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PREFACE

This report describes some basic research on the application of dif-
ference techniques to the solution of the lateral vibration of beams. Time is
in all cases preserved as a continuous variable; but distance along the beam is
divided into stations, and derivatives with respect to that distance are approx-
mated by finite differences. Solution accuracies using the resulting equations
are obtained both theoretically and by using the electronic differential analyzer.
Similar equations have been solved by the Caltech electric analog computer, 15
which employs mainly passive circuit elements instead of operational-type feed-
back amplifiers. The passive-circuit computer has the advantage of simplicity,
with the result that more complicated problems may be treated with a given size
of installation. The active-circuit computer (electronic differential analyzer)
has the advantage of a more flexible time-scale, higher accuracy, and ability to
handle most types of nonlinearities.

~ In the present report we shall consider theoretically and with

computer the lateral vibration of cantilever, free-free, hinged-hinged
and clamped-clamped beams, both uniform and nonuniform. Time-varying
boundary conditions, effects of transverse shear, and viscous damping will
also be considered. Beam response to arbitrary forcing functions along the
beam is demonstrated. In each case the directly-recorded outputs of the elec-
tronic differential analyzer are beam displacement, beam velocity, and bend-
ing moment as a function of time at various stations along the beam.

Beam equations with nonlinear terms such as velocity-squared damp-
ing have been solved and will be presented in a later report. Other reports
will be issued describing the work which we have done on linear and non-linear
heat-transfer problems, the solution of plate-vibration problems, and the
solution of aeroelastic problems such as the gust response of aircraft wings.

The computer solutions were obtained with one of the electronic-
differential analyzer installations in the Department of Aeronautical Engineer-
ing, University of Michigan. The computer used includes 80 drift-stabilized

15 Numbered superscripts refer to similarly numbered references in the
bibliography at the end of this report.
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operational amplifiers which are essentially similar to those discussed in another
report. 12 Solutions were recorded on a Brush, Model BL-202 Oscillograph, a
Sandborn Model 60-1300 Galvenometer, and a Reeves Mod 2 I0-101(A) Input-
Output Table.
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CHAPTER 1

INTRODUCTION

One problem which is often encountered in structural dynamics is
that of the flexural vibrations of beams. For example, the transverse vi-
brations of an aircraft wing can be considered as a problem of this type.
The equation describing this motion is a partial differential equation of
fourth order in distance along the beam and second order in time. Solution
of the equation by hand techniques for all but the simplest cases involving
uniform beams is extremely tedious, and therefore an automatic computing
device is clearly of considerable usefulness in this application.

The electronic differential analyzer is at present one of the most
widely used types of computers for engineering problems. It is, however,
limited to the solution of ordinary differential equations, since it can inte-
grate with respect to only one variable, namely time. In order to solve the
equation describing the problem of flexural vibration of beams, it is neces-
sary to convert the partial differential equation to ordinary differential equa-
tions. If the problem is linear and the boundary conditions are suitable, the
technique of separation of variables can be used to obtain eigenvalue-type
equations. The differential analyzer is a convenient tool to solve for the

1-5 1 Section 1. 2

eigenvalues and normal-mode solutions of these equations.
an example of the separation-of-variables technique is given.

On the other hand, if the original beam equations are nonlinear, e. g.,
include velocity-squared damping terms, nonlinear stress-strain relation-
ships, etc., they cannot be handled by separation of variables. However, by
considering the transverse displacement only at discrete stations along the
beam, and by approximating spacial derivatives by finite differences, the
original nonlinear partial differential equations can be rewritten as a system
of ordinary nonlinear differential equations which can be solved by the elec-
tronic differential analyzer. Indeed, even when the equations are linear the
difference method of analyzer solution, though in general somewhat less ac-
curate than the eigenvalue approach, is much faster, more direct, and more
versatile, allowing the introduction of time-dependent boundary conditions,

arbitrary forcing functions, non-uniform characteristics along the beam,
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. . 6,7

viscous damping, etc.
This report is a description of research on the application of differ-

ence techniques to the flexural-vibration problem. Before considering the

theory of the difference method let us write down the beam equations.

1.1 Basic Equations for a Thin Beam

The elementary equation describing the dynamic transverse displace-

ment y of a beam is given by8

2 2 2 3 323t .
-:—:ZEI(R)%E—’—Q + P(x)—;—géﬁ-t-)- = f(x,1t) (1-1)
X X

where X is distance along the beam, t is time, EI(X) is the flexural rigidity at
X, P (%) is the mass per unit length at %, and f(%,1) is the external force per
unit length applied along the beam. We recall that the bending moment M(X, 1)

is given by

2 . _ -
M(x,D = EXn2YXl (1-2)

X
and the shear force V(X, ) is given by
V(%8 = —a—%‘i_‘i (1-3)
X

Equation (1-1) is of course subject to boundary conditions which de-
pend on the type of end fastening for the beam. For example the cantilever
beam shown in Figure 1-1 has the following boundary conditions at the built-

inend (x = 0):
(0, 1) =M =0 (1-4)
X

i,e., at the built-in end the displacement and slope vanish. At the free end

(x = L) the conditions are

_ _OM(L, 1)
dX

M(L, t) 0 (1-5)
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Figure 1-1 Cantilever Beam

i.e., at the free end the bending moment and shear force vanish. For a
simply supported (hinged) end the displacement y and bending moment M
must vanish,

In addition, initial conditions of the displacement and velocity along

the beam must be specified. Thus let

y(x,0) = Y(X) (1-6)
ONE0) oy (1-7)
LX:
denote the initial conditions at T = 0.

* In writing Equation 1-1 a number of important assumptions have been

made, including the assumption that the planes of flexure remain parallél and
that the thickness of the beam is small compared with its length. This second
assumption allows us to neglect the effect of rotary inertia and the deflection
due to transverse shear force. In Chapter 10 the transverse shear force is
included, and for thick beams the effect on the normal-mode frequencies is

considerable,
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Now that we have written the elementary beam equations it will be
convenient to define a dimensionless distance variable x such that the beam

length is unity in x. Thus let

(1-8)

4
H]
s

from which

a_adx_la,azlaz,

= ax - 2 : = etc. (1-9)
3% dx dx L dx 3 & 2°3x2

Also let us transform the variable characteristics of the flexural rigidity

EI(X) and mass per unit length P(x) into dimensionless variables ¢f(>':) and

¢d( %) respectively. Thus let

EI(X) = EIo¢f(3':) (1-10)
and

P(r) = P38 (%) . (1-11)

Here EI0 and Po are constants equal to the maximum value of EI(X) and P(X)
respectively. For a uniform beam qu( X) = ¢d()E) = 1. From Equations
(1-9), (1-10), and (1-11) the original beam equation (1-1) becomes

4 2, -
P L 1 4_
—7¢f( x) 9 Y‘X’t’ L S A i (1-12)
9 x 3 x° EI_ 3 12 EI_

Next we introduce a dimensionless time variable t given by

1 EI .
t = ~— —— 1-
zv 2 (1-13)

L

from which

2 2 EI 2
9% _ 3 dt.2 o 9
at . o (1-14)
312 3t2 (df) POL4 3t2

In terms of t Equation (1-12) becomes
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d 32 X, t) azij t)
— é(x)——-l(-?—’ + ¢ (%) 2 = f(x,1t) (1-15)
3 <2 f dx d 3t
where 4
f(x, 1) = Lo F(x,t) (1-16)
E.I-O

For a cantilever beam the boundary conditions become

wo,t) =&Y g (1-17)
X

M(1, t) =—a—1g-/[-(—11-9 -0 (1-18)
X

Equation (1-15) is the linear equation which we will solve in this report with

the differential analyzer.

1.2 Solution by Separation of Variables
Before introducing the difference method for converting Equation

(1-15) into a system of ordinary differential equations, let us review the
separation-of-variables method for solving the beam equation. Consider the

case where f(x,t) = 0. Assume that the displacement y(x,t) can be written as
yix,t) = X(x)T(t) (1-19)

Substituting Equation (1-19) into Equation (1-15), we have

2

a%x(x) a2T(t)

T(t);lzfl)f(x) SN ED (FE R LA (1-20)
X dx dt
or
2 2 2
1 d d"X(x) 1 d7T(t)
' s $(%) = - — (1-21)
b (0X(x) dx® T dx’ T()

Since the left side of Equation (1-21) is a function only of x and the right side
is a function only of t, the only way they can be equal for all x and t is for

both sides to be equal to the same constant. Thus let
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1 d®1(w 2
O g2 - P
or
d®1(1) 2
—7 + B°T(t) = 0 (1-22)
t
In the same way
a’ . )de(X) - 8% (0X(x = 0 (1-23
2T T B o

Evidently we have transformed the original partial differential equa-
tion (1-15) into two ordinary differential equations (1-22) and (1-23). The solu-

tion to Equation (1-22) is simple harmonic motion of frequency B, i.e.,
T(t) = Acosft + Bsingt (1-24)

Equation (1-23) is subject to the boundary conditions of the original problem,
since homogeneous boundary conditions on X(x) must also be met by y(x, t).

For example, for a cantilever beam

x(0) = 3X(0 . (1-25)
dx
é(l)de“) - d ¢(1)d2X(1) - 0 (1-26)
f —é—z— - a_ 2 - -
X X dx

It turns out that solutions X(x) to Equation (1-23) can satisfy the boundary con-
ditions only for certain discrete values Bn of the constant . The solution
Xl(x) corresponding to the smallest allowable value ,81 gives the magnitude
along the beam of the lowest mode of sinusoidal oscillation. X2( x) gives the
shape of the second mode, which oscillates at the frequency ,82, etc. The
discrete values Bn of B are known as eigenvalues, and the corresponding so-
lutions Xn( x) are called normal modes.

One can show that any arbitrary beam motion y(x,t) can be represent-

ed by the proper combination of the normal-modes. Thus
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[ o]
y(x,1) = ngl X (A _cos g _t+ B_sin B_t) (1-27)

The initial conditions given by Equation (1-6) and (1-7) along with the ortho-
gonality properties of Xn(x), are used to evaluate the coefficients An and Bn
in Equation (1-27). Thus for built-in, hinged, or free end conditions one can

show from Equation (1-23) that

1
féd(x)Xn(x)Xm(x)dx =0, n#m (1-28)
0
= N, n=m
n
As an example assume that the initial velocity —aw = S.(( x), and that
y(x,0) = Y(x). At t = 0 Equation (1-27) becomes
o0
Y(x) = Z Aan(x), (1-29)

n=1

Multiplying both sides of Equatior (1-29) by d)d( x)Xm( x) and integrating from
x = 0, tox = 1, we have

o

1 1
f¢d(x)Y( x)Xm( x)dx = nzlAn qu(x)Xn( x)Xm( x)dx (1-30)
0 - 0

From the orthogonality relationship in Equation (1-28) it is clear that all the
terms on the right side of Equation (1-30) are zero except the one for which

n = m, where the right side is AnNn . The solution for An is then
1
=1 -
A = anéd(x)Y(x)Xn(x)dx (1-31)
0

In the same way

1
1 .
Bn = E—N—/éd(x)Y(x)Xn(x)dx (1-32)
nn ¥,
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The method for calculating the complete solution to the beam equation
using separation of variables is apparent. First the normal mode frequencies
ﬁn and. the accompanying normal-mode functions Xn( x) must be computed, a-
long with the normalizing constants N, defined in Equation (1-28). Next the
coefficients An and Bn are calculated from Equations (1-31) and (1-32).
Finally, the complete solution is obtained by summing the contributions of all
the normal modes, as indicated in Equation (1-27). Although in theory an in-
finite number of modes is required to build up the arbitrary initial conditions,
in practice only the first several modes are needed to give a reasonably ac-
curate representation, providing the initial condition functions Y(x) and Y(x)
are fairly well behaved.

The electronic differential analyzer can be used to solve the eigen-
value Equation (1-23) and to compute the coefficients An and Bn in Equa-
tions (1-31) and Equation (1-32). In Chapter 3 we will consider the normal-
mode solution to Equation (1-23) for uniform beams (qu = qu = 1) in order

to compare the results with the difference method.

1.2 Replacement of Partial Derivatives by Finite Differences

We have already seen in Section 1.1 that the equation for transverse
vibration of a beam is a partial differential equation, fourth order in distance
x along the beam, second order in time t. Hence the beam displacement y(x, t)
is a function both of the dimensionless distance variable x and the dimension-
less time variable t. Instead of measuring y at all distances x, let us meas-
ure y only at discrete stations along x, as shown in Figure 1-2; thus let Y1 be
the beam displacement at the first x station, Yo be the displacement at the
second x station, Yn be the displacement at the nth x station. Further, let
the distance between stations be a constant 4 x.

Now clearly a good approximation to dy/ axl% (i.e., the partial

derivative of y with respect to x at the 1/2 station) is given by the difference

By 0%
) X, AX (1-33)
2
In fact the limit.of Equation (1-33) as Ax = 0 1is just the definition of

the partial derivative with respect to x at x = %(Ax). Writing Equation

8



ENGINEERING RESEARCH INSTITUTE <+ UNIVERSITY OF MICHIGAN —

—~—_
\

et NN
/
&

Figure 1-2 Station Arrangement for Cantilever Beam

(1-33) in more general terms, we have

In =~ Yp-
ai = nAxnl (1-34)
=y
In the same way
3% _1la 3y
S S, H (159
n 2 2
or from Equation (1-34) X
3% _ yniil - Wpt Vg (1-36)
dx (4%)°

Similar approximations can be written for higher derivatives.

Evidently we have replaced partial derivatives of y with respect to
x by algebraic differences. The only rates of change of the variables Yyir Yo
¢+ Yy - . . are with respect to the time variable t, so that we are left
with a system of ordinary differential equations involving dependent variables

9
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yo( t), yl(t) ... yn(t). This difference method can of course be used in
general to rewrite a partial differential equation as a system of ordinary

s

differential equations. The specific equations obtained for the case of

transverse beam vibration are discussed in the next section.

10
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CHAPTER 2

DERIVATION OF THE DIFFERENCE EQUATION FOR BEAMS

2.1 Equation for the n-th Cell
In Section 1.1 we saw that the equation for transverse displacement

y of a beam could be written as

2 2 2
aigesfm —%%X—’Q + asd(x>%x’—“ = f(x, 1) (1-15)
X X t

where x is dimensionless distance along the beam defined in Equation (1-8),
t is dimensionless time defined in Equation {1-13), and where qu( x) and qu( x)

are defined in Equation (1-10) and (1-11) as representing the variation along

the beam of flexural rigidity and mass per unit length respectively. From

Equations (1-2), (1-8) and (1-10) the bending moment M(x, t) is given by

El azy(x, t)

_ (o]

and from Equations (1-3) and (1-8) the shear force V(x,t) is given by

V(X,t) = %—T‘aM(i’t) (2_2)

Following the procedure introduced in Section 1.3, we will consider
the displacement y only at certain stations in x, with distance between sta-
tions given by 4x. It is convenient to introduce still a third distance variable
X such that the distance 4 X between X stations is unity. If the entire beam

were divided into N stations, then

X = Nx (2-3)
and the beam length in the new X variable is simply N. Equation (1-15),
written in terms of X , becomes

2

d Py X, 1) 32v(X 1) 1 |
¢(x>——ﬁT—' + 00 =5 = S X 2-4)
ax2 f 3 X 77y (N2 ° N X (

11
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If we now introduce another time variable T given by

T= N% (2-5)
and a force variable@ (X ,t) given by

&

_ 1 _
(X, f) = 10 (2-6)

Equation (2-4) becomes

2 2 2
d 4 d%(x,T) Ay X, T)
(X) 5 + ¢ .(X) - = @(X, T) (2-7)
ax2t dx? d 3T

where the distance between stations A X = 1, and where the beam length = N
if the beam is divided into N segments. From Equations (1-36), (2-1), and
(2-3) the bending moment M at the n-th station can be written approximately
as 9

_ N - -
M, = ETEI0¢fn(yn+1 2Yp * Yn-1) (2-8)

If we let m be proportional to the actual bending moment M and given by

L
m = M (2-9)
n NEEIO n
then
m, = ¢fn(yn+1 "2y, t yn~1) (2-10)

Hereafter we will refer to m _ as the bending moment at station n. even though
it is understood that m must be multiplied by LZ/NZEI0 to obtain the actual

bending moment Mn’
From Equations (1-36) and (2-7) it is clear that the dynamic equation

for the displacement y at the n-th X station becomes

dyn

a1 T 2m’[l -mn_1+¢n('r) (2-11)

For our N - station beam Equation (2-6) would be iterated N times, so that a

system of simultaneous ordinary differential equation must now be solved.

12
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2.2 Boundary Conditions
The type of end fastenings for the beam will determine the boundary

conditions. The boundary conditions for the cantilever beam shown in Figure
1-1 are summarized in Equation (1-4) and (1-5). At the built-in end the dis-
placement and slope both vanish. Let us consider what these conditions imply
for displacements at the stations of the cellular beam. Assume that the left
end of the beam occurs at station 1/2, and the slope dy/ d X 1/2 vanishes
at that point. The condition that the displacement also vanishes implies that
Yo = Y1 = 0.

At the free end the bending moment and shear force vanish. Assum-
ing that the free end occurs at station N + 1/2?%1t%e shear force OM/dX N+ L
at that station must vanish, This, in addition to the zero bending-moment
condition, implies that the free-end my = Mgy = 0. The complete differ-
ence equations for the cantilever beam with built-in end at X = 1/2, free end at
X =N+ 1/2, are from Equation (2-10) and (2-11)

d2y2

@ -m,+2m, -m, +,(T)
dy 572 3T 4Py T TPy

° s 2 2-1
m, + m3-m2+¢3(‘7') (2-12)

S~
(o))
[\J
|

dyN

) = -m + @ (T)
dN de N-1 N

where the bending moments are given by

my = “Sfl Y2

13
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8

B

N-1° ¢fN_1(yN " 2N-1t YN-2)

| Equations (2-12) and (2-13) are a set of N-1 simultaneous second-
order ordinary differential equations. The cantilever beam they represent
for N = 8 (8-cells) is shown schematically in Figure 1-2, Note that although
the end actually occurs at X = 1/2, the displacement Y1 at X= 1 is equal to
zZero,

For a hinged end the displacement and bending moment vanish, For

a hingedendat x = 0, y, = 0 and Mo = 0 satisfy this condition. The
following table summarizes the boundary conditions for the various kinds of

end fastenings when the difference approximation is made.

TABLE 1

Summary of Boundary Conditions for Difference Method

Type of End Where End Condition
Fastenings Occurs
. 1 _ _
Built-In N + 5 YN T IN+1 S 0
Free N + 1 m, =m =0
2 N~ "'N+1
Hinged N YN = mN = 0

Thus far we have considered only fixed homogeneous boundary con-
ditions., Actually, time dependent boundary conditions can be included in the

equations. An example of this type is considered in Section 9. 1.

14
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2.3 Initial Conditions
Finally, to complete the formulation of the difference-method approx-

imation to the beam equation we should point out that initial displacement and
velocity conditions must be specified to solve the problem. The original ini-

tial conditions at 7 = 0 given by Equations (1-6) and (1-7) are

v(X,0) = Y(X)

and 9 -—I
Oy X, 0 _ N4l"0o v (x) (2-14)
T L po

when written as functions of X and 7. For the difference equations the con-
ditions become simply
yn( 0) = Yn

and -

dy_(0) 2, |EI

—2_ - IN 2 vy, (2-15)

dT L "Po
We have now formulated completely the equations necessary to solve

by difference techniques the partial differential equation representing the flex-

ural vibrations of beams.

2.4 Summary of Variable Transformations

Because so may variable transformations were utilized to convert the
original beam equation to suitable difference form, it would seem appropriate

to review the changes of variables. Originally we started with the beam equa-

tion
2 2= v 2.3 - -
L_ZEI(-) J (b, p(;()_é_ﬁﬁ = ¥ (1-1)
X dx t
for a beam of length L. By letting x = %, El(x) = EIOqu(x), p(x) =
. [EL, 4 _
P oBalx), t = 23 ﬁg-t, and f(x,1) = Lﬁo f(x,t), we obtained
3% 4 (% _bz_Y(_th_Lw DAY oy (1-15)
1 3x? Y

for a beam of unit length.

15
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Finally, when considering the beam only at stations in y we let

X= Nx, T= Nzt, and @ = l4f, obtaining at the n-th cell
N
dzyn b
bg —3 = - mogq t2my-my O (T) (2-11)
n dT
where
my = ¢fn(yn+1 B 2yn+yn-1) (2-10)

Here the distance A X between cells is unity, and an N-section beam has a
length of N, Equations (2-10) and (2-11) are in a form convenient to set up

on the electronic differential analyzer.

16
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CHAPTER 3

ELECTRONIC DIFFERENTIAL ANALYZER CIRCUIT FOR SOLVING
THE BEAM EQUATION BY THE DIFFERENCE METHOD

3.1 Linear Operations of the Electronic Differential Analyzer

For a more complete description of the theory of electronic differ-
ential analyzers the reader unfamiliar with this type of computer is directed

1,2,10 Here we will review briefly the principles of

to other references.
operation. The inputs and outputs to the electronic differential analyzer are
voltages. The basic component of the computer is the operational amplifier,
shown schematically in Figure 3-1a. It consists of a high-gain dc amplifier
with feedback impedance Zf and input impedance Zi’ By making the ratio
Zf/Zi equal to a constant k, any input voltage e, can be multiplied by k to
give an output voltage e, = - ke,. Note that a sign reversal is also obtained
through the amplifier,

If more than one input impedance is used, as shown in Figure 3-1b,
the operational amplifier can be used to sum several input voltages, Finally,
if an input resistor R and feedback capacitor C are employed, as shown in
Figure 3-1c, the output voltage is proportional to the time integral of the in-
put voltage, the constant of proportionality being 1/RC.

By using the properties of multiplication by a constant, summation,
sign-reversal, and time integration of voltages, the operational amplifiers
can be connected to solve ordinary linear differential equations. By employ-

10,11 nonlinear ordinary differential equations can be solved.

ing multipliers
In order to apply initial conditions to the problem being solved on the
analyzer, the feedback condensers on the integrating amplifiers are initially
charged to the proper voltages by means of relay circuits .10
When one disires the solution to begin, the initial condition relays are opened,
releasing all the initial condition voltages which had been held on the integrat-
ing capacitors. The electronic differential analyzer then proceeds to generate
the solution as time-varying output voltages. These can be recorded by any

convenient device,

17
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Figure 3-1 Operational Amplifiers
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3.2 Analyzer Circuit for a Cantilever Beam

The equations for solving the cantilever beam shown in Figure 1-2
by means of the difference technique are given by Equations (2-12) and (2-13).
The electronic differential analyzer circuit which solves these equations for an
N-cell beam is shown in Figure 3-2. The left end (built-in) occurs at the 1/2
station, whereas the right end (free) occurs at the N + 1/2 station. Ground
connections and initial-conditions circuits are omitted for clarity. Note in
the figure that single fixed resistors represent the flexural rigidity character-

q respectively. The force q)n at each station is
n
introduced as a time- varying voltage. Output voltages include the displace-

istic qu and mass constant ¢
n

ment, bending-moment, and velocity at each station as a function of time.
Shear force and acceleration can be recorded at any station merely by using
an additional amplifier to sum the proper voltages.

In Figure 3-2 the time constant of the integrators is RC seconds. The
values of R and C selected for any particular problem determine the relation-
ship between computer time 7T and real time in seconds. For example, if we
let C = 1 microfarad and R = 0.2 megohms, RC = 0.2 seconds and one
unit of T equals 0. 2 seconds.

It is apparent from Figure 3-2 that for an N-cell cantilever beam,
3(N-1) operational amplifiers are required. Note that the output of every other
row of amplifiers is reversed in sign, so that additional sign inverters do not
have to be employed to compute the differences.

The computer circuit foran8-cell uniform cantilever beam was set
up on the electronic differential analyzer. An integrator time constant of 0. 2
seconds was obtained with R = 0.2 megohms and C = 1 microfarad. Re-
sponse curves following a one-second impulse applied equally at all stations
are shown in Figure 3-3. Note the fundamental, long-period oscillation and

the superimposed highér modes.,

3.3 Analyzer Circuit for a Hinged-Hinged Beam
To illustrate the use of $imply-supported or hinged end conditions

we next consider the electronic differential analyzer circuit for solving a

hinged-hinged beam by the difference technique (see Figure 3-4). The circuit
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Figure 3-2 Analyzer Circuit for a Cantilever Beam
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.....
......

Figure 3-3a Response of 8-cell Uniform Cantilever
Beam to a Uniform Impulse; Stations 6, 7, and 8
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Figure 3-3b Response of 8-cell Uniform Cantilever Beam
to a Uniform Impulse; Stations 2, 3, 4, and 5
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is shown in Figure 3-5. It is similar to the circuit in Figure 3-2 for the can-
tilever beam except for the hinged ends, which occur at the zero station and
N-th station for an N-cell beam. At the ends the displacement and bending
moment vanish, so that Vo= My= Yy =My = 0. Again it is evident from the
figure that an N-cell hinged -hinged beam, when solved by the difference tech-
nique, requires 3(N-1) operational amplifiers.

In later sections we will consider the circuits for introducing viscous

damping into the beam equations.

Figure 3-4 Hinged-Hinged Beam
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Figure 3-5 Analyzer Circuit for Hinged-Hinged Beam
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CHAPTER 4

THEORETICAL ACCURACY OF THE DIFFERENCE TECHNIQUE
FOR UNIFORM BEAMS

4.1 Uniform Hinged-Hinged Beam

Before we consider further examples of electronic differential ana-
lyzer solutions of the beam problem, let us estimate the accuracy of the dif-
ference technique. To do this we will calculate the frequencies and mode
shapes obtained for sinusoidal normal-mode oscillations when the difference
method is used. These frequencies and mode shapes will then be compared
with theoretical ones for a continuous beam. If the frequencies and shapes
show reasonable agreement, then we know that the difference-method will
yield fairly accurate results in general, since any motion of the beam can be
thought of as a super-position of the normal modes.

Because it is the simplest to treat mathematically, let us consider
first the hinged-hinged or simply supported uniform beam. According to E-
quation (1-15) the equation describing the transverse vibrations for an unforced

uniform beam is given by

a4y(x,_t_) + Bzy(x»t) - 0 (4-1)
ax4 at2

Here x is dimensionless distance along a beam of unit length, and t is a
dimensionless time variable given by Equation (1-13). For a hinged-hinged

beam the boundary conditions are

32500, 1 3251, 1)
y(0,t) = ——aX?— = y(1,t) = —BLZ_ =0 (4-2)
X X

Let us solve for the normal-mode frequencies and shapes of the con-
tinuous beam, after which we will find them for the cellular beam. If we as-

sume that y(x,t) can be written

y(x,t) = X(x)T(t) (1-19)
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as in Section 1. 2, we find that the time-dependent solution T(t) is the sinu-
soidal oscillation of frequency g given by Equation (1-22), and that X(x) sat-

isfies the equation

4
_Td X% _g2xyx = 0 (4-3)
dx

The general solution to this equation includes both circular and hyperbolic

functions. Thus

X(x) = Clcos\/f?x + Czsin\/,Bx + C3cosh\/Bx + C4sinh\/ﬂ_x (4-4)

However, the boundary conditions given in Equation (4-2) require that

2 2
_ d™X(0) _ - d™X(1)
e St 2 e

For these conditions to be met only the sin \/,BX solution above is appropriate,

and
X(x) = Czsin‘/;n X = Czsin nTx, n=1,2,3,... (4-6)

Note that the boundary conditions at both ends can be met only for the discrete

values Bn of the frequency parameter [, as indicated. Thus

Bn=n21r2, n=123,... (4-7)

are the normal-mode frequencies in terms of the dimensionless time variable

t. For the actual frequencies W, of a uniform hinged-hinged beam we have

1 El 2.2 |EI
—J— — = n T — (4'8)
“n LiJ P 'Bn 'pL4

Evidently the mode shapes are sinusoidal.

from Equation (1-13)

Let us now proceed to solve for the normal-mode frequencies and
slopes when the difference method is used. According to Equation (2-10) and
(2-11) the equation of motion for the i-th cell of an unforced uniform hinged-

hinged beam is given by
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2
dyi.

. * Yigo " Wiy OV -4V TV

0 (4-9)

Since we are looking for the normal modes, we assume that Yi
varies as sin)\n‘r, where )\n is the frequency of the n-th mode. Let us also
assume that the normal-mode shapes for the cellular hinged-hinged beam are
the same as those for the continuous beam, i.e., sinusoidal. Then for the

n-th mode
_ . NITi . -
y; = asin=0= sinA, T (4-10)

Here we are considering an N cell beam, and since AX = 1, the beam length

is N. It is evident that Equation (4-10) satisfies the boundary conditions Yo =

M, =0 and YN = Mn= 0. Substituting Equation (4-10) into (4-9) we find
that
2 _ _ ni 2ngr -
A, = 23 - 4cos g~ + cos ——) (4-11)

is the expression for the normal-mode frequency )\n‘ After expanding the co-

sine functions in Equation (4-11) in a power series, it follows that

2 2 1/2
_ ,nTm 1 nm
Ay = N )[1--6(——N +] (4-12)

This gives the normal-mode frequencies A n of the cellular hinged-hinged
beam in terms of the time variable T. From Egquations (1-13) and (2-5) the
actual frequency is (N2/L2)VEI/P times )‘n' Remembering this we see that
the frequency given by Equation (4-12) reduces to that for the continuous beam
given in Equation (4-8) when the number of cells N becomes infinite,

For finite N the frequency ).\n is somewhat lower than the equivalent
frequency for the continuous beam. A plot of the percentage deviation in nor-
mal-mode frequency versus the number of cells is shown in Figure 4-1 for the

first five modes.

4,2 Uniform Cantilever Beam

Let us next solve for the normal-mode frequencies and shapes of a
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Figure 4-1

Normal-Mode Frequency Deviation for a Uniform Hinged-Hinged Beam
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uniform cantilever beam. Here the fundamental equation for the continuous

beam is still Equation (4-1), but the boundary conditions are

dy(0,t) _ %1, 1) - _333’(1:‘5) =0 (4-13)

y(0, t) 5
oOx dx X

After separation of variables Equation (4-3) is again obtained as the equation
describing X(x). Equation (4-4) is the general solution, and the boundary con-
ditions are used to eliminate the arbitrary constants. The resulting equation

for B, the normal-mode frequency, is transcendental and is given by8

cosVB coshyB = -1 (4-14)
The values of Bn for the first six modes, as obtained from Equation (4-14),
are as follows:

Normal-Mode Frequency Parameters

for a Continuous Uniform Cantilever Beam

Mode 1 2 3 4 5 6
B, 3.516 22.03 61.70 120.91199.8 298.6

The task of finding the normal-mode frequencies )‘n for the uniform
cellular cantilever beam does not turn out to be as simple as for the hinged-
hinged beam. Instead the set of simultaneous ordinary differential equations
must be solved for )\n' for each number of cells N under consideration. We
have been unable to derive a general formula similar to Equation (4-11). In
Figure 4-2 the percentage deviation in normal-mode frequency versus the
number of cells is plotted for the first five modes for up to 16 cells. The
curves were obtained by comparing the )‘n frequencies for the cellular canti-
lever beam with the values of ﬂn given in the table following Equation (4-14).

The normal-mode shapes can also be calculatec for the cellular beam
once the frequencies are known (see Appendix II). In Figure 4-3 the theoreti-
cal cellular-mode shapes are compared with the continuous ones for 4 and 8-
cell beams. Note that when only 4 cells requiring 9 operational amplifiers are
used, the mode shapes agree fairly well through the third mode, which is the

maximum mode a 4-cell beam can have,
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4,3 Uniform Free-Free Beam

Finally we will consider a free-free or completely unsupported beam.

Here the boundary conditions are

30,0 _ Fyon | 3%,y | 3%y _ 0 (4-15)
X 3x° J x* 3x3

The procedure for finding the normal-mode frequencies and shapes for the
continuous beam is the same as that outlined in the previous sections. The

frequency equation is

cosﬁ cosh‘[E =1 (4-16)

Values of 'Bn for the first five modes are as follows:

Table II
Normal-Modes Frequency Parameters

for a Continuous Uniform Free-Free Beam

Mode 1 2 3 4 )

'Bn 22.37 61.67 120.91 199.8 298.6

As in the case of the cantilever beam, we were unable to find any
general formula for the normal-mode frequencies for the cellular free-free
beam, Instead the eigenvalues }‘n were calculated from the secular equation
for each number of cells N, as explained in Appendix I. In Figure 4-4 we
have plotted the number of cells versus the percentage deviation of normal-
mode frequencies for the cellular free-free beam from the continuous beam
frequencies. Note that the deviations for modes 1, 2,3, and 4 are similar to
those for modes 2, 3,4, and 5 respectively for the cantilever beam (see Figure
4-2).

In Figure 4-5 the normal-mode shapes of the uniform cellular beam
are compared with those of the continuous beam. Again agreement looks ex-

cellent.
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4.4 Summary of Theoretical Accuracy Calculations of the Difference Tech-

niques for Beams

We have compared theoretical normal-mode frequencies and shapes
for cellular and continuous uniform hinged-hinged, ca.ntileve'r, and free beams.
For the hinged-hinged beam the mode shapes agree exactly; and the mode fre-
quencies are slightly low, particularly for the higher modes or if fewer cells
are used. For the cantilever and free-free beams the mode shapes agree fairly,
accurately, while the frequencies agree more closely than for the hinged-hinged
beam. As a result of these calculations we can be confident that reasonably ac-
curate results will be obtained for transverse vibrations of beams using the
difference method when the motions are arbitrary.
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CHAPTER 5

APPLICATION TO CANTILEVER BEAMS

5.1 Transient Response of a Uniform Cantilever Beam
Now that we have discussed the theoretical accuracy capabilities of

the difference technique we proceed to some example solutions of transverse
vibrations of beams. The electronic differential analyzer circuit for solving
a cantilever beam by the difference technique was given in Figure 3-2, If

the beam is uniform, éf = ¢d = 1. The circuit for an 8-cell uniform
n n
beam was set up on the analyzer with R = 0,2 megohms and C = 1 micro-

farad, giving an integrator scale factor of 0.2 seconds. Thus one unit of the
dimensionless time variable T equals 0.2 seconds in the computer solution.
In Figure 3-3, the response curves following a force impulse were
shown. In Figure 5-1 the bending-moment curves following this same type
of input function are shown. Note how the higher modes show up much more

in the bending-moment curves,

5.2 Static Deflection for a Uniform Load

Next a uniform force was applied to all the stations. By means of
resistors placed across those integrating amplifiers having velocity as their
output, we were able to damp vibrations resulting from the application of the
uniform force. The resulting constant beam deflection at each of the stations
represents the static deflection of the beam with uniform loading. Let us
compute the theoretical static deflection for a continuous beam. The equiv-

alent equation describing the continuous beam is from Equation (2-7)

iij = @ , constant (5-1)

The solution to this equation with the cantilever boundary conditions (built-in

end at X = 0, free end at x = N) is

N°X (5-2)

b > ]
i
§|><
»
(o2
+
H

where N is the number of cells and represents the length of the beam since
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Figure 5-1
Bending-Moment Response of 8-cell Cantilever Beam to a Uniform Impulse
36
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A x = 1. For the problem under consideration N = 8. From Figure 4-3
it is clear that X = 0.5, 1.5, 2.5, etc., represent the values of X for Yq»
Yor Y3 etc. respectively.

In the table below the static computer deflection at each station is
compared with the theoretical deflection given by Equation (5-2). Note that
the displacement y, nextto the built-in end is zero in the analyzer solution

because of the built-in boundary condition for the difference method.
Table III

Comparison of Static Deflection of an 8-cell Uniform Cantilever Beam

under Uniform Load with the Theoretical Deflection for a Continuous Beam

I for Cont. Y from the
X Station $Beam $ Analyzer
0.5 1 3.8 0.0
1.5 2 31.3 28.0
2.5 3 80. 8 77.5
3.5 4 145.0 141.0
4.5 5 219.6 216.0
5.5 6 300.0 295.0
6.5 7 384.0 379.0
7.5 8 469.0 461.0

5.3 Determination of Normal Mode Frequencies
The normal mode frequency parameters for a continuous uniform

cantilever beam of unit length were given in Section 4.2, The frequency
parameters for a beam of length N will be just 1/N2 times those given in
4.2, For a cellular beam these frequencies will of course be subject to

the deviations shown in Figure 4-2., Thus for our 8-cell uniform cantilever
beam the frequency f1 of the first mode will be

- 3.516(1+0.008) _ 4 00882 cycles/unit T

27 (64)

f

1
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Since one unit of computer time T equals 0. 2 seconds in our analyzer circuit,
the expected frequency in cycles per second for the first mode is 0. 00882/0. 2
or 0,0441 cycles per second. This represents a period of 22,7 seconds. The
calculation of expected frequencies for higher modes of the 8-cell cantilever
beam follows the same procedure outlined above,

The next problem is to excite the normal modes of the actual beam
circuit which is set up on the electronic differential analyzer. We found that
this could be done very effectively by driving the beam at antinodal points with
a sinusoidal frequency approximately equal to the normal-mode frequency.
The amplitude of the sinusoidal driving voltage is started at zero and is slowly
increased until the sinusoidal beam response becomes appreciable. The sinu-
soidal input voltage is then held conStant until the response builds up to the
desired amplitude, e.g. 20 to 50 volts at the antinodes. The amplitude of the
sinusoidal input is then slowly decreased to zero. The computer circuit re-
presenting the beam then continuous to oscillate harmonically with constant
amplitude at the excited normal-mode frequency. In Figure 5-2 the input
forcing function is shown along with the response for an excitation of the sec-
ond mode of our 8-cell uniform cantilever beam. The beam was driven at
stations 4 and 8, and output displacements and velocities at these antinodal
points were recorded.

By using the sinusoidal forcing technique described in the previous
paragraph one can excite almost a pure modal oscillation with a minimum
of transients. It is often necessary to readjust the forcing frequency after
an approximate experimental determination of the normal-mode frequency.
For modes higher than the first it is usually best to record the output velocity
rather than displacement, since in the velocity outputs the relative amount of
first mode which may have inadvertantly been excited is reduced in comparison
with the highef modes.

In the table below are shown the percentage deviations in normal-
mode frequencies for the 8-cell analyzer beam from the theoretical frequen-
cies for a continuous cantilever beam. In addition, the theoretical deviations
for the 8-cell beam are shown. Evidently the computer deviations agree
closely with the theoretical deviations. Computer components were calibrated

to within several hundredths of a per cent for these tests.
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Table IV

Normal Mode Frequency for a Uniform Cantilever Beam
Beam Length = N = 8

Deviation Deviation
for 8-Cell for 8-Cell
Mode Continuous Beam Computer Theoretical
1 0. 0437 0. 94% 0.72
2 0.275 -0.51 -0.72
3 0.768 -2.48 -2.56
4 1.507 -8.85 -8.67

5.4 Component Accuracy Requirements

One of the fundamental difficulties encountered when continuous de-
rivatives are replaced by finite differences involves accuracy requirements;
the smaller the interval between stations, the higher the accuracy required
in taking the difference. In the case of the vibrating beam, it is evident that
the greater the number of cells for any half-wave length of a normal mode,
the smaller the differences which represent second derivatives become and
the more critical the accuracy requirements become for the summing resis-
tors.

For example, in the first mode of oscillation of a uniform 8-cell
cantilever beam the differences representing bending-moments and accelera-
tions are quite small compared with the displacements. If the circuit shown
in Figure 3-2, it turns out that a one percent error in only one of the 36 sum-
ming resistors will change the frequency the fundamental mode by about one
percent, The departure from the correct frequencies for the higher modes
will be less seriously effected.

The uniform beam can be solved by computing J 4y/ ax4 at the n-th
station directly, so that the equation at the n-th cell is

dy _ .

— % " Vnea t4nay Tt W Yo (5-3)
If the differential analyzer is connected to solve the problem in this manner,
i. e., by computing the fourth derivative as a fifth-order difference, the ac-

curacy of summing resistors becomes even more critical. A one-per cent
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error in one of the summing resistors for only a 5-cell cantilever beam per-
turbs the fundamental frequency by about 5 per cent. 6 For 8 cells or higher
the summing-resistor accuracy requirements are even more critical.

It is felt that for cantilever beams up to 10 cells, 0.1 per cent accu-
racy is adequate for summing resistors when about 1 per cent over-all accu-

racy is desired.

5.5 Effect of Voltage Transients

The deflection of a beam due to an applied force is proportional to

the fourth power of the length of the beam. This is apparent in Equation (5-2),
where the length of the cantilever beam is N, and where the deflection y(N) at
the free end is given by (3@ /24)N4. The deflections along the beam are
represented on the electronic differential analyzer by voltage outputs of am-
plifiers. These latter voltages may be deliberately introduced through appro-
priate input resistors or may be inadvertantly introduced through steady un-
balances in summing amplifiers or transient shifts in amplifier balances. As
a result, beam oscillations may be excited by fluctuations in the power supply
voltages. The sensitivity of the network to such small voltage inputs will in-
crease as the fourth power of the number of cells.

Thus it becomes important to have well-regulated power supplies
which are free from any sudden fluctuations. 2 Drift-stabilized amplifiers

2,10,12,13 In order to test

serve to reduce the long-term amplifier drifts.
the magnitude of unwanted transient oscillations which can occur, 5 and 8-
cell uniform cantilever beams were set up on the electronic differential anal-
yzer using drift-stabilized amplifiers. Zero initial displacements and ve-
locities were used, and beam displacements were recorded after the release
of the initial conditions. As a result of initial unbalances in the amplifiers
transient first-mode oscillations of 6 and 40 millivolts amplitude were re-
corded for the 5 and 8-cell beams, respectively. The disproportionately
larger amplitude for the 8-cell beam was probably the result of small un-
balances due to circulating ground currents between relay racks (one rack
was required for the 5-cell beam, two racks for the 8-cell beam). After

release of the initial conditions the first-mode oscillation grew about
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1 millivolt per first-mode cycle as a result of transient voltage inputs (pre-
sumably from the power supplies). Since £100 volts is the full-scale com-

puter output, none of the above effects are considered serious.

5.6 Tapered Cantilever Beam

In order to evaluate the accuracy of the difference method for non-
uniform beams, the tapered cantilever beam shown in Figure 5~3 was set up
on the electronic differential analyzer. The beam had a taper-ratio of 2:1 in
both chord and thickness and could represent an aircraft wing. Use of the
built-in boundary condition implies that the wing mass is small compared with
the mass of the fuselage. Two problems were solved: (1) the tapered beam
alone, and (2) the tapered beam with the addition of a concentrated mass load
at station 8. This load siﬁmlates a wing tank of half the mass of the wing.

A gust load of one-second duration was applied as a force proportion-
al to the chord at each cell. Figure 5-4 is a recording of the displacement at
station 8 and also shows the gust load. An integrator time scale of 0.2 sec-
onds was used in this solution.

The normal-mode frequencies were obtained for the 8-cell beam with
and without the wing tank. These are tabulated below along with the values for
the normal-mode frequencies obtained by a differential-analyzer solution of

the continuous problem.

Table V

Normal-Mode Frequencies of the Tapered Beam

Continuous Beam 8-Cell Beam 8-Cell Beam
Mode (No Wing Tank) (No Wing Tank) (Wing Tank)
1 0. 00773 cps 0.0767 cps 0.0372
2 0.331 0.326 0. 256
3 0. 820 0.784 0.709
4 2.016 2. 000
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Figure 5-3

Tapered Cantilever Beam with Concentrated Mass Load
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Figure 5-5

Comparison of the Moments at Stations 1 and 4 of the Tapered Cantilever
Beam with and without the Concentrated Mass Load
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In Figure 5-5 the moments near the root (station 1) and near mid-
span (station 4) are recorded for the cases with and without the wing tank.

For both recordings identical one-second gust loads were applied.

5.7 Uniform Cantilever Beam with Concentrated Mass Load at the Free End

In the previous section we solved a tapered cantilever beam with a
concentrated load at the free end. Actually, the concentrated mass occurs 1/2
station from the free end, as is evident in F'igure 5-5 and also in Figure 5-6
below. If the beam under consideration has the concentrated mass located at

the true end (station 8 1/2 in Figure 5-6), then an error will result in the

i

Figure 5-6

Uniform Cantilever Beam with Concentrated Mass Load at the Free End

difference approximation. The larger the concentrated mass ML’ the bigger
will this error be. In order to investigate this effect, the uniform 8-cell

contilever beam shown in Figure (5-6) was considered. Let us denote the
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concentrated mass at station 8 as ML’ and the total mass of the uniform
beam by MB. Normal-mode frequencies of the 8-cell beam for various
ML/MB ratios will be compared with theoretical frequencies when ML occurs
at the exact end of a continuous beam. In this way we can estimate the error
which results.from locating the mass at a point 1/2 station from the end.
Manley9 gives the following equation for the first-mode frequency

of a cantilever beam with a concentrated mass load at the free end

2 _ 3.04 EI 1

W Z ™M (5-4)
P L M_I-_‘ + 0.226
B
If we let
2 3.04
.BL i (5-5)
+ 0.226
My
then

_ 1 [E1 B
W = = (5-6)
Y, LT

which is similar to Equation (4-8). Thus ﬂL represents the dimensionless
frequency parameter for the first mode and will be different for each ratio of
M; /Mg. .

Timoshenko derives a slightly different relation for the frequency

of the end-loaded cantilever beam. His formula is

2
B - — (5-7)
* 170

2].2
w e

Both Equations (5-5) and (5-7) predict a linear variation of 1/ BLZ with
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The electronic differential analyzer was used to find the first-mode
frequencies and hence B L for an 8-cell cantilever beam. An integrator
scale factor of 0.2 seconds was employed with R = 0,2 megohms and C = 1

microfarad. Also, ¢, =1, ¢, =1, .... ¢, =1, andd, =1, é, =1,
fl f2 f8 d1 d2

6, =1, ¢, =1+ 8M, /M,. The normal modes were excited by
d, dg LB
sinusoidal forcing voltages as described in Section 5.,3. The computer

frequencies were multiplied by RCN2 ( = 0.2(64) = 12.8) in order to obtain
BL‘ In the table below the first mode frequencies are compared with those

given by Equation (5-5) for various ML/MB' From the table it is

Table VI

First-Mode Frequencies for Uniform Cantilever Beam
with Concentrated Mass at the Free-End

ML/MB ﬁL Percentage Deviation
(8-cell computer) from Equation (5-5)
0 3. 549 -2.7%
1/8 2.973 0.0
1/4 2. 602 2.9
1/2 2.154 5.1
1 1.683 6.3
2 1,264 7.5
4 0.9229 8.9
6 0.7630 9.1
8 0.6630 9.1

evident that for ML/MB < 1/2 the error in the 8-cell beam resulting from
the mass occurring 1/2 station from the free end is fairly small. For large
ML/MB the effective beam length becomes 7-1/2 and not 8, which accounts

for the larger deviation in this region. It should be remembered that Equa-
tion (5-5) is approximate; the percentage deviations given in the table are

therefore somewhat in error,
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From the first-mode frequencies for the 8-cell beam the plot of
1/ ﬁLz versus ML/MB shown in Figure 5-7 was made. The following

formula was obtained from the intercept and slope of the curve:

B2 . 3.643 (5-8)
L M.
= * 0.2892
B

The second and third-mode frequencies were also determined as a
function of ML/MB for the 8-cell cantilever beam. The data is summarized

in the table below.

Table VII
L BL
M. /M Second Mode Third Mode

L'"B (8-cell Beam) (8-cell Beam)
0 22,14 60. 17
1/8 20. 39 57.54
1/4 19. 56 96,52
1/2 18.78 55,71
1 18. 23 55.09
2 17. 86 54,71
4 17.65 54.53
6 17.59 54. 46
8 17.55 54. 40

Note that B8 L for the second and third modes approaches a limiting value for
large ML/MB. For infinite ML/MB there can be no displacement at station
8, so that Yg = 0. Since in this case the bending moment at station 8 is
also zero, we have effectively a hinged end fastening. Consequently the
limiting values of B, are those for the second and third modes respectively

of a built-in, hinged beam,
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CHAPTER 6

APPLICATION TO HINGED-HINGED BEAMS

6.1 Analyzer Circuit for the Hinged-Hinged Beam

In this chapter we will discuss briefly the solution of hinged-hinged
beams using the difference method, first for a uniform hinged-hinged beam
and then for a uniform beam with a concentrated mass at the center. Equa-
tions (2-10) and (2-11) give the equillibrium equation at the nth cell. The
hinged boundary conditions are given in Table I, Section 2.2. If the ends of
an N-cell hinged-hinged beam occur at X = 0and X = N, the boundary
conditions require that

Yo = Mo =0
=M

yN N =0 (6-1)

From Equations (2-10), (2-11), and (6-1), the system of N - 1 equations for
the N-cell hinged-hinged beam is

2
dy1

= - m2+ 2m1 +¢1(-r)
1 4dT

dy2

- m, + 2m2 - m, +¢2(7’)

3

- m, + 2m, - m, +¢3(’7') (6-2)

3

3
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2
d"yN-1

é = 2m - m +&,. . (T)
dy.; 72 N-1 - ™n-2 7 ®N-1

where

m, = <13f1(y2 - 2y1)
m, = “‘fz‘ys -2y, tyy)

m3 = éf3(y4 - 2y3 + y2) (6-3)

2

N-2 = % ON-1  PNez P oN-g)

m = ¢

fn-10-2yyn-1 * VN-2)

The electronic differential analyzer circuit for solving the hinged-
hinged beam by the difference method is shown in Figure (3-5). Evidently
3(N-1) amplifiers are required for an N-cell beam.

6.2 Uniform Hinged-Hinged Beam

An 8-cell uniform hinged-hinged beam was set up using the circuit
of Figure 3-5. An integrator time scale of 0. 2 seconds was employed. The
frequencies for the first three modes were determined using techniques
similar to those discussed in Section 5.3. In the table below these frequencies
are compared with the theoretical frequencies obtained from Equation (4-6)
for the continuous hinged-hinged beam and from Equation (4-12) for the 8-cell

beam.
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TABLE VIII
Normal Mode Frequencies for a Hinged-Hinged Beam

Beam Length = N = §

Deviation Deviation
for 8-Cell for 8-Cell
Mode Continuous Beam Computer Theoretical
1 0.1227 cps -1, 45% -1.29%
2 0.4909 -5.00 -5.22
3 1.1045 -10. 8 -11.0

6.3 Uniform Hinged-Hinged Beam with Concentrated Mass at the Center

Next we consider an 8-cell uniform beam with an additional mass

at the center, as shown in Figure 6-1. The theoretical frequency of

vibration for the first mode is given by9

1 (6-4)

where MB is the mass of the beam and ML is the additional mass concen-
trated at the center. This equation was derived by Rayleigh's method for
heavy beams. For ML = 0, Equation (6-4) reduces to the first-mode

frequency given in Equation (4-8) for a uniform hinged-hinged beam.

Figure 6-1
Uniform Hinged-Hinged Beam with Concentrated Mass Load at the Center
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A uniform 8-cell hinged-hinged beam was set up on the differential
analyzer using an integrator time scale of 0.2 seconds as before. The
input resistor to the dy4/d7‘ integrating amplifier was set equal to
0.2(1 + 8ML/MB) to represent the added mass ML at the center. First-
mode frequencies were determined for ML/MB =1/8, 1/4, 1/2, 1, 2, 4,
and 8. In addition, the second-mode frequency for ML/MB = 8 and the
third-mode frequencies for ML/MB = 1/2 and 8 were found. In each case,
the normal modes were excited in the manner described in Section 5. 3,

i. e., by driving the beam sinusoidally at antinodal points and observing the
frequency after removal of the driving function.

The results are shown in Table IX below. Of particular interest
is the data on the last line, which shows the second-mode frequency when
ML/MB = 8. The frequency checks within 0. 05 per cent with that obtained
for ML/MB = 0. The two frequencies should, of course, agree since for
the second mode the displacement at the center of the beam is zero, thus

making the motion independent of the - mass at the center.

Table IX

Uniform Hinged-Hinged Beam

with a Concentrated Mass at the Center

TL = period of oscillation with concentrated mass ML at center.
o period of oscillation without ML'
ML Period TL T0 T0 MB

Mode MR (8-Cell Beam) (8-Cell Beam) (Theoretical)

1 0 8. 268 sec 1 1

1 1/8 9. 240 1.118 1.118

1 1/4 10.144 1,227 1.225

1 1/2 11,770 1.424 1.414

1 1 14. 420 1.744 1.732

1 2 18. 66 2. 257 2.236

1 4 25.0 3.024 3.000
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Table IX (continued)

M

= i T ¢
M Period T T, ’T‘; ’IVIE
Mode M—é (8-Cell Beam) (8-Cell Beam) (Theoretical)
1 8 34.4 4,161 4,123
2 0 2.143
3 0 1. 015
3 1/2 1.269 1.250
3 8 1.462 1. 440
2 8 2,144

95
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CHAPTER 7

APPLICATION TO FREE-FREE BEAMS

7.1 Uniform Free-Free Beam
A cellular free-free beam is shown in Figure 7-1. The boundary

conditions of zero bending moment and shear force at the ends are given in
Table I, Section 2, 2,

Figure 7-1
Cellular Free-Free Beam

Thus for an N-Cell free-free beam

and (7-1)
My = Mpyy =0

From Equations (2-10), (2~11) and (7-1) the system of N equations for the

N-cell free-free beam become
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2

é ks 6 (T)
= -m, + T
d, 772 2 v9
2
é V2 om, +& (T)
= -m, + 2m, +
d, 772 3 2%99
2
é V3 2 é.(T)
=-m, +2m, -m, +
d; 772 4 3 9 ¥®P3
2
é Y4 2 ¢ (T)
=-m,.+2m, - m, +
dy 7.2 5 4 "3+ Py
2
dy
N-2
é = -m + 2m -m +9
dy.s 972 N-1 N-2 ~ ™N-3
2
é 7 IN-1 2 +@. (T)
= 2m -m T
dy.; 922 N-1 ~ ™N-2 ¥PN-1
2
s N ® ()
=-m. .+ (T
dy 772 N-1 TON
where
m,, =¢f2 (y3 2y2+y1)
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The differential analyzer circuit is the same as that for the
cantilever beam (see Figure 3-2) except that both ends have the configuration
of the free end which occurs at the N+1/2 station for the cantilever beam.

Normal-mode frequencies for a 7-cell uniform cantilever beam
were determined both by the sinusoidal forcing technique described in Section
5. 3 and by setting initial conditions to correspond to a given mode shape.
Integrator scale factors of 0.2 seconds were employed. Table X gives the

observed normal-mode frequencies.

Table X

Normal-Mode Frequencies for a 7-Cell

Uniform Free-Free Beam

Deviation Deviation
for 7-Cell for 7-Cell
Mode Continuous Beam Computer Theoretical
1 0.3633 cps 0.82% 0.90%
2 1.0016 -3.70 -3.70
3 1.9638 -12.21 -12. 34

7.2 Stability of the Free-Free Beam Circuit
The principal problem associated with the representation of a

free-free beam arises because of the boundary conditions at the free ends,
namely that those ends are not restrained in either displacement or slope.
This means that the beam will exhibit steady-state translation and rotational
velocities and accelerations as a result of any initial velocities or steady
applied forces. Thus, any initial voltage transients or amplifier unbalances
in the electronic differential analyzer will cause the computer outputs
representing the beam displacements to gradually drift. In Figure 7-2
recordings of the drift in displacements at the various stations are shown
following the release of initial conditions which had been set at zero.

For operational amplifiers which are not drift stabilized the drift
of a free-free beam circuit of 8-cells or more can cause considerable

difficulty, since the voltage outputs may increase to saturation by the time
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Figure 7-2
Drift of an 8-Cell Free-Free Beam
Following Release of Zero Initial Conditions
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several periods of oscillation of the fundamental mode take place. However,
with drift stabilized amplifiers the drift effects are fairly small, as can be
seen in Figure 7-1. There the biggest displacement represents about a
1 volt drift after 8 periods of the fundamental mode.

In Chapter 10 we will again consider the free-free beam, but with

deflection due to transverse shear included in the equations.
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CHAPTER 8

BEAMS WITH VISCOUS DAMPING

8.1 Beam Equations Including Viscous Damping
We now take up the problem of flexural vibration of beams when

viscous damping is present. The damping will add an additional transverse
force proportional to the transverse velocity 9y/ dt. Thus from Equation

(1-1) the new equation becomes

32 ., %y . o 3y 3%y s -
= EI (%) 5 @ <+ px) _g?d f(%, D) (8-1)

where c(X) represents the damping force per unit length per unit transverse
velocity. Similar to the way in which EI (%) and ©(X) were rewritten in
Equations (1-10) and (1-11) as constant factors times dimensionless functions

of x, we write

c(R) = coév(i) (8-2)

Here c, is equal to the maximum value of ¢(X) and qSV( X) is dimensionless.

Also we introduce the dimensionless distance variable

X = % (1-8)
and the dimensionless time variable
1 EIO _
L Po
so that Equation (8-1) becomes
32 \2 L2, 5 52 L4
2y bx) 24 + 60 2L + 4 (0 24 = g Hx 1)
ox ox p EL 9t ot 0
(8-2)
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Letting
ch
c, = o
'OoEIo
and
4
fx,1) = g fx)
o)
we have finally
2 2 2
O 4 9 + c g (x) O+ Y - g(x,t
Sz 40 S e SEr 4w 2 -t

For a cantilever beam the end conditions require that

- 8y (o,t) _
y(O,t) -5% =0

and

2 2
3y (L,t) _ 9 Ty (1,t) _

ox X

Equation (8-4) is of course subject to initial conditions
y(x,0) = Y(x)

and

8.2 Difference Equations Including Viscous Damping

ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN

(8-3)

(1-16)

(8-4)

(8-5)

(8-6)

(1-6)

(8-17)

As before we consider the beam displacement y only at certain

stations in x. Defining a new distance variable X such that the distance

JAN X between stationsis unity, we have for the bending moment at the nth

station
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m, = éfn(yn+1 =2y, * Ypoq) (2-10)

From Equation (8-4) the difference equation at the nth cell becomes

é © n é ik + 2 +@ (7)  (8-8)
+ —_— = - - m -

dn dT2 ¢ vy dT M1 my n-1 n
where

_ 1 P

(T) = utolT) (8-9)
Sy

cC = -N—ﬁ 9 (8-10)
and

7T=nN% , (2-5)

N being the number of cells into which the beam is divided.

For an N-cell cantilever beam having a built-in end at X = 1/2
and a freeendat X = N + 1/2, the complete equations, including viscous
damping,are similar to those given in Equations (2-12) and (2-13) except
for the addition of the damping term qu dyn/dT at each cell.

n

8.3 Computer Circuit for the Viscous-Damping Case

The electronic differential analyzer circuit at the nth cell when
viscous damping is included is shown in Figure 8-1. The circuit at the beam

ends is similar to those shown in Figures 3-2 and 3-5.
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yr\+l

Figure 8-1
Analyzer Circuit at the nth Cell Including Viscous Damping

8.4 Impulse Response of an 8-Cell Cantilever Beam with Viscous Damping

As an actual example of a beam problem including viscous damping,

consider a uniform 8-cell cantilever beam with an bimpulse é (7) of unit
area applied at each station along the beam. An integrator time scale of 0.2
seconds was used for the computer circuit (R = 0.2 megohms, C =1
microfarad). A 50 volt input pulse of 0.2 seconds duration was applied
through 5 megohm input resistors to each of the stations.

In Figures 8-2 and 8-3 the unit impulse response at each station is
shown for various damping constants cyr The results have been normalized
for a beam of unit length, and the time scale is given in units of the dimen-
sionless variable t. If Wn(t) represents the unit impulse response at the nth
station, then the response Yn at the nth station to any uniform input f(t) is

given by

t
yn(t) = f Wn(t - o)(o)do (8-8)

- 00
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I e

Figure 8-2

Unit Impulse Response of a Uniform Cantilever Beam with

Viscous Damping (Input and Displacement at Stations 7 and 8)
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Figure 8-3
Unit Impulse Response of a Uniform Cantilever Beam with

Viscous Damping (Displacement at Stations 2, 3, 4,5, and 6)
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or the equivalent expression

[« o]
yn(t) =/ Wn(d)f(t -0 )do (8-9)
0

Both these integrals can be approximated conveniently by finite summations.
If a differential analyzer of sufficient capacity is available, however, a direct
solution with f(t) as the input would be the most practical method of obtaining

the beam response,
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CHAPTER 9

BEAMS WITH TIME-VARYING BOUNDARY CONDITIONS

9.1 Method of Introducing Time-Varying Boundary Conditions

Up to now we have considered only homogeneous boundary conditions

in treating vibrating-beam problems. Actually there is no reason for limiting
the solutions to this type of problem. Any non-zero time-varying boundary
condition can be introduced. For example, suppose that a beam has its
displacement at one end given by an explicit time function. One other condi-
tion at this end must also be given; let us assume that the bending moment
vanishes. If the end occurs at the nth station, then the difference equations

up to the time-varying boundary become

¢ ry-g 2 b (T)  (9-1)
= -my . +2m, , -m + 7 -
N N-1 N-2 N-3 T PN-2
2
dy
N-1
QS = 2m _ - mN_z +¢ (T)
aN-1 gp? N-1 N-1
and
M-z T % Oner T e *YNGY (9-2)

mNor T b [YN(T’ TNt yN-z]

where .yN(T) is the specified displacement at the end of the beam.

9.2 Cantilever Beam with Specified Displacement at the Free End.
Assume the beam with the specified displacement at the Nth station
is built in at the other end, i.e., y = y; = 0. Equations (2-12) and (2-13)
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give the difference equations at the built-in end. Equations (9-1) and (9-3)
give the difference equations at the forced end.

An 8-cell uniform cantilever beam with the free end forced was
set up on the electronic differential analyzer. As a specific example the
prescribed motion yN(T) at the free end was taken as sinusoidal, Other
function-generating equipment could have been used to simulate any arbitrary
2,10 Note that the beam length is N-1/2

since the end occurs at station N, and not station N+1/2 as is the case for

time-varying boundary conditions.

completely free boundary conditions.

9.3 Beam on Elastic Foundations

Consider next the beam shown in Figure 9-1.

Figure 9-1

Hinged-Hinged Beam on Elastic Supports

Here the ends of the beam are supported elastically and in such a manner
that the bending moment vanishes. If the right-hand end occurs at X = N,

the equation of motion at station N-1 is from Equation (2-11)
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é dzyN'l 2 +@ (7) (9-3)
= 2m,, ., - Mo / -
dN—l d7'2 N-1 N-2 n
while at station N
¢ oy k (9-4)
= - y -
dN dT? N

where k is the spring constant of the elastic supports.

m_are given as usual by Equation (2-10).

The bending moments

[—
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CHAPTER 10

VIBRATION OF BEAMS INCLUDING DEFLECTION

DUE TO TRANSVERSE SHEAR

10.1 Equations for Transverse Beam Motion, Including Shear Displacements

In Section 1.1 the basic dynamic equation for transverse displace-

ment of a thin beam was given as

2 . -
2 vxD+ pm RIRD - FEH (10-1)
ox at
where the shear force V(x,t) is given by
v 2_M (10-2)
X

The bending moment M(x,t) is given in turn by

M = EI(x) 25 (10-3)

"l

9

where B (X,1) is the neutral-axis slope due to the bending-moment, In the
thin-beam theory used up to now, the neutral-axis slope due to transverse
shear force is neglected, so that 8 = 3y/ 3x. However, a more accurate
expression for the neutral-axis slope includes both the contribution £ due
to the bending moment and the contribution & due to the transverse shear

force, Thus

QY - B+ «a (10-4)
ax
where
- . vV )
® = - ARG (10-5)
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Here kAG(X) is the shear rigidity at X. From Equations (10-2), (10-3), (10-4), -
and (10-5)

M= E(D) % + L oM (10-6)

and
2 2
3°™M . m» O Y _Hii
R P (X) —5 = f(x, t) (10-7)
ox 9X

become the equations to be solved when transverse shear effects are included.
Similar to the way in which EIX) and p(X) were written in Equations
(1-10) and (1-11) as constant factors time dimensionless functions of x, we

write

kAG(X) = kAGO ¢S(3E) (10-8)

where kAGo is equal to the maximum value of KAG(X) and where qSS()'() is

dimensionless. As before we introduce the dimensionless distance variable

X = % (1-8)
and the dimensionless time variable
t = Elz _?% t (1-13)
We also define a parameter S given by
S = —E—Io-—2 (10-9)
kAGOL

From Equations (1-8), (1-13), and (10-9) Equations (10-6) and (10-7) become
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2- 2
M d -
Lo+ dy(x 24 = f(x,1) (10-10)
b'e ot
where
M = ¢ i; + S 2°M (10-11)
f dx 0% 342
and where
LY -
f(x,t) = N f(x, t) (1-16)
(o]

The parameter S represents the relative importance of the deflection due to
transverse shear, and for a given beam cross-section is inversely propor-

tional to the beam length squared.

10.2 Difference Equations Including the Transverse Shear Effects

Next we divide the beam length into N segments and consider the
displacement y only at stations in x. Defining a new distance variable X such
that the distance AX between stations is unity, we have for the equation of

motion at the nth cell

¢dn % =T Mgy T 2my -my g YT - (10-12)
where from Section 2.1
T = N% (2-5)
and
& (T) = = 1.(T) (10-13)

N
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From Equation (10-11) it follows that m is given by

2
_ _ SN _ _
my = d’fn(yn+1 2%+ Yp) * 7;8_ (m m, m,_y) (10-14)
n

The electronic differential analyzer circuit for solving Equation (10-14) at
the nth cell is shown in Figure 10-1. Note that there is now a feedback loop
in which these are no integrators. In order to avoid possible electronic

instabilities (high frequency oscillations) whenever d)s /SN2 becomes too
n

small, a small capacitor is inserted across the feedback resistor in amplifier
A6. This capacitor is sufficient to reduce the gain of the A4 - A5 - A6

loop well below unity at those frequencies where the gain of the dc amplifiers
proper is the order of unity (about 10 kc). The capacitor is, however, small
enough so that it'does not materially affect the accuracy of the computation,
which involves frequencies of the order of 1 cps or lower. Note that in any

case amplifier A, with this additional feedback capacitor is only involved in

computing the cof‘rection to the beam curvature as a result of transverse
shear forces. The main loop(A1 - A2 - A3 - A, - A5) is not affected.

Boundary conditions for the beam including transverse shear are
the same as those used previously. For a free end at X = N + 1/2 the end
condition requires that my = my, , = 0. For a built-in end at X = N+1/2,
YN = Yn41 = O- For a hinged end at X= N, yy = my = 0.

An 8-cell uniform free-free beam was set up on the electronic
differential analyzer using an integrator time scale of 0.2 seconds. Normal-
mode frequencies were obtained for 1/S equal to 640, 320, 160, 64, and 32.
These corréspond to length to thickness ratios of approximately 15, 10.5,

7.5, 4.7, and 3. 3 respectively for a rectangular steel beam. The percentage
deviation from the mode frequency for an infinitely thin beam (1/S = o) was

in each case compared with analyzer solutions for a continuous free-free beam,
including transverse shear effects. 2 The results are presented in Figure

10-2 which shows a plot of /S’S/,é’ versus 1/S for the first three modes, where

'Bs is the normal-mode frequency including transverse shear, and where S
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is the frequency when the transverse shear is neglected (simple beam theory).
The correlation is apparently quite good, indicating that it is very practical
to consider effects of transverse shear when solving beam problems by the

difference method.
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APPENDIX I

CALCULATION OF MODE FREQUENCIES AND SHAPES

FOR CELLULAR FREE-FREE BEAMS

Equations to be Solved

From Equations (2-10) and (2-11) and the boundary conditions in
Table I, Section 2.2, we can obtain a set of N simultaneous ordinary differ-
ential equations for a uniform free-free beam. If we further make the
assumption that the displacement Y3 at the ith station varies as sin AT,

the time variable T is eliminated from the equations and we have

(1- )xvz)yl - 2yy tyg =0 (A-1)
- 2y, +(5-)\2)y2 -4y, +y, =0 (A-2)

Y, - 4yg t (6-A 2)}'3 -4y, +y; =0 . (A-3)

Yo - 4yg * (6- A %Yy, - 4y5 + vg = O (A-4)

2 -
YN-5 = n-g t (B- Ay g - dygp t ¥y =0 (ASD)

2, i
IN-4 = Wn-g * (B- A Dyy_p - by TN = O (A-6)
2 -

YN-3 = o9 ¥ - ATy - 29 =0 (A-T)

2
InN-2 T N T Ay =0 (A-8)

Here the yi's are no longer functions of time but represent the

“amplitude of the normal-mode oscillation of frequency A . The above N
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simultaneous algebraic equations have a non-trivial solution only if the
determinant of the coefficients vanishes. The determinant, when expanded,
becomes a polynomial in A 2 of order N. The roots of the polynomial
represent the normal-mode frequencies for the uniform N-cell free-free

beam.,

Determination of the Characteristic Equations for the Mode Frequencies

The Nth order polynomial in A 2 representing the characteristic
equation for the N-cell free-free beam is apparently impossible to obtain in
the general N-cell case. Thus the polynomial must be found by resolving
Equations (A-1), (A-2), ..... , for each number of cells desired. One way
to solve the equations is to find Y3 in terms of Y1 and y, from Equation (A-1).
Thus

2
Y3 = (-1 + A )y1 + 2y, (A-9)

From (A-2) and (A-9)

2
yg = (-2 + 4x Ay + (-3 - Ay, (A-10)
Similarly
y5 = (-3 +9x 2+ Ahy, + (4 +6Ady, (A-11)
g = (-4 + 1422+ 8AYy + 5+ 2%+ Ay, (A-12)
yg = (-5 + 14 A% + 35 A% + A%y, + (6 + 56 A2+ 10 A%y,
(A-13)
yg = (-6 + 110 A%+ 12 }\G)yl #(T+126 0% + 55N 4 )\6)y2

(A-14)

and so on. When the other end of the beam is reached Equations (A-7) and
(A-8) are used to determine two final equations involving only Y1 and y,.

Thus for an 8-cell beam the final two equations are
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2 -
Y5 - 4yg + (5- A g - 2yg =0 (A-15)

and

Yo - 2y, + (1= ADyg = 0 (A-16)

Equations (A-11), (A-12), (A-13), and (A-14) are used to eliminate Y50 Yge
Yoo and Yg from Equations (A-15) and (A-16), from which

(28 2-00A %-540 - A%y + (-56 A 2-120 A%-12A5)y, = 0 (A-17)

and

(-8 A%+a8X 100 A8-12 A B)y, + (28X Z-00n %5408 A By, =0 (a-19)

Eliminating y, and y, from Equations (A-17) and (A-18) we have finally

~336 A4+ 331208 - 514008 + 2432 010 ase 1243614 Z16 -

(A-19)
This is the characteristic equation for an 8-cell free-free beam.,
Calculation of the Normal-Mode Frequencies

The solutions (roots of the polynomial) of Equation (A-19) are the

normal-mode frequencies for the 8-cell beam. Note that we have a second

order root when A 2 . 0. This corresponds to a constant displacement
or constant velocity of the free-free beam in translation or rotation. The

next four roots of Equation (A-19) are

A% =o0.12301 , A, =0.35201
Azz = 0.88046 , A, = 0.93833
Ag? = 295610 , Ag = 1.71933
A2 =6.54684 , A, = 2.55868




These represent the frequencies for the first four modes of oscillation of a
uniform 8-cell free-free beam. Since AX , the distance between stations,
is unity, the length of our 8-cell beam is 8. To find the frequency for a
beam of unit length we need to multiply the above frequencies by 82 or 64,
These frequencies can then be compared with those given in Table II of
Section 4. 3 for a continuous free-free beam. This has been done in the
Table XI below.

TABLE XI

Comparison of Frequency Parameter B for

Continuous and 8-Cell Free-Free Beams

Mode (Continuous Beam) (8-Cell Beam) % Difference

1 22.373 22,529 + 0.72
2 61.673 60,053 - 2.63
3 120.90 110.037 - 9.00
4 199, 86 163,756 -18. 06

The above calculations were carried out for free-free cellular beams
from 3 to 16 cells. However, to simplify the calculations one can take advan-

tage of the symmetry of the uniform free-free beam.

Determination of Symmetrical Mode Frequencies
The first, third, fifth, etc., modes of a uniform free-free beam

are symmetrical about the beam center. Thus we can solve for these modes
by considering only one half of the beam and by letting the first and third
derivatives along the beam vanish at the center. For an 8-cell beam this is
equivalent to considering only the displacements Yy Y92 Y3o and y 4 and
letting y5 = y, and yg = yg. From Equations (A-1) through (A-4) it follows
that

(1- A 2)y1 -2y, tyg =0 (A-20)
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- 2y, + (5- )\2)y2 - 4y3 + 3, =0 (A-21)
2 .
Yy = 4y + (6- A%)yg - 3y, =0 (A-22)
2
Yo = 3yg +(2- A%y, =0 (A-23)

From Equations (A-20) through (A-23) it is easy to eliminate the y's, obtain-

ing

S arZe3aat 18- A8 <0 (A-24)

as the characteristic equation for the symmetrical modes of an 8-cell free-
free beam. The first two roots of this equation (other than )\ = 0) will
give the A and }\,3 values found in the previous section. However,
Equation (A-21) was much easier to obtain than the complete Equation (A-19)
and the roots are simpler to calculate. The saving in computation time is
particularly helpful when the solutions for N up to 16 are calculated.

For an odd number of cells N the symmetrical modes are obtained

by considering E;-} cells and letting

IN+1 = IN+1 » YN+1 = IN+1
5 - 1 —— + 1 5= - 2 —— + 2

Determination of Anti-Symmetrical Mode Frequencies
The second, fourth, sixth, etc., modes of a uniform free-free beam

are antisymmetrical with respect to the beam center. Thus we can solve for
these modes too by considering only one-half of the beam and by letting the
zeroth and second derivatives along the beam vanish at the center. For an

odd number of cells N this is equivalent to letting YNt = 0 and IN+1

=z -7 -1
- YN+1 .1 For an even number of cells YN = T yy . and YN L =
2 2 2 2
- IN ' Thus for an 8-cell beam Y4 = - ¥g and Y3 = - Yg- From
2

Equations (A-1) through (A-9) it follows that

A-5
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(1- Ay, - 2y, + 34 = 0 (A-25)
- 2y, + (5= My, - dyg +y, = 0 (A-26)

¥y - 4yg t+ (6- }\Z)y3 - 5y, =0 (A-27)

Yy - 5y5 + (10- APy, = 0 (A-28)

From Equations (A-25) through (A-28) it is again easy to eliminate the y's,

obtaining

-8an 2+ 11ant - 2208+ (8 -0 (A-29)

as the characteristic equation for the anti-symmetrical modes of an 8-cell
free-free beam. The first two roots of Equation (A-29) (other than A = 0)
will give the A o and A, values found in the previous section. In fact
Equations (A-24) and (A-29) for the symmetrical and anti-symmetrical modes
respectively are the factors of Equation (A-19). Thus

16

A2 36)\14 - N =

- 336A% + 3312 A% - 514008 + 2432010 - 456
(-aN2+3a 0 t1a0 8- A8 (-84 AZr11an %2205+ A8 =0 (A-30)
is the complete characteristic equation for the §-cell uniform free-free beam.

Normal-Mode Frequencies for 3 Cells through 16 Cells

Using the techniques described in the previous two sections the
normal-mode frequencies for the first four modes of a uniform free-free
beam were calculated for 3 cells up to 16 cells. The resulting dimensionless

frequency parameters are compared with the continuous beam in Table XII.
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TABLE XII

Comparison of Frequency Parameterﬁ for
Continuous and Cellular Uniform Free-Free Beams

First Mode Second Mode
No. of Cells % Error No. of Cells % Error
3 22, 045 -1.47
4 22,627 1.17 4 50,596 -17.95
5 22,654 1.25 5 55,902 - 9.36
6 22.610 1.07 6 58. 214 - 5.61
7 22.565 0.90 7 59, 387 - 3,70
8 22,529 0.72 8 60,053 - 2.63
9 22,501 0.58 9 60, 465 - 1,96
10 22,479 0. 46 10 60,737 - 1.51
11 22,462 0.41 11 60,925 - 1,21
12 22, 449 0. 36 12 61,061 - 0,99
14 22.430 0. 26 13 61.163 - 0,82
16 22,417 0. 20 15 61.302 - 0,60
Continuous 22,373 -- Continuous 61,673 --
Third Mode Fourth Mode
No. of Cells % Error No. of Cells % Error
5 87.25 -27,. 84
6 99, 28 -17, 89 6 131,71 -34,01
7 105,99 -12, 34 7 151, 28 -24, 30
8 110. 04 - 9.00 8 163.76 -18.06
9 112.64 - 6.84 9 172, 07 -13.90
10 114,41 - 5,37 10 177, 84 -11.01
11 115,66 - 4,34 11 182, 00 - 8.93
12 116.58 - 3.58 12 185. 09 - 7.39
14 117, 81 - 2,56 13 187. 43 - 6.21
16 118,58 -1.92 15 190,71 - 4,57
Continuous 120,90 -- Continuous 199, 86 --

Summary of Characteristic Equations

The characteristic equations for the mode frequencies are given for 3

through 16 cells in the following table:
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TABLE XIII

Characteristic Equations for a Uniform
Cellular Free-Free Beam

Three Cells

Four Cells
200t - 12a8 4 A% - 2a2 - AHoaZ i A =0
Five Cells
50 75 A Ce1a AE- A0 - 5AZ- A% (1oAZ13ate A6 - o
Six Cells
105 A%-328 A O+166 A 8-24 010 A2 - (3A2.3A % AS) (35A 2160 % AB) =0
Seven Cells

196A %~ 113425 + 105008 - 203010 4 30012 _ )\ 14

(1422 - 1A%+ A8 (1an2 - ront+ 19A8 - A8 - o
Eight Cells
336 A% - 331208 + 51400 8 - 2432010 4+ 4560 12 o35 A 144 A 16
(A2 - 3ax% + 1408 - A8 (8an? - 11aat 4 2208 - A8 - o
Nine Cells
540 A - 8514 A 84+ 20814 A 8- 15471 A 104+ 4600 A 12- 655 A 14+ a2 A 16 518 _

(30A2-63 A% 1708 A8 (18 a%- 246 A% 16726 - 2508+ A19) = o
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Ten Cells
825X 4-19800 A8+72722 8-80584 A 104367711 12-8040 A1 4+890N 18 48 )\
(5A 2-10ah 2+101A o200 8+ A19) (165X 2-528 A 4220052808+ A10) = o

Eleven Cells

12101 %-42471 ) 8+225654 A 8-358435 A 104234696 A1 2-74980 A 14+12698A 16
A 20_ 22

-1161A 18454

(55 2-253 ) 44148 A8-2308+ A10) (22A2-671 A %957 063002 8+31 A 10
A2y S

Twelve Cells

}\10 )\12 )\14

1716 )\4—85228)\6+634985)\8-1401600 +1271536 -567192 +137334)\16

18680A 1841468 1 2060 224 2% -

(6 A2-259A 415041 8-204 28426010 A12)(286A 2-18591 4415601 5-380A 8
4340100012 2 ¢

Thirteen Cells

6 A10_ p12

(917 2-806A%+ 884 B _260A 8420 ) = 0 (antisymmetrical modes)

Fourteen Cells

2 4 6 8

-560x ¥+ 196615 - 14202 8+ 34310 12, , 1% _

(T =32 A7 %+ A
(symmetrical modes)

Fifteen Cells

2 917802+ 4000,5-21392 8+ 426, 10-35, 124 1% - o

(antisymmetrical modes)

(140 M

Sixteen Cells

2 _1002xn 4641208 -761028+30680 105182 124380 14 216 - o

(symmetrical modes)

(8

18+ ,\20=

B




Calculation of Mode Shapes

The mode shapes for the cellular free-free beam are readily calculated
once the mode frequencies have been found. For example, consider the
symmetrical modes of an 8-cell free-free beam. From Equations (A-20)
through (A-23) the following two equations are obtained by eliminating Y3 and

Y4:

2

(1-52% - ahy, +(-1-5r0y, =0 (A-31)

and

2

-1+7r? - By + -2 -ty =0 (A-32)

Indeed, Equation (A-24) is obtained directly from Equations (A-31) and (A-32).
In computing the mode shape corresponding to a particular mode frequency
the displacement at one of the stations is arbitrary in magnitude; the rest of
the displacements are then determined. Let us set Y1 equal to unity., From

either Equation (A-31) or (A-32) Yy, can be calculated for a given A 2, For

example, A 2 = 0.12391 for the first mode, from which Yo = 0. 22543,
Once ¥q and yq are known, Y3 and ¥4 can be calculated from Equations (A-9)
and (A-10),

The third-mode displacements are obtained in the same manner by setting
N 2 . 2.95610. The second and fourth-mode displacements are computed
from the antisymmetrical solution. The following table summarizes the

calculations.
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TABLE XIV

Theoretical Mode Shapes for an 8§-Cell

Uniform Free-Free Beam

First Mode Second Mode
¥y = 1.0000 ¥, = 1. 0000
Yy = 0. 2254 Yy = -0.5486
Y3 = -0.4252 y3 = -1. 21867
Vg4 = -0. 8001 Y4 = -0.6070
Third Mode Fourth Mode
¥y = 1,0000 yi = 1.000
Yo = -1.4270 Yo = -2.328
yg = -0. 8980 yg = 0. 891

Y4 = 1.3248 Y4 = 1.97

The mode shapes for the continuous uniform free-free beam can be

calculated from the equation8

sin Vg -sinh B

_ o .
yn(x) = C [sm an + sinh \/_an +
-Ccos '\/—Bn'i-COSh \/én

(cos Jé nx+ cosh Jénx ) ] (A-33)

Here C is an arbitrary constant. The first two modes are also tabulated by
Raleigh. 14 In Figure 4-5 the mode shapes for continuous and 8-cell free-free
beams are compared. In each case the cellular mode was matched with the

continuous beam at one point.
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APPENDIX II

CALCULATION OF MODE FREQUENCIES AND SHAPES
FOR CELLULAR CANTILEVER BEAMS

Characteristic Equations

The normal-mode frequencies for a uniform cellular cantilever beam
are obtained in the same manner as those for the free-free beam (see Appendix
I). It turns out that the characteristic equations which determine the mode-
frequencies are almost identical with those given for the free-free beam in
Table XIII; the only difference is that the order of the equation in A 2 is one
degree less and a -1 is added to the polynomial, Thus from Table XIII the
characteristic equation for a uniform 8-cell free-free beam is given by

12 14 16

4 6 8 10 ~36x 144 216 - g

336N " -3312 N " +5140 N -2432 )\ " +456 A

while for a uniform 8-cell cantilever beam the characteristic equation is

given by

6 8 1

4 - 2432 28+ 456 A

12, 14

~1+336 22-3312 x 245140 2 0 36 14

2 0; all motions are sinusoidal oscilla-

Here there is no root A
tions. This is because the cantilever beam is clamped at one end. It cannot

translate or rotate through space like the free-free beam.,

Normal-Mode Frequencies

From the characteristic equations the normal-mode frequencies of
the uniform cellular cantilever beam can be calculated. When the number of
cells becomes large, the frequencies for modes higher than the first are
almost identical with those for the free-free beam. We have taken advantage
of this to extrapolate cantilever-beam fréquencies from free-free beam
frequencies in the following table, which compares the frequency parameter
B for the cellular cantilever beam with p for a continuous uniform canti-

lever beam. The first five modes are givén for 3 to 16 cells.
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TABLE XV

Comparison of Frequency Parameter [ for

Continuous and Cellular Uniform Cantilever Beams

First Mode Second Mode
No. of Cells 8 % Error No. of Cells B8 % Error
2 4,000 13.78
3 3.728 6.03 3 21,728 - 1.36
4 3.634 3. 36 4 22, 262 1.04
5 3.591 2.13 5 22,289 1.17
6 3.568 1.48 6 22. 254 1.02
7 3.554 1.08 7 22,217 0. 85
8 3.545 0. 83 8 22,144 0.70
9 3.539 0.65 9 22,15 0.55
10 3.535 0.53 10 22,13 0. 46
11 0. 45 11 0. 41
12 0.38 12 0. 36
14 0. 27 14 0. 26
16 0. 20 16 0,20
Continuous 3.5160 - Continuous 22,030 -
Third Mode Fourth Mode
No. of Cells B % Error No. of Cells B % Error
4 50, 628 -17,92
5 55.939 - 9,33 5 87. 24 -27. 85
6 58. 246 - 5.60 6 99, 28 -17.90
7 59. 41 - 3.171 7 105.99 -12, 34
8 60. 06 - 2.56 8 110. 04 - 9.00
9 60, 46 -.2.01 9 112,64 - 6,84
10 60.74 - 1,56 10 114, 41 - 5,37
11 60.93 - 1.25 11 115,66 - 4,34
12 61,06 - 1,04 12 116,58 - 3.58
13 61.16 - 0,87 14 117, 81 - 2.56
15 61.30 - 0,65 16 118.58 - 1.92
Continuous 61.698 - Continuous 120,90 -
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TABLE XV (continued)

Fifth Mode

No. of Cells B % Error
6 131,71 -34.01
7 151, 28 -24.30
8 163.76 -18.06
9 172,07 -13.90
10 177, 64 -11.01
11 182.00 -- 8.93
12 185. 09 - 7.39
13 187, 43 - 6.21
15 190,71 - 4,57

Continuous 199, 86 -

Mode Shapes
Mode shapes for the cellular cantilever beam are computed in the

same manner as those for the free-free beam (see Appendix I). The calcula-
tions are somewhat more tedious, however, since symmetry effects cannot
be utilized. The mode shapes for the continuous uniform cantilever beam are

calculated from the equation8

cos «[Bn+cosh ‘[Bn

y(x) = C |cos JB_x - cosh B _x -
n n n sin «/—Bn+sinh «/_Bn

(sin \/_an - sinh JBnX) (A-34)

where C is an arbitrary constant, In Figure 4-3 the mode shapes for 4 and
8-cell c antilever beams are compared with those for theuniform beam for
the first four modes. In each case the cellular and continuous mode shapes

were matched at one point.
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APPENDIX III

MODE FREQUENCIES AND SHAPES FOR

CELLULAR CLAMPED-CLAMPED BEAMS

Normal-Mode Frequencies

Although we have not discussed clamped-clamped beams (both ends
built-in) in the main body of the report this type of beam is certainly of
interest. The difference equations, characteristic polynomials, and normal-
mode frequencies for the uniform clamped-clamped beam can be calculated
by the same methods which were used in Appendix I for the free-free beam.
It turns out that the characteristic equations and hence the normal-mode
frequencies are exactly the same in both cases (except that the clamped-
clamped cellular beam has no characteristic roots )\ = 0). Thus the curves
in Figure 4-4 which give the percentage deviation in normal-mode frequency
as a function of the number of cells for a free-free beam apply equally well

to a clamped-clamped beam,

Normal-Mode Shapes
Using the techniques described in Appendix I the normal-mode shapes

for the cellular uniform clamped-clamped beam can be calculated. In Figure
A-1 the mode shapes for continuous, 5 and 8§-cell clamped-clamped beams

are compared.
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UNIFORM CLAMPED-CLAMPED BEAM
w—— CONTINUOUS BEAM
® 8-CELL BEAM
O 4-CELL BEAM

E——

/'/ IST MODE \N

0.0 0.2 04 0.6 0.8 1.0

—~
L/ \ 2ND MODE

N
C 3RD MODE / :
) .

7=/ TN
“NTA N

0.0 0.2 0.4 0.6 0.8 1,0

Figure A-1 Comparison of Mode Shapes for Cellular
and Continuous Clamped-Clamped Beams
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