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SUMMARY

We examine several variance estimators for cumulative incidence estimators that have been proposed over
time, some of which are derived from asymptotic martingale or counting process theory, and some of
which are developed from the moments of the multinomial distribution. There is little published work
comparing these variance estimators, largely because the variance estimators are algebraically complex
and difficult to interpret and all but one have yet to be programmed for a standard statistical package.
Through simulation and application to real data, we compare the performance of six variance estimators
in relation to each other and the bootstrap in order to confirm earlier reports of their performance and to
provide future direction toward their application. We find that the multinomial-moment-based estimators
have performance close to that of the bootstrap, and are quite accurate for estimating the variance, even
in samples of 20 subjects. All but one of the martingale theory-based estimators tend to perform poorly
in small samples, tending to either overestimate or underestimate the empirical variance in samples of
fewer than 100 subjects. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The work of Kaplan and Meier (KM) revolutionized non-parametric analysis of time-to-event
clinical outcomes in situations when the outcome of interest is not observed in some subjects,
either through loss-to-follow-up or administrative censoring [1]. However, in the presence of
competing risks, i.e. the event of interest could be preceded by another event, use of the KM
estimator is problematic. Specifically, the KM estimator for each event, treating the competing
event as censoring, estimates the marginal survival function only if the events are independent
[2, 3]. However, one cannot use the data collected to verify independence of the events because
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every joint distribution of two dependent competing events can be represented by a joint distribution
of two independent events [2]. As a slight remedy to this non-identifiability, one can use the data
to develop bounds for the true marginal survival distributions [3, 4].

Our motivating example lies in the research of allogenic bone marrow transplants (alloTx), in
which estimating the probability of relapse is complicated by the prevalence of acute graft-versus-
host-disease (aGHVD), an outcome which often precedes relapse and is fatal if left untreated.
However, treatment of aGVHD often modulates the graft-versus-leukaemia (GVL) effect, and
thus, the underlying probability of relapse [5]. As a result, when assessing naturally occurring
relapses (i.e. those not due to unanticipated side-effects of medical intervention) in alloTx patients,
aGVHD would be a competing risk. Similarly, death due to causes other than aGVHD or relapse,
such as infection or other transplant complications, would be a competing event for both relapse
and aGVHD. Other clinical settings in which investigators have examined the effect of competing
risks include osteosarcoma [6], hepatitis C [7], heart valve replacement [8], organ transplantation
[9], and the effects of radiation on normal tissue in cancer patients [10].

Continuing with our example, we first assume that aGVHD and relapse cannot occur simulta-
neously and we observe only the earlier of the two events in non-censored subjects. Assuming that
occurrences of relapse and aGVHD are independent, one could use the KM estimator to estimate
1 − Sr (t) = 1 − exp{− ∫ t

0 �r (u) du}, where �r (u) is the relapse-specific hazard rate, and subjects
who develop aGVHD or die prior to relapse would be censored for relapse at the time of the
competing event. If one were interested instead in the probability of relapse without assuming
independence, the relevant quantity is CIr (t) = ∫ t

0 S(u)�r (u) du, in which S(u) is the survivor
function for the earliest of relapse, aGVHD and death. Although most commonly referred to as
cumulative incidence, CIr (t) has also been referred to as the cause-specific risk [11], the crude
incidence curve [12], and the cause-specific failure probability [13]. It is also well-established that
CIr (t)�1 − Sr (t)�1 − S(t) [4].

In many cancer-related settings, CIr (t) is an observable and seemingly more relevant quantity
than 1 − Sr (t), although the preference of CIr (t) to 1 − Sr (t) is subject to debate. For example,
although Caplan et al. [10] promoted the use of CIr (t) when reporting the late normal-tissue effects,
i.e. toxicity, of radiation, Bentzen et al. [14] countered with an argument for using 1 − Sr (t). An
excellent summary of the debate was later summarized by Chappell [15]. Bentzen et al. argued that
cumulative incidence for an event is difficult to interpret on its own because it is dependent upon
the incidence of the competing event. Specifically, one can eliminate the cumulative incidence of
late normal-tissue effects by insuring that the toxicity is always preceded by death. Put another
way, reporting a cumulative incidence to patients is not fully informative as cumulative incidence
blends together the experience of subjects who died before toxicity with subjects whose normal
tissue was truly not affected. See Farley et al. [16] for a discussion of this debate in the setting of
time-to-discontinuation of inter-uterine devices (IUDs).

Some authors have also presented situations with the undesirable property
∑

r [1 − Sr (t)]>
1 − S(t), further complicating the use of the KM estimator with competing risks [13, 17]. As a
result, statisticians generally recommend using CIr (t) instead of 1− Sr (t), although as suggested
by Pepe and Mori [17], the cumulative incidence of one event must be interpreted in relation to the
cumulative incidence of its competing events. In our example, one should report the cumulative
incidences of both aGVHD and relapse, as a low cumulative incidence of relapse would not be
interpreted favourably if accompanied by a high cumulative incidence of aGVHD.

The cumulative incidence estimator ĈIr (t) = ∫ t
0 Ŝ(u)̂�r (u) du, is simply a cumulative sum of

the KM estimator at time t for the earliest of relapse, aGVHD, and death weighted by the observed
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proportion of subjects who relapse by time t . The fundamental theoretical work of the cumulative
incidence estimator and its variance was first described by Aalen [18] and Aalen and Johansen
[19] using a non-homogeneous Markov process formulation, which is also described in Chapter 4
of the text by Andersen et al. [20]. Although more recent work on ĈIr (t) has been typically based
in martingale and counting-process theory, Gooley et al. [21] contains an elegant derivation of
ĈI(t), showing how it is related to the KM estimator, KMr (t) = Ŝr (t) and how 1−KMr (t)�ĈIr (t),
with equality only in the absence of competing risks. Furthermore, Betensky and Schoenfeld [22]
published work showing the relationship of estimating cumulative incidence and estimating the
cure fraction in cure models.

However, there is little published work comparing some of the existing variance estimators for
cumulative incidence estimates [12, 13, 22–25]. A primary reason for this dearth of research is that
all of the variance estimators are algebraically complex and difficult to interpret, although Gray’s
work [23] has been programmed and documented for general use (via the cuminc package on the
Comprehensive R Archive Network, http://cran.r-project.org). Furthermore, it remains unclear as
to which variance estimator to use in practical applications. For example, Betensky and Schoenfeld
report that Gray’s method tends to overestimate the true variance [22], while Pepe reports that her
method tends to underestimate the true variance [24]. We have also discovered through our own
work that the variance estimator of Betensky and Schoenfeld is algebraically equivalent to that of
Gaynor et al.

A thorough examination of these six variance estimators is needed and is the primary motivation
of this manuscript. Section 2 describes each of the six variance estimators, while Section 3 examines
the performance of each of the estimators in a variety of numerical examples and an actual setting.
Concluding remarks are found in Section 4.

2. DESCRIPTION OF VARIANCE ESTIMATORS

2.1. Approaches based on counting process/martingale theory

Suppose we have a study of N subjects and subject i, i = 1, 2, . . . , N can experience each of J
competing events, one of which is being censored. Theoretically, subject i will experience event
j, j = 1, 2, . . . J , at time Ti j , and we observe Xi = min{Ti1, Ti2, . . . , Ti J } with an indicator �i = j
if Xi = Ti j . CI j (t) is the cumulative incidence of event j at time t , with corresponding estimate
ĈI j (t). Note that we assume censoring is independent of all other events in order to insure that
ĈI j (t) is consistent for CI j (t).

We define Yi (t) = I (Xi�t) as the indicator that subject i was at risk at time t for all J events
and Ni j (t) = I (Xi�t, �i = j) as the indicator that subject i experienced event j by time t . The total
number of subjects at risk at time t is Ȳ (t) = ∑

i Yi (t), and the number of subjects experiencing
event j by time t is N̄ j (t) = ∑

i Ni j (t). We define the martingale Mi j (t) = Ni j (t)−
∫ t
0 Yi (u)� j (u),

where � j (u) is the hazard associated with event j .
Lin [25] shows that Mi j (t) is asymptotically equivalent to Gi j Ni j (t), where Gi j are independent

standard normal variables and that Wj (t) = n1/2[ĈI j (t) − CI j (t)] is asymptotically equivalent to
n1/2

∑N
i = 1[Wi j1(t) + Wi j2(t) − Wi j3(t)] where

Wi j1(t) =
∫ t

0

[1 − ∑J
k = 1;k �= j ĈIk(t)]
Ȳ (u)

Gi j dNi j (u) (1)
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Wi j2(t) =
∫ t

0

ĈI j (u)

Ȳ (u)

J∑
k = 1;k �= j

Gik dNik(u) (2)

Wi j3(t) = ĈI j (t)
∫ t

0

1

Ȳ (u)

J∑
k = 1

Gik dNik(u) (3)

Thus, we generate B samples from a standard normal distribution for each Gi j , where B is a
reasonable number of samples to generate valid results (Lin uses B = 500 in his manuscript).
We then combine the sampled Gi j with our observed values of {Yi (t), Ni1(t), . . . , Ni J (t)} in
equations (1)–(3) to create B values of Wj (t), and the sample variance of those B values divided
by n gives us our estimate for the variance of ĈI j (t).

Pepe [24] shows that Wj (t) is asymptotically equivalent to n1/2
∑N

i Vi j (t) where the Vi j (t) =∑N
i=1 [Vi j1(t) − Vi j2(t)] are independent, mean-zero variables in which

Vi j1(t) =
∫ t

0

Ŝ∗(u)

Ȳ (u)
[dNi j (u) − Yi (u)�̂ j (u) du]

Vi j2(t) =
∫ t

0
Ŝ∗(u)

{∫ u

0

1

Ȳ (v)
[dNi∗(v) − Yi (v)�̂∗(v)] dv

}
�̂ j (u) du

in which �̂ j (u) = N̄ j (u)/Ȳ (u). The subscript asterisk indicates a function for the earliest of all
J events, so that Ŝ∗(u) is simply the Kaplan–Meier estimate for the probability of surviving all
J events and �̂∗(u) = ∑

j N̄ j (u)/Ȳ (u) its corresponding hazard estimate. Therefore,
∑

i V
2
i j (t)/n

gives us an estimate for the variance of ĈI j (t).
Korn and Dorey [12] propose a third variance estimator by taking the asymptotic variance derived

by Aalen [18] and plugging in consistent estimators for the unknown values in the estimator, while
a fourth variance estimator has foundations in Gray’s landmark paper for comparing two or more
cumulative incidence curves [23]. We omit further details of these two estimators due to space
limitations.

2.2. Approaches based on multinomial distribution

At any time t , we have Ȳ (t) subjects at risk for all J events prior to time t , and N̄ j (t) subjects who
have since experienced event j . Therefore, N̄(t) = {N̄1(t), N̄2(t), . . . , N̄J (t)} has a multinomial
distribution with parameters Ȳ (t) and k(t) = {�1(t), �2(t), . . . , �J (t)}.

If we take the N observed times of follow-up {X1, X2, . . . , XN } and identify the M�N unique
ordered event times {Z1, Z2, . . . , ZM }, then we have

ĈI j (t) = ∑
Zi�t

�̂ j (Zi )

{ ∏
Zi<t

[1 − ∑
j

�̂ j (Zi )]
}

(4)

= ∑
Zi�t

�̂ j (Zi )Ŝ(Zi ) (5)
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so that

Var{ĈI j (t)} = ∑
Zi�t

Var{�̂ j (Zi )Ŝ(Zi )}

+ 2
∑
Zi�t

∑
Zi<Zi ′�t

Cov{�̂ j (Zi )Ŝ(Zi ), �̂ j (Zi ′)Ŝ(Zi ′)} (6)

As the multinomial distribution tells us that

E[�̂ j (t)] = � j (t)

Var[�̂ j (t)] = � j (t)[1 − � j (t)]/Ȳ (t)

Cov{�̂ j (t), �̂k(t)} = −� j (t)�k(t)/Ȳ (t), j �= k

we can estimate the variance of ĈI j (t) once we estimate the moments of k̂(t), which although
straightforward, is a complicated task due to the recursive nature of equations (4) and (5).

Betensky and Schoenfeld [22] cite the approximate independence of �̂ j (u)Ŝ(u) and �̂ j (v)Ŝ(v),

u �= v, thereby ignoring the covariance terms in equation (6), and describe how the remaining
variance terms in equation (6) can be computed. Gaynor et al. [13] took a seemingly different
approach by using single-order Taylor series approximations for the variance and covariance terms
in equation (6), which is similar to Greenwood’s derivation of the variance of the KM estimator
[26]. However, the approaches Betensky and Schoenfeld and Gaynor both have foundations in
the work of Dinse and Larson [27], and with some algebra, one can show that both approaches
are equivalent to each other. Essentially, the omission of higher order terms by Gaynor et al. is
equivalent to the assumption by Betensky and Schoenfeld of independence of estimates at different
timepoints. Choudhury [28] also applied the methods of Dinse and Larson to the computation of
confidence intervals for cumulative incidence estimators.

3. OPERATING CHARACTERISTICS

3.1. Numerical examples

We examine the performance of the six previously described variance estimators in a variety of
settings based upon the bone marrow transplant example of Section 1. In all settings, we simulated
times to death from an exponential distribution with mean 10 and censoring times that were uniform
over the interval [0, 10]. Times to relapse were simulated from a Weibull distribution with hazard
�r (t) = �r�r (�r t)

�r−1 and times to aGVHD were simulated from aWeibull distribution with hazard
�a(t) = �a�a(�at)

�a−1. The parameters �r , �r , �a and �a varied in each of four settings so that we
could examine the impact of the shape of the corresponding hazards on the variance estimators.
The actual parameter values are displayed in Table I.

In settings A and B, relapse had a decreasing hazard, while in settings C and D, relapse had
an increasing hazard. Settings A and B differed from each other and settings C and D differed
from each other by having aGVHD occur with a decreasing hazard in settings A and C and
an increasing hazard in settings B and D. We also examined settings in which either or both
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Table I. Parameter values for each setting.

Relapse aGVHD

Setting �r �r �a �a

A 0.5 0.2 0.5 0.2
B 0.5 0.2 2.0 0.2
C 2.0 0.2 0.5 0.2
D 2.0 0.2 2.0 0.2

events had constant hazards, but the results of those settings are not shown as they replicate our
findings from settings A–D. We note that in actuality, presence of a GVL effect would induce
dependence between the time to aGVHD and the time to relapse. However, as stated earlier,
the joint distribution of two dependent risks can be represented by the joint distribution of two
independent risks [2].

In each setting, we simulated data for 1000 samples of size n ∈ {20, 50, 100}. All estimates for
the cumulative incidence of relapse and their variances in each simulated data set were computed
at two time points, t = 1.0 and 3.0, and the values we report are the averages over all 1000
simulations. We also computed the empirical variance of the 1000 cumulative incidence estimates
as a reference point for the variance estimators. For each simulated data set, we also computed a
bootstrap-based variance estimate as an alternative to the variance estimators, similar in approach
to that of Yuen et al. [29]. The number of bootstrap samples in each simulation was set at B = 200,
a value which has been found to be an adequate number of replications for computing variance
estimates [30]. When using Lin’s method, we used B = 500 resampled values of the data in each
simulation, mimicking the value of B used in his manuscript. All computations were done in
SAS, with the exception of Gray’s variance estimator, which was computed in R using the cuminc
function contained in the library comprisk. A copy of the SAS program containing macros for the
remaining variance estimators is available from the authors upon request.

Our results are shown in Tables II and III. In Table II we see the performance of the variance
estimators when relapse has a decreasing hazard. In both settings A and B, all the variance
estimators tend to perform better at t = 1 than at t = 3 when N = 20 or 50. As relapse has a
decreasing hazard, and compounded with the censoring and competing events of aGVHD and
death, estimation becomes more difficult at later timepoints as fewer and fewer relapses occur.
This finding is less apparent at N = 100, which appears to generate a sufficient number of relapses
for accurate estimation, even at later timepoints.

In both settings A and B, the bootstrap and the variance estimators of Gaynor et al. and Betensky
and Schoenfeld perform the best of all the estimators, although they both tend to underestimate
the variance in small samples (N = 20, 50). The variance estimator of Korn and Dorey does as
well as those just mentioned when t = 1.0 but slightly underperforms at t = 3.0. The variance
estimators of Pepe and Lin both substantially underestimate the actual variance for all values of
N , with Lin’s approach outperforming Pepe’s approach. Gray’s variance estimator overestimates
the actual variance, although the bias is substantially reduced at N = 100. In comparing settings
A and B, it appears that all the variance estimators perform slightly better with an increasing
hazard for aGVHD (Setting B) in small samples (N = 20), although this trend is not apparent with
larger sample sizes in which none of the variance estimators appear to be affected by the hazard
for aGHVD.
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Table II. Comparison of variance estimates for cumulative incidence estimator for event with decreasing
hazard. Parameters for both settings defined in Table I. N = number of observations; ĈI(t)= estimated
cumulative incidence; B=Bootstrap; Gr=Gray; P=Pepe; L=Lin; Ga/B=Gaynor/Betensky; K=Korn;

VIF= variance inflation factor proposed for Pepe variance estimator.

Empirical % of empirical variance
variance

Setting N t ĈI(t) B Gr P L Ga/B K VIF

A 20 1.0 0.2867 0.0106 94.2 105.2 67.1 86.0 94.1 94.3 1.23
3.0 0.3709 0.0129 93.1 107.6 57.7 80.1 91.8 90.6 1.57

50 1.0 0.2878 0.0043 97.2 103.9 85.2 93.9 97.4 97.2 1.08
3.0 0.3711 0.0051 97.5 104.1 79.0 91.8 97.3 95.3 1.25

100 1.0 0.2897 0.0021 99.6 102.6 92.1 96.3 99.1 98.6 1.04
3.0 0.3719 0.0026 98.7 101.2 89.6 95.2 98.3 97.0 1.10

B 20 1.0 0.3478 0.0117 95.8 105.5 72.1 88.7 95.3 95.5 1.16
3.0 0.4775 0.0139 95.9 106.3 63.5 84.3 94.3 92.7 1.46

50 1.0 0.3460 0.0047 98.7 102.9 88.4 95.5 98.7 98.3 1.08
3.0 0.4758 0.0057 95.8 105.3 80.7 91.0 95.4 92.8 1.24

100 1.0 0.3491 0.0024 99.6 100.9 94.0 97.9 99.1 98.7 1.04
3.0 0.4778 0.0028 100.7 102.5 92.0 97.8 100.4 98.1 1.11

Table III. Comparison of variance estimates for cumulative incidence estimator for event with increasing
hazard. Parameters for both settings defined in Table I. N = number of observations; ĈI(t)= estimated
cumulative incidence; B=Bootstrap; Gr=Gray; P=Pepe; L=Lin; Ga/B=Gaynor/Betensky; K=Korn;

VIF= variance inflation factor proposed for Pepe variance estimator.

Empirical % of empirical variance
variance

Setting N t ĈI(t) B Gr P L Ga/B K VIF

C 20 1.0 0.0277 0.0015 93.8 106.8 65.8 85.6 93.1 92.5 1.16
3.0 0.1413 0.0078 91.4 107.2 45.2 73.9 88.3 84.8 1.47

50 1.0 0.0262 0.0006 98.3 105.9 85.5 94.7 98.0 97.6 1.08
3.0 0.1377 0.0029 99.3 105.5 74.7 92.0 98.3 94.5 1.24

100 1.0 0.0257 0.0003 100.8 103.9 95.8 99.4 100.8 100.4 1.04
3.0 0.1388 0.0014 99.3 104.8 88.7 96.2 98.8 96.9 1.11

D 20 1.0 0.0357 0.0018 97.3 103.7 75.3 90.1 96.2 95.6 1.10
3.0 0.2128 0.0105 95.5 105.1 59.0 82.1 92.8 87.8 1.35

50 1.0 0.0360 0.0007 98.1 102.4 89.0 95.4 98.1 97.8 1.08
3.0 0.2136 0.0042 96.0 103.6 80.0 91.0 95.5 92.0 1.25

100 1.0 0.0356 0.0004 100.4 102.1 95.9 99.0 100.7 100.3 1.04
3.0 0.2147 0.0021 99.0 101.4 90.4 96.6 99.0 97.7 1.11
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In Table III we see the performance of the variance estimators when relapse has an increasing
hazard. As with Table II, we see that the bootstrap and methods of Gaynor et al. and Betensky and
Schoenfeld outperform the others, closely followed by that of Korn and Dorey, with the method
of Gray overestimating the actual variance and the methods of Lin and Pepe underestimating the
actual variance. All of the estimators tend to perform better at t = 1.0 than at t = 3.0, regardless of
whether the aGVHD hazard is increasing or decreasing. As most of the findings from Table II are
replicated in Table III, it appears that the variance estimators are affected little by the pattern of
relapse (increasing or decreasing hazard). However, in setting C, where aGVHD has a decreasing
hazard, we see that the overestimation by Gray’s variance estimator is further amplified beyond that
seen in Setting A (Table II), indicating a possible sensitivity of Gray’s method in small samples
to the direction of the relapse hazard.

3.2. Proposed inflation factor for Pepe estimator

As seen in our simulations, the method of Pepe tends to significantly underestimate the variance
of ĈI(t). This finding is not unexpected, as Pepe summarized the results from a small simulation
study in her original manuscript and stated that her variance estimator for the KM estimator tended
to underestimate the true variance of the KM estimator. However, the degree of the underestimation
for the variance of ĈI(t) in our simulations was much higher than we anticipated.

Pepe also compared her estimator to Greenwood’s formula for the variance of the KM estimator,
stating that Greenwood’s formula was less biased. Therefore, we postulated that a rough adjustment
to Pepe’s variance estimator for ĈI(t) could be generated from its relation to Greenwood’s formula
as applied to the KM estimator. Therefore, if we let VP(t) denote Pepe’s variance estimate for the
KM estimator at time t and VG(t) denote Greenwood’s variance estimate for the KM estimator at
time t , we have a variance-inflation factor (VIF)

VIF(t) = VG(t)/VP(t)

=
∫ t
0 [Y 2(u) − Y (u)]−1 dN (u)∫ t
0 [Y−2(u) − Y−3(u)] dN (u)

(7)

where Y (u) and N (u) are the martingale quantities defined in Section 2 (see p. 773 of Pepe’s
manuscript).

We applied this VIF to our simulated data and the average VIFs are shown in the last columns
of Tables II and III. In large samples (N = 100), we see the proposed VIFs are sufficient to
make Pepe’s variance estimator consistent with the empirical variance. However, in small samples
(N = 20), the proposed VIFs are woefully insufficient for making the Pepe estimator consistent
with the empirical variance, and in moderately-size samples (N = 50), the proposed VIFs greatly
improve the Pepe estimator, but are still not quite sufficient to make the Pepe estimator consistent
with the empirical variance.

3.3. Actual application

We have a sample of 137 subjects with acute myelocytic leukaemia who participated in a multi-
center trial designed to study a conditioning regimen of busulfan and cyclophosphamide before bone
marrow transplantation. The specific data can be found in the text of Klein and Moeschberger [31],
and details of the study can be found in Copelan et al. [32]. The subjects were stratified into three
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Table IV. Comparison of cumulative incidence of GVHD and corresponding standard error esti-
mates in 137 bone marrow transplant patients, 38 with ALL, 54 with low risk AML, and 45 with
high risk AML; ĈI(t)= estimated cumulative incidence; B=Bootstrap; Gr=Gray; P=Pepe; L=Lin;

Ga/B=Gaynor/Betensky; K=Korn.

Standard error

t Disease ĈI(t) B Gr P L Ga/B K

100 ALL 0.211 0.068 0.067 0.061 0.068 0.066 0.066
AML 0.051 0.024 0.022 0.020 0.021 0.022 0.022
Low risk 0.037 0.027 0.026 0.024 0.026 0.026 0.026
High risk 0.067 0.041 0.038 0.033 0.037 0.037 0.037

180 ALL 0.395 0.081 0.081 0.069 0.077 0.079 0.080
AML 0.253 0.046 0.044 0.039 0.042 0.044 0.044
Low risk 0.222 0.057 0.057 0.051 0.050 0.057 0.057
High risk 0.289 0.071 0.069 0.055 0.067 0.068 0.068

365 ALL 0.507 0.082 0.085 0.070 0.074 0.081 0.082
AML 0.384 0.047 0.049 0.045 0.045 0.049 0.049
Low risk 0.370 0.065 0.067 0.060 0.064 0.066 0.066
High risk 0.400 0.072 0.075 0.059 0.072 0.073 0.074

groups: 38 patients with acute lymphoblastic leukaemia (ALL), 54 patients with low-risk acute
myelogenous leukaemia (AML), and 45 patients with high-risk AML. We stratified our estimates
for the cumulative incidence of GVHD and the corresponding standard errors by the two disease
groups, as well as by risk group within AML. Thus, our results, as shown in Table IV, are based
upon moderate sample sizes and are comparable to the results in Tables II and III with N = 50.

Note there is no evidence that these data follow the same distributions as the data used in the
simulations. In AML patients (low- and high-risk combined), the risks of relapse and non-GVHD
death appear to be relatively flat over the first 365 days, while the risk of GVHD tends to increase
over the same time period. In contrast, in ALL patients the risks of relapse and non-GVHD death
tend to increase over the first 100 days after transplant and then flatten, while the risk of GVHD
tends to continually increase over the first 365 days after relapse.

A more significant difference between this data and that used in the simulations relates to the
magnitude of the GVHD hazard to the hazards of the competing events of relapse and non-GVHD
death. At the earliest time point examined in this data (t = 100), the competing risks hazards tend
to be much closer in magnitude to the hazard of GVHD than at the earliest time point (t = 1) in
the simulated data. Furthermore, the competing risks hazards in this data tend to be less than the
hazard of GVHD at t = 100, while in the simulated data, the competing risks hazards tend to be
greater than the hazard of GVHD at t = 1. As a result, this data has a relatively larger number
of observed GVHD events at early time points than the simulated data. Such a finding is not
unexpected, as GVHD has a much higher frequency than relapse early after transplant, and GVHD
is the leading cause of early death in transplant patients.

At t = 100, we see that Pepe’s method predictively produces lower standard errors than those
of the bootstrap and the methods of Gaynor et al., Betensky and Schoenfeld, and Korn and Dorey.
However, the standard errors using the methods of Gray and Lin are both surprisingly close to those
of Gaynor et al., Betensky and Schoenfeld, and Korn and Dorey. We suspect this finding, which
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differs from the findings from our simulations, is due to the properties of the hazards discussed
earlier. It is possible that a large disparity in hazard functions, present in the simulations but not
in this data, may impact the performance of Lin’s and Gray’s variance estimators, although this
speculation would need to be confirmed with more research. Nonetheless, at t = 180, we start
to see indications that Lin’s method produces underestimated standard errors, and at t = 365, we
start to see indications that Gray’s method produces inflated standard errors, both of which are
supported by our simulation results.

4. CONCLUDING REMARKS

The results of our simulation study and data analysis indicate two important facts: (1) the variance
estimator of Pepe is quite biased and leads to underestimated standard errors in small and moderate
samples of data, and (2) the estimators of Gaynor et al., Betensky and Schoenfeld, and Korn and
Dorey do much better than those of Pepe, Lin, and Gray, and are fairly accurate even in small
samples. Although we attempted to improve the performance of the Pepe estimator through an
inflation factor, this factor tended to be satisfactory only in large samples and was not adequate in
small samples.

It remains unclear why the estimators of Pepe and Lin, although based upon similar theoretic
approaches, tend to underestimate the true variance to distinctly different degrees. One explanation
is that the approximations used by each author tend to converge at slightly different rates and that
Pepe’s approximation should be expanded to include higher-order terms. One simple adjustment
to Lin’s approach would be to sample random values from a central t-distribution rather than a
standard normal distribution, although it is unclear what the appropriate degrees of freedom for
the t-distribution should be.

It is concerning that Gray’s estimator is the only estimator available for general use, as it tends
to lead to inflated standard errors. Such overestimation could lead to an increased rate of type II
errors (i.e. less power) in studies whose primary outcome is cumulative incidence. We recommend
that the variance estimators of Gaynor et al., Betensky and Schoenfeld, and/or Korn and Dorey be
included in future statistical packages that include procedures for cumulative incidence estimation.
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