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ABSTRACT

Expressions are obtained for surface currents excited by a plane wave on the
surface of a perfectly conducting parabolic cylinder whose focal length is comparable
to the incident wavelength. In the shadow region, surface currents are expressed by
the residue series which represents creeping waves propagating along the surface.
In the illuminated region, surface currents may be represented by the summation of
a geometrical optic term and a residue series which may be defined as the reflected
creeping waves. In the penumbra region, surface currents may be obtained by the

series expansion of the integral representation about a point on the shadow boundary.
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I
INTRODUCTION

The first theoretical work on the diffraction of plane electromagnetic waves by
a parabolic cylinder was done by P.S. Epstein (1914). His work makes use of a
series of parabolic cylinder functions. When the radius of curvature at the vertex
of the cylinder is large compared to the wavelength of the incident wave many terms
are required for computation.

V. Fock (1946) used an entirely different approach. He sketches the derivation
of an integral for the current density on a large paraboloid of revolution. His re-
sult gives the change in current density on a large and perfect conducting parabolic
cylinder as we go from the illuminated region into the shadow.

In 1954 S.O. Rice by starting with Epstein's series investigated the diffraction
of plane electromagnetic waves by a parabolic cylinder. The series is converted
into an integral and then the path of integration is deformed. He studied the be-
havior of parabolic cylinder functions of complex order in great detail.

V.I. Ivanov (1960, 1963) by following Rice's procedure derives asymptotic
formulae for a field which are uniformly true for regions of the umbra and penum-
bra behind a large parabolic cylinder and are connected with the formulae of geo-
metrical optics in the illuminated region. In the shadow region he interpretates the
results in terms of the "geometric theory of diffraction" [Keller, 1956] .

In the past work, no one has considered the solution for the small parabolic
cylinder which we mean a short focal length comparable to the incident wavelength.
Therefore in this report we derive the asymptotic currents excited by a plane wave
on the surface of a perfect conducting small parabolic cylinder by using the resi-
due series representation. The graphical method is applied to obtaine the location
of the pole and Rice's results are used in all asymptotic expressions. Our results

are sketched graphically in Fig. 1-1.
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II
INTEGRAL REPRESENTATION FOR SURFACE CURRENTS

Let us consider a perfectly conducting parabolic cylinder x2 =4h(h-y) with
the focal length h and the focus at the origin of coordinates. In parabolic coor-
dinates, x=&n and y = % (n2— 3 2), the given parabolic cylinder is a coordinate
surface n = l/ﬁ; > 0. When n =0 the cylinder reduces to the half-plane x =0,
y < 0. Let there be a plane wave U0 = e_ik (xsiny -y cosy) with the time
factor eiwt impinged upon a parabolic cylinder at an angle ¢ as shown in Fig.

2-1. From Rice's (1954) results, surface currents are obtained in the form of a

series
- U (z")
_ ik —1kr v n
JD = v27rr ¢y E l(1tan—) Wn(zo) (2.1)
. 0 U ( "
oo 1 1 d/ Z\
JN = 1;“_71‘: (1tan 'W (Z ) (22)
where

= Nikg z = lf-ﬁ{'no = {-i2kn = {-i%

J D and J N indicate surface currents for Dirichlet and Neumann Problem respec-

tively. The functions Un(z) and Wn(z) are defined by contour integrals of the

form
1
Wn(z) = 53 X exp [f(t)]dt (2.3)
w
1
U, (z) = 33 SU exp [£(t)] dt (2.4)
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where

f(t) = —t2+ 2zt - (n+1) £nt . (2.5)

The pathes of integration for Wn(z) and Un(z) are indicated by W and U respec-
tively in Fig. 2-2. The function 'Wn(z) is defined by

W (2) = -z W (2) + ga-z- W (2) (2.6)

By Watson's transformation, the series can be converted into contour integrals
with n as the complex variable of integration. Thus expressions (2.1) and (2. 2)

are transformed respectively into

— -ikr (itanil/—)n U (z')
J_ = k e sec £ 2 L dn (2.7)
D 2rri 2 2 sintn W (z ) :
C1 n o
and
1 e—ikr " (itan%)n Un(z')
INT 7 T2 %y S sinrn W _(z) 9P (2.8)
4 C1 n o

with the path of integration C. shown in Fig. 2-3.

1
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ITI
SURFACE CURRENTS IN THE SHADOW REGION

3.1 Formulation
It has been shown that all zeros of both function Wn(zo) and 'Wn(zo) are
located in the third quadrant of the n-plane, while the points n = -1, -2, -3, .

are not singular [Rice, 1954]. Therefore the contour C, may be deformed into C

1
contained all zeros, and the asymptote-of the integral is defined by the poles of the

3

integrand, i.e. surface currents may be expressed by the sum of the residues at the

poles
~ o) (1tanil/—) U ( ")
_ ik7  -ikr Y
J = e sec — Z ! (3.1)
D 2r 2 o . )
s=1 smwna—W(Z) _
n “nool |n=n
(1tan-—) U (z )

JN = i»ﬁ?‘ Tsec ¥ 2 (3.2)

=0 sm7rn—- 'W (z ) o

on n=n

S

where n, and nfs are zeros of functions Wn(zo) and 'Wn(zo) respectively.
In order to locate zeros, the saddle-point method of approximate integration is
used to obtain asymptotic expressions for the function Wn(zo)' Two saddle points

in complex t-plane are obtained from (2.5) by setting £f'(t) = 0, i.e.

1 [ ) ']
t0 = 3 zo+ VZO—Zm (3.3)
1 [ W J
1:1 = 3 z - ‘Vzo—Zm (3.4)
where m=n+1
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The path of steepest descent which passes through t0 is that branch of the curve
Im [£(t) - it)] = o and Re [£(t) - t(t)] <o

for which to is the highest point.
The path of steepest descent has been shown by Rice (1954) to have the following
properties:

1) f z, is regarded as fixed and to, t. are functions of m defined by (3. 3)

1
and (3.4) the equation

Im [f(to) - f(tl)] = 0 (3 5)

defines a critical boundary in the complex m-plane. On this boundary the steepest

descent contour passes through two saddle points, to and t. in the complex t-plane.

1
In this case both saddle points will contribute to the asymptotic expression of the

3

function Wn (zo) . In general this critical boundary defines a region in the complex
m-plane within which a function is approximately evaluated from two saddle points
(Fig. 3-1).

2) If m is such that the path of integration W must be deformed along the
steepest descent contour to pass two saddle points, each one will contribute to the

value of W (zo)., Furthermore, if m is such that

Re [f(to) - f(tl)J =0 (3.6)

to and t_ have the same height and the two contributions have a chance of can-

1
celling each other and giving a value of zero for Wn(zo)' Thus (3. 6) defines the
line in the complex m-plane along which zeros of Wn(z'o) are asymptotically dis-

tributed (Fig. 3-1).
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3) The lines in the complex m-plane defined by (3.5) and (3.6) may be

obtained by the following transformation

t
W o= En<—9> = u+iv . (3.7)
1;1

From this transformation we obtain

2
zZ
m = n+tl = —o (3.8)
coshw + 1 )
f(to) - f(tl) = m(sinhw - w)
z(z) (sinhw - w)
= (3.9)

coshw + 1

Since \to\ > ‘tl\ and largto-argtll < 7 wehave u>0 and v < 7

for mapping (Fig. 3-2).
y

4) For the special case z, = ¥-2ikh =4f-ip , (3.9) gives

(coshu +cosv - vsinv) sinhu = (coshucosv+ 1)u (3.10)

(cosv + coshu +usinhu) sinv = (coshucosv+1l)v (3.11)

respectively for

Im[f(to) - f(tl)] =0
and

Re[f(to) - f(tl)] = 0
(Fig. 3-2).

10
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3.2 Zeros of Wy(z,)

The zeros of Wn(zo), regarded as function n, occur when the contribution
from two saddle points cancel each other. From Rice's (1954) results, the asymp-
totic expression of Wn(zo) for the region III (Fig. 3-1) where the path of integra-

tion passes through two saddle points to and t, is

1
wn(zo) = AO—A1 (3.12)
where
f(t)
T (0]
Vtoe
A = (3.13)
2 1
O i 7 (nip?-2m)
f(t,)
fie
A, = (3.14)
Loy T i - 2m)
m m 1:O —
= JR— - — - p— + ~1
ft) = < (1-fn In : {-i ot (3.15)
m m t1 i~
= —(1-4tn—=— - fn = | +4-i .16
ft,) = = n= n 3 41ptl (3.16)
and
3T pem < T
g = argmsg
S3T  arg (ip?-2m) < T
5 < arg(-ip m 5
_31 ™
" < < -
i argto 4
57 37T
-— < < 2l
7z S argt1 7

11
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Therefore zeros of Wn(zo) are located at

AO - A1 =0

i.e.
1
exp[f(to)—f(tl)] = N (3.17)
VO 1

Using the transformation (3. 7) and (3.9), we obtain

. 2 sinhw -w _

-1p m = 2 +1i (]. 4S)] (3.18)
where

s=1,2,3, ....

By separating the real part and the imaginary part of (3.18), we obtain two simul-

taneous equations

2
P [(cos v + cosh u+ u sinh u) sinv - (coshu cos v + 1) v]

2
= - % u ECOSh ucosv+1) + (sinhu sin v)2] (3.19)

pz[(cos v+ coshu - v sin v) sinh u - (cosh u cos v + 1)1{‘

=lv
2

+ (1 - 4s)7€| Ecosh ucos v+ 1)2+ (sinh u sin v)2] . (3.20)

Let (3. 19) be divided by (3. 20), we obtain

(cosv + coshu + usinhu) sinv - (coshucosv+ 1) v - -u
(cosv + coshu - vsinv) sinhu - (coshu cosv + 1)u v-(1-4s)7
(3.21)

12
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This equation is independent of the parameter p. Setting s = 1, we calculate the
first zero as the following by graphical means.

Equation (3. 21) may be approximated by a circle in the w-plane as

2
[u-(r—a)] +[v—%2=r2 (3.22)
where
2
_ )2
2a
a = u|v=7r/2 = 0.575, s=1

0 <u<acx<l

For u <1, (3.20)can be evaluated approximately by
2
—p2 uv sinv = % (v - 37r)[(cosv + 1)2 + (usinv) ] (3.23)

If we plot (3. 22) and (3. 23) on the w-plane, the points of intersection between the
two curves determine the zeros of Wn(zo). A typical plot is given in Fig. 3-3.

Mapping the zeros of Wn(zo) from the auxilliary w-plane with the help of
m = —ip2 / (coshw + 1)

gives the location of zeros on the m-plane. If we consider p as the variable

parameter, the locus of the first zero in the m-plane is expressed approximately
by

1
mp = -E[(p-i— 2.8) + i(p2+p+1.4)] (3.24)

where we limit the range of p as 0 < p < 10. Re mp and Im mp are plotted in
Fig. 3-4. Similarly, locifor s =2, 3, 4, . . . may be obtained by the graphical
method.

13
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3.3 Zeros of ‘Wn(zo)

In Neumann's problem we define the function

0
! = - —_
Wn(zo) zOWn (zo) + azo Wn(zo) . (3.25)
Here
W' (z) = > W.(z)
n o azo n o

has the asymptotic expression

W' (z ) ~ 2t [contribution of t to W (z )] +
n o ) ) no
+ 2t [contribution of t, to W (z )] (3.26)
1 1 n o

from the saddle points to and tl' If the path of integration does not pass through

a particular saddle point, its contribution to (3. 26) is zero. Upon replacing tO and]
t1 by their expressions and subtracting the corresponding expression for zOWn(zO)
we obtain

S
'Wn(zo) o V(zo)2 - 2m [60 contribution to Wn(zo)> -

- <tl contribution to Wn(zo)>]. (3.27)

When z, = V—Zikh = ‘/:?p, the asymptotic expression of 'Wn(zo) for the

case that the path of integration passes through two saddle points to and t1 is
BN
1 = -1 -
W(z) = f-1p" - 2m [a +a] , (3.28)

where A0 and A, are expressed by (3.13) and (3.14) respectively.

1

16
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Therefore, the zeros of 'Wn(zo) are located at
A +A =0

or

exp[f(to) - f(tl)] = i . (3.29)

to t1

Using the transformation w = {n (to/ tl) =u+iv , we obtain

2 siphw-w_ _ i_72[_ (1+4s)-%— (3.30)

e coshw+1

where s =0, 1, 2, 3, ...
By separating the real part and the imaginary part of (3.30) we obtain two simul-

taneous equations
9 -
P [(cosv+coshu+usinhu) sinv - (coshu cos v + 1) VJ

2
= - % u [(coshu cosv + 1)2 + (sinh u sinv) ] (3.31)

2
p [(cosv + coshu - v sinv) sinhu - (coshucosv + 1) u]

= % [V -7 (l+ 48)] [(coshu cos v + 1)2 + (sinhu sinv)z] . (3.32)

Dividing (3.31) by (3.32) we have

(cos v + coshu + sinhu) sinv - (coshucosv+1) v _ -u (3.33)
(cos v + coshu - vsinv) sinhu - (coshucosv+1)u v =7(1+45s) )

Setting s = 0, (3.33) may be approximated by a circle in the w-plane

17
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2
[u-(r—a)]2+[-%- - (3.34)

where

For u<1, (3.32) may be approximated by
. 1 2 . 2
~2uvsiny = = (v-m l(cosv+1) + (usinv) . (3.35)

The location of zeros are determined by the graphical method from (3. 34) and (3. 35).
A typical plot is shown in Fig. 3-5. Mapping the zeros from the w-plane to m-plane

gives approximately the locus of the first zero as

1 1 !
m:p=_<}.p+ﬁ> -~ izl (3.36)

where p is limited in the range 0 < p < 10. Re m'p and Im m'p are plotted in

Fig. 3-6. Similarly, loci for s =1, 2, 3, ... may be obtained by the graphical
method.

0 o]
3.4 The Value of the Functions = W (z ) and —— 'W_(z ) Evaluated at Zeros
dn_n o an n_o

The function Wn(zo) is defined by

. L £ (t)
Wn(zo) s Swe dt (3.37)

18
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w - plane

FIG. 3-5: GRAPHICAL SOLUTION FOR ZEROS OF 'W (z) WHEN z = {-ip.
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where
2
ft) = -t + 2z6t-(n+1)£nt . (3.38)
Differentiating (3. 37) we obtain the function 8_dn_ Wn (zo) as
1
-8% Wn (zo) = -3 (Un t) ef (t) dt (3.39)
mdw ¢

If we assume the path of integration W does not pass through the point t = 0, the
function £n(t) may be considered as a slowly varying function in comparison with
the integrand and put outside the integration sign at the saddle point. Therefore the
saddle-point method may be applied to evaluate the asymptotic expression as the

following

)

— W (z) = - (nt ) |contributionof t to W (z)] -
on n o o) o) n

(Intl) contribution of t1 to Wn(z)]

= -Eﬂn to) Ao - (In tl) Al] (3.40)
where AO and A , are expressed by (3. 13) and (3. 14) respectively, and
z, = V-Zikh = V—-? . At the zero, A - A, = 0, the asymptotic expression
gives
S W (z) - [fz(t/t)]A (3.41)
5n 'n %o _ RRVAS] o )
s

where n_ is the sth zero of Wn(zo) in the n-plane,

21
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Next let us consider the definition

'W(Z)=-ZW(Z)+—-§-W(Z). (3.42)
n o o n o 8z0 n o

By a similar consideration as before, we obtain the asymptotic expression for

0
— 'W (z ) as
on n o

5 N
=W () = -z [- (tnt )A_ +(£nt1)A1] +
+ 2[—(£nt0)tOAo + (lntl)tlAJ
i 2 ‘
== y(zo) -2m [(!Znto) Ao + (fntl)Al] (3.43)

At the zero, A0 + A1 = 0, we obtain

a 1
_— Wn(zo)

) 2 o)
2 - - fe - 2m' ln(to/tl)] A (3.44)

n=n'
s

where n'S is the sth zero of 'Wn(zo) in the n-plane.

3.5 Creeping Waves

After zeros are obtained, the asymptotic expression of the function Un(z') in
the region IIT was given by Rice (1954) as
4n

1 = - H
Un(z ) (1-i"7)A ) (3.45)
where
VTexp f(t'.)
Al - 1 1

27? (z2 - 2m)]’/4

22




THE UNIVERSITY OF MICHIGAN
8525-4-T

= VTES
f,) = -t'2 + 2z't'". - (n+1) Int'
1 1 1 1
I O e ,‘/ 2 '
ty 5 Ulk g ik £7 - 2m] (3. 46)
m = n+l
= mp for Dirichlet's problem
= mb for Neumann's problem
Now we can evaluate (3.1) and (3.2). If we assume ¢ = % and consider the
leading terms of the residue series, the surface currents in the shadow region be-
‘come
.2 4
K 1 ip-2Zmg g
Ip * "2]‘“/?? Tn (& /t.) PRI
o1 ik&€ -2m
p
F.A{E‘s #fke® + 2
1 o | _AKE T o
exp< (m - = )4in -i k§ +2im +
P2 “2im ’ P
|y
_ ——
1 P +Vp - 2imp 0 L
+ <m - =) fIn +i=f4p -2im (3.47)
p 2 V—z—\ 2 p
-2im
| p

23
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2 for Y2

J -

N

— 2 \
KE +Vk€ +2im’ - R
! p|_;1kE A/k€2+21m£) +

,\/-Zimr')' 2

exp Gn'p - %) In

2 '
. p +Ap -2im!' S
+ <m' - _é_}gn Py % p - 2im' ). (3.48)
P -2im' P

The asymptotic expressions obtained may be interpreted in terms of the ""geo-
metric theory of diffraction ' (Keller, 1956). Let the length of the arc of the
parabola between the points € =0 and § =& be

§ =5 g T g +Ac% 4 2n
g = j Vg +92h dE - V§ + 2h +h£nl: . (3.49)
0

) 2h

and the radius of curvature of the parabola at the point with coordinates (£, 2h) is

] €2 4 2m)3/2

R(§) = — (3.50)
42h
Finally let us express the integral over the arc of the parabola as
5 - Ss ds =(2h)1/3S§ dE
2] 2 1/
o [’ 0 € +2n’’
Y3 [e e +2n
= (2h)7" 4n --——-:l . (3.51)
2h'
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Comparing these expressions with formulae (3.47) and (3. 48), we obtainthe asymptotic

surface current in the forms

kr

- 13
1o ~A @ RE)] P8 oxp {—ikS - k—z— [@Tﬁ + 1.2> +ip]—%-§} (3. 53)

P

13
1 -6 ) k . D
JD/k ~ A(p) '{——— [R 3} Y exp{qks- —5— [(p+3.8)+1(p+1.4)] p—7—2 3} (3.52)

where A(p) and A'(p) express amplitude functions which are a function of p only.
Here p = '/-2_1511

Formulae (3.52) and (3. 53) have the same expression as the results of Keller
and Levy (1959). Therefore it is clear that the creeping wave theory may be ex-
tended into the region where the radius of curvature is comparable to the incident
wavelength. The only place needing modification is the coefficient of D in the ex-
ponent of (3.52) and (3.53), where the coefficient is expressed as a function of the

focal length p = VZ kh . For large cylinders these coefficients are equal to

i7/6 and 1,0188 em/ 6 for Dirichlet's and Neumann's problems respectively

(Ivanov, 1960). In our case these coefficients are [(p +3.8) +ilp+ 1.4)] /2p2/3
and [(2—: + 1.2) + ip] /2p %3 in Dirichlet's and Neumann's problems respectively.
When the focal length of the parabolic cylinder is large compared to an incident

wavelength, the asymptote of the function Wn(z) may be expressed by Fock type
formulae, i.e. the function can be expressed in terms of the Airy function (Rice,
1954; Ivanov, 1960). This is due to the fact that the asymptotic expressions given by
the saddle-point method fail when mp and m'p are near -ikh, i.e. zeros of
Wn(z) are very close to - (ikh + 1), In this case two saddle points to and 1:1

coincide, and f" (to) vaniches in Taylor expansion of the function f(t). Therefore

the unvanished terms will start from the third derivative of the function f (t), and the
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asymptotic formulae may be expressed in terms of Airy integrals. In the case of
the short focal length compared to the incident wavelength, the locations of zeros of
the function Wn(z) are not closed to -(ikh + 1). Therefore the saddle-point metho
may be applied to evaluate the asymptotic expressions. This is what we have used
to obtain the asymptotic formulae for surface currents in (3.47) and (3. 48).

Let us define the surface currents as

-a(§)
e

A (3. 54)

[
g
~~
~
|

- are @ @) (3.55)
where A and A' express the surface current density at the crest £ =0; «(€) and
o' (E) are the attenuation factor as a function of the parabolic coordinate £. Then
the surface current density at the crest is plotted approximately as a function of p
in Fig. 3-T7.

From Fig. 3-8 to Fig. 3-12, they show attenuation factors as a function of the
parabolic coordinate £ and of the arc length along the parabolic cylinder. Fig. 3-12
shows the constant attenuation contour on parabolic cylinders. The wavelength A
of the incident plane wave is plotted against parabolic cylinders for scaling. From
these figures one can see that the attenuation factor for a large cylinder increases
more rapidly than for a small one in the deep shadow region, 1i.e. the larger the
cylinder the darker it is. In general it is much darker behind a parabolic cylinder
than behind a half-plane. For the same cylinder, it is much darker for Dirichlet

problem than for Neumann problem.
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v
SURFACE CURRENTS IN THE ILLUMINATED REGION

4.1 Formulation
If we consider the region x < 0 where § is negative, we have the following

relations

UG = -1V () - i'znwn<z> .1)

U@ +V (z22 +Wi(@ =0 . 4.2)
n n n

Following Rice's (1954) derivation, the leading terms in the asymptotic expan-

sion for Un(-z') along the contour C, is obtained as follows:

2

U (-2") = G-zn_izrD Al 4 2P (4.3)
n 0 1
— )
t'oe
Aty = 5 72
2117‘(11{5 -2m)
f(t')
t'ie 1
A' = (4:05)
1 24?(1k§2-2m> 1/4
f(t) = zt' + % - mnt (4.6)
B 9
e = % _ﬁ?g + 1/1k§2-2m] @.7
1 [— 2 A
t'l = 3 ik & - Vik«f - Zm] (4. 8)
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m=n+1

z':r/ﬁ‘g, E> 0

Region in m-plane U, (-2")
m=n+1
I G-2n_12n>A' L 20y,
a ) 1
il LU LN
0 1

L G—Zn'12®<'o+‘°"1>

2n 2
I G 1y n)A(‘)

found within the region Ia’ i.e.
2 2
=i < < i
1n 0/2 ao ig /2 ’

When (4. 3) is substituted into (2.7) and (2. 8) we obtain

ikr

— - A
J = _._l.{.. _e_— sec i =21 Qtan -(ﬁ)n 0 dn
D 27ri 2 2 2 W (z )
02 n o

" n
J' tanE A'l dn
+ i sintnW (z )}
02 n o

The contour 02 passes through regions Ia and II in which Un(-z') has

In fact, the asymptotic expressions of the function Un(— z') in the various regions

of the m-plane are listed in the following table when z' = 11/2 f?%’ s {l? £ >0.

different asymptotic forms (Fig. 4-1). Because the stationary phase point 20 is

We may use the asymptotic form in Ia for Un(—z') along the entire contour CZ.

(4.9)
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‘ Im[f(t' ) - £(t;] )]= o

FIG. 4-1: REGION IN THE COMPLEX m-PLANE CORRESPONDING TO
ASYMPTOTIC EXPRESSIONS WHEN z = »ﬁEs .
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1 e-ikr
JN=: 5 sec— - J, <tan > 'W(z) dn

N

tan—
J‘ sin 7rn'W (z ) } (4.10)

In the following sections, we will see that the first term may be recognized as the

geometrical optic term. The second term may be expressed by a residue series
which represents creeping waves launched from the shadow boundary and traveling
along the surface of the parabolic cylinder into the illuminated region. It may be

called the reflected creeping waves (Fig. 1-1).

4.2 The Method of Geometrical Optics

The first term of (4.9) and (4. 10) may be calculated by the stationary phase
method when k—> . The asymptotic forms of the functions Wn(zo) and 'Wn(zo)

along the contour C2 were given by Rice (1954) as

Wn(zo) = AO (4.11)

and
2
"W (z) = AJ(z) -2m A . (4.12)
n o ) 0

Introducing the new variable of integration « =i (—%—) , we obtain the first term

of (4.9) and (4.10) as follows:

12 .2 1/4

p -ik V J" g +VE +2a n0-2af e—ik(I)(a)d
D s1n— 27rr1 2 §2+2a
-2«
0
(4.13)
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112 .
1 i g 42 4 2a sk @
Iy = i 3 e 5 5 7z 419
o sin = 02 UR +AJno - 2« [(S + 20) (no -2a)]
where
B n
g ./2 0
- -+ F - -
® () 5 § +2a 5 n, 2«
— a .\
2
n -+ Vno -2«
- an |o =2 (4. 15)
2 '
3 +1/S + 2«
w = tan%
The stationary point of the phase @(a) is obtained
2
no + ‘/no - 2«
@'(a) = ﬂn w —-—_2_== = 0
E o+ 1/5 + 24
as
R 7
w T)O +1/n0 -2a = & +‘l§ +2a (4. 16)

2 ‘
The equation (4. 16) has a real root if v < 1/8 + 2a + £, On solving this

inequality, we find

> -
€ nocott[/ .

The point § = —nocotll/ is the boundavy of the shadow and the points £ > - nocotd/
are located in the illuminated regio.. .g. 2-1). Thus the stationary point of the
phase @ (@) exists only if the point of observation is situated in the illuminated

region, Solving (4, 16), the stationary point is found as
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ao = siny — sin ¢ - E’nocosw . (4.17)

Substituting ao into the phase function ¢ (a) we have

Q)(a/o)= g n, siny - ——5—— cos v (4.18)

= xsiny - ycosy

and also
2 '
V§+2a = n siny - Ecos Y
o o
2
Vno -2a0 = nocosz// + & sin ¢
") = _
P o sinw(nocosw+ Ssinw)(nosin(//- € cox ()

Lo
1l

1 2 2
2 Go +S>'

Now the asymptotic expressions of the surface current in the illuminated regionare

obtained as follows:

nocosw + Esiné
JD = =2ik {exp -ik (x sin ¢ - y cos lj/)} (4.19)
o 2 2
A/E +n
JN = 2exp {-ik (x siny - y cos W)}. (4.20)
0
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2 2
It has been shown that the quantity (no cos ¥ + & sin ¢) / V%’ + M in (4, 19) is the

cosine of the angle of incidence 6 (Fig. 2-1), and the exponential factor is the

incident plane wave U, (Ivanov, 1963). Thus

ey
I

-2ik cos 6 UO (4.21)

oy
il

N 2 U, (4.22)

i,e, the distribution of current in the illuminated region is described asymptotically

by geometrical optics.

4,3 Reflected Creeping Waves

The second term of (4. 9) and (4. 10) may be calculated by the sum of the

residues at poles given by Wn(zo) = 0 and 'Wn(zo) = 0. Thus we obtain

—

2r

' )n 1
e | . Q0 Gan— 1 A
J_ = AJ“” elkrsecig- > 2/3 L (4.23)

sin7n = W (z )
on n o _

n=n

S

-ikr 1/ @ Gan%/Dn A'l
J, = iqm e sec = Z ! . (4.24)
2 . 0
c 0 |sin7n =— "W (z )

on n o

n=n' (4, 24)
)

Comparing above expression with (3, 1) and (3. 2), one can see that the reflected
creeping waves in the illuminated region are exactly the same with the transmitted
creeping waves in the shadow region except for a constant factor

e-i mr

i2mar

(1-e )
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Both are launched from the shadow boundary. One propagates into the illuminated
region and the other into the shadow region. Let us define this constant factor as the
ratio of reflection to transmission, then we have

-im7

C(m) = —j_iZ—m;r_ (4.25)
l1-¢

where

B
1]

mp for Dirichlet problem

m‘p for Neumann problem

In general, lC(m)l is negligibly small for p > 1 (Fig. 4-2). Therefore,

reflected creeping waves may be neglected in the case of large parabolic cylinders,
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\Y%
THE SURFACE CURRENT IN THE REGION OF PENUMBRA

The function Un(z') in (2.7) and (2. 8) may be expanded into a series about a

point on the shadow boundary. If we expand exp (2z't) in the following integral

1
U (z') = = J. exp{—t2 + 2z't = (n+1) lnt} dt
n 27i u

and integrate termwise, then the function Un (z') becomes

no_ sinTn = nd /L-n
Un(Z) = - %i (-2z") 5 £
=0

Therefore, we obtain the surface current in the following forms

Mo ® (22,) (iw)nl"G—;—I-l)
‘b Tt ; J W) "
= n o

0

g = _9 (-ZZ') J" (i) l“< >
N 2 ;1 c W (z ) )

2
where
M = k e se v
o orri 2 )
-ikr
1
N = = sec =
0 ;V7T 2 2
Ww = tan(—//‘ .

(5.1)

(5.2)

(5.3)

(5.4)
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Now (5.3) and (5.4) may be evaluated by the residue series. If only leading terms

are considered, we obtain

i 02 = 20 Y/
; 27 (1p 2m) (w)s f" z')
D ; () =0
£n<— ° -

p2-2m)1/ o) "s

T

to 100 (_22,)£ ﬂ—ns
‘Jz_r?’ -1—19%}%:0 = (5.5)

27 N2' () S

® - iN ,
oﬂn -t—o— (2m' )1/4[‘ —-l-l—§> —ip2—2m‘ v
t p 2 p
t (00)
o {fo, D) 0 o - e |3 ( )
p v2mtp 0 9=

where z' = 'FE €, n and n' arezerosof W (z ) and 'W (z )
S s n o n o

given by (3. 24) and (3. 36).

, respectively
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When w=1, we have
€ > 0 for the shadow region
€ < 0 for the illuminated region .

Equations (5. 5) and (5. 6) converge absolutely for all finite values of £ .
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