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ABSTRACT

This report treats techniques for generating linear binary sequences. The basic
properties of sequence generators, maximal sequences, and non maximal sequences are
reviewed. Five specific types of generators, each representing a "canonical form, ' are
considered. Two forms of shift-register generators are studied: the simple-shift-register
generator and the modular-shift-register generator. Two forms of complement-register
generators are considered: the simple-complement-register generator and the modular-
complement-register generator. A hybrid generator consisting of both shift and comple-
ment stages is discussed. Included in the discussion for each generator are: (1) the rela-
tionship between the characteristic polynomial and the feedback connections, (2) the relation-
ship between sequences produced by different stages of the same generator, (3) the initial
loading required for the generator to produce a particular n-tuple from the output stage, and
(4) an output adder technique to obtain the desired starting conditions for a sequence obeying
the law of the generator.

The advantages and disadvantages of each of the five generators are given. Also
tables of equivalent generators for all maximal characteristic polynomials of degree
2 < n< 12 are included.

Matrix theory is used throughout the report to prove necessary theorems, and it
is used in the development of mathematical descriptions of the generators. Short proofs and
derivations are presented in the text; more complex proofs and derivations are usually re-

served for the appendices.

xiii






1. INTRODUCTION

In recent years the application of digital sequences in communications, radar,
and guidance systems has increased. Considerable attention in the literature has been
given to the properties and characteristics of digital sequences. This report considers
techniques for generating periodic, deterministic, linear, binary sequences (only linear
techniques will be treated). The binary states, for convenience in this report, will
consist of 0's and 1%.

One common technique, used extensively in the past for generating binary se-
quences, is the shift-register generator which essentially consists of a basic shift register
to which modulo-two adders have been added. These adders are connected to various
stages of the register. The outputs from the register stages form the inputs to the modulo-
two adders, and outputs of the adders are fed back to some other stage of the register so
that one or more closed loops are formed. When the shift register is then pulsed in the
normal manner, the output from any stage of the register forms a digital sequence. In the
general case, depending upon both the feedback connections and upon the initial loading of
the shift register, the ensuring digital sequence has a period much longer than the number

of stages in the register.

Digital sequences can also be generated using a ""complement register' around
which some form of modulo-two adder feedback loop is employed rather than by using a
shift register. The "complement register' consists of a cascading of complement stages
(a ONE input causes the stage contents to change) rather than the cascading of shift stages
(the input is stored directly) found in the shift-register. Combinations of complement and
shift stages can also be employed to form "hybrid'' generators.

This report presents in one volume a basic treatment of linear generation techniques,
and discusses some of the more important properties and advantages of the different types
of generators. No attempt will be made here to treat the application of such sequences to

practical systems.



In Section 2, the basic properties of linear sequence generators and linear se-
quences are reviewed to introduce the terminology and notation to be used throughout the
report.

In Sections 3 and 4, we review the properties of the simple-shift-register

generator (SSRG) and of the modular-shift-register generator (MSRG). These types of

generators have been treated extensively in earlier reports (see Refs. 1,2), but are in-

cluded in this report for completeness.

The theory of the simple-complement-register generator (SCRG) and the modular-

complement-register generator (MCRG) is developed in Sections 5 and 6 in a manner similar

to the discussion of shift-register generators.

Section 7 presents an introduction to the ""Jacobian-hybrid generator' (JHG) which
is a form of hybrid generator that employs both complement and shift stages.

Section 8 concludes the report with a comparison of the properties, and of the ad-
vantages and disadvantages of the different types of generators we have discussed.

The notation used in this report follows that of Refs. 1 and 2. The properties and

theorems developed in these references are often duplicated in this report without proof.



2. GENERAL PROPERTIES

In this section the basic properties of linear sequences and of linear generators are
reviewed. These properties are generally true, regardless of the type of linear generator
being discussed. Basic definitions and notations are also developed to use in the remainder

of this report.

2.1 The A Matrix

The A matrix, which we define below, performs this function: if one multiplies on

the left the n-row column content vector, which represents the n contents of an n stage
generator, by this matrix, then one obtains the contents of the generator after one shift.
This matrix is equivalent in function to running the generator one step at a time.

Let ui(j) be the content of the i-th stage of the generator at time j. The content ’
vector U(j) is the n x 1 column vector
[u,(3)]

UG) = §uy() 1)

u, (3)

where ui(j) =1 or 0 depending upon the binary content of the i-th stage at time j. The

content vector one shift later, U(j + 1), becomes

U@G+1) = AUG) (mod-2) (2)

or, for any number of shifts k
UG+k) = AUG)  (mod-2) (3)

The n x n matrix A is defined as

A =1a, .
1,] nxn

where > (4)
1 if stage j feeds stage i

®
I

i,

= 0 if stage j does not feed stage i.

3



For example, the A matrix, using Eq. 4, for the multiple return shift-register

generator in Fig. 1 is

~-

[_o 1 0 0 1
0 0 01 0
A=10 0 0 0 1 (5)

\

0 1 1 1 o ,/
[1 0 0 1 0]

Y]
1 2 3 4 5

Fig. 1. A five-stage multiple return shift-register generator.1

1 i
(® denotes modulo-2 addition. A "mod-2 adder, " or "exclusive or" circuit produces a
"ONE" output if, and only if, the inputs are different.

denotes a shift register stage. In Section 5, complement register generators are
considered for which each stage is a complement stage and denoted as ;

2.2 Characteristic Polynomial and Sequence Law

Let f(£) be the characteristic polynomial of the A matrix for a given generator.

By definition, the characteristic polynomial is the determinate |A - £1|. Since (-1) and

(+1) are the same in modulo-2 arithmetic,
f(¢) = jJA+¢1] . (mod-2) (6)
Further, let bi represent the coefficients of this nth degree polynomial £(£), that is
S
f€) = )b ¢ (mod-2) (7)
i=0

where bn is always one, and the other bi coefficients are either zero or one.

Associated with every characteristic polynomial f(¢) is the "companion matrix, " Cf,

4



1 0 0 0
0 0 1 0
Cf = companion matrix = . (8)
0o 0 0 .... 1 0
0O .... © 1
b0 b1 b2 ce bn_2 bn—l

Note that the companion matrix is nonsingular whenever b0 = 1, this can be seen by ex-

panding the determinate, lC by minors by the first column

)

Icfl = loo (9)

The characteristic equation is definéd as

f(§) = 0

that is, n ;
Y b & =0 (mod- 2) (10)
i=0

By the Hamilton-Cayley Theorem (see Ref. 3), a matrix satisfies its own charac-

teristic equation, thus

n .
f(A) = ) biAl =0 (mod- 2) (1)
i=0

Using Eqs. 3 and 1l

n .
f(A) UG) = ), b AT UG) = 0 (mod-2)
i=0
n
= Z b, U(j+i) = 0 (mod-2) 12)

i=0

By changing the time index and because (+1) equals (-1) for mod-2 addition, Eq. 12 can be

rewritten as ‘ fre
n I
b UG) = UG = ), b UG-1) (mod- 2) (13)

i=1

The characteristic sequence law is derived from Eq. 13

n
u () = ié1b“‘i u (3-1) (mod-2) (14)

fork=1 2, ..., n



The characteristic sequence law relates the present contents of any stage of a
generator to the previous n contents of the same stage. Notice that the sequences produced

by each stage of the generator obey the characteristic sequence law for the generator.

Let the column vector Vi(j) represent an n-tuple of successive bits from the ith

stage of a linear generator starting at time j, that is

(0 ]
(i+1)

Vi(j) = ' (15)
ui(j+n—1)

The companion matrix, Cf, corresponding to the characteristic polynomial, f(¢),

for the generator can be used to find Vi(j+k) by

Vi(j+k) = Cf V.(3j) (mod-2) (16)

where

V.(j+k) =

and Cf is as defined in Eq. 8.

To verify Eq. 16, consider the product

CfVi(j) (mod-2) (17)

The first n-1 rows of product in Eq. 17 are ui(j+1), Ui(j+2),. cey u‘i(j+n-1), respectively.

The nth row of the product is

b ui(j) + blui(j+1) ..+ bn-lui(j+n_l)’ (mod-2) (18)

From Eq. 14, the characteristic sequence law, the sum in Eq. 18 reduces to ui(j+n)- The

product in Eq. 17 is, therefore,

Vi(j+1) = CfVi(j) (mod-2) (19)



Equation 16 readily follows from Eq. 18 by repeated application of Eq. 19.
Let X(j) = x(j), x(j+1), x(j+2), ..., represent a sequence with time reference j.
The individual digits of X(j), x(j+k), are the successive outputs from some stage of a

sequence generator. The mod-2 sum of two sequences Xl(j) + Xz(j) by definition becomes
X,(0) + X(0) = x,(0) + x5(0), x)(#1) + x,(+D), ... (mod-2) (20)

Theorem 1:
If Xl(j), Xz(j), cen, Xm(j) are sequences, all of which have the same characteristic sequence

n
law, EO b, ; X (j-1) = 0 (mod-2), then their sum
m
X() = ), X(j) (mod-2)
i=1

also obeys the same characteristic sequence law.
Proof:

Fork=1, 2, ..., m, the individual digits of Xk(j) are determined by the sequence law

n

xk(j+s) = Z—’l bn—i xk(j+s-i) (mod-2)

s=0,+1, +2, ... (21)

The sum sequence X(j) is composed of x(j+s), where

m
x(j+s) = Z xk(j+s) (mod-2), s=0, +1, +2, ...
k=1

)
= b . x (j+s-i) (mod-2)
k=l =] MK

= i;I bn—i

e

. xk(j+s-i) (mod-2)

- Vb x(ps)  (mod-2) (22)
i=1

Comparing Eqs. 21 and 22 we can see that the sum sequence X(j) obeys the

same sequence law that Xl(j), Xz(j), e, Xm(j) obey.

7



In the remainder of this report the following notational convention will be used for

the characteristic polynomial:

(n, a, ..., b) means () = £n+§a+... +£b (mod-2) (23)

For example, from Eqs. 5,6, and 23 the characteristic polynomial for the

generator in Fig. 1is the determinate

c 1 0 0 1
0 £ 0 1 0
f6) = [A+&1] =0 0 & o0 1]|=¢+£%+ 41 = (5410 (mod2)
0 1 1 W& 0
1 0 0 1 ¢
L A

2.3 Maximal Sequences and Generators

Under certain conditions, sequence generators produce sequences that begin with a
number of binary digits which are not part of the periodic portion of the sequence. These
bits which are not a part of the periodic sequence will be referred to as transient bits.
(Transient bits are discussed further in Section 2. 4. 2. )

Given any n consecutive bits of a periodic sequence from an n- stage generator, the
entire periodic sequence is uniquely determined by application of the characteristic
sequence law. As a result, any given n-tuple of consecutive bits of a sequence can appear
in only one periodic sequence produced by the generator. For a transient free generator,
every possible n-tuple will appear in one and only one of the periodic sequences. It should
be noted that to obtain all of the periodic sequences produced by a generator various
initial conditions may be required.

Consider an n-tuple of consecutive binary digits (bits) of a sequence {x(j), x(j+1),

., X(j+n- 1)}. There are 2" possible binary n-tuples. One of these, however, is all

O's. ¥x(j+i)=0fori=0,1, ..., n-1, then from the characteristic sequence law

x(j+n) = ) b
i=1

=i x(j+n-1i) = 0 (mod-2)

and every following bit will also be zero. Consequently, the all zero n-tuple will appear only

in the all-zero sequence (null sequence) with a period of one bit. This particular sequence



will not be considered in the remaining portions of this report. There remain 2"~ 1 nonzero
n-tuples which can appear in a sequence or sequences from a generator. Consequently, the
maximum number of digits in a periodic sequence generated by an n-stage linear generator is

2"~ 1 before the sequence begins to repeat itself, Therefore, any sequence of length
L= 2"-1 (24)

will be defined as a maximal sequence if every n-tuple except the all zero n-tuple appear in it.

An important property of maximal sequences is the shift-and-add property: if a

maximal sequence is shifted in time and added to itself, then the resulting sequence will be
the same maximal sequence shifted in time, or all zeros. That is, if X(j) is a maximal se-

quence, then

X({)+X(G+k) = X(j+r) (mod-2) (25)

where k and r are non zero integer constants mod- L = 2" - 1. The shift-and-add
property follows from (1) Theorem 1; (2) the fact that any n-tuple and the sequence law
completely determines the sequence; and, (3) the fact that a maximal sequence contains
every non zero n-tuple of binary digits.

Another property of maximal sequence generators is:
Theorem 2:
Every stage of a maximal sequence generator produces the same sequence, but the
sequence (except for the null sequence) from any stage will be shifted in time from the
sequence produced by any other stage.

The proof of this theorem appears in Appendix A.

2.4 Nonmaximal Sequences and Generators

Since any sequence of length L = 2. 1, where n is the number of stages in the

-1
generator, has been termed a maximal sequence, any sequence of length p <L =2"

will be termed a nonmaximal sequence. Furthermore, if a transient free n-stage generator

produces m different nonzero periodic sequences (obtained by using different initial loadings

in the generator) with periods, PysPgs- - sP s then



Non maximal sequences can be separated into two categories: (1) those associated
with irreducible characteristic polynomials and, (2) those associated with factorable
characteristic polynomials.

2.4.1 Irreducible Characteristic Polynomials. If the characteristic polynomial

associated with a non maximal sequence law is irreducible, it has been found (see Ref. 1)

that there are m sequences of the same length, £ , which obey that sequence law, and by
Eq. 26

mlé = L (27)
where { is called the impulse response 1ength.2 Non maximal sequences corresponding

to irreducible characteristic polynomials exhibit a partial shift-and-add property. That is,

for certain shifts the mod-2 sum will give back the same non maximal sequence and the

shift-and-add property holds. 3

2. 4.2 Factorable Characteristic Polynomials. It has been shown in Ref. 1 that if

the characteristic polynomial, f(£), of a generator is factorable such that

f(g) = £'(6) - £"(€) ... £ () (mod-2)

then the generator is non maximal. Further, the sequences that obey the sequence laws
associated with the factors of the characteristic polynomial are among the sequences that
obey the sequence law of the generator.

For example, if the characteristic polynomial for a five -stage generator is

(5,4,0) = (2, 1,0)%3,1,0) (mod-2) (28)

then the generator is non maximal. The sequences associated with a (2,1, 0) characteristic
polynomial and the (3, 1,0) characteristic polynomial are among the sequences associated
with a (5, 4, 0) characteristic polynomial.

This property suggests a useful physical representation of a non maximal generator

with a characteristic polynomial that is factorable (Ref. 1). This representation consists of

2 . :
The impulse response length, £, is defined for any transient free generator as the length
of that periodic sequence (produced by that generator) which contains n-1 successive
'zeros'' preceded and followed by a "one''.

3
For a more complete discussion, see Ref. 1.
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a consideration of each factor as representing a separate generator, and a cascading of the
resulting generators, as the factors themselves are cascaded in the equation. Figure 2a
illustrates this representation of a generator with a polynomial that is factorable. Each
generator in the cascaded group has its feedback connnections constructed according to the

terms in the corresponding factor. The object of this representation is to be able to view
the generation of the entire set of sequences from the total generator as stemming from

different combinations of factor generator sequences. In this process, the indivdual
generators are allowed to take on all their possible sequences, including the all-zero
sequence. This representation has been shown to be always valid. It also serves as a

useful means for considering the set of sequences from a factorable non maximal generator.

polynomial = (n,j,...) = (k,m,...) (p,r,...)(s,t,...)

k Stage Gen. p Stage Gen. s Stage Gen. —=

(a)
(n,j,e..) = (k,m,...)(p,r,...) (s,t,...)

k Stage Gen.

p Stage Gen. Output of Nonmaximal
Generator

s Stage Gen.

(b)

Fig. 2. (a) Physical interpretation of a generator whose polynomial
is factorable, (b) concept of '"beating' the factor generators
when the factors are nonrepeating.

In addition to the interpretation of Fig. 2a, another physical interpretation can be
given for non repeated factors (Ref. 1). This interpretation views the sequences from the
factors as "'beating' to form the sequences of the total generator (whereas, the conception
of Fig. 2a considers the factors as cascaded generators). '"Beating” means operating the
factor generators independently, and mod-2 adding the outputs. The word "beating'" comes
from the frequency spectrum analysis of the result, which contains the sum and difference

of "the beats' of the individual sequence spectral lines. For a general polynomial, this

11



concept is depicted in Fig. 2b. This beating concept applies only when the factors of the

polynomial are non repeating. It does not work when there are repeated factors.
There are two particular types of factorable characteristic polynomials which rate

special mention. The first is the characteristic polynomial that has (£ +1) as a factor.

Theorem 3:

The term (£+ 1) is a factor of the characteristic polynomial

n .
f(¢) = ), b & (b =1 (mod-2)
i=0
if, and only if, i,
Y b, = 0 (mod-2)
. 1
i=0

That is, there is an even number of terms in f(¢§ ). This theorem is proved in Ref. 1,
p. 104.

An immediate consequence of Theorem 3 is that the characteristic polynomial for a
maximal sequence generator has an odd number of terms.

The second factorable characteristic polynomial that is a special case of interest
is one which has s;k as a factor.

Theorem 4:

Let the characteristic polynomial f(£) have the form

n .
() = Ek ) b.& -k (mod-2)
i=k

whereb_ = b =1
n
then
(1) the sequence obtained from any stage of the generator may
begin with a transient of k or fewer bits (not part of the periodic
sequence), after which the sequence becomes periodic and obeys
the sequence law of an n-k stage generator with characteristic

polynomial

') = ibig K (mod-2)
i=k

12



(Note: the sequence may start out with up to k transient bits and
then produce the null sequence. )

(2) There is at least one non zero content vector, U', so that if
the generator is initially loaded with U’, there will be one transient
content vector before every stage produces the null sequence.

(3) If the generator is capable of producing any non zero periodic
sequence, (k<n), then there is at least one non zero content vector,
U", so if the generator is initially loaded with U'" there will be
exactly one transient content vector before the generator output
becomes periodic and at least one stage produces a non zero

sequence.

The proof of Theorem 4 is found in Appendix A. The most important consequences
of Theorem 4, for the purpose of this report, are (1) that a generator is transient free, if
and only if, b0 = 1, and (2) any periodic sequence that can be produced by a generator with
a characteristic polynomial that has £k as a factor (i.e., b, =0, 0 < i < k), can be pro-
duced by a generator of n - k stages. For these reasons the remainder of this report will
deal primarily with generators having characteristic polynomials with a nonzero constant
term (bO = 1).

2.5 The B, Matrix

The BA matrix is a matrix associated with the A matrix of a sequence generator
and is derived by using the characteristic equation of the A matrix.
Each power of A can be expressed in terms of powers of A no larger than n-1

(where n is the number of stages in the generator). The BA matrix represents a "table"

of these expressions. The B A matrix is defined by the equation

B, = [bi,j] (29)

where the elements bi i are the coefficients in the equation

b

Al - ib. A™ (mod-2) (30)

The coefficients b, . will form either an L by n or an£ by n matrix. The BA matrix

)

is essentially constructed by successively raising the powers in an equation, starting with

13



the identity A = A, and ending with Aﬁ =Tor AL = I. Whenever the power of n appears on
the right hand side, it is replaced by use of the characteristic equation.
For example, given a generator with a characteristic polynomial of (4, 2, 0) or

equivalently A*= A% + I, the B, matrix is derived as follows:

A=A

A2= A2 (mod-2)
INE (mod- 2)
A% A%. (mod-2)
AS- a-a% - Ao (mod-2)

AB AL AP AY AZoA2014A%-1 (mod-2)

and the B A matrix becomes

powersofA—?B 2 10
1o 01 o

210 1 0 O

BA= 3f1 0 0 O

410 1 01

5(1 0 1 0

6_(_) 0 0 l_J

For any non singular (transient free) A matrix (b0 = 1) the last row of the B, matrix

will be n-1 "zeros' followed by a "one", like the above example. This row then represents

the smallest power £ so that 4

A’Z = I (mod-2) (31)

Every sequence produced by that generator will be periodic every £ bits. Therefore, if the
nonmaximal generator produces any sequences of length p < £, then £ must be some integral
multiple of p. A formal proof of this can be found in Ref. 1, p. 95.

The BA matrix is obtained by application of the characteristic polynomial of the

A matrix. Thus, two different A matrices with identical characteristic polynomials have

identical BA matrices.

4The impulse response length £ is defined in Section 2. 4. 1.
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2.6 Equivalence of Two Linear Sequence Generators

Two linear sequence generators are said to be equivalent if every sequence produced
by one can be produced by the other, and vice versa.

Since the sequences produced by a generator depend entirely upon the characteristic
sequence law, necessary and sufficient conditions for equivalence are:

(1) The linear sequence generators must have the same characteristic polynomials;

(2) For every n-tuple of consecutive bits of a sequence obtainable from one genera-
tor, there exists an initial loading for the other generator which will generate

the required n-tuple at the selected output stage of the generator.

The properties and relationships developed in this sectioon are vaild for any linear
sequence generator. In the following section, specific types of linear generators are consid-

ered and some of the more important properties of each type of generator are discussed.
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3. THE SIMPLE SHIFT-REGISTER GENERATOR

A linear shift-register generator (SRG) is any device using a binary memory
register, that produces an output binary sequence when successively triggered by a "shift"
command. A linear generator means that the changes in the register contents are those of
a time-invariant linear operator. The shift register may include sets of storage units in
which a particular content does not necessarily move to an adjacent position, but may move
to various other positions depending upon the connections between the units (see Fig. 1).

To form a shift-register generator, modulo-two adders are attached to a basic memory
register to form feedback and/or feedforward loops.

In this section, one standard form of shift-register generator (SRG) is considered,
namely the "simple-shift-register generator' (SSRG). The SSRG is defined; and, the A ma-
trix, characteristic polynomial, and characteristic sequence law for it are discussed.

The treatment given to the SSRG in this section and that given to the "modular-
shift register,' in the next section, are included in this report only for the sake of complete-

ness. More detailed discussions of these two types of SRG's are given in Refs. 1and 2.

3.1 Definition
In a simple shift register, each stage is fed by its immediate predecessor. In
an SSRG, the contents of certain stages are added (mod-two) to feed the first stage. The

switches, denoted as ci» represent the "feedback taps" of the SSRG in Fig. 3a.

1 if the ith stage of the SSRG feeds the 1st stage

o
1}

0 if the ith stage of the SSRG does not feed the
1st stage

By convention ¢, = 1, and normally ¢ = 1. (See p.20 where c £ 1.)
In the SSRG there are only feedback loops to the first stage. No interstage
adders are present. If the sequences themselves were the only item of interest there would

be no loss in generality by considering only this type of SRG. Every linear generator can
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be shown to have an equivalent SSRG, (Section 3. 4).

The block diagram of Fig. 3b will be used to represent an SSRG without showing

interstage connections as in Fig. 3a.

~(—

\Cn—l cn=1
n-

1 n

cozl \cl wcz

2 ™ —--

u—ry

(a) (b)

Fig. 3. (a) An n-stage simple shift-register generator,
(b) a six-stage SSRG with feedback taps
¢ and cg closed.

3.2 The A Matrix

From Section 2. 1, the A matrix is defined by the following relation:

where

= 1 if the jth stage of the SRG feeds into the ith stage of the SRG

0 otherwise.

From Fig. 3 it is obvious that the content of the ith stage of the SSRG at time i, ui(j), is

given by the relationships:

n
() = L u -1 (mod-2)

k=1 (33)
ul(J) = ui_l(l- 1) ] 2 S 1 S n

17



For the SSRG with feedback taps cj , the A matrix becomes

A = |a, . A
2y ]
where
a, . = C, =1,2,...,n
1’] ]) ] H b > (34)
ai,i—l =1, i>1
.. =0 otherwise
1]
J
1 % % ®h-1 Cn
1 0 O 0 0
0 1 0 ... 0 0
A = (35)
o 0 0 ... 0 0
L..O 0 0 ... 1 0

3.3 Characteristic Polynomial, Sequence Law, and Feedback Equation

The characteristic polynomial for the SSRG, from Eq. 7, is defined as
S
(¢) = la+¢1l = ), b g (mod-2)
i=0
where b_ = 1,
n

If the A matrix of Eq. 35 is rotated 1800, one obtains

o 1 0 0 o0
0 0 1 0 0
AR - A rotated180° = | © - : - (36)
0 0 0 1 0
0o 0 0 0 1
Cn cn—l cn-2 CZ c1




which by comparing Eq. 8 is the companion matrix for the characteristic polynomial

n .
f(e) = "+ ), ¢ &)
i=1

By defining ¢, = 1, the characteristic polynomial for an SSRG is

0
f(¢) = |A+£1]
n e
= ) ¢, & (mod-2) (37)
j=0 !
where
cj are the feedback taps of the SSRG
¢y = 1

cj = 1 if the jth stage is in the feedback loops

= 0 otherwise

By comparing Eqs. 7 and 37, the characteristic polynomial for the SSRG is determined by

the relationship

b =c . 1i=012,...,n (38)

where the bi's are the coefficients in the characteristic polynomial Eq. 7, and the ci's are

the feedback taps of the SSRG. From Egs. 14 and 38, the characteristic sequence law for

an SSRG becomes

A shorthand notation for describing an SSRG is

feedback equation which specifies an

[n,a,...,b,0] _: SSRG with feedback taps n,a,...,b (40)
closed.
Note that 0 has been placed in the feedback equation for convenience to indicate that ¢y = 1.

Also the n-th stage is included in the feedback loop.
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From Eqs. 23, 38, and 40 we can see that the characteristic polynomial and the

feedback equation for the SSRG are "simple reverses' of each other. That is

characteristic polynomial < feedback equation

(n,a,b,...,c,0) <> [n,n-c,...,n—b,n-a,O]SS (41)

Example:
The six-stage SSRG in Fig. 3b with feedback taps Cer Cgs and Cq closed has the

feedback equation and the characteristic polynomial
[6’ 5’3’0]88 @ (6)3’1!0)

The relationship between the feedback taps and the coefficients in the charac-

teristic polynomial point out these two important properties of SSRG's:

(1) Theorem 4 states that any sequence, from a generator with a
characteristic polynomial having no constant term (bo = 0),
can be generated by a generator with less than n stages (dis-
regarding transients). Therefore, since c, = bO’ any per-
iodic sequence from an SSRG in which ¢, = 0 can be gener-
ated by a transient free SSRG with fewer than n stages.

Such generators will not be considered in this report and the

condition ¢, = 1 will be implied for all n stage SSRG's.

(2) Theorem 3 states that if

bi =0 (mod-2)

s

i=0

1

then, (£ + 1) is a factor of f(£) and the generator is nonmaximal.

For the SSRG b, = ¢__., thus,
i n-i
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and if,

then, (£ + 1) is a factor of f(£). Therefore, for a maximal

SSRG,

)L ¢ =1 (mod-2)

Every maximal SSRG must have an even number of feedback

taps (not counting <o

length 2 < n < 12 is presented in Section 8. 3.

3.4 Initial Loading

= 1), A table of all maximal SSRG's of

The initial loading problem is one of determining the initial content vector U(j)

for a generator to obtain a desired n-tuple of consecutive bits from the last stage of the

generator. (Since any n consecutive bits of a sequence along with the characteristic sequence

law uniquely determine the sequence, the initial loading problem is equivalent to finding the

initial loading of a generator necessary to obtain a particular sequence from the last stage

starting at a given place in the sequence. )

Let {un(j), un(j +1),... ,un(j +n-1)} be the desired n-tuple of bits from the last

stage starting at time j. Then from Eq. 33

w.(j) = u, ((j+1)

i i+l

and by successive application of Eq. 33,

u,(j) = w (j+n-1i)

(43)

Equation 43 specifies the necessary initial loading to obtain the desired n-tuple output.

Let the column vector Vi(j) represent n consecutive output bits from the i-th
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stage of the SSRG as in Eq. 15, that is

Vi) =

ui(j +n-1)

where u.l(j) = contents of the i-th stage of the SSRG at time j. Let

[0 0 1]
0 0 0
0 0 0 0
* = (44)
0 0 1 0 0 0
0
1 0 0 0]

then the initial tuple loading U(j) for a desired n-tuple output from the last stage, Vn(j), is

found from the relationship

=
~
Qi
=
I

* V() (45)

where
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For any n-stage linear sequence generator, the characteristic polynomial and
sequence law can be found from the A matrix. Given the characteristic sequence law, any
n-tuple of consecutive bits completely determines the sequence. From either Eq. 39 or 41,
the feedback equation for an SSRG can be found for any sequence law or characteristic poly-
nomial. From either Eq. 43 or 45, the necessary initial loading for the SSRG can be de-
termined to generate a desired n-tuple of consecutive bits as the starting output of the last

stage. Hence,

Theorem 5
Any sequence that can be generated by a linear sequence generator

can be generated by an SSRG.

Theorem 5 can be restated as follows: Every linear sequence gen-

erator has an equivalent SSRG.

3.5 Interstage Relationships

The relationship between the output sequences obtained from the different stages

is particularly uncomplicated for a simple shift-register generator. From Eq. 33

u1+1(3) = ul(.]_l)
or

That is, the contents of the (i+k)-th stage are the same as the contents of the i~th stage k
shifts earlier. Thus, if Xi(j) denotes the output sequence produced at the i-th stage, then

from Eq. 46

Xili) = X-K) (47)

or equivalently, for periodic sequences

X)) = X, (i+k) (48)
3.6 Output Adder Circuit

As contrasted with the direct technique of loading the generator with the proper

initial conditions (Section 3. 4), a technique is described in this section for using an output
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adder to obtain a desired sequence initiation.

In generating a desired initial n-tuple using an SSRG a "grand mod-2 adder' is
used. This adder takes the outputs of selected stages and mod-2 adds them together to pro-
duce the total mod-2 sum. The grand adder has as many inputs as there are stages in the
generator and the adder taps, ai's, determine which stages are fed to the adder (see Fig. 4).

If we let

1 if the i-th stage is fed to the adder
' (49)

R
N

0 otherwise
and let x(j) be the output of the adder at time j, then
x(G) = L e w0) (mod-2) (50)
where ui(j) - contents of the i-th stage at time j. Define
X() = [xG), G+ D, pxGen-D] (51)

where x(j) = adder output at time j, and

then Eq. 50 can be written as
x(j) = @U({)  (mod-2) (53)
and Eq. 51 becomes
X(§) = @ [UG), UG+1),...,UG+n-1] o (mod-2)  (54)
Assume that the output X(j) is desired when the contents of the generator consist of a single

one in the first stage and zeros in all remaining stages. This special initial condition has

been denoted El(O) and is called the "first elementary load'" (see Ref. 1). Therefore,

uG) = E0) (55)
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where

10 = [0 (56)

and

UG+1) = AU(G) = AEI(O) = El(l) (mod-2)

Equation 54 becomes

X(j) = a[E(0), E((1),...,E;(m-1)] _ (mod-2) (57)

In Ref. 1, the n x n matrix on the right in Eq. 57 has been denoted as the EA matrix associated
with the SSRG, that is,

Also in Ref. 1, a "feedback matrix," FA, is defined for an SSRG. It has the form

0 1 %3 ®h-3 %n-2 p-1
0 ¢y ¢ Ch-4 ®p-3 p-2
0 0 ¢ C-5 “n-4 n-3
Foo=| . . . ) ) . (59)
0 0 0 CO c1 02
0O 0 o 0 cO ¢y
0 0 o0 0 0 ¢ |

where

cj = feedback taps of the SSRG

c, = 1.
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Grand Mod-2 Adder — Output x(j)

Fig. 4. Circuitry for generating a desired initial
n-tuple using an SSRG.

Furthermore, the E A and F, matrices are nonsingular matrices and are in-

A
vei'ses,
E, "} - F (60)
A A
From Egs. 57, 58, and 60,
X(j) FA = aEA FA = ¢ (mod-2) (61)
In algebraic form, Eq. 61 becomes
m
a = 121 ¢ g Xi+k-1)  (mod-2) (62)

The solution (Eq. 62) guarantees that the output sequence starts with the desired n bits.

The sequences produced by each stage of a linear sequence generator obey the
characteristic sequence law of the generator. Theorem 1 states that a sum sequence (con-
sisting of the mod-2 sum of sequences each of which obey the same sequence law) obeys the
same sequence law. Therefore, the output sequence X(j) from the grand adder in Fig. 4
obeys the sequence law of the generator and is determined by its first n bits. Consequently,
by using the output adder circuit we can generate any desired sequence that obeys the charac-
teristic sequence law of the generator. In a maximal SSRG, the adder output sequence X(j)
will be the maximal sequence. In a nonmaximal generator, X(j) may be a completely
different periodic sequence from that obtained as an output from any one of the stages of the

generator.
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4. THE MODULAR SHIFT-REGISTER GENERATOR

The modular shift-register generator (MSRG) was developed because of difficulty
in the reliability of the SSRG at high frequencies. These high frequency problems of the
SSRG arise from: (1) the unbalanced inputs to the mod-2 adders, and (2) from both time and
propagation path delays. The treatment of the MSRG in this section will parallel the treat-

ment given the SSRG in Section 3.

4.1 Definition

An SSRG is shown in Fig. 5(a). A "Modular Shift-Register Generator" (MSRG)
is illustrated in Fig. 5(b). The term ""Modular" stems from picturing the shift register of
Fig. 5(b) as being composed of two types of modules (building blocks) sandwiched together.
These modules are: (1) a single flip-flop capable of driving a single input, and (2) a flip-flop
and mod-2 adder combination, capable of driving a single input. Figure 6(a) shows the
building blocks and also the symbol which will be used to denote each. Using this representa-
tion, the MSRG of Fig. 5(b) with feedback switches o Cp0 and Cg closed is depicted in
Fig. 6(b). As shown, an amplifier for the final stage capable of driving n inputs is needed,
since the modules (building blocks) are capable of driving only one input. For simplicity,
the amplifier shown in Fig. 6(b) will be understood to be included and the representation for

an MSRG will be as in Fig. 6(c).
The MSRG was developed to eliminate the difficulty encountered with SSRG's in

experimental work because of unbalanced inputs; and at high frequencies because of the
propagation time delay through feedback adders. The MSRG also permits a simplified
method of interstage mod-2 addition (see Ref. 2). Since, as will be shown later, every
linear generator has an equivalent MSRG, this new type of generator is important to consider.

As shown in Fig. 5(b), the switch c, is always closed (identically equal to one).

0
This will be the only case considered in the following discussion on MSRG's because it is
necessary for transient free operation (see Section 4. 3). Also, the feedback switches have

been numbered to correspond to the number of the shift stage directly preceding the switch.
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(a) cJ. = 1 if switch is closed

= 0 if switch is open

(b) c, = 1 if switch is closed

0 if switch is open

Fig. 5. General representations of SRG's: (a) general representation
of an SSRG, (b) general representation of an MSRG.

—={ FF [— i 1 + 2 |3 4 |5 | 6 = Output
Flip-Flop Symbol (b)
(a)
— FF -é—)—- Iﬁ 172 31 4 |5]|6—
Flip-Flop and Adder Symbol (c)

Fig. 6. Schematic representation of MSRG: (a) building blocks and
corresponding symbol, (b) general representation of MSRG
with feedback switches c¢; and c3 closed,

(c) schematic representation of (b).
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That is, if Ch = 1 is a feedback tap, then this convention implies that the switch on the
mod-2 adder following the m-th stage is closed.

In Fig. 5(b) the switches, denoted as C represent the "feedback taps" of the

MSRG.
¢ = 1 if both the i-th and the last
stage feed the (i+ 1)-th stage A
= 0 if only the i-th stage feeds the (63)
(i+ 1)-th stage >
and
c, =c =1
0 n J

4.2 The "A" Matrix

From the feedback arrangement of the MSRG (Fig. 5b), it is obvious that the

content of the i-th stage at time j, ui(j) is determined by the relationship

and (64)

ui(j) =u, (G- 1) +c¢,_;uli- 1) (mod-2) for i =2,3,...,n

By the definition of the A matrix in Eqs. 4 and 64, the A matrix for the MSRG has the form

r— -
0 O 0 0 CO
1 0 0 0 Cl
A=01 00 ¢ (65)
0 0 10 ¢,
0 0 0 1 ¢
L n-1_§
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That is,

A = |a, . 3
[2; ;]
where
a, = c, ? (66)
i,n i-1
3y 41 = 1
a, . = 0, otherwise J

4.3 Characteristic Polynomial, Sequence Law, and Feedback Equation

From Egs. 6 and 7, the characteristic polynomial is the determinate

n .
f(¢) = |A+1¢] = Z% b ¢  (mod-2)
1=

where b_ = 1.
n
For the MSRG, the transpose of the A matrix, AT, is a companion matrix

having the form

[0 1 o 0 0
0 0 1 0 0
AT - (67)
0 0 0 1 0
0 0 0 0 1
€ €1 ©9 -2 Cp-1
— —

n :
() = ) ¢ & (mod-2) (68)

From Eqgs. 7 and 68, the characteristic polynomial for an MSRG is determined

by the relationship
b. = c, i=0,1,2,...,n (69)

where the bi are the coefficients in the characteristic polynomial and the c, are the feedback

taps of the MSRG.
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* From Eqs. 14 and 69, the characteristic sequence law for an MSRG becomes

pgl=]

u, () = c o 40- k) (mod-2) for i = 1,2,...,n. (70)

k=1

The feedback equation for an MSRG is defined similar to the feedback equation

for an SSRG.

Feedback equation for an MSRG
. with feedback taps a,b,...,d, 1)
MS ° and 0 closed. By convention n
is always closed.

[n,a,b,...,d,0]

Note that n, as well as 0, has been placed in the feedback equation to indicate that

From Eqs. 23, 69, and 71, the characteristic polynomial and the feedback

equation for an MSRG, are the same, that is

characteristic polynomial <—=> feedback equation
(72)
(n,a,b,...,c,0) <<=> [n,a,b,... ,c,O]MS
For example, the six stage MSRG in Fig. 6(c) with feedback taps o C1s and cq closed has

the feedback equation and the characteristic polynomial
[6,3,1,0] ;g = (6,3,1,0)

The relationship between the feedback taps and the coefficients in the charac-

teristic polynomial points out two important properties of MSRG's:

(1) Theorem 4 states that any periodic sequence from a generator
with a characteristic polynomial having no constant term

(b0 = 0) can be generated by a generator with fewer than n

stages. Therefore, since o= bO’ any periodic sequence,

from an MSRG for which ¢, = 0, can be generated by a gen-

0

erator with fewer than n stages.
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(2) Theorem 3 states that if
), b, =0 (mod-2)

then (£+1) is a factor of f(£) and the generator is nonmaximal.

For the MSRG bi = ¢, thus

and if,

n
Z c. =0 (mod-2)
i=0 !

then, (£+1) is a factor of f(¢§). Hence, for a maximal MSRG

'Z ¢, =1  (mod-2) (73)

and every maximal MSRG must have an even number of feed-

back taps (not counting c, = 1).

4, 4 Initial Loading

Like the SSRG, it is possible to find the initial loading of an MSRG so that a
specified n-tuple of consecutive digits un(j), un(j +1), ..., un(j +n-1) will be generated at

the output of the n-th stage. From Eq. 64, but increasing all indices by k + 1,

j+k) (mod-2)

(j+k+1) = u, 4k un( s

1+k(J +k) + ¢

Yirk+1

for 1-1i<k<n-i-1

As long as we hold i to the range 1 < i < n- 1, we may sum both sides over k, from
k = Othrough k =n-i-1
n-i-1 n-i-1 n-i-1

kéo ui+k+1(j+k+1) = kzo ui+k(j+k) + kzo Cik un(j+k) (mod-2) (75)

The first two sums have many terms in common. Subtracting these we obtain

n-i-1
(j+n-1) = ugj) + D ¢y U (i+K)  (mod-2) (76)

un
k=0
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Because C, = 1 for a nontransient generator, we see that the left-hand side can be absorbed

by the sum for the index k = n- i

n-i
u(j) = kZ‘o ¢ W (+k)  1<i<n-1  (mod-2) (17)

Now Eq. 77 trivially holds for i = n, since the sum will then only be the k = 0 term c, un(j).

We, therefore, have the desired result

n-i
() = ) e u(+k)  1<i<n  (mod-2) (78)
k=0
which relates the initial load ul(j), uz(j), e, un(j) to the initial output n-tuple

un(j), un(j+ 1),... ,un(j +n-1).

If F,  is defined by the equation

M

¢1 % C3 -2 Cn-1 “n

Cy Cg Cy cn_1 cn 0

Cq c4 Cg c, 0 0
FM = (79)

Ch-9 Ch-1 <, 0 0 0

-1 . 0 0 0 0

C 0 0 0 0 0

n
then Eq. 78 can be written in matrix form as

UG) = Fp V() (mod-2) (80)

where U(j) and Vn(j) are as defined in Egs. 1 and 15, respectively, and Vn(j) is the desired
initial output n-tuple.

From Eq. 70 or 72, the feedback equation for an MSRG can be found for any
sequence law or characteristic polynomial. From Eq. 78 or 80, the necessary initial loading
for the MSRG can be determined to generate a desired n-tuple of consecutive bits as the

starting output of the last stage. Hence, by Section 2.6
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Theorem 6
Any sequence that can be generated by an n-stage linear sequence

generator can be generated by an n-stage MSRG.

Corollary
Every SSRG has an equivalent MSRG, and vice versa. From Egs. 41

and 72, the relationship between the equivalent SSRG and MSRG be-

comes
[n,a.,b,...,d,O]MS —> [n,n—d,...,n-b,n-a,O]SS
or (81)

[n,a,b,...,d,0] = [n,n-d,...,n—b,n—a,O]MS

SS

Notice that the equivalence relationship in Eq. 81 is a simple reverse

of the feedback equation.

4.5 Interstage Relationships

The relationship between the output sequences from different stages of an MSRG
differs from that of an SSRG in that there exists a jump or change in the sequences whenever
two stages are separated by an interstage mod-2 adder. This phenomenon is related to the
shift-and-add property of sequences, consequently, it is convenient to consider maximal and
nonmaximal MSRG's separately.

4.5.1 Maximal MSRG. Ina maximal MSRG every stage produces the same

maximal sequence but they are shifted in time from one another. If two successive stages,

say the i-th and the (i+1)-th, are not separated by an interstage adder, and if Xi(j) repre-

sents the sequence produced by the i~th stage, then

X.(j) = X.

1 L+ D) (82)

If the two stages are separated by an interstage adder, then

X =X

i w10+ + X () (mod-2)

(83)

X(j) = X, (j+J

i i+l i,i+1)

where J. .
i, i+

1 is a time shift related to the shift-and-add property of maximal sequences.
J
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The following discussion develops one method for determining the shift J in

’

between the sequences from the i-th stage and the n-th stage of a maximal MSRG.

Let Vi(j) be an n-tuple of digits from the sequence Xi(j) with time reference j,

that is
[ T
u(j)
ui(j +1)
v,G) =
ui(j +n-1)
From Eq. 16, repeated here,
k . .
Cf Vi(]) = Vi(] +k) (mod-2) (16)

where Cf is the companion matrix associated with the characteristic polynomial of the MSRG.

From Eq. 64, we can write

ui(j) = ui+1(j+1) + €y un(j) (mod-2) for i =1,2,...,n-1

from which follows

Vi(j) = Vi+1(j+1) + ¢ Vn(j) (mod-2) 1<i<n-1 (84)

Let Ji n be the time shift between the sequences produced by the i-th stage and the n-th

’

stage so that

v.G) = Vn(j+Ji,n) (85)
then using Egs. 85, 84, and 16
Voog@ = ViG+3 g )
n-1,n .
= G ’ Vn(]) (mod-2)

Vn(j+ 1) + c .1 Vn(j) (mod-2)

£+ Chot I) Vn(j) (mod-2)
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J is the solution to the equation
n-1,n
CmLD e 1 (mod-2) (86)
f Tt n-1
Similarly,
Vn_z(]) = Vn(j+Jn_2’n)
= an-z,n V. ()  (mod-2)
-t nV
= Vn_l(j+1) +C 9 Vn(j) (mod-2)
= [Cf(Cf +C 4 I) + C 9 1] Vn(j) (mod-2)
_ 2 i -
= (Cf +C 1 Cf +C 9 1) Vn(]) (mod-2)
and J is the solution to the equation
n-2,n
R . I (mod-2) (87)
f =% Tttt o2 mo

Assume that for some arbitrary value of i, Jn—i 1 is the solution to the equation
J

3. ‘ .
¢, b - e cluc el se C.+c .1 (mod-2) (88)

. +
n-i+l 7f n-i

then

Vo) = V(G+J

n-i- n n-i-1,n
- ¢, "BV G) (moa-2)
= Vn—i(j+1) +Coi1 Vn(]) (mod-2)
= Vn(j + Jn-l,n+ 1) + i1 Vn(]) (mod-2)
= (Cf Cf n-i,n +C i1 I) Vn(]) (mod-2)
= (cn C;)rl +C 1 C; taeetCo s Cf +C i1 I) Vn(]) (mod-2)

and Jn- i-1,n is the solution to the equation

J . . .
r111,n=ccl+1+c i

Cf 0 St I (mod-2) (89)
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From Eq. 89, if Eq. 88 is true for some particular value of i, then it is true for the next
larger value of i. From Eqs. 86 and 87, Eq. 88 is true for i =1andi=2 since ¢ = 1.
Therefore, by induction, Eq. 88 is true for 1 < i < n- 1. The solution to Eq. 88 can be
determined from the BA matrix for the characteristic polynomial. Since the characteristic

polynomial for C, is the same as that for the A matrix of the MSRG, Jn-' can be con-

f i,n

sidered as the solution to the equation

i-1

J . .
n-i,n i
U = c_ AT +c A +...+ ¢C
n n-1

A A+c .1 (mod-2) (90)

n-i+1 n-i
As an example consider a [4,3,0] MS maximal MSRG. Figure 7 shows this generator and

its periodic sequences along with its associated BA matrix.

B, Matrix

1|2 31 4 A

1 0 0 0 Powers of A ,— _3 2 1 0
0 1 0 0 | To o 1 o
c 0 1 0 2l o 1 o0 o
0 0 0 1 31 0o o o
1 0 0 1 4|1 0o o 1
11 0 1 5011 0 1 1
1 1 1 6l 1 1 1 1
1 1 1 0 7o 1 1 1
o 1 1 1 s8l1 1 1 o
1 0 1 0 9o 1 o0 1
o 1 0 1 wl1 o 1 0
1 0 1 1 1mj1 1 o0 1
11 0 0 1200 0o 1 1
o 1 1 0 130 1 1 0
o0 o 1 1 141 1 0 0
1 0 0 0 150 0 0 1

Fig. 7. The [4,3,0] g MSRG and the associated By matrix.

Applying Eq. 90 and the B A matrix

I3.4 12
AT =c4A+c3I=A+I=A (mod-2)

I2,4 2 2 13

A" = ¢, A" +cqA+cy,I = A"+ A=A (mod-2)

4 3 2
I1,4 3 2 3 .2 14
A7 =c4A +c3A +c2A+c11=A + A" = A (mod-2)
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SO

J1,4 = 14
J2,4 = 13
J3 4 = 12

and

b
[\Y]
—
Cod o
=
"

X, +13) = X,(j - 2)

These shifts are verified from the sequences shown in Fig. 7.
The shift between successive stages Ji 41 Can be obtained from the values of
b

Ji n in the following manner: if,

J. < J, 1<i<n-2
i+1,n i,n = =
then,
Iiie1 T Jin " Jidl,n (91)
However, if
Ji+1,n > Ji,n
then,
Tii01 = 07 J 0 Iin (92)
where

L =2"-1 = the length of the maximal sequence X.1
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For the above example,

(=
I}
—

12

Cy
I

or

»
-
o~
[
~
I}

X2(j +1)

>
[\
py
=
=
n

X3(j + 1)

>4
w
o
=
I

X4(j + 12)

That is, the shift between sequences not separated by an adder is 1, as predicted by Eq. 82.

The shift between sequences separated by an interstage adder is some value J i deter-

,i+1
mined by the shift-and-add property of maximal sequences, as predicted by Eq. 83.
Tables of the shift between sequences from adjacent stages for all maximal
MSRG's of length 2 < n < 12 are given in Section 8. 4.

4. 5.2 Nonmaximal MSRG. Like the maximal MSRG, if two stages of a non-

maximal MSRG are not separated by an interstage adder then they will produce the same
sequence. However, the time index will be shifted by one, that is, Xi(j) = Xi+1(j +1). If
the two stages are separated by an adder, then they may produce the same sequence shifted
in time. Or they may produce completely different sequences, depending upon the partial

shift-and-add property of the nonmaximal sequence.

4.6 A BA Matrix Genera.tor5

The relationship between the stage contents of an MSRG and the B A matrix

associated with the characteristic polynomial of that MSRG is useful and interesting.

Let the characteristic polynomial of the MSRG be

() = b & b e ey by (mod-2) (93)

where b;l = 1. (The coefficients have primes to help avoid confusion with the elements of

ORet. 2, p. 25.
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the B, matrix.) From the Cayley-Hamilton Theorem, (Ref. 3) a matrix satisfies its own

A

characteristic equation so that

n .
Al - Zl by A" (mod-2)
j

From the definition of the BA matrix (Section 2. 5), Egs. 29 and 30

By = [0 Joxn

where the b.1 j's are the coefficients in the equation
’
; n e
A' = ) b, A" (moa-2)
j=1 L1

Consider Ak+1, applying Eq. 30

kel 8 n-j
A = b LA mod-2
jzl k+1,j ( )
n-1 n-j .
- 321 bk+1,j AT 4 bk+1’nI (mod-2)

k+1

also consider A*'" in the following manner, from Eqs. 30 and 94:

Ak+1 . k

1l
>
>

(mod-2)

1l
>
n>Is
2
>

=
)
)
<
>

I
pf=)
o
b
>
=
L
+
—
o2
>
=
8
9]
o
>

n-1

_ ' l’l-j ' _
= ) (bk,j+1 +bk’1bn_j)A + by 1 byl (mod-2)

j=1

Equating Egs. 95 and 96, the following relationship is obtained

-

bk+1,j - bk,j+1 k,1 "n-j

k+l,n = Pk, 120

40

>, b A" (mod-2)

+b b . (mod-2) 1<j<n-1

(94)
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Consider now an n-stage MSRG with the characteristic polynomial given in

Eq. 93. For an MSRG, from Eq. 69

= ' i =
¢ = bi’ i=20,1,...,n

where the ci's are the feedback taps and the bi 's are the coefficients in the characteristic

polynomial. Equation 64 can be rewritten

ul(k+1) = b0 un(k)
(98)
— 1 - i -
un_].+1(k+1) = un-j(k) + bn-j un(k) (mod-2) 1< j<n-1
From the definition of the B A matrix
1 n e
AT = ) b AV = A (mod-2)
i sd
j=1
which requires
byn-1 =1
(99)
b, . =0 for j#n-1
1, i#

Assume that the MSRG is initially loaded at time k = 0 with a one in the first stage and

zeros in all remaining stages; that is,

1 when j = n

u (100)

n-j+1(0) - 60, n-j

I

0 when j #n

From Egs. 98, 99, and 100, for n > 1
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uy(1) = bGu(0) = by oy g =0 = by )
un-j+1(1) = un-(j+1)+1(0) + b;l-j un(O) (mod-2)

= 60,n-j-1 + b;l_j . 50,n—1 (mod-2) P

= 6O,n-j—l + 0

261,n-j 1<j<n-1

= bl,j .
Thus,

n-j+1(1) = bl,j for j = 1,2,...,n

or

un-j+1(k)=b . for k =1; 1<j<n

(101)

(102)

Equation 102 can be shown by induction to be true for all k > 1 in the following manner:

Assume that Eq. 102 is true for k = m, then from Eqgs. 97 and 98,

(m+1) = b' . u (m) (mod-2)

Lln—j+1 un—(j+1)+1(m) * n-j n

b! . b

- bm,j+1 * n-j m,1

(mod-2)
=D for 1<j<n-1

m+1,j

and

ul(m+1) = bb un(m)

b0 Pm, 1

bm+1,n
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Combining Eqs. 103 and 104

un_j+1(m+1) = bm+1,j for 1<j<n (105)

We have shown that if Eq. 102 is true for some value of k, then by Eq. 105 it is also true

for the next larger value of k, and, therefore, by induction

un-j+1(k) = b .; for 1<j<n and k>1 (106)

u(l) = 0 for i#£1

then at time k > 1, the contents of the MSRG are the elements of the k-th row of the BA

matrix read as indicated in Eq. 1086.

AB A matrix computer can be constructed as shown in Fig. 8 by applying this
result: The computer operates in this way: The pulser shifts the MSRG, and at the same
time, shifts the '"line advance' for the printer. The printer records the digital contents of

each stage for each shift. The net effect is to print the B, matrix one row at a time. For

A

work in which the BA matrix is required (n large), such a computer is a great labor saving

device, since writing out the BA matrix by hand is lengthy for large n.

Line Advance k Printer
™ Shift
Pulse k
n n-1 -] 2 1
Pulser |——+4-
c, =1 r -1 r Ch-2 f 4 ¢ = 1

Fig. 8. A B, matrix computer.
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4.7 Output Adder Circuit

An output adder circuit can be used with an MSRG in the same manner that it is
used with an SSRG to obtain a particular sequence or, equivalently, a particular initial
n-tuple as an output from the adder. The MSRG and the output grand mod-2 adder are shown
in Fig. 9. It is assumed the n-tuple output is desired when the MSRG contents are the ele-
mentary load EI(O) (see Eq. 56).

Suppose that the MSRG is loaded at time j with a one in the first stage and zeros

in all the remaining stages; that is

N B 1o
u(j) =08, 4 =1 wheni-1=20

H

= 0 otherwise

For this initial loading, using Eq. 106,

ui(j+k) = bk,n-i+1 for k>1
where bk i is the element of the k-th row and the j-th column of the BA matrix. For
2
k <n-1,
SRS n-j K
A= ) b . AT - A (mod-2)
1 K
j=1
and, thus,
= = i =n-k, k<n-1
bk,j ék,n—j 1 when j = n-k, <n
= 0 when j #n-k
and for k < n-1
ui(j+k) - bk,n-i+1
_ = i-1 =k 107
ék, -1 1 when i-1 (107)

= 0 when i~1 £k

The output x(j +k) of the adder in Fig. 9 is given by
n
x(j+k) = 121 o ui(] +k) (mod-2)
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(¢]
n
—

Grand Mod-2 Adder

— Output x(j)

Fig. 9. An MSRG with an output adder circuit.

From Eq. 107, for k < n-1

x(j+k) = (mod-2)

T s

e O, i-1

= ak+1

If x(j), x(j+1),...,x(j+n~1) are the first n digits of the sequence desired as an output of

the adder when U(j) = El(O), the adder taps which should be closed can be found from the

equation
o = x(j+k-1) for k =1,2,...,n (108)
If this is written in matrix form using the notation
X@G) = [x(), xG+1),...,x(+n-1)]
and
o = lag, g,y ]
Eq. 108 becomes
a = X(j) (109)
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This section completes the discussion of shift-register generators. 6 As we
pointed out in Section 1, "complement stages'' can be employed rather than shift stages to
form complement-register generators. Two forms of complement-register generators will
now be considered: the simple complement-register generator which has a form similar to

the SSRG; and the modular complement-register generator, which is analogous to the MSRG.

6Except for Section 8. In Section 8 some of the advantages of the various types of genera-
tors are discussed and a comparison is made of the properties of each.
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5. THE SIMPLE COMPLEMENT REGISTER GENERATOR

A linear sequence generator can be constructed using complement stages
(binary counter stages) rather than the shift stages used in the SSRG and MSRG. The differ-
ence in operation between the shift stage and complement stage is: the shift stage directly
stores its input, whereas the content of a complement stage remains unchanged when its in-
put is a "0" and is changed or "complemented" when its input is ""1". The operation of a
complement stage is equivalent to adding (mod-2) the input to the complement stage to its
present content. This sum then forms the new contents of the complement stage.
Consequently, the complement stage can be considered as a shift stage which has a feedback
loop from its output to its input as shown in Fig. 10. We will use this analogy in this report

in discussing the development of the theory of complement-register generators.

Input —={ i |— Output

Shift Stage

Input — ic — Output @ Input ——Gg:_‘l — Output

Complement Stage

Fig. 10. A shift stage and a complement stage.

A linear sequence generator which is made up entirely of complement stages
instead of shift stages will be called a complement-register generator (CRG). Figure 11(a)
shows an arbitrary multiple return CRG. Figure 11(b) shows an equivalent generator using
shift stages.

Why consider other types of generators when, as shown in Sections 3 and 4, any

linear sequence can be generated by either an SSRG or an MSRG ? There are two reasons
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for developing the theory of complement register generators: (1) the complement stage
physically requires fewer components to construct than the shift stage; and, (2) the inter-
connection between the stages is simpler. Today, with emphasis placed on size, weight,
and cost of generators, the advantages of the CRG are obvious. Also, the CRG has some

additional properties which add to its usefulness. (See Section 8.)

+

1 2 3 4
c c c c

l At

(a) Complement-Register Generator

¢ <®-

o

l B

w
['N

(b) Shift-Register Generator

Fig. 11. Two representations of the same
multiple return generator.

In this section we will develop the theory for one particular type of complement

register generator, namely, the simple-complement-register-generator (SCRG). The

treatment we use follows closely that of Sections 3 and 4. In Section 6, we will treat the

""modular-complement-register-generator' (MCRG).

5.1 Definition

A simple-complement-register generator (SCRG) is a linear sequence generator
which is constructed in the same manner as the SSRG except that the shift stages are re-
placed by complement stages. The general form of the SCRG is shown in Fig. 12(a). Note
that in the SCRG (as with the SSRG) all feedback is to the first stage. A particular six-stage

SCRG is shown in Fig. 12(b).
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n
p—
o
—
[ _/
o
X}
_/
o
()
.__/
o
=]
1
H
o
=]

Fig. 12. a) The general form of an SCRG, (b) a [6,5,0]g- SCRG.

The operation of the SCRG is similar to that of the SSRG. Every stage except
the first is fed by the previous stage, and the first stage is fed by the stages in the feedback

loop. The ci's in Fig. 12 represent the feedback taps where

o
1

1 if the i-th stage feeds the 1st stage
! (110)

0 if the i-th stage does not feed the 1st stage

5.2 The A Matrix

Let ui(j) represent the contents of the i-th stage of an SCRG at time j. Then,
by inspection of the SCRG in Fig. 12, using the shift stage analogy of Fig. 10, ui(j) can be
expressed as

n
= uy(j- 1)+ ) c;u(-1  (mod-2)
i=1
(111)

ui(j -1) + ui—l(j -1 (mod-2) 2<i<n

=
—
—~~
—.
~
t

=
—
—.
~—

I}

Using the definition of the A matrix (Eq. 4), the A matrix for an SCRG has the form

r -
ley ¢ ¢ -2 %p-1 o
11 0 o 0 0
o 1 1 0o 0o o0

O L (112)
o 0 o 11 0
0o 0 0 o 1 1

d -
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1] W
where
al’1 =1+ ¢y (mod-2)
a; . = 2 <j
Li = sign 5
a, . =1 2<j<n (113)
1] - -
Lo =1 2 j
3,51 sisn
otherwise,
a, . =20
L] J

5.3 Prefatory Note

Several special matrices are useful in developing the theory for CRG's. The
""mod-2 binomial coefficients' also arise in this theory. These matrices and coefficients

will be defined in this section to facilitate the subsequent presentation of the theory of CRG's.

5.3.1 The Mod-2 Binomial Coefficients)_(gi)k. The coefficients in the mod-2
binomial expansion play an important role in the development of the theory of complement-

register generators. A brief description of these coefficients follows:

The expansion of the quantity (x+ 1)k can be expressed in terms of the binomial
expansion:
k k, k k k-1 k k
(x+1) —(k)x +(k_1)x ..+(1)x+(0)
where
(k) = _ Kkl _ = the binomial coefficient (114)
r rik-r)!
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. L
The binomial coefficients (1;) have the following properties :

N
k k
(5) = (5 =1
k k
() = () ) (115)
k+1 k k
K = s 5 )
Define (di)k to be the "mod-2 binomial coefficient'; that is,
@) = (5 (mod-2) (116)
i’k i

In other words,

k, .
(d.)k = 1 when (i) is odd

(117)
= 0 when (l;) is even
In terms of (di)k , the mod-2 binomial expansion of the quantity (x+ 1)k has the form
K & i
(x+ 1) = Z (d.), x (mod-2) (118)
. i'k
i=0
. 8
where (di)k has the properties :
(dk)k = (dO)k =1
(@), = (&), (119)

(di)k+1 = (d.)k + (di-l)k (mod-2) 1<i<k

5.3.2 I*, Ri Matrices. There are four nonsingular matrices composed of the

mod-2 binomial coefficients which are important in the development of the theory of comple-
ment-register generators. These matrices are denoted Rl’ Rz, R3, and R4. Another ma-
trix, denoted I*, arises in relating the R, matrices to each other. These matrices are
introduced below and the relationships between them are given. A complete discussion of

this is reserved for Appendix B.

7See Ref. 4, pp. 33 and 49. .
8These properties follow directly from the definition of (di)k and from the properties of (r)
in Eq. 115.
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Define I* as

I* I rotated 90

where

i* -

ik 6j,n+1—k

That is, I* has the form

(o]

[i*,

],k]nxn

=1 whenj=n+1-k

0 when j #n+1-k

— —
0 01
0 1 0
Ix =
0 1
0
In Appendix B it is shown that9
r o= )t = ()T
Define R1 as
1
R1 =[r i,j]nxn
where
. (dj—l)i-l for j <i
r, ., =
1]
0 for j >1
That is, R1 has the form
—
(dg)g 0 0 0
Ay (dy)y 0 0
R1 =
(dO)n-Z (dl)n—2 (dn-Z)n-Z 0
(dO)n-l (dl)n-l (dn-Z)n-l (dn-l)n-l

9Forp any matrix M, the "transpose of the matrix" is denoted MT.
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In Appendix B it is shown that R1 is "involutory, " that is,

-1
R1 = R1
Define R2 as
2
Ry = [x i,j]nxn
where
) (di—l)j-l for i <j
r.. =
L]
0 for i >
That is, R, has the form
(dg)g (dg)y (dodp-2  gdpo1
0 (A oo () gy
R2 =
0 0 (dn-z)n-Z (dn-2)n—1
B 0 0 ee 0 (dn-l)n—l
In Appendix B it is shown that
-1
Ry = = Ry
In addition, note that
T
Ry = By
Define R3 as
3
R3 [x i,j]nxn
where
3 (di-l)n for i <n+1-]
r .. =
L]
0 for i >n+1-]
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From Eq. 129 we can see that R3 has the form

(dn-Z)n- 1 (dn-2)n-2

@ ) 0

n-1'n-1

It is shown in Appendix B that

and that

where

(dn-i)j-l

0 for j<n+1-1i

54

= R3 rotated 180

for j >n+1-1i

0

(d)_9)y-2

@2
(dO)n—2

(dn- l)n- 1

(dn-2)n—2

(d,)

(d

n-1

O)n-l

(130)

(131)

(132)



Define R4 as

4

R4 = [r i,j]nxn

where

) (dj—l)n—i for j<n+1-1i
r.. =
. for j >n+1-i
0 or j n+ i )
From Eq. 133, R4 has the form
(dO)n-l (dl)n-l (dn—Z)n-l (dn—l)n-l
(dgdp-g (Ag)nop @ oo O
R4 =
(dO)1 (dl)l 0 0
(dg)g 0 0 0
1t is shown in Appendix B that
-1 _ o )
R, " = [Si,j]nxn = R, rotated 180
where
(dn-j)i—l for i>n+1-j
S. . =
i,j
0 for i<n+1-j
4
In other words, R4_ has the form
0 0 0 (dO)0
0 0 (dl)l (do)1
-1
R4 =
0 (oo (d)a (Gphp-n
L(dn- l)n-l (dn-Z)n-l (dl)n-l (dO)n-l

95

(133)

(134)

(135)

(136)



The interrelationships between these equations are expressed by Eqs. 137 through 140 (see

Appendix B).

_npl _ T _ -2 137
Ry =R, = I* Ry = I* R, (mod-2) (137)
T T
Ry = Ry = Ry I* =R, I* (mod-2) (138)
_pT - - - 139
Ry = Ry I* = R, I* =R, (mod-2) (139)
T T
R, = I* R; = I* Ry =R, (mod-2) (140)

5.4 Characteristic Polynomial and Feedback Equation

Let A be the "A" matrix for an SCRG and let As be the A matrix for an SSRG
having the same feedback taps.

The "characteristic matrix' for the SCRG from Eq. 112 becomes

cy+ (£+1) 02 C3 Cn—2 Cn-l crl
1 (¢+1) O 0 0 0
0 1 (£+1) ... 0 0 0
A+ &l = : : : : : : (141)
0 0 0 (£+1) 0 0
0 0 0o ... 1 (¢+1) O
0 0 0 0 1 (£+1)

If the substitution ¥ = £ + 1 is made in Eq. 141

A+§I=As+(§+1)I=AS+11/I (mod-2)

56



using Eq. 37, the characteristic polynomial for an SCRG bhecomes

(&) = A+ &1 (mod-2)
= AS + YI (mod-2)
= cozpn+ ¢y wn—l +o...+ cn_1w+ c, (mod-2)

= CO(£ + 1" 4 cl(ﬁ + l)nn1 Fa.. 4 cn_1(£ +1) + c, (mod-2)

where c0 = 1.

From Eqs. 142 and 118,

& k & n-i
f¢) = ) b & = ) e+ (mod-2)
k=0 i=0
n n-1 k
= 20 ¢, k2=)0 (d) ;&  (mod-2)

Interchanging the summations in Eq. 143, we obtain

i=0

n -k Kk
1) = ZO L () ;e | & (mod-2)

Equating Eqs. 7 and 144, the coefficients of the characteristic polynomial, bi’ are

n-k
b = L (@) (mod-2)
i=0
In matrix form, Eq. 145 becomes
B = R3 C (mod-2)
where B and C are defined to be
Po
by
B =1.
bn
[

(142)

(143)

(144)

(145)

(146)

(147)



c =| . (148)

and where R3 isan (n + 1) x (n+ 1) matrix defined in Eq. 129.

It is shown in Appendix B that R3 is nonsingular. Therefore, from Egs. 146

and 131
-1

C =Ry B (mod-2) (149)
where

rR:1 = R, rotated 180°

3 = 3 rotate
From Egs. 149 and 131

n
¢ = .Z (d_J; by  (mod-2) (150)
i=n-k

Given the feedback taps of an n-stage SCRG, its characteristic polynomial can
be found by Eq. 145 or 146. Conversely, given any n-th degree characteristic polynomial,
the feedback taps of the associated n-stage SCRG can be found by Eq. 149 or 150.

Equations 142 and 145 illustrate two important properties of SCRG's:

(1) From Eq. 142, if c, = 0, then £ + 1 is a factor of the char-
acteristic polynomial f(£); therefore, for every maximal

SCRG

c =1 (151)

(2) Theorem 4 states that any periodic sequence from a generator

with a characteristic polynomial having no constant term
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(i.e., b0 = 0) can be generated by a generator with fewer
than n stages. From Eq. 145, since (dO)n-i =1
n
b0 = Z ¢ (mod-2)
i=0

Therefore, any periodic sequence, from an SCRG for which
n

Z ¢, = 0 (the SCRG has an odd number of feedback taps not
i=0

counting co), can be generated by a generator with fewer than

n stages.

Because of Property 1, only those SCRG's will be considered for which ¢, = 1.
The feedback equation for an SCRG is defined like the feedback equation for an SSRG.
feedback equation which specifies an

SCRG with feedback taps n,b,...,c, (152)
and d closed.

[n,b,... ,c,d,O]SC:
Note that 0 has been included in the feedback equation to indicate that ¢y = 1, even though
there is no feedback tap from a zero stage; and, n is always present denoting ¢, = 1. For

example, consider the six-stage SCRG with feedback taps on stages 5 and 6 shown in Fig. 12(b).

From Eqs. 146, 147, 148, and 129; C, B, and Rq become

-
0
0
c=1o (153)
0
1
L.l_
111111 1)
0101010
1001100
Ry =[ 00 0 1000
1110000
0100000
100000 0
L —
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1

1

1
B=R,-C=]0 (mod-2) (154)

1

0

1

and from Egs. 152, 153, and 154, the feedback equation and characteristic polynomial are

[6,5,0] o <> (6,4,2,1,0) (155)

SC
Now assume a six-stage SCRG with feedback taps on Stages 1, 2, 4, and 6.

R3 is the same as above. The feedback vector C becomes

_17
1
1
cC =]0 (156)
1
0
1
and from Eq. 146
_1_1
1
0
B = R3 cC =10 (mod-2) (157)
1
1
—1—
From Eqs. 156 and 157
[6’4’2’1’0]SC > (6,5,4,1,0) (158)
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Note from Egs. 155 and 158, that, in general, the SCRG with a feedback law corresponding
to the characteristic polynomial of Eq. 155 does not have a characteristic polynomial cor-

responding to the feedback law of Eq. 155. For the SSRG and MSRG this property is true.
That is,
[6’5’0]38 e (6,110) [6’5’0]MS<—> (6:5’0)

[6,1,0]gg <=> (6,5,0) [6,5,0] s <= (6,5,0)

5.5 Initial Loading

As with the SSRG and the MSRG one can find the necessary initial loading for an
SCRG to produce a desired n-tuple as the first n-digits generated at the last stage. The re-
lationship for the required initial loading for the SCRG is derived below.

Through a change in time indices, Eq. 111 can be rewritten as

ui—l(j) = ui(j) + ui(j+1) (mod-2) 2<i<n (159)

and with (d ), = 1,

0)0

a ) = (dg)y u,0) (160)

u L) = u )+ u (D) (mod-2)
= (dg); u,() + (d); u(G+1)  (mod-2) (161)
Assume the relationship
u ) = iio (d), u (G+i)  (mod-2) (162)

is true for some arbitrary value of k. Then for k + 1 from Eq. 159, k+1<n-1

un—(k+1)(j) = un-k(j) + un_k(j+1) (mod—2)
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k k
_ ; (di)k u (j+1i) + go (di)k un(j+i+ 1) (mod-2)
k k+1
= EO (d) uw,(i+1) + 121 _p), u+i)  (mod-2)
k
= (dg)e u () + 121 [(d), + (k] w (G+9)
+ (d) w (G+k+1) (mod-2) (163)
From Eq. 119
@), = @) =1
and

(dheyq = (@ + (d_q)  (mod-2)

Thus, Eq. 163 can be written

k
s n)® = Goleyp Uy 21 (), g u G+ + (@ ) q uG+k+1)  (mod-2)
(k+1)
= ZO (d)y 1 v,(i+1)  (mod-2) (164)
1=

From Egs. 160 and 161, 162 holds for k = 0, 1; and from Eq. 164, 162 holds for k + 1,
k arbitrary. Thus, by induction Eq. 162 applies for k=0, 1, 2, ..., n- L

Through a change in subscript, Eq. 162 becomes

o () = 2 (), uG+d)  (mod-2) (165)

[

Equation 165 is the desired relationship for the initial loading uk(j) to produce at the n-th
stage the n-tuple [un(j), un(j +1),..., un(j +n-1)]. Equation 165 can be written in matrix

form, using U(j), Vi(j)’ and R, defined in Egs. 1, 15, and 133 respectively, as follows

UG) = Ry V() (mod-2) (166)
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where

u,)
)
u(j) = . = the required initial loading
u )
— o
u,(j)
uay(i+1)
Vi(j) = . = the desired n-tupleoutput
ui(j+n- 1)
L —
and
4
R4 - [ri,j]nxn
where
for j <n+1-1i
4
T, = Y dne
0 for j >n+1-1i

Note that in Eq. 166 the initial loading for the SCRG is independent of the feedback taps of
the generator. This property is also true for the SSRG.

For a given n stage SCRG, the initial loading necessary to produce a particular
output n-tuple can be determined from either Eq. 165 or 166. Furthermore, it was shown in
Section 5. 4 that there exists an n stage SCRG associated with any n-th degree characteristic
polynomial (and, hence, for any n~th degree sequence law). This results in the following

theorem:

Theorem 7;

Every n stage linear sequence generator has an equivalent n stage
SCRG.
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As a special case of the above theorem, for every SSRG there is an equivalent

SCRG, and vice versa. For every MSRG there is an equivalent SCRG, and vice versa.

5.6 Interstage Relationships

For every SCRG there is a matrix, H, (see Appendix B) which commutes between
the output sequences produced at adjacent stages of the SCRG. In other words, if Vi(j) is de-

fined as in Eq. 15 to be an n-tuple of consecutive digits produced by the i-th stage, that is

[ ) |
ui(j+1)
Vi(j) =
ui(j+n—1)
then
H- V) = V() (mod-2) 2<i<n (167)

Mathematically, the matrix H is defined as

H = [hi,j]nxn W
where
h, . =1 for 1 <i<n-1
i,i - = 5
(168)
h, . =1 for 1 <i<n-1 '
i,i+1 - =
h . =D for 1<i<n-1
n,i i-1 - -
hn,n = bn—l + 1 (mod-2)
h, . =0 otherwise J
1,1}

and the bi's are the coefficients of the characteristic polynomial associated with the SCRG.

From Eq. 168, the H matrix has the form
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Furthermore, for every SCRG in which <h

Appendix B) such that

and thus from Eq. 167
G- Vi40) = V()  (mod-2)
Mathematically, the matrix G is defined as

1

G = [gi,j nxn

where

Ja
I

j-1
1+ ), b, (mod-2)
k=0

g, . = Z b. (mod-2)

0 0

0 0

0 0

1 1
bn-Z L+b 1

(169)

= 1, there exists a matrix, G, (see

(170)
2<i<n (171)
g (172)
for i < j
for i > j
/

A complete derivation of the G and H matrices and also Eqs. 167 and 171 can be found in

Appendix B.

Letting Xi(j) be the sequence generated at the i-th stage of the SCRG with time

reference j as defined in Section 2. 2, Eq. 159 leads to the relationship

X, .10 = XG) + X(G+1)  (mod-2) 2<i<n

(173)

which means that the sequence from the (i- 1)-th stage is equal to the sequence from the i~th

stage, shifted once and added to itself. Consequently, the interstage relationships of an
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SCRG depend upon the shift-and-add property of the sequence produced. For this reason it
is convenient to consider separately maximal generators, nonmaximal generators with
irreducible characteristic polynomials, and nonmaximal generators with factorable charac-
teristic polynomials.

5.6.1 Maximal SCRG. Theorem 2 states that every stage of a maximal genera-

tor produces the same sequence, but that there will be a time shift between the sequences
produced by any two stages.

From Egs. 25 and 173

X, 0) = X0) + XG+D  (mod-2)

Xi(j +K) (174)

where K is a time shift determined by the shift-and-add property of the maximal sequence.
This constant, K, can be found, using the B A matrix associated with the generator, as the

solution to the equation

AR S A4 T (moa-2) (175)

where A is the "A'" matrix of the SCRG. To justify the above statements, let Vi(j) repre-

sent an n-tupleof the sequence Xi(j)' Then from Eq. 173
Vi-l(j) = Vi(j) + Vi(j+1) (mod-2) 2<i<n (176)

Let K be the time shift between the sequence produced by the (i- 1)-th stage and the i-th -

stage, that is, from Eq. 174
v,_;0) = V,(G+K) (177)

then, from Eqs. 176, 177, and 16

H

Vi) = V,G+K) = V.(j) + V,(j+1)  (mod-2)

= Cf Vi) = (1+C) Vi) (mod-2)

Thus, K is the solution to the equation

C, =C,+1 (mod-2) (178)



Equation 178 is solved from the BA matrix for the characteristic polynomial, and
since the characteristic polynomial for Cf is the same as that for the A matrix of the SCRG,

K can be considered as the solution to the equation

AK = A+ 1 (mod-2)

Note that in Eq. 175 the shift for a maximal SCRG is the same for each stage

since Eq. 176 is valid for all i, 2 < i < n. As an example, consider a [4,3,0]Sc maximal

SCRG. Figure 13 shows this generator and its periodic maximal sequences along with the

" generator associated BA matrix.

Applying Eq. 175

or
K = (4)
Thus,
X,(0) = X,(i+4)

() = X (1+4)

The shift K = 4 between each stage is verified from the sequences shown in Fig. 13.

Additional values of K are tabulated in Table 2, Section 8. 4 for all maximal

SCRG's of length 2 < n < 12.

5.6.2 Nonmaximal, Irreducible Characteristic Polynomials. In Section 2.4.1

we mentioned that when a nonmaximal generator has an irreducible characteristic polynomial
all the sequences produced by the generator have the same length £. Because of the partial
shift-and-add property of nonmaximal generators there are certain shifts for which the shift-

and-add property is exhibited, for other shifts, however, a different sequence of the same
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B, Matrix

A
Tlf‘e 1 0 0 0 Powers of A =3 2 1 0
11 (1) g 1o o 1 o
1 (1) 0 2 1o 1 0 o0
0 . (1) 5 3 1 o o0 o
0 0 4 lo o 1 1
‘1) } 5 ‘1) 5 lo 1 1 o0
oY 6 |1 1 0 o0
OO 7 1 0o 1 1
o0 1 8 lo 1 0o 1
R 9 |1 o 1 o0
S o o 1 00 1 1 1
OO 11 /1 1 1 o0
LYoy 2|1 1 1 1
o Y 1B l1 1 o 1
L s o & 14 11 0 o 1
50 0o o0 1

Fig. 13. The [4,3,0]gc SCRG, the successive content
vectors, and the associated By matrix.

generator is obtained. Since
Xi— 1(]) = X-l(J) + Xi(j+ 1) (mod-2)

if "1" is a shift for which the shift-and-add property holds, then the sequence produced by
the (i- 1)-th stage will be a shifted version of the sequence produced by the i-th stage. If, on
the other hand, the shift~and-add property does not hold for a shift of "1," then the sequence
produced by the (i- 1)-th stage will be different from the sequence produced by the i-th stage.
Further, if there are m different sequences, then it can be shown that when m < n, every
set of m consecutive stages of the generator will produce all m of the possible sequences,
and that when m > n, every stage will produce a different sequence.

5. 6.3 Nonmaximal, Factorable Characteristic Polynomials. It was pointed out

in Theorem 4 that any periodic sequence from a generator with a characteristic polynomial
that has ék as a factor can be generated by a generator with n-k stages. Therefore, only

generators with a characteristic polynomial that has a constant term will be considered, that
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is, bO = 1; and since (see Eq. 145)

b0 = Z c (mod-2)
i=0
only those generators for which
n
) e, =1 (mod-2)
: i
i=0

will be considered.

The conclusion follows directly from Eq. 142 that (£ + 1)k is a factor of f(¢), if
and only if, ¢ = 0 for i > n-k. For these generators, Eqs. 167 and 173 hold, but the G
matrix is not defined so that Eq. 171 does not hold.

For all the remaining SCRG's, c, = 1 and i ¢, = 1. For these generators

i=0
the matrices H and G exist and the following theorems apply.

Theorem 8:
n
Consider an n-stage SCRG, for which ¢, = 1, and Z ¢ = 1, with a
i=0
characteristic polynomial, f(£), which is factorable. If any stage of
the SCRG is producing a sequence corresponding to a polynomial of
degree less than n, '(¢), where f(£) = £'"(£) - £'(£), then the sequences

from every stage of the generator correspond to the same polynomial
£'(é).

Theorem 9:
n
Consider an n-stage SCRG with ¢ = 1 and Z ¢ = 1, with a char-
i=0
acteristic polynomial, f(£), which is factorable, f(¢) = £'(£) ... £"(§).
If any p consecutive stages of the generator (p < n) contain zeros at
any time j, then none of the sequences being produced by the generator

can be produced by a generator of p or fewer stages, unless every

stage is producing all zeros.

Both Theorems 8 and 9 are proved in Appendix B.

As an application of Theorems 8 and 9, consider the eight-stage SCRG with feed-

back law and characteristic equation
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[8,6,5,4,3,2,0] g e=>(8,6,5,4,3,2,0) = (3,1,0)(3,2,0)(2,1,0) = (6,5,4,3,2,1,0)(2,1,0)

We discussed in Section 2. 4. 2 that the sequences of a (3,1, 0) generator, a (3,2, 0) generator,
and a (2,1,0) can be produced by an (8,6,5,4,3,2,0) generator. Theorem 8 states that if any
stage is generating a sequence which follows, for example, the (6,5,4,3,2,1,0) sequence law
and not a law of degree less than 6, then every stage is generating a sequence that follows
this sequence law. Consequently, no stage will be generating a sequence corresponding to
any of the irreducible factors. On the other hand if, for example, any stage of the generator
is generating the (3,1, 0) sequence then every stage is generating the (3,1, 0) sequence. No
stage is generating a sequence corresponding to (3,2,0) or (2,1,0). Theorem 9 states that if

the SCRG is initially loaded with a content vector containing at least three consecutive zeros,

such as
i o 0
0 0 0
0 0 0
uo) = | ° or U = |! or vo) = |©
1 1 0
1 0 0
0 1 0
| 1] 0 ] 1

then the generator cannot produce the (3, 1,0) sequence, the (3,2, 0) sequence, or the (2,1,0)
sequence.

A consequence of Theorem 8 is that if one stage of the SCRG is producing a se-.
quence that corresponds to an irreducible factor of the characteristic polynomial, then every
stage is producing a sequence that corresponds to the same factor. The interstage relation-
ships found in Sections 5. 6. 1 and 5. 6. 2 for maximal and irreducible nonmaximal sequences

are true if the specific factor involved is taken to be the characteristic polynomial.

5.7 Output Adder Circuit

An output adder circuit can be used with the SCRG to generate a shifted version
of the same sequence or a new sequence in a manner similar to the adder for the SSRG and

MSRG. Figure 14 shows an SCRG with an output adder.
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Grand Mod-2 Adder — Qutput x(j)

Fig. 14. An SCRG with an output adder circuit.

Let @, X(j), F,, and Ry be defined as in Eqs. 52, 51, 59, and 126, that is

2

a = [al,...,a]

n
where
o, = 1 if the i-th adder in Fig. 13 is closed
= 0 if the i-th adder in Fig. 13 is open
X(]) = [X(])s .. )X(j+n' 1)]
= the initial n-tuple of output digits desired from the
adder, when U(j) = El(O)
1:‘A - [fi,j]nxn
where
f. . =c, . for i <]j
L] J=1 -
= 0 for i > j
and
2
R2 [ri,j]nxn
where
2. = (d L) for i< j
i,] i-1/j-1 =
= 0 for i >j



Then

o = X(j) R, F,  (mod-2) (179)
or, expressed in series form
i i-m
o = L | L @ g & | XG+m-1)  (mod-2) (180)
m=1} k=0

The derivation of Eqs. 179 and 180 requires the following theorem which is

proved in Appendix B.

Theorem 10:

Consider an n-stage SSRG and an n-stage SCRG which have the same
feedback (not characteristic) equation. Let Y(j) represent the content
vector of the SSRG at time j, and let U(j) represent the content vector

of the SCRG at time j. I U(K) = Y(K) at some time K, then

[U(K), U(K+1),...,U(K+n-1)] [Y(K),Y(K+l),...,Y(K+n-1)]-R2 (mod-2) (181)

and

[Y(K), Y(K+1),...,Y(Kn-1)] = [U(K), U(K+1),...,U(Kn-1)] - Ry  (mod-2) (182)

Returning to the derivation of Eq. 179, let U(j) be the content vector of the SCRG

in Fig. 14. Then the output of the adder at time j is

or

and

= o - [U(§), U(+1),...,U(j+n-1)] (mod-2) (183)
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Consider an SSRG with the same feedback equation as the SCRG, let Y(j) represent the con-

tent vector of the SSRG at time j, and let

-
1
0
Y(j) = E(0) =
_0—
Then for the SSRG, from Eq. 58
[Y(), Y(+1),...,Y(j+n-1)] = [EI(O)’ El(l)’ ,El(n-l)]
= EA (184)
and from Eqgs. 60 and 59
-1
EA = FA
where
FA - i,j]nxn
fi,j = 4 1<
= 0 i>]
If the SCRG is initially loaded at time j with
uG) = E,(0)
then
u@g) = ()

and from Eq. 181 and 184

[UG), UG+D),..., UG+n-1)] = [Y(), Y(j+1),...,¥Y({+n-1)] - R,  (mod-2)

H

= E, -R (mod-2) (185)

A 2
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Using Eqs. 183, 185, 128, and 60

X(G) = a - E, " Ry (mod-2)
and
G =x(0) BB (mod-2)
= X(j) 9 FA (mod-2)
In series form,
Ry« Fy = [y ][4 ] = [o, ;] (mod-2)
2 A i,j i,]j i,]
where
2
..o = r, f mod-2
Pi,j k§1 ik Ty (med?)
i
= ) (A 11 Cicke (mod-2) for i < j
k=i ]
=0 (mod-2) for i >j
then letting X, = x(j+i-1)
o) = [x) - [p ] (mod-2)
n
o, = X pm,i (mod-2)
m=1
i i
= ) %y _Z A1 G (m0d-2)
m=1 k=m

m=1 [ k=0

Either Eq. 179 or 180 can be used to find the proper adder taps to close to get

i [i-m
; z Z (dm-l)i—l-k Ck] x(j+m-1) (mod-2)

(179)

(180)

x(j),...,x(j+n-1) as the initial output of the adder when the elementary load El(O) is

present in the generator.
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6. THE MODULAR COMPLEMENT-REGISTER GENERATOR

In Section 5 we discussed thefact that a linear-sequence generator can be con-
structed by replacing the shift stages of an SSRG by complement stages. Similarly, another
type of linear-sequence generator can be constructed by replacing the shift stages of an
" MSRG by complement stages. The resulting generator becomes a '""modular complement
register generator" (MCRG), and is the subject of this section. The MCRG is developed in

a manner parallel to the development of the MSRG.

6.1 Definition
The general form of the modular complement register is shown in Fig. 15(a).

The operation of the MCRG is similar to the operation of the MSRG. Every
stage (except the first) is fed by the previous stage and by the n-th stage if the feedback tap

preceding that stage is closed. The c.l's in Fig. 15 represent the feedback taps,

ci = 1 if the n-th stage feeds the i + 1-th stage w
= 0 if the n-th stage does not feed the i + 1-th stage $ (186)
c =1
n
J

6.2 The A Matrix

From Section 2. 1 the A matrix is defined by the following relation

A = [ai,j]nxn

where

1 if the j-th stage of the generator feeds the i-th stage

©
h

L]

I

0 otherwise.

It is obvious from Fig. 15 for the MCRG and from Fig. 10 for the equivalent operation of a

complement stage that the content of the i-th stage at time j is given by
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© ¢ C Ch-2 -1 | =1
1C 2(: ——— n-lc ¥ n,
(a)
4
1 2 3 4 5 6
c c c c c c
(b)
Fig. 15. An n-stage MCRG, (a) general representation,
(b) schematic representation of a six-stage MCRG
with feedback taps 4 and s closed.
ul(j) = ul(j- 1) + <y un(j— 1) (mod-2)
(187)
ui(]) = ui(]- 1) + ui_l(]— 1) + i1 un(]- 1) (mod-2) 2<i<n
Thus, for the MCRG the A matrix becomes
N
A= i,j]nxn
where
a, 4 =1 for 1<i<n-1 >
’ (188)
’1+1,i=1 for 1 <i<n-1
a. = C, for 1 <i<n-1
i,n i-1 =" =
an,n =1+ ¢ -1 (mod-2)
ai,j =0 otherwise J

that is, the A matrix for the MCRG has the form
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=1
|

0 0 0 0 o
1 1 0 0 0 ¢y
o1 1 ... 00 Cy
A=1]. . . .. . (189)
0 0O 11 € 9
0 0 0 0 1 (1+cn_1)

6.3 Characteristic Polynomial and Feedback Equation

Let A be the "A'" matrix for an MCRG and let Am be the A matrix for the

MSRG which has the same feedback taps. A comparison of Eqs. 65 and 189 shows that

A = Am +1 (mod-2) (190)

By comparison with Eq. 68, the characteristic polynomial for the MCRG becomes

3 K
£€) = ), b & (mod-2)
k=0
= 'A + £ (mod-2)

1]

lAm + (£+1) II (mod-2)

n n i
k

e+t = ) @) ¢
‘éo RO 120 % kzo K5

(mod-2) (191)

Interchanging the summations in Eq. 191, the characteristic polynomial for an MCRG

becomes

n n
k
16 = ) |2 (@) ¢ |&  (mod-2) (192)
k=0 [i=k i
and the coefficients of the characteristic polynomial, bk’ become
n
b, = Ek (dk)i ¢, (mod-2) (193)

Defining the column vectors B and C as in Eqs. 147 and 148, Eq. 193 in matrix
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form becomes

B=R, -C (mod-2) (194)

where

b, | S

b c
B =| 1! c=|1

b c

and where R2 isan (n+1) x (n+1) matrix defined in Eq. 126. Furthermore, since R2 isan

involuntary matrix (Rz_1 =R

9)

C = R2 - B (mod-2) (195)
which can be written
n
¢ = Ek (dk)i b,  (mod-2) (196)

Given the feedback taps of an n-stage MCRG, its characteristic polynomial can
be found by either Eq. 194 or 193. Conversely, given any n-th degree characteristic poly-
nomial the feedback taps of the associated n-stage MCRG can be found by either Eq. 195 or

196.

Equations 191 and 193 illustrate two important properties of MCRG's:

1. From Eq. 191, if , = 0, then (£ +1) is a factor of f(£); there-

fore, for every maximal MCRG, ¢, = 1. (197)

2. From Eq. 193, since (do) =1

Therefore, applying Theorem 4, any periodic sequence from
n
an n-stage MCRG for which Z ¢, =0 (the MCRG has an odd

i=0
number of feedback taps, not counting cn) can be generated

by a generator having fewer than n-stages.
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Because of Property 1 the convention ¢, = ¢, = 1 will be made for this report.
The feedback equation for an MCRG is defined in the same way as the feedback equation for

an SSRG.

feedback equation which
. specifies an MCRG with
MC " feedback taps a,b,...,c,0
closed.

[n,a,b,...,c,0] (198)

Note that n has been included in the feedback equation to indicate that c, = 1 even though
- there is no feedback to an n+ 1-th stage, and 0 is always present denoting C, = 1.

For example, to find the characteristic polynomial of the [6,1 ’O]MC MCRG
shown in Fig. 15(b), Eq. 194 is used,

B =Ry C (mod2)
1011111 1) [1] 1]
0101010 1 1
0011001 0 1

B=[0001000|-{0f=]0 (mod-2)
0000111 0 1
0 0000T1O 0 0
(000000 1] [1] [ 1]

That is,

[6’ 1’ 0] MC R (6,4)2’ 1’ O)

Note that by comparison of this example with the example of Page 60, for the
same characteristic polynomial, the MCRG and SCRG feedback equations are simple re-
verses. This property is also exhibited by the SSRG and the MSRG.

Formally, from Egs. 196 and 150 repeated below

n

¢, = L (@) b (mod-2) for MCRG (196)
i=k i
n

¢ = 1=%-k (dn_k)i b, (mod-2) for SCRG (150)
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Replacing k by n-k in Eq. 196 and equating, one obtains

or, in other words, the feedback taps are a simple reverse if the characteristic polynomial

is identical (bi)’

6.4 Initial Loading

Like the SSRG, the MSRG, and the SCRG, it is possible to find the required
initial loading of the MCRG to produce a desired n-tuple as the first n output digits of the
last stage of the generator. It follows that by proper loading, every sequence which obeys
the sequence law of the generator can be obtained from the last stage.

Let un(j), ceey un(j +n-1) be the desired initial n-tuple from the last stage
starting at time j, and let ¢ represent the feedback taps of the MCRG. Then the initial

loading of the generator at time j is given by the following equation:

n-p n
w ) = ) LZ (dm)k_p Ck:l u (j+m)  (mod-2) (199)

b m=0 =p+m
In matrix form Eq. 199 can be written
u(j) = FM . R1 . Vn(]) (mod-2) (200)

where U(j), Vi(j)’ R,, and F, are defined as in Eqs. 1, 15, 123, and 79.

1 M
The derivation of Eqs. 199 and 200 proceeds as follows: Equation 187 can be

written
ui—l(j) = ui(j) + ui(j+1) + ¢ q un(j) (mod-2) 2<i<n (201)

With ¢_ = 1, and by definition (d ) = (d,}) = 1.
n o] i 1 i

a (i) = u )

(@) ¢ 9,0) (202)
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and

u @ = u @+ G+ +c _ju () (mod-2)

[(do) + (dO)0 Cn—l] un(j) + (dl)1 c un(j+1) (mod-2) (203)

C
1 n

Assume that for some particular integer k, where 1 < k < n~- 2, the following equation

holds:

‘ Cn—] un(j+k-m) (mod-2) (204)

Then using Eqs. 201, 204, and 119

un-(k+1)(j) - un-k(j) * un-k(j+1) * cn--(k+1) un(j) (mod-2)

k [m =
i mZ=; __{ZJO (dk_m)k—i Cn'l_ un(j+k"m)
k [m .
+ mZ;O Li_go (dk_m)k-i Choi |9 +k+1-m) + C (k1) u () (mod-2)
k-1 [m : ] i
= mz=:0 iZ/O (dk—m)k—i Cooi (U G +k-m) + 2 (do)k_i cn—J u (i)
\ V— J — —~— Y
m-1 '
R (dk_m)k_1 c i v +k+1-m)
- W
@
k
+ mZ:: (dk-m)k—m € -m un(j+k+1-m) (k1) un(j) (mod-2)
J \ ~—

® ®
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By reindexing, @ becomes

k m-1
Z Z (dk+1—m) ¢ un(j +k+1-m) (mod-2) (205)
m=1 | i=0 k-i

Combining Eq. 205 and @ and using (d,)

. = (d.) + (d,_,) , one obtains
i N i 1k

k+1
li mil
( ) c .| u(+k+1-m) (mod-2) (206)
m=1 | i=0 Grt-m g “neif U

Using the relation (d ) = (d) =1, @ becomes
Ok Ok+1

k
& (do)k+1_i Co-i un(j) (mod-2) (207)

Equations 206 and 207 combine to give

k+1 |m-1
Lol Y @l ei| wkel-m)  (mod-2) (208)
m=1 | i=0 k+1-i
Using the relationship (dk_m) = (dk+1-m) =1, @ can be written
k-m k+1-m
k
Z (dk+1—m) C-m un(] +k+1-m) (mod-2) (209)
m=0 k+1-m

and then combining Eq. 209 with @ one gets

k+1

(d

hes1-m) ¢ u (j+k+1-m)  (mod-2) (210)

m=0 k+l-m 01

Then combining Eq. 208 and 210 one obtains the result

. k+1 |m
un_(k+1)(3) = mZiO ‘17:0 (dk+1'm)k+1-i C i un(]+k+1—m) (mod-2) (211)

Equation 204 reduces to Eqs. 202 and 203 when k = 0 and k = 1, respectively.
Equation 211 shows that if Eq. 204 is true for a particular value of k where 1 < k < n-2,

then it is true for the next higher value of k. Thus, by induction, Eq. 204 holds for
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Letting p = n-k, Eq. 204 becomes

n-p {r

w @) = rzo 120 (dn_p_r)n_p_i ¢._;| w+n-p-r)  (mod-2) (212)

then letting m = n-p-r, Eq. 212 can be written as

n-p |n-p-m

u ) = ) ), (d ) ¢ .| u(+m) (mod-2) (213)
P m=0 | i=0 p-p-i U] M
_and letting k = n-1i, Eq. 213 becomes
n-p n
up(j) = oZo e (dm)k-p Cp un(j+m) (mod-2) (199)

Equation 200 is simply Eq. 199 written in matrix form and follows from inspection. For

example, suppose the n-tuple V (j )T = [10110] is desired as the first five digits from

the last stage of a five stage MCRG with the feedback law and associated characteristic

polynomial
[5’3’0]MC (5)4’372’0)
Applying Eq. 200

U@G) = Fy, - Ry -V ()

M "1 'n
001 0 1 1 000 0] [1
0101 0 1100 0 0

UG) = |1 01 00|-]10100]- |1 (mod-2)
01000 1111 0 1
10000 (1000 1] |o]
[0 0 1 0 1 |[17] 1]
0101 0|1 0

=1 0100/|l0o] =]1 (mod-2)

0100 0|1 1
1 00 0 o1 1




Time i 1 0 1 1 1
l i+1 0 1 1 1 o0
+2 0 1 0 0 1

i+ 01 1 1 1 1

j*4 0 0o 0 1 0

Fig. 16. A[5,3,0] Mc MCRG and the first five content vectors
for the initial loading U(j)T = [1,0,1,1,1].

The first n content vectors of a [5,3,0] MC MCRG beginning with the initial
loading U(j )T = [10111] is shown in Fig. 16. The desired output n-tuple is generated
at the last stage of the generator.

6.5 Interstage Relationships

Equation 187 can be rewritten as

0y = upq@) + upgG+D) + oy u () (mod-2) (214)

Letting Xi(j) represent the sequence produced by the i-th stage with time reference j, and

applying the definition of sequence addition from Section 2. 2, the following relationship re-

sults:

X.G) = X,

1+1(j) + Xi+1(j+l) +c Xn(j) (mod-2) (215)

Equation 215 is a general relationship for any MCRG. Since the interstage
sequence relationships depend on the shift-and-add properties of the sequence produced, it
is convenient to individually consider maximal generators, nonmaximal generators with
irreducible characteristic polynomials, and nonmaximal generators with factorable charac-

teristic polynomials.

6.5.1 Maximal MCRG. Theorem 2 states that every stage of a maximal MCRG

produces the same sequence, but the sequence from each stage will be shifted in time from
the sequence from every other stage. If two adjacent stages are not separated by an inter-
stage mod-2 adder, ¢ = 0, Eq. 215 reduces to
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X0) = X q0) + X 4G40 (mod-2) (216)

This is the same relationship that exists between adjacent stages of a maximal SCRG, which

is, from the shift-and-add property of maximal sequences,

X.(G) = X

) = X, 1G+K) (217)

where K is a time shift determined by the solution of the equation

AR - A1 (mod-2)
where A is the "A' matrix for the MCRG.
When two adjacent stages are separated by an adder, c, = 1, Eq. 215 becomes

X.(j) = X.

i 1@+ X G+ + X (G) (mod-2)

Let J ik be the time shift between the sequences produced by the i-th and k-th stages so that
3

X,0) = X G+, )

and

X.(G) = X )

i i+l

G+dJ

i,i+1

The following discussion develops one method for determining the shift J in
b

between the i-th stage and the n-th stage:

From Eq. 16
. k .
Vi(3+k) = Cf Vi(]) (mod-2)

where C, is the companion matrix for the characteristic polynomial of the generator and

f
Vi(j) is an n-tuple of digits from the i-th stage of the MCRG with time reference j,

afi) |
ui(j+1)
Vi) =
U‘i(j +n-1)
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1t follows from Eq. 214 that
Vl(]) = Vi+1(J) + V1+1(J+1) + Ci Vn(]) (mOd_z)

Letting Ji n be the shift between the sequence from the i-th stage and the sequence from
2

the n-th stage,

Vi) = v G+d; )

Then
Vo) = V6T g )
Jn—1 n
= Cf ¢ Vn(]) (mod-2)
=V, @+ V(G§+1) +c V(G0  (mod-2)
= (Cf+I+ -1 1) Vn(j) (mod-2) (218)
and
Jn-l n
Cf = cn(Cf+I) + ¢ I  (mod-2) (219)
where ¢_ = 1.
n
Similarly,
Vn_2(j) = Vn(j"’Jn_z,n)
Jn—2 n
—_ b 3 -
= G v () (mod-2)

=V @+ V G+ +c o V()  (mod-2)

(Cf+1) Vn_l(j) + ¢ Vn(j) (mod-2)
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using Eq. 218

Vn_z(]) = (Cf+I) [cn(Cf+I) e g I Vn(j) +C 9 Vn(]) (mod-2)
= [cn(Cf+I)2 + cn_l(Cf+I) *Co9 I] Vn(j) (mod-2)
and
Jn—2 n 2
Cf = cn(Cf+I) + Cn—l(cf+ I) + Cn—ZI (mod-2) (220)

Assume for some arbitrary value of i, 1 < i < n-2 that

B . .
n-i,n i i-1
Cf o= cn(Cf+I) + cn_l(Cf+I) oot Co I (mod-2) (221)
then for the n-i-1st stage
Vn—i—l(j) - Vn(j+Jn-i-1,n)
Jn-i-l n
= Cf ’ Vn(]) (mod-2)
= Vn-i(j) + Vn-i(j +1) + Coin1 Vn(j) (mod-2)
= (Cf+I) Vn-i(j) tCio1 Vn(j) (mod-2)
i i-1 . .
= (Cf+I) [cn(Cf+I) + Cn—l(cf+1) toeetCo I] Vn(]) +C i1 Vn(]) (mod-2)
= [c_(C +I)i+1 +c_ L(C +I)i+ +c¢_ (C,+D)+¢c I] V.(§) (mod-2)
n'f n-1'"1 R S A n-i-1
and
Jn—i—l n i+l i
Cf = cn(Cf+I) + Cn-l(cf+1) +... 4 cn—i(cf+1) +Cin1 I (mod-2) (222)

Equation 222 shows that if Eq. 221 is true for some arbitrary value of i, then it is true for
the next larger value of i. Equations 219 and 220 show that Eq. 221 is true for i = 1 and
i = 2; thus by induction Eq. 221 is true for 1 < i < n-1. Equation 221 can be solved for

Jn-i n by use of the B A matrix associated with the characteristic polynomial. However,
b
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since C h and the A matrix for the MCRG have the same characteristic polynomial they also

have the same BA matrix and Jn-i n can be considered to be the solution to the equation
b

n-in_ }j ¢ . (A+D7  (mod-2) (223)

which can be solved for Jn—i 1 using the associated BA matrix.
)
As an example, consider the [4,1,0] MC MCRG which has the characteristic

polynomial (4,1,0). Figure 17 shows this generator, its output for one period, and its

associated BA matrix. For the MCRG in Fig. 17, using Eq. 223

I3,4
AT o= c4(A+ I) + c3I (mod-2)
= A+1 (mod-2)
Ia,4 .
A7 = c4(A + Iy + c3(A + 1) + ¢y I (mod-2)
= A®+1 (mod-2)
I1,4 s : .
AT = c4(A + 1) c3(A +1) c2(A + 1) + ¢y I (mod-2)
= AP+ AP+ A+ T+ (mod-2)
= A+ A+ A (mod-2)
and from the BA matrix
J1’4 = 11
Tgq = 8
J3,4 = 4
which means that
X,(0) = X, + 8)



which can be readily verified from the sequences shown in Fig. 17.

Using Eqgs. 91 and 92, the shift between stages of the MCRG in Fig. 17 is found

to be

-y
-
B
1}

H
S

ey
1l
"N

or

>4
-
—
[
~
|

= Xz(j +3)

el
B
2~
o
1l

X3(j + 4)

>
w
—
Connd o
=
I

X4(3 + 4)
The shift between sequences not separated by an adder is the same, as pre-

dicted by Eq. 217. The shift between sequences separated by an interstage adder is some

1c ZC 3C 40 BA Matrix

Time 4§ o o Powers of A %3 2 1 0
' i 1 0 0 - -
R 1o o 1 o
R 210 1 o0 o

1 o o 311 0 0 0

0 L1 o 4lo o 1 1

0 Lo 1 50 1 1 0

(1) sy 61 1 0 0

Lo 711 0 1 1

0 8 L glo 1 o 1

‘1) D1 s 91 0 1 o0

Lo o 1 0o 1 1 1

S0 o 1 111 1 1 0

1 o 1 21 1 1 1
b1 311 1 0 1

L o o o 1401 0 0 1

1500 0 0 1]

Fig. 17. The [4,1,0] Mc MCRG, the successive content
vectors, and the associated Bp matrix.
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value determined by the shift-and-add property of maximal sequences. The shift between
sequences without an interstage adder (4 in the example above) is identical to the shift be-
tween stages of the equivalent SCRG (see the example on Page 67 ).

Tables of the shift between sequences from adjacent stages for all maximal
MCRG's of length 2 < n < 12 are given in Section 8. 4.

6. 5.2 Nonmaximal MCRG with Irreducible Characteristic Polynomial. All the

sequences produced by a generator with an irreducible characteristic polynomial have the

same length, {. A partial shift-and-add property exists. That is, for certain shifts, the

shift-and-add property holds. However, for all other shifts different sequences are obtained.
The relationship between the sequences produced by adjacent stages not separated

by an adder is given by Eq. 216.

If the shift-and-add property holds for the particular characteristic polynomial for a shift
of "one, ' then both stages of the generator will produce the same sequence but shifted in

time, that is,

X{G) = X, +K) (224)

where K is the solution to the equation

AR S AT (mod-2)

If the shift-and~add property does not hold for a shift of "'one, " then the two stages will
produce different sequences.
When two adjacent stages are separated by an adder, ¢, = 1, then the problem

becomes much more complicated and will not be considered further in this report.

6. 5.3 Nonmaximal MCRG with Factorable Characteristic Polynomial. If two

adjacent stages are not separated by an adder, then from Eq. 216
X,0) = X, 10) + X, G+ 1) (mod-2)

and the sequence from the i~-th stage will be the same as the sequence from (i+ 1)-th stage
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shifted in time, if and only if, the shift-and-add property holds for the sequence Xi+1(j) for

a shift of "1." When the stages are separated by an adder, the relationship becomes more
complicated.
It was pointed out in Section 2. 4. 2 that when the characteristic polynomial of a

generator is factorable,

£(€) = £'(§) £"(8) ... £"(§)  (mod-2)

the sequences associated with each of the factors are among the sequences that can be pro-
~ duced by that generator. Unlike the SCRG, it is possible for one stage of the MCRG to pro-
duce a maximal sequence which corresponds to one of the factors of the characteristic poly-
nomial while other stages are producing different sequences. However, the following
theorem still holds:

Theorem 11:

Given an n stage MCRG with a factorable characteristic polynomial,

£(&) = £'(&) £"(§) ... £""(¢)  (mod-2)

The sequences produced by each stage of the MCRG follow the same
sequence law as is followed by the sequence produced by the last stage.

(Note: some stages may produce the all-zero sequence. )

Theorem 11 is proved in Appendix C.
One consequence of Theorem 11 is that if the last stage of an n stage MCRG is

producing a maximal sequence associated with a particular factor, then every stage of the
MCRG is producing either the same sequence or the all-zero sequence. This is demon-
strated in Fig. 18 for a [6,5,4,3,0] MC generator with a characteristic polynomial factor-
able by (6,5,4,3,0) = (2,1,0) (4,1,0). The sequence being produced by the last stage cor-
responds to the (2,1,0) factor which is associated with a maximal sequence of length L = 3.
Every other stage of the generator is also producing the (2,1,0) maximal sequence except
the 4th stage which is producing the all-zero sequence.

An example of an MCRG with a factorable characteristic polynomial simultan-

eously producing sequences which correspond to different factors is shown in Fig. 19. In

Fig. 19, the [8,6,5,4,3,2,0

,6,5, ]MC MCRG with a characteristic polynomial that is
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C C C [ C C

Time 4 o 1 o 1 1
| o 1 1 0o 0o 1

1 1 o o 1 o0

1 o 1 o0 1 1

Fig. 18. A six-stage MCRG with a factorable characteristic polynomial
and one period of successive content vectors.

(8,6,5,4,3,2,0) = (2,1,0) (3,1,0) (3,2,0) = (2,1,0) (6,5,4,3,2,1,0) is shown along with a
period of successive stage contents. The 4th stage is producing the maximal sequence
associated with the (3,2, 0) characteristic polynomial and at the same time the 5th stage is
producing the maximal sequence associated with the (3,1, 0) characteristic polynomial.
Theorem 11 is still satisfied, however, because the last stage is producing a (6,5,4,3,2,1,0)

A et i B Bt

sequence which both the (3, 1,0) and the (3,2, 0) sequences obey.

c c c ¢ c c c c
Time

1 0 0 1 0 0 0 0

1 1 0 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 1 0 1 1 1 0

1 0 0 1 1 0 0 1

0 1 1 0 1 0 1 1

1 1 1 0 0 0 0 0

1 0 0 1 0 0 0 0

/o !

(3,2, 0) sequence (6,5,4,3,2,1,0) sequence
(3,1,0) sequence

Fig. 19. The [8,6,5,4,3,2,0]pc MCRG and one period of
consecutive content vectors.

6.6 The Output Adder Circuit

An output adder circuit can be used effectively with an MCRG to obtain a sequence
starting with any desired n-tuple of digits as the output of the adder when the MCRG is
initially loaded at time j with U(j) = El(O).

Let



represent the desired initial n-tuple of digits from the adder, and
a = [al,az,. e ,an]
be the row vector of adder taps where

1 if the i~th adder tap is closed

Q
]

0 otherwise

1

then

(mod-2) (225)

a, = Z (d_) x(j + m) (mod-2) (226)
i-1

The derivation of Eqs. 225 and 226 is simplified by the application of the

following theorem:

Theorem 12:

Given an n stage MCRG, if
ul(j) = 1 and ui(j) =0 for 2<i<n
at some time j, then

ui(j+k)=(d for 1<i<k+1l, 0<k<n-1

i—l)k

and
ui(j+k) =0 for k+2 <i<n, 0<k<n-2

The proof of Theorem 12 is given in Appendix C.

The output of the adder in Fig. 20, given by Eq. 50, is

x(j+k) = i a, ui(j+k) (mod-2) (50)
i=1
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o ¢y Cy Ch-1 |0 © 1
lc 20 - e n- lc nC
\ al \ a2 \ an-l \ an
Grand Mod-2 Adder — Output x(j)

Fig. 20. An MCRG with an output adder circuit.

Applying Theorem 12, Eq. 50 becomes

k+1
x(j+k) = ), (d_4) ¢  (mod-2) 0 <k <n-1 (227)
i=1 k

Expressed in matrix form, Eq. 227 becomes

X(j) = aRy  (mod-2)
where R2 is defined in Eq. 126 to be
Ry = [r".;’].]
nxn
r1,] = ( 1—1)j_1 for i <j
=0 for i >j
Since R2 is an involutory matrix, Rz_ = Ry,
X(j) « Ry = a Ry * Ry  (mod-2)
= R Rz‘ (mod-2)
= a (225)

which expressed in series form becomes
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a, = Z (d ) x(j + m) (mod-2) (226)
i-1

In this section and in the one previous, we have considered complement-register
generators. In particular, we have examined two canonical forms: the SCRG and the MCRG.
In the next section a "hybrid' generator is considered which employs both complement stages

and shift stages.
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7. THE JACOBIAN HYBRID GENERATOR

In the linear sequence generators we have previously discussed, problems
arise at high frequencies because of propagation times and time delays. (See Section 8. 1.)
One way to reduce propagation time is to build MSRG's in a circle to bring the last stage
adjacent to the first and, thereby, make all feedback paths short. However, because of the
operation of SRG's and CRG's all shifting and transfers must be completed before the next
pulse can be introduced.

If some form of generator could be constructed which consists entirely of
balanced loads and symmetric localized feedback (all paths the same and no long feedback
paths), it would be useful for high frequency applications. The "Jacobian Hybrid Generator"
(JHG), discussed in this section, satisfies these conditions. The JHG is composed of both

shift stages and complement stages (a hybrid). It contains only localized feedback and feed-

forward paths. This section will present a brief treatment of the properties of the JHG.

7.1 Definition

Figure 21 shows a 7-stage JHG composed of both shift stages and complement
stages. It operates as follows: the input to each stage, except the first and last stages,
consists of the mod-2 sum of the output of the two adjacent stages. The input to the first
stage is simply the output of the second: The input to the last stage is simply the output of
the next-to-last stage. All feedback and feedforward paths are to adjacent stages so that
there are no long propagation times. Each stage (except the first and last) drives two adder
inputs and has a single input. In Fig. 21, stages 2, 3, 5, and 7 are complement stages,
and stages 1, 4, and 6 are shift stages. The sequence obtained from any stage of the JHG
is a function of those stages of the generator that are shift stages and those stages that are

complement stages. It is also a function of the initial loading.
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7.2 The A Matrix

Let ¢ designate whether the i-th stage of a JHG is a shift stage or a comple-

ment stage, as follows

(e]
1

1 if the i-th stage is a complement stage
(228)

0 if the i-th stage is a shift stage

By inspection of Fig. 21 the content of the i-th stage at time j becomes

uyG) = e uy(G-1) + uy(G-1) (mod-2) )
ui(j) = ui-l(j- 1) + c, u.l(j- 1) + ui+1(j- 1) (mod-2) 2 <i<n-1 $ (229)
w (@) = ua _4G-1)+c u(-1) (mod-2) )

and the A matrix defined in Eq. 4 becomes

1
A = |a, .
( 1,J]
where
a. . =1 if j=izx1 ) (230)
1,1]
a. . = ¢
i, i i
., . = 0 otherwise
L]
P,
From Eq. 230 the A matrix for the JHG has the form
— —
c 1 0 0 0 0
1
1 ¢y 1 0 0 0
0 1 Cq 0 0 0
A=|. . . : . (231)
0O 0 0 . € 9 1 0
o o0 o0 . 1 c 1
n~-1
0 0 0 0 1 c
b n—
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Note that in Eq. 231 the A matrix for the JHG consists of all zeros except for the main diag-
onal and the two "off diagonals.” This matrix is a ""matrix of Jacobi' which is the reason for

the name "'Jacobian' hybrid generator.

Fig. 21. A seven-stage JHG.

7.3 Characteristic Polynomial and Feedback Equation

Let fk(g) be the characteristic polynomial for a k-stage JHG for which
CsCgse s Cp designate the shift and complement stages according to Eq. 228. Then by

defintion fk(g) is the determinate

(cl+£) 1 0 0
1 (02+£) 0 0
BE) = | . : : : (mod-2)  (232)
0 0 (c)_q+£) 1
0 0 1 (ck+§)

For a 1~-stage generator

£(6) = ey + & = ¢y + & (mod-2) (233)
For a 2-stage generator
(c1+£) 1
f,(8) = = £+ (cl+c2) £+ (ccy+1) (mod-2) (234)
1 (c2+§)
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For an n-stage generator, n > 3,

(c,+6) 1 0
1 (ey+8) 1
£ () =
0 0 0
0 0 0
0 0 0

0 0
0 0
(mod-2)
1 0
(cn_1+£) 1
1 (cn+ &)

Expansion of the determinate in Eq. 235 by minors along the last row gives

(c,;+&)

£ (¢)

= (c + &)

0 0

0 0
(cn_2+ &) 1

1 (cn_ 1 &)

0 0

0 0

(mod-2)

(cn_2+ £ 0

1 1

Further expansion of the second determinant in Eq. 236 in the last column gives

(c + )
1

1

(cq+ &)
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0 0

0 0
(cn_2+§) 1

1 (cn_ i+ £)

(235)
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(c1+§) 1 0
1 (c2+ £) 0
+ . . . (mod-2)
0 0 (cn_2+.§)
= (e + ) £ _1(E) + £_o(&) (mod-2) (237)

Equations 233, 234, and 237 form a recursion relationship from which the characteristic
polynomial of an n-stage JHG can be determined. Unfortunately the solution of this recur-
sion relationship requires knowledge of all Zn_l smaller characteristic polynomials to find
all 2 n-th order characteristic polynomials.
The feedback equation for a JHG is defined as follows:
feedback equation for an n-stage

[n;a,b,... ’C]JH: JHG in which stages a,b,...,c (238)
are complement stages.

For example, the feedback equation for the 7-stage JHG in Fig. 21
is [7;1,5,3, Z]JH; the feedback equation for an n-stage JHG in which

every stage is a shift stage is simply [n; —] JH®

Because of the symmetry of the "A" matrix of the JHG, if the A matrix is rotated

R is the "A'" matrix for the same JHG if the

180° and the resulting matrix denoted AR, then A
numbering of the stages increases from right to left. However, rotating a matrix 180° does
not change the characteristic polynomial, so that A and AR have the same characteristic
polynomial. This property is also evident from Fig. 21 because reversing the numbering of
the stages does not change the operation of the generator. One consequence of this is that
two n-stage JHG's have the same characteristic polynomial, and produce the same sequences.
JH? both 3-stage JHG's have the same (3,1, 0) charac-
teristic polynomial. The feedback equation may be purely symmetric and the two feedback

For example, [3;2,1 and [3;3,2
b JH b

equations are consequently identical. For example, reversing the numbering of a [3;3,2,1] JH

gives [3;3,2, Another consequence is that for n > 2 there will be n-th degree charac-

l]JH'

teristic polynomials for which no n-stage JHG exists.
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For example, this listing gives all the possible characteristic
polynomials of degree 1 < n < 3 and the feedback equations

of the n-stage JHG associated with the polynomial,

Polynomial Feedback Equation
(1) [5-] 5

(1,0) [51] 5y

(2) [2:2,1]

(2: 0) [2;-]JH

(2,1) none

(2,1,0) (251] 1 or [2;2] ;4
(3) (3] 1

(3,0 none

3,1) [3:3,1] 1y

(3,2) [3:2] 1

(3,1,0) [3:2, 1]y or [3:3,2]
(3,2,0) [3;1] ;5 or [3:3] 1y
(3,2,1) none

(3,2,1,0) (3;3,2,1] 1y

From this list we can see that no JHG exists which corresponds to a (2,1) or (3,0) or (3,2, 1).

Unlike the SRG's and the CRG's described in previous sections, no simple rela-
tionship or transformation between the characteristic polynomial and the feedback equation
has been found for the JHG. Equations 233, 234, and 237 represent one way of determining
the characteristic polynomial of an n-stage JHG. This method is well suited for compiling a
table of all possible JHG's and their characteristic polynomials starting with a 1-stage gen~
erator and progressing through the n-stages. However, to find the characteristic polynomial
of a particular n-stage generator for large n, when fn_l(é;) and fn_z(.ﬁ) are not known, a
second procedure is more suitable.

This method for determining the characteristic polynomial of a JHG is based on:
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Theorem 13:

If an n-stage JHG is initially loaded with U(j) = El(O)’ that is

=
ot
—
(SN
~
I}
[y

u( =0 for 2<i<n
then
uk(j+k—1) =1 for 1<k<n
and
u(j+k-1) = 0 for 2<k+1<i<n

Theorem 13 is proved in Appendix D.

By reindexing Eq. 14, and assuming bn = 1, the characteristic sequence law can

be written as
n
Z by u.(j+k) = 0 (mod-2) (239)
k=0 !

If the JHG is initially loaded with the first elementary load, U(j) = El(O), then by

Theorem 13,
ui(j+k) =0 for k<i-1

and

Equation 239 becomes

n n
Z b u(j+k) = 2 b u(j+k) + b, = 0 (mod-2)
k=i-1 k=

or

n
b, , = Z_b u(j+k)  (mod-2) (240)
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As an illustration, consider a [5;4,3,2, 1]JH 5-stage JHG. The generator and its successive

stage contents for an initial loading of U(j) = El(O) are shown in Fig. 22. Applying Eq. 240

withn=5andb551
b, = b5 u5(j+5) = 0 (mod-2)
b3 = b4 u4(j+4) + b5 u4(j+5) =0+0 =0 (mod-2)

b, = b3 u3(j+3) + b4 u3(j+4) + b5 u3(j+5) =0+0+1 =1 (mod-2)

b1 = b2 uz(j+2) + b3 uz(j+3) +Db j+4) + b5 u2(j+5) =0+0+0+0 = 0 (mod-2)

4 Ugl

b, = b1 ul(j+1) + b2 ul(j+2) + b, u (j+3)

+

3 1( b, ul(j+4) + b5 ul(j+5) (mod-2)

=0+0+0+0+1 =1 (mod-2)

1 3, =G 5
y
2 4

C C
Time 4 0 0 0 0
1 1 1 0 0 0
0 0 1 0 0
0 1 1 1 0
1 0 1 0 1
1 0 1 0 0

Fig. 22. The [5,4,3,2,1

23,2, ]JH and the successive content vectors.

Thus, the characteristic polynomial for the [5;4,3,2,1 H 5-stage JHG is (5,2,0). Since

I5
reverse feedback equations give the same characteristic polynomial, the [5;5,4,3, 2]JH
5-stage JHG is also associated with the (5,2, 0) characteristic polynomial. A complete

tabulation of all maximal JHG's is given in Section 8.3 for 2 < n < 12,

As yet no practical method has been found for determining the feedback equation

of a JHG associated with a given characteristic polynomial (the reverse process of above).

In fact, as shown above, some characteristic polynomials do not even have an associated
feedback equation.
It should be noted that if a JHG exists for every irreducible characteristic

polynomial, then from Section 2. 4. 2 every polynomial can be obtained by employing cascaded
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JHG's. Or it can be obtained by beating JHG's, in which the individual generators correspond

to the irreducible factors of the original polynomial.

7.4 Initial Loading

Like the generators we have discussed, it is possible to find the proper initial

loading for an n-stage JHG to obtain any desired n-tuple of digits from some stage of the

generator.

Let U(j) be the content vector of the JHG at time j, and let Vi(j) be defined as in

Eq. 15

[ u) |
ul(]+1)
v, =
.(j -1
L-ul(]+n l

Let E.l(O) represent the i-th elementary load and be defined as the column content vector

consisting of a single 1 in the i-th row, that is

where

e. =0, j£Zi 1<j<n
Let A be the "A" matrix for the JHG, then

E() = ASE(0)  (mod-2)
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By inspection, this identity is true

KON BT () 0 ()]
ui(j+1) ul(j+1) ui(j+1) un(j+1)
ui(j+n- 1) ul(j+n- 1) ui(j+n— 1) un(j+n— 1)
Equation 242 can be written
r- - e a—
u)t )T 1
UG+1)T u)T AT
V(i) = E(0) =
| UGn-1)" | o) @™ T
w1 |
v - AT - E0)
= (mod-2)
v @ hHT - B 0)

and Eq. 245 becomes
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(mod-2)
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V.(j) = . (mod-2)

= . (mod-2) (244)

However, U(j)T Ei(k) is simply a row vector times a column vector, so

T

UG) Bl = B®) UG (mod-2)

1

and Eq. 244 becomes

V.(§) = . (mod-2)

= - U(j) (mod-2)

106



Assume the above n x n matrix has an inverse, Pi , that is

- -1
FE#mT
T
E.(1)
P, = ) (245)
Ei(n-l)T
\ then

Applying Theorem 14, it is found that for i = 1, the n x n matrix

El(n-l)T

is a triangular matrix with all ones on the main diagonal and all zeros above, hence it is

nonsingular and P1 exists. Consequently, it is always possible to get any particular n-tuple

of digits, Vl(j)’ from the 1st stage of the JHG using the initial loading
UG) = P VyG)  (mod-2) (247)

Unfortunately, an explicit expression for the initial loading in terms of the stage coefficients,
Cs has not been found. The important point of this section is that an initial loading does

exist for any desired output.

7.5 Interstage Relationships

For the JHG, from Eq. 229

[=1
\\]
—
[
=
1l

¢y ul(j) + ul(j+1) (mod-2)
(248)
u.(j) = Ciq ui-l(j) + ui-l(j+1) + ui_z(j) (mod-2) 3<i<n
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From the definition of sequence addition and Eq. 248 it follows that

>
N
P
o
=
1

¢y Xl(j) + Xl(j+1) (mod-2)
(249)
X.(j) = i q Xi—l(j) + Xi—l(j+1) + Xi-z(j) (mod-2) 3 <i<n

where Xi(j) is the sequence produced by the i-th stage of the JHG.
Define an operator 7 which operates on an entire sequence X.l(j) and performs

the function of shifting that sequence by one digit, that is

rX(0) = X(i+)
and (250)
FX(3) = X,(j+k)
Then
X3(j) = (02 +7) Xz(j) + Xl(j) (mod-2)
= [(c2 +7) (c1 + 1)+ 1] Xl(j) (mod-2)
= [+ (c1 +Co) T+ (clc2 +1)] Xl(j) (mod-2) (252)
Xi(j) = (ci—l +7) X 1(1) + Xi-z(j) (mod-2) (253)

Comparing Eqs. 251 and 252 with Eqs. 233 and 234 we see that

]

X,) = 1,1 X,()  (mod-2)
and (254)

where fk(g) is defined to be the characteristic polynomial of a k-stage JHG for which

CpomeerCp designate the shift and complement stages as in Eq. 232.

17
Assume for some arbitrary value of k, 3 < k < n-1 that

X, () £ 1(7) X,(5) (mod-2)
and (255)
X o10) = £ _o(1) X,0) (mod-2)

1}
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then from Egs. 253, 255, and 237,

X, 40) = (e + )X () + X _,0) (mod-2)

I}

[(Ck + 1) _4(7)+ fk—Z(T)] X,G)  (mod-2)
- fk(T) Xl(j) (mod-2) (256)

Equation 254 shows that Eq. 255 holds for k = 3, and Eq. 256 shows that if Eq. 255 is true
for any arbitrary value of k such that 3 < k < n-1, then it holds for the next larger value

" of k. Therefore by induction
X0 = f,_ () X,G) (mod-2) for 2<k<n (257)

Either Eq. 249 or Eq. 257 can be used to give the interstage relationships between the se-
quences produced by different stages of a JHG.

In the case of a maximal JHG, every stage will produce the same sequence, but
the sequence from each stage will be shifted in time from the sequence produced by every
other stage. In the case of a nonmaximal JHG, different stages may produce different se-
quences, and, as with the MCRG and the MSRG, it is possible under some circumstances
for one or more of the stages to be producing the null sequence (all zeros) while other stages

are producing nonzero sequences.

7.6 Output Adder Circuit

An output adder can be used with a JHG in the same manner that an output adder
can be used with the previously discussed generators. Figure 23 shows a 6-stage [6;5, 3’2]JH

JHG with an output adder. The output of the adder is given by

n
x(j+k) = ). o, u(j+k)  (mod-2)
i=1

With X(j) and o defined as in Eqs. 51 and 52, and the content vector U(j),

x(j+k) a - U(j+k) (mod-2)

X(j) a [U(j), UG+1),...,U(j+n-1)] (mod-2) (258)
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If the JHG is initially loaded with

then Eq. 258 becomes

: ﬁ 1
Vo e e e e

Grand Mod-2 Adder — OQutput x(j)

Fig. 23. A six-stage JHG with an output adder circuit.

Applying Theorem 13, the n x n matrix above is a triangular matrix with all ones
on the main diagonal and all zeros below. Hence it is nonsingular and its inverse exists,

therefore

o = X() [E,(0), E,(1),...,Ey@-1]"  (mod-2) (259)

Equation 259 can be used to determine the proper adder taps to close to obtain any desired
n-tuple, X(j), as the initial output of the adder when the elementary load is present. Although
an explicit expression for ¢ has not been obtained, a solution has been shown to exist. Thus

this technique can always be employed.
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8. COMPARISON AND SUMMARY OF GENERATORS

In the preceding sections of this report, techniques for generating periodic
linear binary sequences using the SSRG, MSRG, SCRG, MCRG, and the JHG were considered.
We have shown that all of these generators (except the JHG) are equivalent; that is, for any
characteristic polynomial an SSRG, MSRG, SCRG, or MCRG can be found which is associated
with that polynomial. Any desired starting point of a sequence can be obtained by properly
loading the generator. The output adder technique for obtaining a desired starting point
applies to each type of generator. We discussed the relationship between the sequences pro-
duced by different stages of the same generator. Finally, each of the generators discussed
in this report represents a ""canonical' or standard form of generator.

In this section we will discuss the advantages and disadvantages of the various
types of generators and summarize the mathematical relationships which described their
operation. Also, two tables are presented: one showing the feedback connections for all
the equivalent maximal SSRG, MSRG, SCRG, MCRG, and JHG of 2 < n < 12 stages and
another showing the shifts between the sequences produced by adjacent stages of maximal

MSRG, SCRG, and MCRG of 2 < n < 12 stages.

8.1 Advantages and Disadvantages of Different Generators

Each of the generators discussed in this report has features which makes it
suitable for particular applications. Cost, high speed operation, simplicity of wiring, sim-
plicity of the mathematics associated with the operation and availability of component parts
will determine which of the generators is most practical. In the following section we will
discuss some of the advantages and disadvantages of the specific types of generators we have

previously reviewed.

The SSRG

Advantages

The SSRG is popular largely because of the easy mathematics which
describe its operation. Hardware for it is readily available. It is
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The MSRG

The SCRG

similar to the shift register used in digital computers. The starting
conditions for "resetting' the SSRG are trivially determined. The
SSRG can be easily modified for different characteristic polynomials
since all feedback is external to the shift register which requires
only changing the outputs of the stages. The SSRG is also useful for
""digital filtering techniques' (Ref. 2) because of the simple one-bit
delay between stages of the SSRG.

Disadvantages

The interstage wiring is two-wire logic consisting of either the "set-
reset’ type of bistable elements or the "shift-destruct' type of bistable
elements. Since mod-2 adders in the feedback loop must be cascaded,
long propagation and delay times may exist for the feedback signal
which limits the upper frequency of operation. With multiple adder
networks in the feedback loop, the shift register stages drive un-
balanced loads. This imbalance can be overcome by using buffered
adders; however, this increases the delay time through the adders.
Because of ths shifting and feedback path return, all transfers of the
register must be completed before the next shifting pulse can occur.

Advantages

Because the feedback adders are not cascaded, the time delay for the
feedback signal is held down. The MSRG uses modular-type construc-
tion requiring two basic elements: (1) a shift stage, and (2) a shift
stage and adder. The adders for the MSRG can be gate control circuits
instead of conventional adders (Ref. 2). Every stage except the last
has balanced loading. The MSRG is an ideal form of generator for gen-
erating sequences in a digital computer. A check of the low-order bit
is required. K it is "zero," the contents of the accumulator in the
computer are simply right shifted. If it is a "one, " then bit-wise ex-
clusive OR the feedback taps to the accumulator and right shift the con-
tents. The MSRG is a common form of storage register for error
correcting codes (Ref. 5). As an added feature, the MSRG can be used
as a B, matrix computer (see Section 4. 6).

Disadvantages

Like the SSRG, the interstage wiring of the MSRG is two-wire logic.
The starting conditions for "'resetting' the MSRG are more complicated
than for the SSRG. The MSRG cannot be easily modified for different
characteristic polynomials because the adder network is interstage.
The last stage of the generator may be required to drive many adder
inputs. The return path of the generator may be physically long re-
quiring long propagation times. Because of the shifting and feedback
path return of the MSRG, all transfers of the register must be com-
pleted before the next shifting pulse can occur.

Advantages

The interstage connections utilize one-wire logic which is simpler
than the two-wire logic used with the SRG's. In some forms, the
complement stage requires fewer components to construct than the
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shift stage. The feedback connections can be easily modified for
different characteristic polynomials since all feedback is external

to the complement register. It is possible to obtain large uniform
delays between the sequences obtained from adjacent stages of the
SCRG. Also, in many instances the SCRG for a given characteristic
polynomial requires fewer feedback adders than does the equivalent
SSRG or MSRG. As an example, for the maximal characteristic
polynomial (7,6,5,4,3,2, 0) the feedback equation for the SCRG is
[7,6,0]gc requiring one mod-2 adder while the equivalent SSRG and
MSRG have the feedback equations [7,5,4,3,2,1,0]gg and
[7,6,5,4,3,2,0] MS » respectively, both requiring five mod-2 adders.
On the other hand, some SCRG's require more adders than the equiva-
lent SSRG or MSRG.

Disadvantages

The mathematics of the SCRG deals with polynomials in the variable
(1+ &K bringing in the mod-2 binomial coefficients which complicate
the equations that describe its operation, Consequently, the starting
condition for ""resetting'" the SCRG is more difficult than for

the SSRG. Since the mod-2 adders in the feedback loop must be cas-
caded, long propagation time may have a feedback signal which limits
the upper frequency of operation. The complement register stages
drive unbalanced loads because of multiple adder networks in the feed-
back loop. Because of the shifting and feedback path return of the SCRG,
all transfers of the register must be completed before the next shifting
pulse can occur.

The MCRG

Advantages

The MCRG uses one-wire logic in its interstage connections like the
SCRG. In some forms, the complement stage requires fewer compo-
nents to construct than does the shift stage. The feedback adders are
not cascaded, so that the time delay for the feedback signal is reduced
in comparison with the time delay for the SSRG and the SCRG. Every
stage except the last has balanced loading. The MCRG uses modular-
type construction requiring two basic elements: (1) a complement
stage, and (2) a complement stage and adder. Another feature which
may be useful is the variable interstage delay between successive
stages of the MCRG.

Disadvantages

The mathematics of the MCRG deals with polynomials in the variable
(1+ g)k bringing in the mod-2 binomial coefficients which complicate
the equations describing its operation. The starting conditions for
"resetting' the MCRG are more complicated than those for the SSRG,
MSRG, or SCRG. The feedback connections cannot easily be modified
for different characteristic polynomials because the adder network is
interstage. The last stage of the generator may be required to drive
many adder inputs. The return path of the generator may also be
physically long requiring long propagation time. Because of the shifting
and feedback path return of the MCRG, all transfers of the register must
be completed before the next shifting pulse can occur.
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The JHG

Advantages

In the JHG generator, all feedback loops are localized and extend only

to adjacent stages. Thus there are no long return propagation paths.
Because the shifting and feedback paths are localized, the JHG is ideal
for high-frequency operation. For long JHG's, the final stages can
operate independently of the first stages. This feature allows the
pulsing of the generator at a rate higher than the propagation time re-
quired for the pulses to propagate to the end of the generator. All of the
inputs and loadings of the JHG are balanced. It is the most "modular' of
all generators.

Disadvantages

We do not understand the mathematics underlying the operation of the
JHG. It cannot easily be modified to a different sequence generator be-
cause the characteristic polynomial is a function of the type of stages
employed. Not all of the characteristic polynomials are associated with
a JHG. The minimum number of adders required is always the maximum
number of adders that can be used.

8.2 Mathematical Relationships for the Different Generators (Summary)

A summary of the relationships developed for the different types of generators

is given below.

]

1. The A Matrix: A =Ja

i,j’nxn
. = C,
SSRG al’] i
= 2 i< (34)
3 i-1 1 <i<n
a, . =0 otherwise

where ¢, are the feedback taps, ¢, =% = 1.

MSRG a, = 1

)

a, . . =1 2<i<n (66)
i,i-1 >t
a, . =0 otherwise
i,]
where ¢, are the feedback taps, Co=Cy = 1.
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N
SCRG al,l = c1 + 1 (mod-2)
a, . = 2 <
Li T sisn
)] 2<j<n (113)
a, . = 2 j
iri-1 sisn
a, i = 0 otherwise J
s]

where c; are the feedback taps, L =¢*= 1
MCRG a].j=1 1<j<n-1 )
, >
a. . 1 i -
j+1, ] 1<j<n-1
%0 = Si-1 lsig<n-d ? (188)
an,n =c g+ 1 (mod-2)
.. =0 otherwise 4
L]
where c; are the feedback taps, Co = ¢, = 1.
JHG a, .. .4 =1 1<i<n-1 W
i,i+1 =" =
a, ;= ¢
L 1 5 (230)
a, , 4 =1 2<i<n
i,i-1 - =
a, . =0 otherwise
L] J
where ¢, = 1 if the i-th stage is a complement stage,
c; = 0 otherwise.
The Characteristic Polynomial: the coefficients, b, , of the characteristic
polynomial are given in terms of the feedback taps, Cpe -
SSRG b = ¢ (38)
MSRG b = ¢, (69)
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SCRG

MCRG

JHG

The Feedback Equation: the feedback taps, ¢

b = 2 () 5 < (mod-2)
i=0

B =Ry C (mod~-2)
n

b, = g (d); ¢ (mod-2)
i=k

B=Ry:C (mod-2)

no generalized equation; the characteristic poly~
nomial may be determined by evaluating the de-

terminant
f(¢) = A+ E1] (mod-2)
from the recursion relation

£8) = (e, + O _(E)+1 ,(6)  (mod-2)

or by the method described in Section 7. 3.

k’

coefficients, bk’ of the characteristic polynomial

SSRG

MSRG

SCRG

MCRG

JHG

ck - bn—k
ck = bk
n
¢ = .Z (d )i by  (mod-2)
i=n-k
C = R3'1 - B (mod-2)
n
¢ = _Z (d); b; (mod-2)
i=k
C = R2 - B (mod-2)

neither an equation nor a practical method has
yet been determined for finding the feedback taps
of the JHG associated with a particular charac-

teristic polynomial.

116

are determined from the

(145)

(146)

(193)

(194)

(6)
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See Section 8. 3 for a table of all equivalent maximal generators of length

2 <n< 12

Initial Loading: the initial contents of the generator at time j,
{ul(j), uz(j), . ,un(j)}, necessary to obtain a desired n-tuple of consecutive
bits {un(j), un(j+1), ceey un(j+n-1)} as the starting output of the n-th stage

can be determined as follows:

SSRG ui(j) = un(j+n-i) (43)
ul) = 1+ - V() (mod-2) (45)
n-i
MSRG ui(j) = kZ::O Cik un(j+k) (mod-2) (78)
uG) = Fyy V0) (mod-2) (80)
n-i
SCRG u(i) = kgo () g * U, (+k) (mod-2) (165)
UG) = Ry - V) (mod-2) (166)
n-i n
MCRG ui(j) = Lol (dm)k_.1 Cp un(j+m) (mod-2) (199)
U(j) = Fir R, - Vn(j) (mod-2) (200)
JHG (desired output at first stage)
u() = P, - Vl(j) (mod-2) (247)
where P1 defined by Eq. 245 is
B -1
T
E,(0)
T
E, (1)
P, =
T
_El(n-l)J
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Interstage Relationships: depending upon the type of generator used and
upon whether it is maximal, two different stages, i and k, may produce
(1) the same sequence, Xi(j) = Xk(j); (2) the same sequence but shifted
in time, Xi(j) = Xk(j+Ji,k); (3) entirely different sequences. Regardless
of the relationship, every sequence produced by a generator will obey the
sequence law of the generator. A summary of these relationships for the

generators discussed in this report is given below.

SSRG: For every SSRG,

X.3() = X, 1 (1+k)

MSRG: (1) The maximal MSRG,
If two adjacent stages, i and i+1, are not

separated by an interstage adder, then

X.(4) =X

i i+1(j+1)

If the two stages are separated by an interstage

adder, then

X,G) = X, ,(G+d

)

i,i+1
The shift J, .
i,i+1

(i+1)-th stage can be determined from the BA

between the i-th stage and the

matrix for the generator using the procedure

described in Section 4. 5. 1.

(2) The nonmaximal MSRG,
If two adjacent stages, iand i+1, are not
separated by an interstage adder, then as in the

maximal case

Xl(]) = X1+1(]+1)
If the two stages are separated by an interstage

adder, then they may produce the same sequences
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SCRG:

MCRG:

(3)

(1)

shifted in time or they may produce different
sequences depending on the partial shift-and-add
property of the nonmaximal sequence.

For every SCRG,

Vi-l(j) = H - Vi(j) (mod-2) 2<i<n

and if ¢, = 1, then

V() = G- V() (mod-2) 2 <i

IN
=

Maximal SCRG:

X,_0) = X(+K)

where K can be found from the BA matrix as the
solution to the equation AK =A+1 (mod-2)

Nonmaximal SCRG with irreducible characteristic
polynomial, if the shift-and-add property holds
for a shift of 1, then every stage produces the
same sequence shifted in time; otherwise, if there
are m different sequences that obey the charac-
teristic sequence law of the generator, then every
set of k consecutive stagés of the SCRG (k < m)

will produce k different sequences.

Nonmaximal SCRG with factorable characteristic
n
polynomial, if c, = 1 and 12 ¢ = 1, then the

sequences produced by every stage of the' SCRG

will obey the same sequence law (Theorem 8).

Maximal MCRG,
If’ two adjacent stages are not separated by an

interstage adder,

XI(J) = Xi+1(j+K)
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where K can be determined from the BA matrix
as the solution to the equation

AK = A+1 (mod-2)

If two adjacent stages are separated by an inter-

stage adder, then

X4 = Xi+1(3+Ji, ir1)
and J i g1 can be determined by the method
b

discussed in Section 6. 5. 1.

Nonmaximal MCRG with irreducible characteristic
polynomial, for two stages, iand i+1, not separated
by an interstage adder, if the shift-and-add property

holds for a shift of 1 then

X0 = X4

(j+K) (224)
where K is the solution to the equation

AR - A (mod-2)

otherwise, the two sequences will be different.

Maximal MCRG with factorable characteristic
polynomial, the sequence produced by each
stage of the MCRG obeys the same sequence
law as the sequence produced by the last stage

(Theorem 11).

See Section 8. 4 for a table of interstage shifts for all maximal generators,

except the JHG, of length 2 < n < 12.

Output Adder Circuit: the adder taps, o, which must be closed to obtain a
specific n-tuple [x(j), x(j+1),...,x(j+n-1)], as the initial output of the adder
when the generator is initially loaded with U(j) = El(O) can be determined

from the following equations.
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SSRG: o, = ), c., x(j+k-1) (mod-2) (62)
i k=1 i~k
o = X(j) - F, (mod-2) (61)
MSRG: a; = x(j+i-1) (108)
a = X(j) (109)
i i-m
SCRG: o = m2=1 kz=:0 (d 1ok G| XGrm=1)  (mod-2) (180)
o = X() - Ry © Fy (mod-2) (179)
i-1
MCRG: ¢ = Z: (d )i q X(+m) (mod-2) (226)
o = X() R, (mod-2) (225)
JHG: @ = X()) [EI(O),El(l),...,El(n-l)]_l (mod-2) (259)
= X(j) PlT (mod-2)

8.3 Equivalent Maximal Generators

Table I shows all the maximal characteristic polynomials of degree 2 < n < 12
and their associated SSRG, MSRG, SCRG, MCRG, and JHG's. The polynomials and feed-
back equations are given in octal form to conserve space. An example is given below to

illustrate the use of the table.

Example

Consider the (7,5,4,3,0) maximal characteristic polynomial. To find the octal
representation of this polynomial, write the coefficients in descending order as a sequence

of ones and zeros, i.e.,
exponent — 76543210

polynomial - 10111001

Group the binary representation by threes, adding zeros on the left if necessary. The above

polynomial then becomes
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010, 111, 001

This is a binary number which can be converted to an octal number using the following con-

versions:

Binary = Octal
000 = 0
001 = 1
010 = 2
011 = 3
100 = 4
101 = 5
110 = 6
111 = 7
Under this transformation

010~ 2

111 -1

001 -1

and the octal representation of the polynomial is 271.
Looking in Table ITunder N = 7 (for a 7-stage register), the characteristic
polynomial, 271, is found in the first column labeled POLY. Reading across the row, the

octal representations of the feedback equations associated with this polynomial are given.

POLY SSRG MSRG SCRG MCRG JHG

271 235 271 313 323 211 310

The feedback equations for the SSRG, MSRG, SCRG, and MCRG are found by

expanding the octal numbers. That is,

For the SSRG,
feedback taps - 76, 543, 210

235 = 010, 011, 101 ~ [7,43,2,0]
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For the MSRG,

feedback taps - 76, 543, 210

271

I}

010, 111, 001 ~ [7,54,3,0],¢

For the SCRQG,

feedback taps - 76, 543, 210

313

011, 001, 011 ~ [7,6,3,1,0] 4

For the MCRG,

feedback taps -~ 76, 543, 210

323

]

011, 010, 011 ~ [7,6,4,1,0];,-

To find the feedback equations for the JHG, remember that there is no zero
term in the feedback equation. The conversion from the octal representation proceeds as
follows: from the table, the two JHG equations which are associated with the 271 charac-
teristic polynomial are represented by the octal numbers 211 and 310. Begin numbering the

feedback taps starting on the far right with 1 instead of 0 and neglect the leading 1 on the

left. 10 The transformation of octal number 211 then becomes

feedback taps - 7, 654, 321

> b

211 = 0, 001, 001 ~[734,1] 1

01
— neglect

and
feedback taps — 7, 654, 321
310 =011 001, 000 - [7;7,4]JH
1 neglect
10

The leading 1 in the octal representation of the feedback law for the JHG permits defining
the length n of the generator and also makes each octal feedback equation unique. This
leading 1 represents the 'n'"'; in the feedback equation of the JHG.
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It should be noticed that the two equivalent JHG's, the [T7;4, 1]J and the [7;7, 4]J e

H Har

simply reverses of each other as explained in Section 7. 3.

The reverse polynomial of the POLY entry in Table I is the same as the SSRG
octal feedback equation if it is considered as a characteristic polynomial. Note that the
MSRG feedback law is identical to the characteristic polynomial, however, it has been in-
cluded in Table I for completeness.

The maximal JHG entries in Table I were determined by considering every
possible 2" teedback equations and finding the corresponding characteristic polynomial
using Eqs. 233, 234, and 237. A list of all maximal characteristic polynomials was com-~
piled and a search procedure was used to select those feedback equations which correspond
to maximal characteristic polynomials. Note that every maximal characteristic polynomial
has two corresponding JHG's and the tendency is to conclude that every maximal polynomial

has a JHG; however, this statement has not been proved.

8.4 Interstage Shift for Maximal Generators

Table II gives the time shifts between the sequences produced by adjacent stages
for all maximal MSRG, SCRG, and MCRG of length 2 < n < 12. For an SSRG the shift is
always 1 between stages and is not shown in the table. The following example illustrates

the use of Table II.

Examp_le

Consider the (5, 3,2,1,0) maximal characteristic polynomial. The octal repre-
sentation of this polynomial is 57. From Table II under N = 5, one finds

POLY SCRG MSRG MCRG

57 12 1,20,17,23 12,11,26,1
For the SCRG the shift between adjacent stages is always the same and from

Table II this shift is found to be K = 12. Thus
X() = X, ,(+12) 1< i<n-1

The feedback law for the MSRG (from Table 1) is [5,3,2,1,0] MS and there are
interstage adders between Stages 1 and 2, 2 and 3, and 3 and 4. The first entry under

'"MSRG'" in Table I is 1. This "1" indicates that there is a shift of 1 between stages that
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are not separated by an interstage adder. The second number is 20, this indicates that

there is a jump of 20 across the first interstage adder which is between Stages 1 and 2.

The third number, 17, indicates a jump of 17 across the second interstage adder which is

between Stages 2 and 3, the fourth number, 23, indicates a jump of 23 across the third

interstage adder which is between Stages 3 and 4. Thus for the [5,3,2,1,0] Ms MSRG
X,3) = Xy(i+20)
Xa(j) = X,(1+23)

(Note: the first entry under MSRG is always 1 even though every stage of the MSRG is

separated by an adder. For example for the [2,1, O]M MSRG, the leading entry should

S

be ignored. )

For the MCRG the feedback law (from Table I) is [5,4,3,1,0 and there are

Tme
interstage adders between Stages 1 and 2, 3 and 4, and 4 and 5. The first entry under
MCRG is 12, indicating a jump of 12 between stages not separated by an interstage adder.
The next three numbers, 11, 26, and 1, indicate jumps of 11, 26, and 1 across the first,
second and third interstage adders which in this case occur between Stages 1 and 2, 3 and 4,

and 4 and 5, respectively. Thus for the {5,4,3,1, O]M MCRG

C

X () = Xy(i+11)

X,00) = X, (+1)

(Note: the first entry under MCRG always indicates the jumps between stages not separated
by an adder even though every stage in the generator is separated by an adder, as with the
(4,3,2,1,0] yc MCRG. In this case the leading entry should be ignored. )

For the MCRG the shift between stages not separated by an adder is the same

as the shift between stages of the SCRG having the same characteristic polynomial. This is
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analogous to the shift of 1 between stages not separated by an adder in the MSRG and the

shift of 1 between stages in the SSRG.
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APPENDIX A

The following theorems which deal with the general properties of linear binary

sequence generators, were presented without proof in Section 2.

Theorem 2:

Every stage of a maximal sequence generator produces the same
sequence, but the sequence (except for the null sequence) from any
stage will be shifted in time from the sequence produced by any

other stage.

Proof

Since, by definition, a maximal sequence from an n-stage generator contains
every nonzero, n-tuple of binary digits, and since any n-tuple of digits from a sequence and
the characteristic sequence law completely determine the sequence, there is one and only
one nonzero sequence which obeys the sequence law of a maximal generator. By Eq. 14 in
the text, the sequences produced by every stage of a generator obey the same sequence law.
Therefore, every stage of a maximal generator must be producing the same sequence (or the
all-zero sequence).

Finally, suppose two different stages, i and k, are producing the same nonzero

sequences with no time shift. There occur at most 2" - 2 different content vectors and hence
the period is at most 2"- 2. But this contradicts our assumption that we were producing

maximal sequences.
Theorem 4:

Let the characteristic polynomial f(£) have the form
n .
k -k
f(¢) = & ), by & (mod-2)
e

where



then:

a) The sequence obtained from any stage of the generator may begin
with a transient of k or fewer bits (not part of the periodic sequence)
after which the sequence becomes periodic and obeys the sequence

law of an n-k stage generator with characteristic polynomial

, & i-k
£'() = ), b ¢ (mod-2)
i=k

(Note: the sequence may start out with up to k transient bits and then

produce the null sequence. )

b) There is at least one nonzero content vector, U', so that if the gener-
ator is initially loaded with U', there will be one transient content

vector before every stage produces the null sequence.

c) If the generator is capable of producing any nonzero periodic sequence
(k < n), then there is at least one nonzero content vector, U'", so that
if the generator is initially loaded with U" there will be exactly one
transient content vector before the generator output becomes periodic

and at least one stage produces a nonzero sequence.

Proof
a) Let A be the "A'" matrix for a generator whose characteristic polynomial is
k n-k n-k-1
f(€) = & (bn 4 + bn—l ¢ oo+ bk+1 &+ bk) (mod-2) (A-1)
where
bk = bn =1

Let U(j+m), m > 0, be the content vector of this génerator which is initially loaded with U(j).

From Eq. 3

A" U(G) = U(j+r) (mod-2)
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and by Eqs. 11 and A-1

ta) = A+p A" an aAip AR 20 (moa-2)

and for m > 0

f(A) U(j+m) = U(j+m+n) + b U(j+m+n-1) + ... + b U(j+m+k+1)

n-1 k+1

+ bk U(j+m+k) = 0 (mod-2)

or for m > 0

U(j+m+n) = bn-l UGj+m+n-1) + ... + D

1 U(j+m+k+1) + b, U(j+m+k) (mod-2)

k

from which follows

ui(j+m+n) = bn—l ui(j+m+n-1) +...4+D

el ui(j+m+k+1) +b u.l(j+m+k) (mod-2)

k
(A-2)

Let Vi(j+m) represent an (n-k)-tuple of successive output bits from the i-th stage of the
generator

o c—

ui(j+m+k)

ui(j+m+k+1)
V'i(j+m) = . m >0 (A-3)

ui(j+m+n— 1)
- (n-k)x1

and let C! be the companion matrix corresponding to the polynomial

f

p(e) = b " Fap i b (mod-2) (A-4)

[0 1 o0 0 0

0o o0 1 0o 0
e 1 S (A-5)

o 0 0 10

0o o0 0 0o 1

P Pre1 P Ph-2 Pn-1

~ (n-k) x (n-k)

137



Then by Eq. A-2, (see Section 2.2 of text), with m = 0
Cf' Vi(j) = Vi(j+1) (mod-2) (A-6)
and by successive application of Eq. A-6

(€)™ Vi(i) = ViGrm)  (mod-2)

Expanding C% by minors along the 1st column, remembering that bk = 1, it is seen that

|C%| = b = 1 (mod-2)

hence (C%) 1 exists and
Vi) = (Cp"™ Vi(+m)  (mod-2) (A-7)

From Eq. A-7 it is seen that Vi(j) can be uniquely determined from V{(j+m) for any m > 0;
consequently, there can be no transient bits in V'i(j). But V{(j) is made up of bits

ui(j+k), e ,ui(j+n), so that the only possible transient bits are the k bits ui(j), ui(j+1), cee
ui(j+k-1). Note from Eq. A-2 that after the first n bits have been produced, the remaining

portions of the sequence obey the characteristic sequence law,

n-k
a(+p) = ) b, uw(+p-i)  (mod-2) p>n
i=1

which is the sequence law for an n-k stage generator whose characteristic polynomial is

, _ n-k n-k-1 _
f(&)-bng +bn_1£ +...+bk+1£+bk (mod-2)

b) I :fk is a factor of f(£), then the determinant of the A matrix for the generator

with characteristic polynomial £(£) is (Ref. 3)

L
1l
(=2
1

0 (mod-2)
and there is at least one vector, U', such that
AU' =0 (mod-2)
(U' can be any nonzero vector in the kernel of the linear transformation represented by the
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matrix A; Ref. 3.) If the generator is initially loaded with U(j) = U', thenfor r > 1

Ty = AN acu o= A" g

U(j+r) = A 0 (mod-2)

and every stage of the generator is seen to produce the null sequence.

¢) Assume the generator is capable of producing a nonzero periodic sequence after
all transient bits have passed. Let U(j+s) be one of the nonzero periodic content vectors.
Let U" = U(j+8) + U' where U' is a nonzero vector defined as in Part b) of this theorem.

Then

AU" = AU(j+s) + AU' = AU(j+s) = U(j+s+1) (mod-2)

which is the content vector which normally follows U(j+s) in periodic sequence. Since
U(j+s+1) is preceded by U(j+s) in the periodic sequence, and U" # U(j+s), then U" is not a

part of the periodic sequence of content vectors and is therefore by definition a transient.
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APPENDIX B

The following theorems and derivations were presented without proof or full

justification in Section 5.

I* and Ri Matrices

Define I* as

I*
where

N
Y,k 5j,n+1-k

= Irotated 90° ~

[1*,
]’k]nxn

= 1 when j =

0 otherwise

n+1-k

They deal with the simple complement-register generators.

Any matrix Q such that Q® =1 is called involutory; an involutory matrix is its own inverse.

It will now be shown that I* is involutory:

Let

where
9,k
Gj ,+1-m

= 0, = 1 when

6m,n+1—k

(mod-2)

=k

= 0 otherwise

Thus

() = 1

(mod-2)
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and

where

SO

Define R, as

where

That is, R1 has the form

(dg),

(d)y

1

l)n—2

l)n—l

Z)n—Z

)T

- I*
= [pk’j]nxn
= i*,
ik
- 6j,n+1-—k
- 6k,n+1-j
= i*
k,j
= I¥
1
= [r~. .
L nxn
= Gy for ]
= 0 for j
0 0
0 0
0 0
(d)-3)h-3 0
(dn—3)n—2 (dn—2)n-2

(d

0

0

n-3)n- 1 (dn-2)n- 1 (dn—l)n— 1
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It will now be shown that Rz1 = I, and hence, R1 = Rl'
Let
R, - R, = [c, . mod-2
1 1 L,i"nxn ( )
then
n
1 1
c = - r mod-2
i,j kgl r i,k k, ( )
Now
vl 0 for i<k
i,k
and
I'1 =0 for k<j
k, ]
Therefore, for 1 < j
i j-1 n
1 1
= ) r, 0+ ) 0-0+ ) 0-r
LI oy bLE k=irl k] k
=0
For i > j
i-1 i n
1 1 1
c. . = r.., -0+ r. ., r. .+ 0r
i,] kz/l i,k kzzlj i,k k,j k:zi+1

1
kZ:j (A picg Gy (w0d-2)

When i = j this becomes

i1 = @igig Wig)igy

For i > j, let i =j+ m where m = 1,2,...,n-j, then
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j+m
kZ=j O Djme1 Yopheg  (mod-2)

c, . = cC, . =
1’] .]+m’-]
and by reindexing

C. . =
J+m, ]

g}

k=0 (dj—1+k)j-1+m (dj—l)j-1+k (mod-2)

From Ref. 4, p. 61, for positive integers n, k

k
vV ,n n-
Vgo 1" () () =0

Considering Eq. B-10 in mod-2 arithmetic the term (—l)V becomes simply 1 and

k
ZO (5) (4oo) = 0 (mod-2)
V=

Reversing the order of summation in Eq. B-11

& n n-k+v
ZO (o) (") = 0 (mod-2)
v=

Using the relationship (?) = (n?i) Eq. B-12 becomes

n n~-k+v, _ -
=0 (n-k+V) ( n-k ) =0 (mod-2)

Let j = n-k+1 sothat k = n-j+1 and j < n, Eq. B-13 becomes
n-j+1

L) ) =0 (mod-2)
V=

and letting m = n-j+1 sothat n = j-1+m and m > 1

rf (j-1+m) (j—1+u)

2 G Ui =0  (mod-2)

Since mod-2 arithmetic is being used Eq. B-14 can be written for m > 1

78

(dj—1+v)j-1+m (dj—l)j—1+v =0 (mod-2)

v=0
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Comparing Eqs. B-15 and B-9 it is seen that for m > 1

or

c. . =0
J+m,j

Summarizing Eqs. B-7, B-8, and B-16

Hence
and
Define R2 as
Ry
where
2
r

From Eq. B-18 it is seen that R2

—
Ay (@) (dg),
0 Ay (dp)y
0 0 (&),
R, =
o 0 0
o o 0
o 0 o0
L

i,j

1 when i = j

0 otherwise

Rl2 =1 (mod-2)

R - R,

) Rir ) [rzi:j nxn
(di—l)j~1 for 1<

= 0 for i >j

has the form

-
odp-g  (dohg Ay g
L S C N S C Y
(dglpg  (dodg  (dy) 4

(dn-B)n-3 (dn—3)n—2 (dn-S)n- 1

0 (dn—Z)n-Z (dn—Z)n—l

0 0

(dn— 1)n—1
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The inverse of RZ’ R;l becomes

-1, T-1 _ ,-1T . .\T
Ry = ®))7 = ®DT = ®)" = B,
Define R3 as
3 3
R, = |r. .
3 [ L1 nxn
where
3 . | )
r 1] ( i—l)n—j for i < n+l-j
= 0 for i > n+l-j )
@oh-1 Cohp (dghyg (dg)y (dp)y (dglg
Ay @yg (dp g (dy)y (dg)y 0
(do)pq (dg)pg  (dg) g (dy)g O 0
R3 =
(dn—3)n-1 (dn-3)n-2 (dn—3)n—3 0 0 0
(d o)y (@ ) o 0 e 00 0
_(dn-l)n-l 0 0 0 0 0 i
nxn
Consider the product R2 - I*
Ry, - I* = [q, .] - [ i* ] (mod-2)
2 K,i"nxn K, nxn K, hxn
& 9
.= r ix od-2
qk,] mzél k,m m, (m )
n
Z (dk-l)m—l " Um, n+1-j (mod-2)
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SO

R3 = R2 . I¥ (mod-2) (B-23)
-1 1 1 -1
R = (R2 >*¥) © = (I¥) ~ - R, " = Ik R, (mod-2)
- [i*, r2, - Ip: -] (mod-2) (B-24)
1E nxn 5, X nxn 5K nxn
where
< 2
. = i*, T d-2
Pk mZ=1 jpm T my (mod?)
k
= mZ=1 6j,n+1—m (dm-l)k 1 (mod-2)
= (dn—j)k-l for k > n+l-j
= 0 for k < n+l1-j (B-25)
From Eq. B-25 Rgl has the form
B ]
0 0 0 ... 0 0 (d o1
0 0 0o ... 0 (d o) g (d o) 4
0 0 0 T (dn-3)n-3 (dn-S)n-Z (dn-B)n-l
R_l i . . . . . . (B-26)
3 . . . . . .
0 0 (dy) (y)pg (g () g
0 (g Wy oo Mg @y (g
o)y (dg)y (dglp -+ (dglyg (dplyg (Aol y |
- nxn
Comparing Eqs. B-22 and B-26 it is seen that
-1 0
Rs™ = Rg rotated 180 (B-27)
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Define R4 as

T 4
Ry =Ry =1[r i,j]
where
P for | ~
r i = j-1)n-i or j < nt+l-i
= 0 for j > n+l-i
_
(dO)n-l (dl)n-l (d2)n-1 (dn—S)n-l (dn-Z)n-l (dn-l)n-l
(dghp-2 (dp)g (dg) s (d_g)p-a (dg)iog
(php-g @y (dg)yg or (dg) g O
R, =
(dy)y  (dp)y  (dy)y 0 0
(@),  (a), 0 0 0
| (@), 0 0 0 0

The inverse of R4, R;I becomes

-1 T.-1 -1.T T _
R4 = (R3) - (R3 ) - [p],k] - [S],k]
where
i,k = Pk,j
Using Eq. B-25
Sj,k = (dn—k)j—l for j > n+l-k

0

0

Y (B-28)

(B~29)

nxn

(B-30)

(B-31)



and R;l has the form

r ]
0 0 0 0 0 (dy)g
0 0 0 0 (d);  (dg)y
0 0 0 (dz)2 (dl)2 (do)2
-1 . . . . . .
R,~ = . . . . . . (B-32)
0
0 (d-ghn-3 (dy)pg (p)pg (dp)y g
0 (dyghp-g Wyghg oo (dy) o () o (o) p
idn-l)n-l (dn—Z)n-l (dn-S)n-l (dZ)n—l (dl)n—l (dO)n-}_
nxn
Comparing Eqs. B-29 and B-32 it is seen that
-1 0
R,” = Ry rotated 180 (B-33)
From Eqs. B-23 and B-18
R, =R, I* = RL + *  (mod-2) (B-34)
3 2 1
From Eq. B-28
T
R3 = R4
)
T T.T
R, = (Rg) = Ry (B-35)
Combining Eqs. B-34 and B-35
T T
R3 = R1 I* = R, I*x = R, (mod-2) (B-36)
From Egs. B-36 and B-4
T,T T T T T.T
R, = (R4) = (R1 )" = (T%) (Rl) = I* Rl (mod-2)
- ®. 1) = T RY - =+ RS (mod-2)
2 2 2
T
= R3
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or

(mod-2) (B-37)

From Egs. B-2 and B-37

- Tk . Tk . - T* -
Ry =¥ I** R = IR,  (mod-2)
T
= 'Ry (mod-2) (B-38)
and from Egs. B-18 and B-38
T
Ry = Ry
SO
R, = R} = *RJ = ¥R, (mod-2) (B-39)
1= Ry 4
From Egs. B-39 and B-4
T.T T
Ry = (Ry)" = Ry
- Ry) = BRg) (97 = Ry (mod-2)
- *r)" = R (M = R, I* (mod-2)
or
_ T — b - T £ 3 - -
Ry = Ry = RgI* = R, I*  (mod-2) (B-40)

G and H Matrices

Consider an n-stage SCRG with feedback taps, ¢ and characteristic polynomial

n .
f(¢) = ), b, & . From Eq. 16
i=0 !
C.V.(§j) = Vi(j+1) (mod-2)

where C ¢ is the companion matrix associated with the characteristic polynomial f(¢§). From

Eq. 159, for an SCRG

L) = w) + u+)  (mod-2)
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which leads to the equation

Vi1 = v,G) + V.(+1)  (mod-2)

= (C,+ D V.() (mod-2) (B-41)
If a matrix H is defined as
H = Cf + I (mod-2) (B-42)
then
H = [h, . )
L3 nxn
where
> (B-43)
hl,] =% 51,3-1 (mod-2) for 1<j<n, 1<i<n-1
hn,J = Gn,j + bJ 1 (mod-2) for 1< j<n )

and Eq. B-41 becomes
V. 4G) = HV,(G)  (mod-2) (B-44)

If H is nonsingular then its inverse exists. The determinate of a matrix is
equal to the constant term of the characteristic polynomial of the matrix (see Ref. 3, p. 87).

The characteristic polynomial of H, h({), is found as follows; let

Vo= k41
then by definition
h(¢) = IH + £1] (mod-2)

= ICf +(E+1)1 (mod-2)

= lcf + Y| (mod-2)
n

= Z b, ! (mod-2)
i=0 !
n .

= ) b+ ' (mod-2)
i=0



Applying Eq. 118, this becomes

n i Kk
hE) = L by L (G & (mod2)

Interchanging summations, Eq. B-45 can be written as

n n k
h(¢) = ), [Z (d,); bi]e (mod-2)
From Eq. 150,

Cox = Z (dk)i bi (mod-2)
i=k

and the characteristic polynomial of H becomes

The determinant of H, |H|, is therefore

iHI = c, (mod-2)

and H has in inverse, H-l, if and only if c, = 1,

Whenever ¢, = 1 in the SCRG or equivalently, from Eq. 150

Z bi = 1 (mod-2) define a matrix G as follows

G = ..
[gl:l nxn

where

g9
il

j-1
1+ ), b (mod-2) for <]
k=0

i-1
= ) b, (mod-2) for i > j
k=0

It will now be shown that G, in the above equation, is the inverse of H.

Consider the matrix product

- - g, . = [t. .
L nxn L) nxn L) nxn

e
o}
I

n

1l

t, . h, . mod-2
i,j bl 1,mgm,3 ( )
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For 1 <i<n-1,all]j

L]

when j > 1ithis becomes
-1 -1
t,.={(1+ ) b }+ {1+ b} =0 mod-2
L] < kéo k) ( kéo k) ( )

when j = ithis becomes

iil 1i1
t, ., =1+ b, + b, =1 (mod-~2)
L1 k=0 £ k=0 ¥
and when j < i, it becomes
-1 J'il
t. ., = ) b + ), b =0 (mod-2)
Li =0 ¥ k0 K
sofor 1 <i<n-1,all]j
t.. =1 wheni=]j
1,]
= 0 otherwise
For i =n
n
t .= h (mod-2)
n,] mzl n,m Sm, j
n
= Z [6n,m+bm-1] gm,] = gn,] + Z m—lgm,j (mod-Z)
m:l —-1

when j < n-1 this becomes

i-1 i Jil i jil

t.=Zb+Zb_[1+ b]+ b b (mod-2)
nj ~ L ko 2y m-l k=0 51 maer ™lyso K
D b Twe Dol L
= ), b + b .+ ) b b+ ), b__ b (mod-2)
Koo kT Tmel T o Tmel B kT Sy ™l K
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L]
b, + b, + b "D (mod-2)
K0 X k=0 ¥ o1 o1 k

I

n-1 i-1

]

j-1 n-1
b N b, = by b b (mod-2) (B-48)
k=0 m=0

m=0 k=0

From the definition of the characteristic polynomial, an nxn matrix has bn = 1. In addi-

tion for the SCRG, ) has been assumed 1 which implies

n n-1 n-1
‘Zbi=bn+z bi=1+2b=1 (mod-2)
i=0 =0 i=0
or
n-1
), b, =0  (mod-2)
/ i
i=0
Thus Eq. B-48 is equal to zero.
For i=j=n
n
tn,n = mLI=1 hn,m gm,n (mod-2)
i nil
= ) (b +b_ ) (1 + b> (mod-2)
mol  m,m 1 k=0 k
n
= mZ:1 (6n,m+bm_1) (mod-2)
n
=1+ Z=1 bm—l (mod-2)
n-1
=14+ Z bm (mod-2)
m=0
=1 (mod-2)
Summarizing,
t. . = 1 wheni = j
L]

0 when i #j
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and

H-G = [t ] =1 (mod-2)

Therefore, when ¢, = 1
G =H (B-49)
and from Eqs. B-44 and B-49

v.(G) = GV, ;G)  (mod-2) (B-50)

The characteristic polynomial of G will be found for the sake of completeness, Let A be any

non-singular n x n matrix with characteristic polynomial

n .
f(e) =W -£I1=) b ¢
i=0 !

then it can be shown that the characteristic polynomial of A~ 1 is given by

£ (&) =1a" g1 = (-1)"p, 7! i b &
-1 0 0 n-i

i

In mod-2 arithmetic -1 and +1 are the same, and if A is non-singular, then
b = Al "=1Al =] (mod-2)

SO

n .
t()=) b &' (mod-2)
i=0

and we see that f_l(g ) is the reverse of f(¢). Applying this result to the G and H matrices we

get the characteristic polynomial of G

n .
g£) =1G+&l =) c &' (mod-2) (B-51)
{=0
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Theorem 8:
n
Consider an n-stage SCRG for which ¢, = 1 and Z ¢, = 1, with
i=0
a characteristic polynomial, f(£), which is factorable. I any stage
of the SCRG is producing a sequence corresponding to a polynomial
of degree less than n, f'(£), where f(£) = £''(¢) £'(£), then the se-

quences from every stage of the generator correspond to the same

polynomial £'(£).

Proof
Let Xi(j) denote the sequence produced by the i-th stage of the SCRG. Assume
that Xi(j) obeys the sequence law associated with one of the factors, f'(¢), of the charac-

teristic polynomial £(¢{). From Eq. 173
Xi-l(j) = Xl(]) + Xi(j+1) (mod-2)

and from Theorem 1, since Xi(j) and Xi(j+1) obey the same sequence law (they are shifted
versions of the same sequence), their sum, Xi-l(j)’ obeys the same sequence law.

Similarly, Xm(j), m < i, obeys the sequence law associated with £'(£).

Since c, = 1, the G matrix defined by Eq. 172 exists and Eq. 171 holds, that

is

Vi) = GV (mod-2)

i+l
or equivalently
n
ui+1(]) = g ui(]+k-1) (mod-2)
k=1 7
which leads to
n\
Xi+1(J) = k;1 gl’kXi(]+k-1) (mod-2) (B-52)

Applying Theorem 1 to Eq. B~52, Xi+1(j) obeys the same sequence law that Xi(j) obeys.
Similarly Xm(j) for i < m < n obeys the sequence law associated with the factor £'(£).
Theorem § is obtained by combining these two results.

Before considering Theorem 9, the following lemma will be established.
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Lemma

If an n-stage SCRG contains "0's" in p consecutive stages (say
Stages m through m+p-1) at any time j, then the output sequence

from Stage m+p-1 starting at time j will contain p consecutive "0's. "

Proof
From Eq. 111 for an SCRG
ui+1(]+1) = ui+1(3) + ui(J) (mod-2) for i>1
Given that
um+k(j) =0 for 0<k<p-1 (B-53)
then
um+1+k(j+1) - um+k+1(j) * um+k(j) (mod-2)
=0 for 0<k <p-2 (B-54)
Suppose that for some value of ¢
i = - - - - 5
um+q+k(3+q) 0 for 0<k<p-q-1, q<p-2 (B-55)

thenfor 0 <k < p-q-2, q+1 < p-1

(]+q+1) = um+q+k(]+(n + um+q+k+1(]+q) (mod-Z)

0+0

um+q+1+k

=0 (B-56)

From inspection of Eqs. B-53 and B-54, Eq. B-55 is true for ¢ = 0, and q = 1. Also by
Eq. B-56, if Eq. B-55 is true for any value of q such that ¢ < p-2 then it is true for the

next larger value of q, thus by induction

Wniqeelt) = 0 for 0 <k<p-q-1, g<p-l (B-57)

In particular, when k = p-q-1

(4+a) = 0 for 0<q<p-1 (B-58)



Theorem 9:
n
Consider an n-stage SCRG with ¢, = 1 and Z ¢ = 1, with a charac-
i=0
teristic polynomial, £(£), which is factorable, f(¢) = £'(¢),...,f"(¢).
If any p consecutive stages of the generator (p < n) contain zeros at
any time j, then none of the sequences being produced by the generator

can be produced by a generator of p or fewer stages, unless every

stage is producing all zeros.

Proof

From the above lemma, if p consecutive stages of the generator contain zeros
at some time j, then the output sequence from one of the stages will contain p consecutive
"0's. " It is impossible to generate a linear sequence, using a p-stage generator, that con-
tains p zeros except the all-zero sequence. If the i-th stage were producing all zeros then

every stage would be producing all zeros because, by repeated application of Eqs. 167 and 171,

It

V() = B V() = 0 (mod-2)

and

V.. (j) = G V.(j) =0 (mod-2)

i+k i
If this is not true, then some stage of the SCRG is producing a nontrivial sequence which
cannot be generated by a generator of p stages or less. Theorem 9 states that if one stage
of an SCRG is producing a sequence that can be produced by an m-stage generator, then

every stage of the generator is producing a sequence which can be produced by the same
m-stage generator. Therefore, m must be greater than p.
Theorem 10:
Consider an n-stage SSRG and an n-stage SCRG which have the same
feedback (not characteristic) equation. Let Yi(j) represent the content
vector of the SSRG at time j, and let U(j) represent the content vector

of the SCRG at time j. If U(K) = Y(K) at some time K, then

[U(K), U(K+1),...,U(Km-1)] = [Y(K), Y(K+1),...,Y(K+n-1)] - Ry (mod-2)

i

and

]

[U(K), U(K+1),...,U(K+n-1)] + R, (mod-2)

[Y(K), Y(K+1),. .., Y(K+n-1)] 5
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Proof

Let As be the "A" matrix for the SSRG and let AC be the A matrix for the SCRG.

If both generators have the same feedback equation, then

A =A +1 (mod-2)
c s

Applying Eq. 118

Aé{ = (AS+I)k (mod-2) for k >0
k i
go (d) A, (mod-2)
If at some time K
U(K) = Y(K)
then
UK +k) = Af U(K) (mod-2)
= Aé{ Y(K) (mod-2)
k i
= igo (d) A  Y(K)  (mod-2)

k
- 'Zo (dy), Y(K +1) (mod-2)
1=

or

k
up(K+k) = .Z yp(K+i) (), (mod-2) for k >0

i=0
In matrix form Eq. B-59 becomes for 0 < k < n-1
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y;(K)

¥5(K)

¥,(K)

yn—l(K) yn_l(K+1) ..

(K)o e) a,(Kn-1) |
uZ(K) uz(K+1) uZ(K+n-1)
un_l(K) un_l(K+1) un_l(K+n—1)
L_u (K) un(K+1) un(K+n-1)—
— —
y,(K+1) yKen-1) || () (dg)y - (dg)
yn_l(K+n—1) 0 0o ... (dn-z)n-z

yn(K+1) yn(K+n—1) 0 0o ... 0

The matrix on the far right in Eq. B-60 is recognized as the R2

[U(K), UK+1),. ..

. -1
and since R2 = R2

[Y(K), Y(K+1),..

, U(K+n-1)]

., Y(K+n-1)]

1l

[Y(K), Y(K+1),..., Y(K+n-1)] - R,

[U(K), U(K+1),...,U(K+n=1)] - R,
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(dn-2)n-1

(dn-l)n-l

(mod-2)

(B-60)

matrix, thus

(mod-2)

(mod-2)



APPENDIX C

These theorems were presented without proof in Section 6. They deal with the

modular-complement-register generator.

Theorem 11:

Given an n-stage MCRG with a factorable characteristic polynomial

(&) = '(§), £"(¢) ... £"'(¢)  (mod-2)

The sequences produced by each stage of the MCRG follow the same
sequence law as is followed by the sequence produced by the last stage.

(Note: some stages may produce the all-zero sequence. )

Proof
Let Xi(j) be the sequence produced by the i-th stage with time reference j. For
an MCRG
w40 = wG) +u(+1) + ¢, g u (i) (mod-2)
or

>
—
—
=
=
1

= Xi(j) + Xi(j+1) + c,

1 X 0)  (mod-2)

Let i = n, then

»
—
.
=

i

= (1+cn_1) Xn(j) + Xn(j+1) (mod-2)

By Theorem 1, Xn— 1(j) obeys the same sequence law that Xn(j) obeys. Suppose that for some

value of k, 2 < k < n, that Xk(j) obeys the same sequence law as Xn(j) obeys, then
%, 1) = X () + X G+ + ¢ X,() (mod-2)

and by Theorem 1, Xk-l(j) follows the same sequence law that Xn(j) follows.
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We have seen that X (j) follows the sequence law that Xn(j) follows when kK = n-1

k
and it is obviously true for k = n. Also, if Xk(j) obeys the law of Xn(j), then Xk- 1(j) obeys
the law of Xn(j). Therefore, by induction, for all k such that 1 < k < n, Xk(j) follows the
same sequence law that X“(j) follows.

Theorem 12:

Given an n-stage MCRG; if ul(j) =1 and ui(j) =0for 2<i<n

at some time j, then

ui(j+k) = (di-l)k for 1<i<k+l, 0<k <n-1
and (c-1)
u.(j+k) = 0 for k+2<i<n, 0<k<n-2

1

Proof

From Eq. 187 for an MCRG

uy(p+1) = uy(p) + cqu (p) (mod-2)
u(p+l) = u,_,(p) + up) + ¢, ju (p)  (mod-2)
By hypothesis
u@) = 1 = (dy), for i=1

Therefore

Similarly

uy(3+1) = u () + uyj) + e u () (mod-2)

n
—

|
—
[o}
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and

ui(j+1) = u._l(j) + ui(j) + ¢ un(j) (mod-2)
=0 for 3<i<n
Thus for k = 0, 1
ui(j+k) = (di-l)k for 1< i<k+1

=0 for k+2<i<n

Assume that Eq. C-1 is true for some aribtrary value of k such that

1 <k < n-2, then

ul(j+k+1) = ul(j+k) + ¢ un(j+k) (mod-2)
= (do)k + 0
= (dohei1

ui(j+k+1) = ui-l(j+k) + ui(j+k) + ey un(j+k) (mod-2)
= (dl‘z)k + (dl“'l)k (mod—2)
= (di-l)k+1 for 2<i<k+1

uk+2(j+k+l) = uk+1(j+k) + uk+2(j+k) + eyt un(j+k) (mod-2)

= (e
= G, st

ui(j+k+1) = ui-l(j+k) + ui(j+k) + ¢ un(j+k) (mod-2)

=0 for k+3<i<n
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S0

for 1<1i< (k+1)+1

ui(j+k+1) (di— 1)k+1

0 for (k+1)+2< i<n if k+1<n-2

If Eq. C-1 is true for any particular value of k such that 1 < k < n- 2, then it is true for
the next larger value of k. Equation C-2 shows that Eq. C-1 is true for k = 0, 1, thus by

induction Eq. C-1 is true for all k suchthat 0 < k < n-1.
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APPENDIX D

This theorem, dealing with the Jacobian-hybrid generator, was presented with-

out proof in Section 7.

Theorem 13:

If an n-stage JHG is initially loaded with U(j) = E_(0), that is

1

o
[
—
[N
~
It
—t

then
u (+k-1) = 1 for 1<k <n
and
ui(j+k-1) =0 for 2<kt1<i<nm
Proof
From Eq. 229

(j+k-1) (mod-2) 2 < i < n-1

ui(j+k) = u_ 1(j+k-1) t e ui(j+k—1) UL

un(j+k) =, 1(j+k— 1) + c, un(j+k- 1)  (mod-2)

Assume for some arbitrary k such that 1 <k < n-2 that

1
—

uk(j+k—1)

and

Il
(]

ui(j+k—1)

where k < i < n then
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uk+1(j+k) = uk(j+k—1) + ¢ uk+1(j+k-1) + uk+2(j+k-1) (mod-2)

(D-2)

=1

and
ui(j+k) = ui_l(j+k-1) + e ui(j+k-1) + ui+1(j+k-1) (mod-2)

(D-3)

=0 for k+1<i<n-1

un(j+k) = un_l(j+k- 1) + . un(j+k— 1) (mod-~2)

(D-4)

By hypothesis, Eq. D-1 is true for k = 1. From Egs. D-2, D-3, and D-4, if Eq. D-1 is true
for any arbitrary value of k such that 1 < k < n-2, then Eq. D-1 is valid for the next larger

value of k. Thus by induction

uk(j+k—1) =1

and
ui(j+k—1) =0 for 1<k<n-1 (D-5)

and

k+1 <i<n
From Eq. D-5,

un(j+n-1) =u 1(j+r1—2) +e, un(j+n-2) (mod-2)
=1

Therefore

uk(j+k-1) =1 for 1<k<n

ui(j+k-1)=0 for 1<k<n-1 and k+1<i<n
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