € R and ¢z € ®™°. Then solving

N Po ‘
G A ||al|_|b|_| A& T - 1% : @
-4 0 g} P2 -l 0 --- 0 :
PN

implies that

(AoGTrAT) (P2 — AoGTp1)
~G3 (B2 — AoGT 1)
a = (G1)'(h - Al).

Solving (6) requires Cholesky factorizations of S, G1, and G2. At each iteration of the affine
scaling algorithm, an update of S; to reflect the current dual solution must precede the solution
of Mdy = b. Birge and Holmes [20] use these facts to describe a pseudo-code implementation
for solving AD2AT = b for two-stage stochastic programs. They also discuss the decomposition’s
theoretical and empirical properties.

Q@

2.3.2 Multistage Birge and Qi Factorization

The Birge and Qi factorization can be extended to discrete support multistage stochastic program.
Multistage stochastic programs generalize two stage stochastic programs by allowing more than
one recourse decision to be made over the problem horizon. As was mentioned in Section 2, these
programs also have deterministic equivalents which are “nested” dual block angular programs. This
fact can be used to apply a nested version of the Birge-Qi factorization to find iterates of interior
point algorithms.

Consider the deterministic equivalent linear program formulated in Section 2, as well as the
following the definitions.

D;; = Diagonal matrix for scenario i of stage ¢ required by the interior point algorithm

e
[

The constraint matrix of the original problem truncated to
t stages, where 2< ¢t < H,and A; € R**™ t=1,... . H
D; = The diagonal matrix associated with Ay, t=1,...,H

M; = AD)¥A)T t=1,....H

These definitions will be used to decompose the projection matrix AD?AT for the nested dual
block angular program into submatrices that can be fit into the generalized version of the Sherman-
Morrison-Woodbury formula.

To see this decomposition, let

Ta(k),t
Tk,tz 04 : 0p ,kzla""Nt—l /B(k’k’)=Nt(k_1)+k’
Tﬁ(ka‘)vt
whgre 04 is a zero matrix with ng = fi;—9 + Ef,;ll ngs -1 columns and Op is a zero matrix with

Zg‘___‘; +1 Mk,—1 columns. Here, B(k, k') is the index of descendant k’ of the kth problem in stage
t. B(k, k') is also a function of ¢, but will be left $Smplicit to simplify the presentation. Let Wi =

diag {Wa(k 1)1 - --,Wﬁ(k,NH).H} for k=1,...,Ng_y. For any 2 <t < H, the constraint matrix
of the original linear program (1) may be rewritten as

Ag-r
. Tvva Win
Ag =)
TNH—I H WNH—l H

Having defined the new dual block angular version of the constraint matrix of (1), we can now
apply Theorem 1 of the previous section. Let

Sk,H = (Wk,H)(Dk’H)2(Wk,H)T fork=1,.. .,NH

and Sy = diag{Ig-1,S1,H,--- ’SN'H,H}’ where dim If7_; = dim Ag_1. Let D = diag{DH_l,IH_l}
and

fi__H—l Iy 1‘1~H—1 —Ig
Ti,H 0 Ti\u 0
Un = . .) Vi = . .
TNH—] H 0 TNH—I,H 0

If Uy = UyD and Vig = VgD, we can decompose My into
My = AD*AT = Sy + (l"fH)(f/H)T

Developing a procedure for finding the interior point search direction for the multistage problem
is now a matter of redefining the appropriate matrices that were used in the proof of Theorem 1.
Key to this development is the definition of the G and G matrices. To avoid yet another subscript,
the G and G matrices used in the two-stage presentation will be rewritten as G1 and G2. Let

Gl v = Dy_, k=0
wH Dz,H—l+Eﬁ'_—.x(Tﬁ(k',k),H)T(Sﬂ(k',k),H)_1Tﬁ(k',k),H k=1

and Gly = diag{Gon,...,Gx,_, u}- Unlike the G1 matrix previously defined for the two-stage

stochastic linear program, the multistage G1 does not include (Ag—1)(Ag-1)T. Instead, we will
include (Ag—1)(Ag-1)7 explicitly in the matrix G. Let G be

G= [Gl + (Ag-1)(Ar-)" ARy
-Ag_1 0

Following the discussion presented after Theorem 1, the equations M dy = b may be solved using:
SupH = b Grau = Viipn Surn = Unan (8)

and setting dyyr = py — rg. The most complex set of equations to solve is the second, Gyqy =
VEpy. Let pu = (5%, 5) = Vipu. Solving

Gly + (Au-1)Ar-)T Ay || | _ | P
-Ag 0 if 4

10

for gy = (4}, 45 gives

[Ar-11GLr + Ap(An-0)"] AR 08 - An-[G1a + (Au1)(Am-1)TT'pf))
(Glr + Ag-1(An-)"17 (5 - Af1a)

0

o

Let Gly = Gly + (AH 1)(/1}[_)T. Then finding qH_requires finding the solutions of the form
Gly z = y. Since Gly is a block diagonal matrix, and Ap_1 is the constraint matrix correspondmg
to another (smaller) multistage problem, Gl will have the same block structure as My, the
projection matrix of the original problem. Gly may then be decomposed into a sum of block
diagonal matrices and the product of two similar matrices. Let

In_2+ Du_s k=0
Skh-1=14 (Wia-1)Win-1)" + D} y_i+ _ (9)
Zﬁ‘:l(Tp(kf,k),H)T(Sﬁ(k',k),y)'lTﬁ(k',k),H k=1,...,Ng_

and Sy_ = diag{So,g-1,.- o sSNy_yH-1} Also, if Ug_1 and Vy_; are defined similarly as above
(using Ap—, instead of AH—I), then Gly_; = Sy_1 + (Un-1)(Vi-1)T, and Theorem 1 may again
be invoked. Since the proof of the basic step in this decomposition was proved in Section 2.3.1, we
will skip a formal proof here. Instead, we will proceed to define a pseudo-code algorithm to find
interior point iterates. The algorithm is

Procedure finddy (S, 4, U, V, t, b, dy) begin
1. (Solve Sp = b). Solve Sk Pkt = biy for prs,k =0,..., N,
2. (Solve Gig; = VIp,).

(a) Solve
Sk k)t (Uaer k),)i = (Tagee ky,t)4
for ugr gy 1)iri = 1,... ek k) K =1, Nk =1, Ny,
(b) Set (Glog)ii = (D2g)i for i = 1,... g,

Set (let)t = (Dk t—l)"+ Zk'— (Tﬁ(kl k), t) (“ﬁ(k',k),t)t" 1= 1,. .o ,nﬁ(k:,k)'t,k = I,Nt_l.
Let Glt dlag{Got, GN‘_I' }

(c) Form p4 and pB. Let

AL 1Prs + Ty (T i) T (Poer) k=1, Necn
pk,t = =Pkt k= N1+ 1_. .. 2N
k’ =k- Nt—l + 1

Let pA = (Prts - - 1PN, _ 1) and p® = ﬁﬁ._1+1,tv~~-’1321v,_,)-

(d) Form GT; = G1; + (As-1)(Ae-1)T.

(e) Let S’ be defined as in (9).

(f) Solve G1,u = p{! for t > 1 by calling finddy (', Ai—1, Us—1, Vi, t — 1,58,u) .
If t = 1, solve GLyu = pf directly. Set v = pB — A,_,u.

(g) Solve Glyw; = (4;)T for t > 1 by calling finddy (', As_1, Us—1, Vi1, t — 1,(A)T, w;) .
For t = 1, solve G1,w; = (At)f direct{yi. Set G2 = As[w, -+ Wi,)

(h) Solve G2¢B = v for ¢2 and solve G1,¢8 = p* - (As-1)Tq® for ¢B by calling
finddy (S’ As1,Up1, Vier,t = 1,p% - (fit_l)TqB,qB) fort > 1.
Solve G2¢B = v for ¢? directly if t = 1.

3. (Solve St = Uq). Let ot = At—lqA + qB . Let Gxs = Tkvth’k -‘—'_L---,Nt—l- Let gt =
(Ga(k,1),t -+ Bk ,Ne)) SOIVE SkriThr e = G ¢ for Ty for k' =1,..., Ny

4. Set dygs = prt— Tkt fork=1,... , Ny

end.

Forming the Multistage dy using Birge and Qi’s Decomposition

Each iterate of the interior point algorithm is started by calling finddy (SH, Ay, Uy, Vi, H,b,dy).
Implementing the above algorithm requires setting up a “line” of Cholesky factorizations, with those
involving Sk g on one end, and those involving Sk, on the other. Finding the search direction then
involves passing data from the Sk g end to the Sk, end, and collecting results in the reverse or-
der. Parallel processes may be exploited at each stage by assigning sets of Sk factorizations to
concurrent processing units.

Theorem 2 (Time Complexity of Multistage Birge and Qi decomposition) Let N; be the
number of distinct possibilities in stage t, N, = Ny X -+ X Ny be the number of cumulative sce-
narios through stage t (N3 = 1), and N, = YU_, Ny be the cumulative number of nonzero blocks
in a multistage SLP with t stages. Let Ny = yH N, Ng = THUN, Ny = YH-1 N2, and
Ng = {i’;l Nf’ Assuming Ty ; and Wy, have dimension m X n for all k,t, the overall time
complezity of the Birge and Qi decomposition is

O(Na(n® + mn + mn?) + Np(n® +n?) + Namn + Ng(m + 2mn?))

Proof: Let T(t) be the time complexity of the Birge and Qi decomposition for a problem with
t stages. At each step in the algorithmic statement given above, we have the following time
complexities:

Step Work Complexity

1 Solve Sp=1b | O(Ny(n® + mn)

2(a) Solve S~IT | O(N¢-1(n® + n?))

2(b) Find G1 O(N;mn?)

2(c) Form p O(Nymn? + N}(mn))

2(d) Form G1; O(N3(mn))

2(e) Form S’ Obtainable from 2(b)

2(f), 2(g) | Find G2 O(N3(mn?) + N2(mn) + 2T(t - 1))
2(h) Solve for ¢ O(N3(m®) + N}(mn) + T(t — 1))

3 Solve S = Uq | O(Ny(mn))

Other computational efforts are small compared to the above operations. Adding the time
complexities for a generic stage ¢ gives

O(Ny(n® + 2mn + 2mn?) + Nooy(n® + 0?) + 3(VEmn + N(m + 2ma?) + 3T (t - 1))
12

Since the procedure will be called H — 1 times, the time complexity of the algorithm can simplify
to

H H-1 T
0 (Z Ny(n® + 2mn + 2mn?) + Z (n® +n?) + Z(Nf(mn) + Ny(m + 2mn2)))
t=1 t=1 t=1

Redefining the sums as above simplifies the time complexity to

O(N4(n® + mn + mn?) + Ng(n® + n?) + Namn + Ng(m + 2mn?)) O

3 Conclusion

This technical report has presented a multistage generalization of the Birge-Qi factorization for
solving two stage stochastic linear programs using interior point methods. The Birge-Qi factoriza-
tion has been shown in (Birge and Holmes [20]) to be computationally superior and numerically
more stable than the most common solution tricks available. The same benefits can be extended to
multistage stochastic linear programs by noting that multistage problems can be written as nested
two-stage problems, and applying the same idea.

References

[1] J.M. Mulvey, 1984. “A Network Portfolio Approach for Cash Management,” Journal of Cash
Management 4, 46-48.

[2] F.V. Louveaux, 1980. “ A solution method for multistage stochastic programs with recourse
with application to an energy investment problem,”, Operations Research 28, 889-902.

[3] H.I. Gassman, to appear. “Optimal harvest of a forest in the presence of uncertainty,” Canadian
Journal of Forest Research.

[4] R. Marsten, R. Subramanian, M. Saltzman, I. Lustig, and D. Shanno, 1990. “Interior Point
Methods for Linear Programming: Just call Newton, Lagrange, and Fiacco and McCormick!,”
Interfaces 20:4, 105-116.

[5] W.J. Carolan, J.E. Hill, J.L. Kennington, S. Niemi, and S.J. Wichmann, 1990. “An empirical
evaluation of the KORBX algorithms for military airlift applications,” Operations Research
9:2, 169-184.

[6] C.L. Monma and A.J. Morton, 1987. “Computational Experience with a Dual Affine Variant
of Karmarkar’s Method for linear Programming,” Manuscript, Bell Communications Research.

[7] J. R. Birge and L. Qi, 1988. “Computing Block-angular Karmarkar Projections with Applica-
tions to Stochastic Programming,” Management Science 34:12, 1472-1479.

[8] P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin, and M.H. Wright, 1986. “On Pro-
jected Newton Methods for Linear Programming and Equivalence to Karmarkar’s Projection
Method,” Mathematical Programming 36, 183-201.

[9] N. Karmarkar, 1984. “A New Polynomial Time Algorithm for Linear Programming,” Combi-
natorica 4, 373-395.

13

(10] I. Adler, N. Karmarkar, M.G.C. Resende, and G. Veiga, 1986. “An Implementation of Kar-
markar’s Algortihm for Linear Programming,” Report No. ORC 86-8 (Revised May, 1987),
Operations Research Center, University of California, Berkely, California.

[11] N. Megiddo, 1986. “Pathways to the Optimal Set in Linear Programming,” Technical Report
RJ 5295, IBM Almaden Research Center, San Jose, California.

[12] D.F. Shanno, and A. Bagchi, 1990. “A Unified View of Interior Point Methods for Linear
Programming,” Annals of Operations Research 22, 55-70.

[13] G.H. Golub and C.F. van Loan, 1983. Matrix Computations, The Johns Hopkins University
Press, Baltimore, Maryland.

(14] J.A. Meijerink and H.A. van der Vorst, 1977. “An Iterative Solution Method for Linear Equa-
tion Systems of which the Coefficient matrix is a Symmetric M-matrix,” Mathematical Com-
putations, 31 148-162.

[15] S.C. Eisenstadt, M.C. Gurshy, M.H. Shultz, and A.H. Sherman, 1981. “The Yale Sparse Matrix
Package, I. The Symmetric Codes,” ACM Transactions on Mathematical Software.

[16] E. Chu, A. George, J. Liu, and E. Ng, 1984. “SPARSPAK: Waterloo Sparse Matrix Pack-
age User’s Guide for SPARSPAK-A,” Research Report CS-84-36, Department of Computer
Science, University of Waterloo, Waterloo, Ontario.

[17] J. Arantes and J. Birge, 1989. “Matrix Structure and Interior Point Methods in Stochastic
Programming,” Presentation, Fifth International Stochastic Programming Conference, Ann
Arbor, Michigan.

(18] H. 1. Gassman, 1990. “MSLiP: A computer code for the multistage stochastic linear program-
ming problem.” Mathematical Programming, 47, pp. 407-423.

[19] J. R. Birge, 1985. “Decomposition and partitioning methods for multistage stochastic linear
programs,” Operations Research, 33, pp. 989-1007.

[20] J. R. Birge, and D. Holmes, 1992. “Efficient solution of two-stage stochastic linear programs
using interior point methods,” Computational Optimization and Applications, 1, pp. 245-276.

14

