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SUMMARY

We consider the situation of two ordered categorical variables and a binary outcome variable, where one
or both of the categorical variables may have missing values. The goal is to estimate the probability of
response of the outcome variable for each cell of the contingency table of categorical variables while
incorporating the fact that the categorical variables are ordered. The probability of response is assumed to
change monotonically as each of the categorical variables changes level. A probability model is used in
which the response is binomial with parameters p;; for each cell (i, j) and the number of observations in
each cell is multinomial. Estimation approaches that incorporate Gibbs sampling with order restrictions on
pij induced via a prior distribution, two-dimensional isotonic regression and multiple imputation to handle
missing values are considered. The methods are compared in a simulation study. Using a fully Bayesian
approach with a strong prior distribution to induce ordering can lead to large gains in efficiency, but can
also induce bias. Utilizing isotonic regression can lead to modest gains in efficiency, while minimizing
bias and guaranteeing that the order constraints are satisfied. A hybrid of isotonic regression and Gibbs
sampling appears to work well across a variety of scenarios. The methods are applied to a pancreatic
cancer case—control study with two biomarkers. Copyright © 2007 John Wiley & Sons, Ltd.

KEY WORDS: isotonic regression; order restrictions; biomarkers; parameter constraints; multiple
imputation

1. INTRODUCTION

In many situations in biomedical studies, the population can be grouped according to some ordered
categorical covariates. In some applications it will be natural or reasonable to assume the mean of
an outcome in the subgroups is ordered with regard to the categorical covariates.
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The particular research area that motivated this work comes from studies involving cancer
biomarkers. There is considerable interest in discovering and assessing the molecular properties
of tumors, normal tissues and serum from cancer patients and relating these properties to outcome
variables, such as response to treatment or survival or case—control status. The researcher will
frequently store specimens, such as a piece of the tumor or normal tissue after surgery, or a
vial of serum for each patient. These specimens are later tested to determine specific molecular
properties. The particular application we discuss later is from a case—control study of pancreatic
cancer, with two serum biomarkers measured. The two biomarkers are CA-19-9 and CA-125,
which are known to be relevant in the development and progression of pancreatic cancer. It is
biologically reasonable to assume that the probability of being a case changes monotonically as
the biomarker values change. Furthermore, since these two biomarkers measure different aspects
of the biology of cancer, it is plausible that a combination of them may be useful for predicting
the outcome variable. The overall goal is to understand the relationship between the outcome
variable and the combination of covariates while utilizing the fact that the covariates are ordered.
By utilizing the ordering we hope to be able to gain efficiency, compared to ignoring the ordering;
this may be particularly useful in small studies.

In studies of this type missing data in one or both of the biomarkers is common. Sometimes
the assay does not work for biological reasons, sometimes the specimen is missing, or degraded
too much or of insufficient volume for the assay to run. Since the response is measured and one
of the biomarkers may be measured it would be inappropriate to discard the observation.

There is a considerable statistical literature on statistical models and methods for ordered
categorical variables and inference in the presence of monotonicity or order restrictions [1-8].
In this paper we will focus on the situation of a response variable Y and one or more ordered
categorical explanatory variables X, and the general monotonicity constraint we are interested in
is that if x;<x; then E(Y|X =x)SEY|X =x2).

Isotonic regression is a well-known approach for estimation in a regression model with a sin-
gle explanatory variable and a continuous response. The pooled adjacent violators algorithm
ensures that the response function is a monotonic function of the explanatory variable. The
asymptotic convergence of the estimator does not follow the usual root n rate, this presents a
problem for calculating standard errors and confidence intervals, particularly in small samples.
If there are two or more explanatory variables the concept of isotonic regression generalizes
quite naturally, although the algorithms to estimate the response surface are considerably more
complex [9].

In a Bayesian approach, in general the ordering can be introduced through prior distributions. For
example, if the order restriction is on the parameters of the model, say 0; <0,, then an appropriate
prior would have P(0;<0;)=1. If it is possible to obtain draws of 0; and 0, from the posterior
distribution without the order restriction that 01 <0», then it is a simple matter to discard draws that
violate the restriction to obtain draws from the desired posterior distribution. For example, in the
Gibbs sampling scheme, the parameter (; is drawn from its unconstrained conditional posterior
distribution, but then is discarded if it is greater than the current value of 6, and a new value of
01 is drawn until one satisfying the constraint 6 <0, is obtained [4]. This is followed by a draw
of 0, which must be larger than the latest value of 01, and so on.

In a recent article Dunson and Neelon [10] developed a hybrid of isotonic regression and Gibbs
sampling. In particular, they fit a model without order restrictions using Bayesian methods, but also
apply isotonic regression within the Gibbs sampling algorithm. We will consider an adaptation of
this as one of our approaches.
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There has been a substantial amount of research into methods for analysing data with missing
values [11]. General approaches if the missingness is ignorable are through model-based schemes
using maximum likelihood or Bayes estimation, through multiple imputation and through inverse
probability weighting. Model-based methods can be used if the quantity of interest is a specific
parameter of the parametric model. Multiple imputation is a two-stage procedure in which the
missing values are first filled in, and then the augmented data is analysed. The values to be imputed
are usually based on a model, called the imputing model, which may differ from the model which
is used for analysis of the augmented data. An important issue in multiple imputation is choosing a
reasonable imputing model. This model can be fit to the observed data using maximum likelihood
or Bayesian methods. If Gibbs sampling is used to fit this model and the missing values are treated
as parameters, then draws of these missing values can be used as the imputes in the analysis stage.

In this paper we consider the specific situation of a binary outcome variable and two or-
dered categorical covariates that could contain missing values, and develop a number of different
approaches. The primary parameters of interest are the probability of response for each cell of
the contingency table of categorical covariates. In Sections 2 and 3, the models and methods
are developed and described. In Section 4, we present results of simulation studies comparing
the methods. In Section 5 we apply the methods to the pancreatric cancer case—control study. In
Section 6 we provide a summary discussion.

2. MODELS AND NOTATION

Denote the outcome as Y and the two categorical covariates as R and C, where Y =0
orl,R=1,...,rand C=1,...,c, and define

pij=P(Y=1|R=i,C=))

Conditional on the total number of observations, assume a multinomial distribution for the joint
distribution of R and C, with

q,'jZP(RZi,CZj)

where Zijqi j=1. Let P={p;;} and Q ={g;;}. Observations can be grouped into a two-way
contingency table labelled by the row variable R and the column variable C. However, the value
of R, C or both may be missing for some observations. Thus we observe either Y, R and C, or Y
and R, or Y and C, or just Y. Since in many situations, the missingness is not related to the value
of R and C, we can assume missing is random. The aim is to estimate p;;, with g;; being regarded
as nuisance parameters that are necessary to include when there is missing data. We assume that
the response probability will increase as R increases and also increase as C increases, that is,
a partial order exists across the cells both vertically and horizontally. In particular we assume
Pi.j<pij+1 and p; j<pji1,; for all i and j.

Let n;; be the number of observations and d;; be the number of responses in cell ij. Let p;;
denote a point estimate of p;; and s¢;; denote an estimated standard error of p;;.

When the missingness mechanism is missing completely at random, the complete-case analysis
which uses only observations in which ¥, R and C are all measured provides valid results,
although it is not efficient if the fraction of complete cases is small. There is information about p;;
in the partially missing observations, which together with the order restrictions has the potential
to enhance the efficiency of the method.

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3443-3458
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3. ESTIMATION METHODS

For comparison purposes we will be describing methods that do not guarantee ordering amongst
the estimates of p;;’s as well as those that do. For each of the methods we describe it first in the
case of no missing data, and then how it can be adapted to handle missing data. We will assume
missingness is missing at random.

In the presence of missing covariate data we consider two strategies. One is model-based
in which the algorithms are extended to allow for missing data and inference is based on the
parameter estimates derived from fitting the model. The second strategy is based on multiple
imputation. In this approach the observations with missing covariate values are imputed into cells
of the contingency table, then the augmented data is analysed using approaches appropriate for no
missing data situations. The multiple imputation approach can incorporate the order restrictions
either in the model of the imputation step or in the analysis step or both.

3.1. Bayesian model-based approach

The order restrictions on the parameters are induced using the prior distributions. Both strong and
weak priors are considered, for a strong prior the parameter space has positive probability only on
regions that satisfy the constraints, for the weak prior the ordering is incorporated by making the
prior distributions stochastically ordered.

3.1.1. No missing data. We consider three different priors for p;;

e No ordering: Assume p;; are iid ~Beta(l, 1).

o Weak ordering: Assume p;; are iid ~Beta(o;;, 2 — ;;), where «;; are known constants
satisfying the partial order restriction. We note that o;; /2 is the mean of the prior distribution,
thus the prior distributions are stochastically ordered.

o Strong ordering: Assume the set of p;;’s satisfy the partial order restriction, that is the prior
for the set of p;;’s is proportional to I(P,x. € CS)[]Beta(x;j,2 — o;;), where CS is the
constrained space and I denotes the indicator function. Here we might take o;; as all equal
or having an ordering themselves.

The prior for g;; is: {gij}~Dirichlet(p;1, Y12 ---Vi¢ -+ Vr1s Vr2 - - - Vre)> Where {y;;} are known con-
stants. We note that with no missing data the prior for g;; is not needed because the posterior
distributions for p;; and ¢g;; are independent, but the posterior distributions will not be independent
when there are missing covariates.

These different prior distributions for p;; will induce different properties in terms of the efficiency
and bias. Only the strong ordering prior will guarantee an ordering of the estimates. The weak
ordering prior will encourage, but not force the estimates of p;; to be correctly ordered. In large
samples we would expect the data to dominate the prior, and thus given that the true underlying
probability distribution does satisfy the order restriction, we would expect all the estimates to
satisfy the order constraint.

Gibbs sampling is used to estimate the parameters. It consists of drawing each parameter
pij and g;; from the conditional posterior distribution given the data and all the other
parameters.

For p;;, the conditional posterior distribution will be different for the three priors.

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3443-3458
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For weak ordering prior
pijl(all other parameters, data)~Beta(o;; +d;j, 2 — o +n;j — d;j) (1)

where «;; are known. The no ordering prior is a special case of this with o;; = 1.
For strong ordering prior

pijl(all other parameters, data)~Beta(o;; + d;j,2 — o +n;j — d;j) 2)

and
maX(p,-(li)l, o p§f‘,?_1)<pi i< min(p,-(lfl,l}, p,-(,kj;]f ) 3)
where pl.(li)l’ j and pi(’kj)f | are draws from the current iteration and pl(i_llj) and pfk];ll) are Gibbs

draws from the previous iteration. That is, we draw a value of p;; from a truncated beta distribution,
where the limits of the distribution are defined by the order restrictions with the current values of
the parameters.

It is easy to see that

Q| P, data~Dirichlet(y;; +n11, ..., Ype + nre) @)

For all the Gibbs sampling schemes we use the mean of the posterior draws as the point estimate
and the range between the 2.5 per cent quantile and the 97.5 per cent quantile as a 95 per cent
interval for the parameters. We typically draw 2500 samples and discard the first 500.

3.1.2. Missing data. The parameters of the model can be estimated by using a data augmenta-
tion algorithm [11]. Regarding the missing data also as parameters, let Xops = {Robs, Cobs, ¥},
Xmis = {Rmis, Cmis}), 0={P ={pij}, Q=1qi;},i=1,...,r,j=1,...,c}. We extend the Gibbs
sampling algorithm in 3.1.1 such that in the kth iteration, we conduct the following I and P steps.
These steps are repeated until convergence.

1. I-step: For each observation with missing values we impute the values of R and C from
the following multinomial distributions.
For the observations with known R and unknown C

k—1)\1— k—1 k—1
(1= pl I w (p V) g i

ij
: =D _ [ S N
=11 —Pi(z =y (Pi(z )y *qi(l )

with an analagous expression for when C is known and R unknown.
For the observations with unknown R and unknown C

P(C=jIP* D, 0"V y =y R=i)=

— pEDy =y (pETDyy gD
P(R=i.C=j|P*D. ¢~ y—y)— (I=p;; ) 7 =(py; ) *q;

: k—D)\1— k—1 k—1
Z;=1Z§,=1(1 _ptgm ))1 y*(ptgm ))y*Qr(nn )
wherei=1,...,rand j=1,...,c.
2. P-step: Generate 0% from P(0|X0bs,Xr(rIfi)S), where Xr(r]fi)s is the value obtained in the
I-step. This process is implemented by using an adapation of the Gibbs sampling

algorithm as described earlier. Specifically, we use nl(f) to denote the total number

of observations in the cell with R=i, C=j and use dl.(]].‘) to denote the number of

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3443-3458
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responses in that cell after using draws from the fully conditional distribution to impute
the data in the I-step. Then the conditional posterior distribution for Q|(P, Xops, X @) ) and

mis

pijl(all other parameters, Xops, X (k)) are the same as given in equations (1)—(4) except

mis
that di(j,.c) replaces d;; and nl(f) replaces n;;.

3.2. Empirical estimator

3.2.1. No missing data. The simplest estimator is p;; =d;;/n;; with s¢;; = \/(pi;(1 — pij)/nij).
We note that this estimator will not necessarily give estimates of p;; satisfying the order restriction.

3.2.2. Missing data. With missing data the proposed method is to apply the empirical estimator
to multiply imputed data sets. The missing values are imputed K times using the model-based
Gibbs sampling algorithm as described in Section 3.1.2.

The estimates and standard errors from the kth completed data set are given by ﬁii'k) = dl.(j].() / ngf)
and

(k) (k) )
| i o) x gyt —di + Bj)

k k
() + oij + Bi)? x (nf)

Then results from the K data sets are combined according to the following standard rules for
multiple imputation.

The final estimate of p;; is p;; = Z,f:lﬁigk) , and the estimate of the variance of p;; is V;; =
Wi+ ((K + 1)/K) B;;, where the average with-imputation variance is W;; = % Z,';(zl (56@)2, and

ij
the between-imputation variability is B;; =1/(K — I)Zle(ﬁi;k) — Dij)*. A 95 per cent interval

is calculated as CI;; = p;; £ 1.96 x V/V;.

3.3. Modified estimator

3.3.1. No missing data. In small samples the simple empirical estimator can have a standard error
of zero if d;j; =0 or n;;. Also a typical confidence interval based on + or — 1.96 standard errors
frequently goes outside the range 0 to 1. To overcome some of these problems a slightly modified
version of the simple empirical estimator is an alternative. Motivated by a Bayesian approach with
a Beta(o;;, f; j) prior distribution, the estimator and standard error are

~ dij + aij
pij=—————
ni; + o + ﬁij
and

_ \/ (dij + oj) x (nij — dij + B;;)

Sij = = JBiy (= P/ Gnij + ) + B + D)
DN uij i+ i) x (g + o+ B + 1) N R
We will consider two cases, one where «;; = f; = 1, and one where f5; = 2 — o;; and the o;;
are ordered. In this latter case the mean of the prior distribution is ¢;; /2, and these will be selected
to match prior beliefs about the values of p;;.

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3443-3458
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3.3.2. Missing data. Multiple imputation is used to impute the missing values, followed by ap-

plication of the modified estimator as described above.

4®

After convergence of the Gibbs sampler at each iteration we estimate p; ; using 1’51-3.]() =(d;;" + oj)

/(ny; ® 4 %j + f;;) and estimate se;; using

@ + o) x () —d¥ + Bi))
(n,gf) + oij + Bij)* x (n,-j + o+ Bij + 1

ok _
s€;;" =

These estimates are then combined using the standard rules for combining estimates from multiply
imputed data sets.

3.4. Isotonized estimators

3.4.1. No missing data. An adaptation of the empirical or modified estimator is to follow it by
isotonic regression. Isotonic regression in greater than one dimension can be described in the
following general way. For X = {x, x2, ..., xx}, w is a positive weight function defined on X, F
is a restricted family of functions on X for arbitrary function g defined on X. A function g* on
X is an isotonic regression of g with weights w if and only if g* is isotonic and g* minimizes
D oiexleg) = f (x)]*w(x) in the class of all isotonic functions f € F. We implement isotonic
regression in two dimensions using the algorithm described in [9]. The final estimate is denoted
by pi;* =g*(pij), where g* is the isotonic regression transformation.

We note that while this method guarantees the order restriction is satisfied, there is no simple way

to obtain its standard error. We use \/(ﬁ;(l plj)/n,]) or \/(pl](l [’)\ij)/(n,-j +aij+ Bij + 1)
as the standard error and evaluate this approximation in a simulation study.

3.4.2. Missing data. Multiple imputation is used to impute the missing values, followed by ap-
plication of the isotonized estimator as described above.
After convergence of the Gibbs sampler, at each iteration we obtain an estimate p b of pij and

this is then isotonized using the transformation ﬁg‘) =g*( pl(k))

3.5. Isotonized Gibbs sampling

3.5.1. No missing data. Of the Bayesian model-based approaches only the strong ordering Gibbs
sampling approach guarantees that the order constraints are satisfied. One way to force the cor-
rect ordering of point estimates in cases where it is not guaranteed is to incorporate the isotonic
regression transformation strategy into the Gibbs sampling iterations. Specifically, at the kth it-
eration, denote the set of draws from the unconstrained posterior distributions as { l.(k)} Let

pl(f)* =g*( plk)) where g* is the isotonic regression transformation. Thus, we project draws from

a unconstralned posterior distribution onto an order-restricted parameter space using a minimal
distance mapping. Then we focus on p.(l.c) * to make statistical inference. This is an extension of
the method described by Dunson and Neelon [10]. We use the sample mean of p( )* as the final
estimate of the parameters and use the range between the 2.5 per cent quantile and the 97.5 per

cent quantile of p(k) as a 95 per cent interval for the parameters. It is not clear whether this
hybrid approach corresponds to a specific statistical model, nevertheless it is a method that can

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3443-3458
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be applied and evaluated in a simulation study for example. It is somewhat similar to an EMS
strategy, where a smoothing step is introduced within the EM algorithm [12].

3.5.2. Missing data. In the case of missing data we use the Gibbs sampling appropriate for
missing data, as described in Section 3.1.2, with the additional isotonic step as described above.
This approach gives values of pl.(;()* which are then treated as if they were draws from a posterior
distribution. '

4. SIMULATION STUDIES

4.1. Data generation

To compare the above methods, we conducted simulations using 3 x 2 tables (r =3, c =2). We
generated 200 data sets according to different sets of true values { p?j}. The values of {q?j} are

set to % in all cases. Each table contains either 60, 150 or 300 observations. We set the missing
proportion as either 0, 20 or 40 per cent with a missingness mechanism as missing completely at
random.

4.2. Methods compared

For no missing data situations the methods considered were empirical, isotonized empirical, modi-
fied, isotonized modified, as described in Sections 3.2.1, 3.3.1, 3.4.1, and Gibbs(no), Gibbs(weak)
with o;; = 2p?. and Gibbs(strong) with o;; = Zp?j, as described in Section 3.1.1, and Isotonized-
Gibbs(no) anc{ IsotonizedGibbs(weak), where IsotonizedGibbs is Gibbs sampling with isotonic
transformation at each iteration as described in Section 3.5.1.

For missing data situations the model-based methods considered were Gibbs(no), Gibbs(weak),
Gibbs(strong), IsotonizedGibbs(no) and IsotonizedGibbs(weak). The multiple imputation schemes
are denoted as MI(a,b), where ‘a’ refers to the estimator which could be empirical (em), isotonized
empirical(iso_em), modified(mo) or isotonized modified (iso-mo) and ‘b’ refers to the prior distri-
bution, which could be no, weak or strong. Also included for comparison purposes are the results
for the empirical estimator applied to the data before any of it was made missing.

4.3. Measures of comparison

For each method and each data set s, we obtained for each cell (i, j) the point estimates p;; )
and the corresponding standard error se;; . and an indicator variable cove;j () for whether the 95
per cent interval contained the true value. We simulated 200 data sets.

Let p;j = 2(1)—0 Zfozol Pij(s) denote the average for cell (i, j) and the coverage rate is denoted by

cove;j = ﬁ ngol cove;j - The empirical variance of the point estimates is given by var;; = 1—é9
200 5. )2
2s=1(pij (s) ~ Pij)" . :
We consider the following measures of overall performance of the various methods:
Average bias =3 ;> |pij — p?j|/(rc), where p?j is the true value of p;;.
Max bias = max;;(|pij — p?j|)
Average coverage =) ;> ;cove;;/(rc)

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3443-3458
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Min coverage = min;;(cove;;)

.. . var;;
Empirical efficiency = (3 ; Zj Var(;t{j
pij calculated from the empirical method applied to the no missing data situation.

Order proportion = the proportion of the inequality constraints that are satisfied by the final
point estimates.

MSE=3",3"(var;; + (Pij — p{)?)

/ (re))~1, where varQ;; is the variance of the estimate of

4.4. Comparison of methods

Table I shows the results for no missing data, for the 3 x 2 table:

0.2 0.4
04 0.6
0.6 0.8

of true values of {p;;}’s. The results show some variation between the methods, and at the smaller
sample size the coverage rates can be less than the nominal level.

The Gibbs sampling method with the inclusion of strong inequality constraints can lead to sub-
stantial gains in efficiency compared to not including any ordering constraints, however this can
be accompanied by an increase in bias and resulting problems with the coverage rate. Introducing

Table 1. Simulation results.

Average Max. Ave. Min. Order
Method bias x 10°  bias x 10° coverage coverage Efficiency proportion MSE x 109
n =300
Empirical 329 974 0.92 0.89 1 0.98 2819
Modified 964 1476 0.93 0.90 1.09 0.98 2651
Isotonized empirical 325 957 0.95 0.93 0.96 1 2691
Isotonized modified 614 1329 0.94 0.93 1.22 1 1730
Gibbs(no) 737 1340 0.94 0.91 1.09 0.98 2634
Gibbs(weak) 969 1482 0.94 0.91 1.01 0.98 2651
Gibbs(strong) 962 1770 0.95 0.93 1.35 1 1975
Isotonized Gibbs(no) 573 1229 0.94 0.92 1.16 1 2235
Isotonized Gibbs(weak) 974 1734 0.94 0.91 1.15 1 2323
n =060
Empirical 416 726 0.91 0.88 1 0.83 13493
Modified 3044 4822 0.91 0.87 1.52 0.88 9526
Isotonized empirical 1186 1915 0.98 0.98 1.43 1 9608
Isotonized modified 3044 5234 0.94 0.87 1.96 1 7518
Gibbs(no) 2934 5146 0.96 0.95 1.52 0.83 9613
Gibbs(weak) 3032 4833 0.94 0.89 1.52 0.88 9523
Gibbs(strong) 4778 8291 0.92 0.81 3.23 1 5854
Isotonized Gibbs(no) 1372 2233 0.97 0.95 2.70 1 5127
Isotonized Gibbs(weak) 3062 6357 0.94 0.88 2.44 1 6340

Comparison of estimation methods. 0 per cent missing.
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Table II. Simulation results.

Average Max. Ave. Min. Order
Method bias x 10°  bias x 10° coverage coverage Efficiency proportion MSE x 10°
n =300
Empirical complete data 329 974 0.92 0.89 1 0.98 2819
Gibbs(no) 762 1570 0.95 0.94 0.83 0.96 3191
Gibbs(strong) 1236 2616 0.96 0.94 1.32 1 2101
IsotonizedGibbs(no) 332 861 0.95 0.93 1.08 1 2443
MI(em,no) 508 1078 0.93 0.91 0.76 0.95 3441
MI(mo,no) 767 1581 0.94 0.92 0.83 0.96 3196
MIl(is_em,no) 435 1034 0.95 0.94 0.96 1 2897
MI(is_mo,no) 687 1321 0.96 0.93 1.05 1 2726
MI(em,strong) 447 1052 0.95 0.91 0.88 0.98 2970
MI(mo,strong) 564 1207 0.96 0.94 0.96 0.98 2741
n =060
Empirical complete data 416 726 0.91 0.88 1 0.83 13493
Gibbs(no) 3457 7488 0.96 0.93 1.18 0.78 12724
Gibbs(strong) 4888 9385 0.92 0.72 3.03 1 6688
IsotonizedGibbs(no) 1646 2496 0.97 0.94 2.38 1 5903
MI(em,no) 823 2284 0.97 0.92 0.62 0.77 18761
MI(mo,no) 3472 7500 0.97 0.93 1.18 0.77 12711
MI(is_em,no) 1758 2816 0.98 0.96 1.32 1 10612
MI(is_mo,no) 2018 4643 0.98 0.94 2.08 1 7006
MI(em,strong) 894 1821 0.97 0.94 0.93 0.83 14784
MI(mo,strong) 2472 5557 0.98 0.95 1.49 0.84 9699

Comparison of estimation methods. 20 per cent missing.

the ordering in a weaker way, had negligible impact on the bias and efficiency even at small sample
sizes and only a very small impact on causing the point estimates to be correctly ordered.

The isotonized methods did lead to estimates that were always correctly ordered, and tended
to have small MSE’s. The potential gain in efficiency is considerable particularly at small sample
sizes.

Table II shows the results when there is 20 per cent missing data. Results from various types of
Gibbs sampling and multiple imputation are included. We note that the Gibbs methods with strong
ordered priors can give substantial gains in efficiency, but can also give considerable bias, leading
to undercoverage. For the multiple imputation methods, using a strong ordered prior, does improve
the proportion of estimates that are correctly ordered, but they are still far from perfect. The
inclusion of isotonic steps within a method gives an improvement in efficiency. The Isotonized
Gibbs(no) and MI(is_em,no) appeared to be promising estimators, based on giving the correct
ordering, low bias, adequate coverage rates and gains in efficiency.

In Table III we consider results from a different 3 x 2 table:

04 0.5
0.6 0.9
0.8 0.91
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Table III. Simulation results.

Average Max. Ave. Min. Order
Method bias x 10° bias x 10° coverage coverage Efficiency proportion MSE x 10°
n =300, O per cent missing
Empirical 374 742 0.92 0.89 1 0.90 2386
Isotonized empirical 744 1016 0.96 0.94 1.22 1 2072
Gibbs(no) 1129 1959 0.94 0.93 1.09 0.90 2295
Gibbs(strong) 1642 2368 0.94 0.85 1.67 1 1691
Isotonized Gibbs(no) 1351 2901 0.94 0.91 1.45 1 1865
n =300, 40 per cent missing
Empirical complete data 374 742 0.92 0.89 1 0.90 2386
Gibbs(no) 1766 3684 0.95 0.93 0.62 0.85 4141
Gibbs(strong) 2743 5819 0.93 0.80 1.20 1 2670
Isotonized Gibbs(no) 2360 4948 0.94 0.87 1.01 1 2945
MI(is_em,no) 2135 4442 0.97 0.92 0.95 1 2856
n =150, 40 per cent missing
Empirical complete data 359 533 0.90 0.84 1 0.86 4750
Gibbs(no) 2953 5813 0.95 0.93 0.71 0.80 7342
Gibbs(strong) 3526 8223 0.90 0.58 1.69 1 3993
Isotonized Gibbs(no) 3414 6956 0.95 0.90 1.45 1 4351
MI(is_em,no) 2538 5536 0.97 0.96 1.14 1 4646
n =60, 40 per cent missing
Empirical complete data 431 826 0.80 0.59 1 0.81 11622
Gibbs(no) 6335 13436 0.96 0.94 1.03 0.72 14592
Gibbs(strong) 4991 13462 0.87 0.42 3.13 1 6596
Isotonized Gibbs(no) 6459 12083 0.95 0.87 2.70 1 7491
MI(is_em,no) 2151 4644 0.97 0.90 1.61 1 2854

Comparison of estimation methods. 40 per cent missing.

and focus mainly on methods that always give estimates in the correct order. Note that the table
has two cells with very close probabilities. The IsotonizedGibbs(no) and MI(is_em,no) appear to
have reasonable properties in this challenging case with 40 per cent missing. The bias associated
with the Gibbs(strong) method can be large, resulting in very low coverage rates with small sample
sizes. The Gibbs(strong) estimates in the cell with true value 0.9 tend to be much smaller than 0.9
and those in the cell with true probability of 0.91 tend to be higher than 0.91.

Overall there is no uniformly best method. Some of the methods do not guarantee the estimates
will be correctly ordered. Amongst those that do give the correct ordering, the hybrid Gibbs
sampling approach, with an isotonic step included in the algorithm appears to give reasonable
results across a range of scenarios, as does the isotonized empirical, with multiple imputation if
necessary.

In general one difference between the model-based results that used Gibbs sampling and the
methods that used isotonic regression, is for parameters in neighbouring cells whose true values are
very close to each other even though they satisfied the ordering constraint. The isotonic regression
methods had no trouble making the estimates of these two adjacent parameters similar to each

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3443-3458
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other. In contrast the Gibbs sampling method, in the way we implemented it where the parameter
is drawn from a restricted range as in equation (3), tended to result in the parameters in adjacent
cells being more widely separated.

5. APPLICATION TO PANCREATIC CANCER

The methods developed in this article were applied to a pancreatic cancer serum biomarker study
[13]. This is a case—control study with 90 pancreatic cancer cases and 51 controls. Serum samples
were assayed for two antigens, CA-19-9 and CA-125. To illustrate the methods we divided both
biomarkers into an ordinal scale with three categories. The cut-off values for CA-19-9 are 11.2
and 28.6, and the cut-offs for CA-125 are 11.2 and 15.0. The data are presented in Table IV.

Note that each of the nine cells is labelled 1 to 9, this represents a possible overall ordering
of the probability of being a case and will be later used to illustrate the estimates. We can see
that both CA-19-9 and CA-125 are associated with the probability of being a case. From the data
it is clear that the empirical estimates are not perfectly monotonically ordered either vertically
or horizontally, and we also note that the cells labelled 3 and 5 have very small sample size.
So the empirical estimate has a large standard error associated with it, but the estimates that
utilize the monotonic structure are likely to be more precise because they can gain efficiency
from the neighbouring cells. The estimates and standard errors from selected Gibbs sampling and
isotonic methods are shown in Figures 1 and 2. The cell probability estimates are now correctly
ordered both vertically and horizontally, for the methods that guarantee ordering, e.g. cell 3 is
now intermediate to cells 1 and 4, and less than cell 5. The results show that the original labelling
was probably a good guess at the correct overall ordering, with the possible exception of cells
7 and 8. There is considerable gains in efficiency, particularly for cells 3 and 5. Based on the
simulation results, the preferred estimates for this application, would probably be the one labelled
IsotonizedGibbs(no).

The data in Table IV has no missing values. To illustrate the methods when there is miss-
ing biomarker data we randomly deleted CA-125 and CA-19-9 values from this data set, with
P (marker is missing) =0.1 for controls and 0.2 for cases for each marker. The response Y is
always observed so we retain all 141 observations. We note that this is not missing completely
at random, but rather it is missing at random, for which the methods are still applicable. The
new data, estimates and standard errors are given in Table V. The difference between the methods

Table IV. Pancreatic cancer biomarker data.

CA125
Low Med High

Low & 303 5 @)

CA19-9 Med @ 0 & ®
High £ © L0 5 ©

The fractions are the number of cases out of the total number in
each cell, with a cell label shown in parentheses.
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Figure 1. Estimated probabilities for nine cells.
——— emprirical
- — — Isotonized modified
0254 Gibbs(strong)
- == Gibbs(weak)
— — - Isotonized Gibbs(no)
g 0.20 1 o emprirical
5 4 |sotonized modified
° + Gibbs(strong)
3 x Gibbs(weak)
c < Isotonized Gibbs(no)
£ 0.15
2]
°
Q
T
E / : \
& 0.10 e 2 G-
0.05

1 2 3 4 5 6 7 8 9

cell label

Figure 2. Estimated standard errors for nine cells.

is largest for the cells with the fewest observations, for which the point estimates between
Gibbs(strong) and MlI(is_em,no) can differ, and the standard errors for Gibbs(strong) tend to
be smaller.
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Table V. Pancreatic cancer biomarker data.

Cell label
1 2 3 4 5 6 7 8 9 Other

1 0 1 6 0 8 8 5 31 30
Data 5 6 1 16 0 I 10 7 EX] )
Gibbs(strong)
estimates 0.09 0.22 0.29 0.44 0.60 0.69 0.86 0.80 0.96
(se) (0.06) (0.09) (0.13) (0.11) (0.15) (0.10) (0.07) (0.10) (0.03)
Isotonized Gibbs(no)
estimates 0.12 0.22 0.29 0.40 0.73 0.76 0.87 0.82 0.95
(se) (0.07) (0.08) (0.12) (0.10) (0.18) (0.10) (0.06) (0.10) (0.03)
MI(is_em,no)
estimates 0.07 0.08 0.21 0.36 0.65 0.75 0.84 0.81 0.95
(se) (0.07) (0.10) (0.19) (0.11) (0.45) (0.12) (0.10) (0.15) (0.03)

Results for missing data. The ‘other’ category denotes a combination of missing one of both of the biomarkers.

6. DISCUSSION

A different approach to data of this form is to consider ¥, R and C as a rectangular array of
data, with missing elements in the R and C columns. This can then be viewed as a missing data
problem, for which multiple imputation would be one approach. A recently suggested method [14]
consists of a sequence of regression models of each column on all the others, with the regression
model used to impute the missing data. The ordered nature of R and C could be incorporated by
using, for example, a cumulative proportional odds model for R or C when they are the response
variable in the regression model, although this method would not guarantee the correct ordering
of the cell probabilities.

There are a number of generalizations of the models and methods described here to other
situations. For example, there could be more than two covariates, the outcome could be Poisson,
or it could be a censored survival time. There might be other non-ordered covariates, in which
case one might consider a generalized linear model such as logit(p;;) =y;; + BX, where X are
the other covariates and the order restrictions are placed on 7;;.

Our simulation results indicated that no single method dominated, however methods that in-
corporate isotonic regression are relatively good in terms of MSE, bias, efficiency and coverage,
while guaranteeing estimates in the correct order.

Among the estimate based on multiple imputation, the one that followed the imputation with
an isotonic regression appeared to have good properties. In the situations we considered in the
simulation there is little to recommend multiple imputation over the model-based methods, because
the structure of the data is fairly simple and the models are fully saturated. However, in more
complex situations with, for example, other covariates or non-completely missing at random the
multiple imputation methods may be more robust.

As pointed out by Dunson and Neelon [10] one difference between the pure Bayesian approach
and isotonic regression, is that isotonic regression will tend to make two parameters equal if the
direction of the inequality in the order constraints is not supported by the data. In contrast, in
the Bayesian scheme described by Gelfand ef al. [4] the conditional posterior distribution for
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each parameter is restricted to a range, so it has essentially zero probability of being drawn as
the limit of that range. That is, the pure Bayesian scheme is very unlikely to make 0; = 0,, but
this could be quite common with the isotonic regression scheme. In a recent article [15, 16] the
Bayesian approach has been extended to allow equality between parameters. They proposed a prior
which includes non-zero mass on the boundary. Their models were restricted to situations with
one-dimensional ordering; we are currently investigating whether they can be further developed to
the case of two- or higher-dimensional ordering, as one would have with multiple biomarkers.
We have restricted attention to constraints between adjacent cells, i.e. p; j<p; j+1 and p; ;<
pi+1,;. But the methods we use could easily adapt to a set of more general constraints between
parameters. In the Bayesian model-based approach these constraints could be incorporated into the
prior. The methods that include an isotonizing step can also be adapted because the transformation

pl.(;.‘)* =g*( pl.(;c)) can be modified so that pl.(;.c)* satisfies more general constraints.

The recommendation to incorporate isotonic regression into the method raises some interesting
issues. One is a better justification of the method of obtaining standard errors. The way we have
included isotonizing, is simply as an isotonic regression algorithm within a more standard statistical
approach. We are currently investigating models which would lead more naturally to the inclusion
of an isotonizing step.

A premise of this article is that monotonicity is known to exist. This may or may not be
true, depending on the scientific context. However, there are many situations where it does seem
a priori scientifically plausible. If this is the case, then incorporating it into the analysis, can lead
to considerable gains in efficiency, and thus is an area worthy of further study and implementation.
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