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PREF ACE

This report on the vibrating beam problem represents a continuation
of work presented in previous reports9’lo. The problem as first proposed for
solution by the electronic differential analyzer was presented as one involving
the solution of a fourth order differential equation subject to boundary condi-
tions imposed by the restraints, or lack of them, placed on the ends of the beam.

In this communication it is demonstrated that, by using the basic
first order differential equations from which the fourth order differential
equation was derived, the electronic differential analyzer serves to determine
the eigen-frequencies and mode shapes for vibrations of both uniform and non-
uniform beams with the effects of rotary inertia and of transverse shear force
included. ' ,

Chapters 1 and 2 are devoted to a theoretical analysis of the vibrating
beam and the setting up of equations suitable for solution by the computer.
Chapters 3 and 4 explain the use of the electronic differential analyzer for
obtaining solutions for uniform and non-uniform beams. Chapter 5 describes some
experimental techniques involved in the use of the computer, Chapter 6 outlines
some proposed work evolving from that which has already been done. In the
appendix are given tables and curves for the results obtained for the vibrations
of uniform free-free beams. In addition there is a description of a drift-
stabilized dc amplifier, along with a highly stabilized power supply.

While a very brief discussion of the principles of operation of the
electronic differential analyzer are given in Chapters 3 and 4, it is assumed
that anyone who wishes to do experimental work in this field will thoroughly
indoctrinate himself in the construction and use of the computer ,10.

The authors express their appreciation for the assistance and advice
given on numerous occasions by J. Ormondroyd, Professor of Engineering Mechanics
and by C. L. Dolf, Assistant, Professor of Mathematics, i

The work described in this report was supported by a generous grént of
funds made available by the former Operating Committee of the Aeronautical Re-
search Center, Engineering Research Institute, University of Michigan. The work
was greatly aided by facilities and equipment of the Department of Aeronautical

Engineering.
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INTRODUCTION

The study of flexural vibrations of beams, with particular reference
to the determination of eigen-frequencies and mode shapes, is a problem in which
considerable interest has been developed., It is the purpose of this report to
give a brief theoretical analysis of the problem and to demonstrate the useful-
ness of an electronic differential analyzer in determining the desired solutions
for both uniform and non-uniform beams.

The ordinary textbook on vibrations presents a very simplified analysis
of the vibrating beam problem. Generally it is assumed that the vibration of
the beam takes place in one of the principal planes of flexure of the beam and
that the length of the beam is large in comparison with its transverse dimensions.
This latter assumption permits the effects of vertical shear force and of rotary
inertia to be neglected without much loss in accuracy. However, if the beam
being studied no longer has a length large compared with its cross-sectional
dimensions, these simple solutions are not sufficiently accurate.

Lord Rayleighl derived a correction factor to include the effect of
rotary inertia. In 1921 Tim.oshenko2 set up a group of differential equations
which included the effect of transverse shear force as well as that of rotary
inertia. From these equations he derived, for the special case of a beam hinged
at both ends, a correction factor2’3 which could be used to determine an approxi-
mately correct frequency. This method of approximation is not readily applicable
to beams with other types of end fastenings, as was pointed out by Goensh. Goens
derives exact expressions for the free-free beam with the effects of rotary
inertia and vertical shear force included. The roots of these expressions yield
the frequencies of vibration if the constants of the beam are known. Actually
Goens uses the relations to determine the modulus of elasticity of the material
of the bar from experimentally determined eigen-frequencies,

5,6 have presented results of theo-

More recently Ormondroyd, et al.,
retical research on the dynamics of a ship's structure with a view toward the
determination of the eigen-frequencies and "normal" mode shapes of both uniform

and non-uniform beams, In addition studies were made of forced damped vibrations.
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In this work the effect of rotary inertia is neglected, and for this case
orthogonality of the modes of vibration is demonstrated.

Hess7 investigates the general problem of transverse vibrations in
both uniform and non-uniform beams., After developing the basic equations for
the beam and deriving differential equations for mode shape, bending moment,
shear force, etc., the author obtains frequency equations and‘shape factors for
beams with different kinds of end restraints. In his study of non-uniform beams
the effect of rotary inertia is omitted. For this case it is shown that the
modes of vibration are orthogonal. When rotary inertia is not neglected, Dolphl3
has shown that the solutions are not orthogonal, except for a certain type of end
fastening.

Kruszewski8 considers the effects of transverse shear and rotary
inertia. The following summary of the work is given by the author: "A theo-
retical analysis of the effect of transverse shear and rotary inertia on the
natural frequencies of a uniform beam is presented. Frequency equations are
derived for the cases of the cantilever beam, the symmetrically vibrating free-
free beam, and the antisymmetrically vibrating free-free beam. Numerical results
are given in the form of curves giving the freguencies of the first three modes
of the cantilever beam and the first six modes, three symmetrical and three
antisymmetrical, of the free-free beam."

In all of the above work the solution of the basic equations led to a
fourth order differential equation for the mode shape. This equation was solved,
subject to the boundary conditions at the ends of the beam, the solutions being
equations from which the eigen-frequencies were determined. In most cases no
attention was given to mode shapes.

9

Hagelbarger, et al.,’ demonstrated that an electronic differential
analyzer can be used for solving the fourth order differential equation with the
effects of rotary inertia and transverse shear force included. The eigen-
frequencies and mode shapes are determined simultaneously. For higher modes of
oscillation of relatively short beams the mode shapes obtained corresponded to
oscillations of the center of gravity of the beam. This result was explained
by the fact that incorrect boundary conditions had been used.

In subsequent work Howelo showed that satisfactory solutions can be

obtained by the electronic differential analyzer, using the correct end conditions
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for a free-free beam, when the effects of transverse shear forceeand rotary
inertia are included.

This particular method of attack does not permit the electronic
differential analyzer to operate on the fourth order differential equation to
obtain solutions for non-uniform beams. Such a procedure would neglect many
derivatives which are important,

It is shown in subsequent analysis that satisfactory solutions can
be obtained for both uniform and non-uniform beams by having the computer

operate on the original basic differential equations,
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CHAPTER 1

THEORETICAL ANALYSIS (OF THE VIBRATING BEAM

1.1 Basic Equations

By applying the laws of dynamics and of elementary strength of

materials to a free body diagram, one obtains the five basic equations,

2 -
P (x) y(x,t) +3ﬂ§f’l =0 (1-1)

at? ’
- 2
M) 7 () 8Bt | F(xt).= 0, (1-2)
r at2
V(x,t)' = - KAG(x) + &(x,t) , (1-3)
8B(x,t) _ M(x,t) (1-4)
ox  F(x)
&ﬂg;ﬁ = &(x,t) + B(x,t) . (1-5)

These equations, with changes of notation, are taken from Ormondroyd,
et al.,5. Equation (1-1) equates to zero the sum of the transverse forces.
Equation (1-2) is the sum of the moments acting on a small element of the beam
and includes the effect of rotary inertia. Equations (1-3), (1-4), and (1-5)
relate the neutral axis slope to shear and bending. The equivalent of the
first two of these equations can be found in textbooks on strength of materials.
Equation (1-5) states that the neutral axis slope is the sum of the slopes due
to shear and bending and holds true for small deflections only. The derivation
of equations (1-1) and (1-2) can be found in Timoshenko's original paperz.

L
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1.2 Notation

x = horizontal distance from left end of beam
I = length of beam
t = time
§(x,t) = transverse deflection of beam at any instant
y(x) = maximum transverse deflection of beam, at x
ﬁ(x,t) = bending moment at any instant
M(x) = maximum bending moment, at x
Wx,t) = transverse shear force at any instant
V(x) = maximum transverse shear force, at x
I = area moment of inertia
E = modulus of elasticity, or Young's modulus
EI(x) = flexural rigidity , at x
EI = a constant value of EI(x)
A = cross-sectional area
G = modulus of shear, or rigidity modulus
k = ratio of average shear stress to stress at neutral axis
kAG(x) = shear rigidity, at x
kAG = a constant value of kAG(x)
/a(x) = mass per unit length of beam, at x
P = a constant value of P (x)
I (x) = mass moment of inertia per unit length of beam, at x
I_ = a constant value of fr(x)

&-(x,t) = neutral axis slope due to shear at any instant
X(x) = maximum neutral axis slope due to shear, at x
B(x,t) = neutral axis slope due to bending at any instant

B(x) = maximum neutral axis slope due to bending, at x

(-kﬁcl) (x) = a dimensionless parameter, expressing the effect of rotary

inertia
N = -%G— = a constant value of (_1%;9_) (x)

¢d(x) = a dimensionless variable, reflecting the variation of F (x)
with x
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¢r(x) =a dimensionless variable, reflecting the variation of
Ir(x) with x
?s(x) = a dimensionless variable, reflecting the variation of
KAG(x) with x
4’ f(x) = a dimensionless variable, reflecting the variation of

EI(x) with x
¢ (%) = a dimensionless variable, reflecting the variation of

_1;:_(3, (x) with x

S = -—-E-I-é- , a dimensionless parameter
kAG

)\ = wﬂz ’ '}% , a dimensionless parameter

g = g dimensionless independent variable, x = 15

v

T = the independent variable for the computer, x =

i

a root of equation (1-23)

a parameter, see equation (1-28)

B B X
n

a parameter, see equation (1-29)

1.3 Separation of Variables

In equations (1-1) to (1<5) there are two independent variables, x
and t. The quantities ¥(x,t), M(x,t), V(x,t), o(x,t) and B(x,t) are functions
of both of these variables., EIL(x), kAG(x), 'I-r(x) and ,5 (x) are constants for
a uniform beam and functions of x for a non-uniform beam. To separate the two
independent variables x and t it is assumed that the time dependent variables
are sinusoidal functions of time. This assumption repfesents one possible

solution with respect to time, though not necessarily the only one. Let

Fx,t) = y(x) e,
M(x,t) = M(x) Y,
T(x,t) = v(x) e?%,
(x,t) = A(x) e |
and B(x,t) = B(x) et .
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Equations (1-1) to (1-5) then become
- P wiy(x) + X Lo, (1-6)
-2 T (0B + 1) =0, (1-7)
V(x) = - KAG(x) * &(x) , (1-8)
dgix) - gi:i s (1-9)
§§§5)= (x) + B(x) . (1-10)

Since the above set of equations are to be applied in general to the
study of a non-uniform beam in which the physical characteristics change along
the length of the beam, it will be convenient to use the following relations:

A = ph)

and BI(x) = EI¢f(x) ,

where P> Ir’ kAG and EI are now constants, independent of distance along the
beam, and where the variations of the physical properties of the non-uniform
beam are reflected in the ¢'s,

Using the above relations there are obtained from equations (1-6) to
(1-10),

- P4 (fy(x) + XL o (1-11)
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-2 1 ¢ B+ Vx) =0, (1—12)‘
V(x) = - kAG&s(x) &(x) , (1-13)
Qg.x@ﬁ - ﬁ%f-%’% , o (1-14)
and W) | 5(x) + Blx) . | (1-15)

dx

In case equations (1-11) to (1-15) are to be used for a uniform beam the

variables ¢d’ ¢}, ¢§ and Qf may be set equal to unity,

1.4 Boundary Conditions

These equations are to be solved subject to the end conditions, or
restraints, if any, imposed en the two ends of the beam to be studied. The end
of a beam may be in any one of three states; free, hinged, or built-in. The

boundary conditions to be met are given in Table 1.

TABLE I

BOUNDARY CONDITIONS

End of Beam Boundary Conditions
Free M=0; V=0
\ Hinged y =0 ; M=0
Built-In y=0; dy/dx =0,
ory =0 ; g'=0

In the case of the built-in end there is some difference of opinion as to
whether the slope of the neutral axis is zero or whether it has a finite value
due to transverse shear force alone.

The solution of the differential equations given above for a freely

vibrating beam may be accomplished in either of two ways; by a theoretical

8
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’

analysis or by a differential analyzer. Both methods are présented here, the
theoretical analysis being limited to that for a uniform beam,

1.5 Theoretical Analysis of the Vibrations of a Uniform Beam

For a uniform beam ¢d’ ¢r’ ¢% and ¢ in equations (1-11) to (1-15)

are set equal to unity. From these modified equations there may be obtained,

___hxg_z(__.__)_lg_l(_ﬁ)() 116)

10‘02 dxh kAG /9 dx2 kAG
2| EI d%(x) . EI (
M(x) = pw sz(uz +Mny) , (1-17)
3 I
V(x) = ﬁuf ¥ Pfil)z _zg_lddXBX + (ﬁ% + -/—;‘-)-ﬂ—lddxx , (1-18)
-5

YO SUE . - d3r<xl+(EI “r) grlx)

? TG * (1-19)
kG | ou? @l kAG " P [Tax |
1 - =L

kAG

where the bar over the B is omitted because it is of no significance in this
part of the work,

In the above equations we shall replace the independent variable
x (--'g < x £ -g) by g(— % £ §$ %) using the relation x = ff, where [is the

length of the beam. Recognizing that

I

P

=L
A

and letting

(1-20)
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EI
s =—2L (1-21)
kAG I
and
N5, (1-22)
equations (1-16) to (1-19) may be written,
1 gt > 2.2
SELL s N FF- Q- NNy =0, (1-23)
dgl‘ §
M= /"wzlz[ oy + Sy] (1-24)
pofl 1%, 5. (1-25)
- XZSZN [Xz o€ S] ’
and
-3
1 o AR 4 (1-26
T - ¥ [ a&’ a3 )

The fourth order differential equation (1-23) is to be solved, subject to the
boundary conditions on both ends of the beam as given in Table I.

If in equation (1-23) we let y =C e’”g we have

_il_z_/,h fs(Le MM - (1= NN =0, (1-27)

from which

, 2,—S»(1+N)IJ82(1+N)2+—;\*§-L,SZN
/Al = )\ ) .

Since the last term on the left hand side of equation (1-27) is negative for all
practicable beams, one of the roots of the equation must be positive and the

other one negative., Hence

10
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/Ul=m>\, /02=-m>\,

where SS(L+N) + 1{82(1 _ N)2 . i%
m= 2 ’ (1‘28)
and
/03 -jn)\, /Uh == Jn)\’
where > > L
S(1+N)+JS(1-N) v
n = > . (1-29)

In relations (1-28) and (1-29) only the positive values of the radicals are to
be taken. The solution of equation (1-23) may then be written as

y = Cl cosh m)\g + C, sinh m>\§ + C3 cos n)\g + Cb sin n>\§ . (1-30)

In order to obtain the eigen-frequencies for a particular beam it is
necessary to substitute the value of y, as given by equation (1-30), and the
derivatives of y, into the boundary condition relations for both ends of the
beam as given in Table I. This process of substitution results in a set of four
homogeneous linear equations in Cl’ C2, C3 and Ch' For solutions other than
zero to exist the determinant of the coefficients of Cl’ C2, C3 and Ch must be
equal to zero., The expression obtained by setting this determinant equal to

Zero is an equation the roots of which give all of the eigen-frequencies.

1.6 Solution for a Free-Free Uniform Beam

The boundary conditions for a free-free uniform beam are, M = 0 and
V =0 at both ends of the beam. From equations (1-24) and (1-25) we have

2
—]-'—Q-X+Sy=0,for §=—-l %, (1-31)

X2 d§2 27

11
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131 S(1 + N) , for --,2 (1-32)
S3 ‘S .5 222°

Substitution of y and its derivatives, as obtained from equation (1-23), into
relations (1-31) and (1-32) gives four homogeneous linear equations in Cys Cos

C3 and Ch' By setting equal to zero the determinant of the coefficients of the
C's, there is obtained,
m)\
tanh 2 n(n2 - S) ta.nh m(m - S) ~
Q - 2 -Ill + = O ° (1-33)
tan m(m~ + S) tan n(n - 3)

The roots of equation (1-33) determine eigen-values of XA . From equation (1-20)
and the known characteristics of the beam an eigen-frequency, w, can be deter-
mined for each eigen-value of )\.

A very useful family of curves can be made by computing and plotting
the eigen-values of ) as a function of 1/S for various values of N. Such a set
of curves for a free-free uniform beam, obtained from data given by an electronic

differential analyzer, is shown in Figure 3-10.

12
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CHAPTER 2

EQUATIONS OF THE VIBRATING BEAM

FOR SOLUTION BY AN ELECTRONIC DIFFERENTIAL ANALYZER

2.1 Inexpedience of Using the Fourth Order Differential Equation

The fourth order differential equation (1-23), derived above, can be
solved by an electronic differential analyzer9’lo. For a uniform free-free beam
the results obtained are very satisfactory. It was proposed that non-uniform
beams be investigated in the same manner, but by representing a non-uniform beam
as composed of a discrete number of short uniform beams, each of these short
uniform beams having appropriate properties, The coefficients of equation (1-23)
and of the corresponding equations which impose the end conditions were to have
been changed at appropriate intervals in accordance with the properties of the
short uniform beams,

In order to ihvestigate the validity of this method, equations similar
to (1-16), (1-17) and (1-18) were derived for the bending moment, shear force,
and mode shape, taking cognizance of the fact that for a non-uniform beam the

coefficients are functions of x. The relations obtained are,

V EI -:3(31 + SEL jx (pwz v 1 w [ (pw2 kﬁé + puiEr ( kAG)]_i
L n () s () v

v - ur X pw2£+}313-i—(m%)v, (2-2)

y-4 (2-3)

w? &

/O

Examination of the equation for M shows that there should be no diffi-
culty in applying the end condition, M = 0, at either end of a free-free non-
uniform beam, since V is also equal to zero at the same positions. However, the

13
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equation for V is sufficiently complicated as to make its use in fulfilling
boundary conditions exceedingly involved. An insurmountable difficulty arises
when one attempts to obtain an explicit equation for the mode shape, y. To
obtain this expression it is necessary to take the derivative, with respect to
x, of equation (2-1) for V. This process results in an expression involving
over a hundred terms, of which very few combine or cancel out. It would be
hopeless to attempt to set up a computer to handle this equation.

On the other hand, all of these additional terms are neglected, or

ignored, in any attempt to apply equation (1-23) to non-uniform beams,

2,2 Use of the Basic First Order Differential Equations

Fortunately the actual problem consists not of obtaining the solution
of a single fourth order differential equation but of a set of first order
differential equations. When these equations are set up on the electronic
differential analyzer a number of simplifications result., The end conditions
are very readily applied, the technique of obtaining solutions is simplified,

and non-uniform beams can be investigated without neglecting any derivatives,

2.3 Change of Independent Variable

In order to solve these equations, (1-11) to (1-15), with the differ-
ential analyzer it is necessary to change the independent variable. The length
of the beam is { so that the range for the independent variable, x, is 0 < x £ {.
The independent variable of the computer is time. In solving the equations the
independent variable, x, is proportional to the time in seconds which has elapsed
since the start of the solution by the computer. If the solution obtained by
the computer is completed in L seconds, then the independent variable, x, should
be changed to a new independent variable, T, (0 £ T <L), according to the
relations,

4

d

b [

Equations (1-11) to (1-15) then become,

- poM Wiy(m + LD o

l d T ’ (2‘10)

14
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-F D 19 MM VD -0, (2-5)
V(M = - KMGEM (T , (2-6)

L dB(M _ _M(T) -
{47 TEGM ° (2-7)

Lay(M) _ zm . 3 )
FEH - am - . (2-8)

In order to place these equations in more suitable form, assume
- L
x(7) = 1 o(T) , (2-9)

and

B(T) =i B(T) . (2-10)

Equations (2-4) to (2-8) may then be written,

- Ph Wy - i"%gﬁ 0, (2-11)
-%%-Irw2£%5+v=0, (2-12)
V= - kAGH .'Li‘x , | (2-13)
s __M (2-14)
22 aY E.I$s
and
gfr= X +B, (2-15)

15
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where y, M, V, &, B, ¢h, ¢r’ ¢g, and 4& are functions of 7.

2.4 Combination and Simplification of Coefficients

The use of the differential analyzer in solving these equations will
be made much easier if their coefficients are combined and simplified. To this
end we substitute equation (2-13) into equation (2-11) and obtain, after dividing
through by kAG/[z,

Pl ¢y + 125 @™ =0 (2-16)

This may be written as,

or
2
v+ 534 ar 40 =0 (217)
where
EI
5 = (2-18)
kacge
and
20k
N2 - pe Ll (2-19)

Substitution of equations (2-14) and (2-13) into equation (2-12), after division
by kAGL/f, results in

Iof
EI 2.4 (b ap), Ir .
ol L7 (Pf d'r)+ AR A (2-20)

Now - —_—
8. E-(E),
A kAG E

16
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: EI§, i g
£ kiG)_ E 'n’
where
XG) _ kG .
(E) - Jpn_wn, (2-21)
Hence
. B 5 plfl e %a%d
b
rir kAG kAGf.z kAGQz EI E $s
or
I$ o R L) (2-22)
r'r kAG r°’ -
where
$ated
$_-Ln (2-23)
¥
Substitution of relation (2-22) into equation (2-20) gives, after division by
sL?,
4 Qﬁ+snﬁ¢a+_l_¢¢x=o (2-24)
dT \f 4T 12T SL2 s y

2.5 The Equations to be Solved by the Computer

The equations to be solved by the computer are then,

T d"’ B s (2‘15)
11°1 4 (9 =0 (2
5—576;?}: ) , -17)
d (¢ d )\ 1
dT<¢f E%') + SN ;5 ?rﬁ + -S-F ¢S°< =0, (2-%)
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2.6 Boundary Conditions

Reference to Table I, Section l.4, indicates that some of the boundary
conditions require that M = 0 and V = O, Now M and V do not appear explicitly
in the equations, (2-15), (2-17) and (2-24), to be solved by the computer. How-
ever, by reference to equation (2-14) it is seen that M = O when dB/dT = 0, and
equation (2-13) shows that V = O when « = O, To meet the boundary condition
dy/dx = 0, we may let dy/dY =0 or £ + B = 0. The boundary conditions for use

with the electronic differential analyzer are given in Table I1I.

TABLE II

BOUNDARY CONDITIONS FOR COMPUTER

End of Beam Boundary Conditions
Free dg/dT =0 ; Z=0
Hinged y =0 ; dg/dr =0
Built-In y=0;dy/dr=«+p8 =0,
or y =0 ; B=0.
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CHAPTER 3

APPLICATION OF THE ELECTRONIC DIFFERENTIAL ANALYZER

TO THE SOLUTION OF THE UNIFORM-BEAM PROBLEM

3.1 Introduction to Operational Amplifiers

Before proceeding with a description of how the vibrating-beam problem
can be solved by means of the electronic differential analyzer, it would seem
appropriate to review very briefly the principles behind the operation of such
a computer,

The basic component of the electronic differential.analyzer is the
operational amplifier, which is shown schematically in Figure 3-1. It consists
of a dc voltage amplifier of high gain (usually about 40,000), an input impedance
Zi, and a feedback impedance Zf (see Appendix 2 for the dc amplifier circuit).

Zg
Ly
|
Fo—1 7 Mol I O
e ¢' DC AMPLIFIER e,

Figure 3-1, Operational Amplifier

If we ‘eglect the current into the dc amplifier itself (i.e., neglect the current

to the rid of the input tube), it follows that i, =1i,. Let us also neglect
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the voltage input e' to the dc amplifier in comparison with the output voltage
e, or the input voltage ey to the operational amplifier (e' = 1/40,000 e2). We

then have
=4,
or
1. %2
Zi &f
from which
7
£
e, = -'z; e s (3-1)

which is the fundamental equation governing the behavior of the operational
amplifier, In general Zf/Zi is made the order of magnitude of unity. We shall
now consider the scheme by which the amplifier can be used to perform three

different types of operations,

(a) Multiplication by a constant.

If we wish to multiply a certain voltage ey by a constant factor
k, we need only make Zf/zi = k., From equation (3-1), then, the output voltage
e, of the operational amplifier will be given by

82 s - k el D (3-2)

Thus the required multiplic;tion by a constant has been achieved, except for a
reversal of sign. For example, if we wish k to be 10, we may let Zi = 1 megohm
resistance, Zf = 10 megohms resistance. If we also desire the sign of e, to be
the same as e, we need only feed e, through an additional operational amplifier
with Zi = Zf = 1 megohm., This second operational amplifier merely acts as a sign
changer by multiplying any voltage by -l.

(b) Addition.

In order to add a number of voltages, say .5 € and e.s the

arrangement shown in Figure 3-2 is used. Here ia +i + ic =i

b 2’
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la Z2f

2b ﬂi——ﬂr & —> _____3_'

DG AMPLIFIER €,

qr—o §°cq_ ﬂ}—o‘¥>o-k u}—o,§>._k
®

Figure 3-2, Operational Amplifier Used for Summation

and if we neglect e' as small compared with input or output voltages, we have

(]
(]

or
Z Z Z
R B 4 L L
e, (Z e, + zb eyt 7] - (3-3)
a c

Thus the output voltage e, is the sum of the three input voltages,
each multiplied respectively by a constant - Zf/Zn (n =a, b, or ¢). The opera-
tional amplifier can, of course, be used in general to sum any number of input

voltages.

(e¢) Integration,

If we make the input impedance Zi a resistor and the feedback

impedance Zf a capacitor, then the operational amplifier serves as an integrator,

21



AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM=67
Referring to Figure 3-3, we see that if we neglect e' and let il = 3'.2 as before,
we have
e, = - lldTandi =i
2 C 1 R ?

from which

1
e, = - -ﬁajeld’r. (3~4)

The output voltage e, is then the integral with respect to time of the input
voltage e; (multiplied by a constant factor - 1/RC).

| o
| |
dis
R i
Fo———— AW ————— - —e-
e e DC AMPLIFIER e

Figure 3-3. Operational Amplifier as an Integrator

In order to demonstrate how operational amplifiers performing the
above three functions can be combined to solve ordinary linear differential
equations, we will now set up the amplifier circuits required to solve the

uniform beam problem.
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3.2 Computer Arrangement for Solving the Uniform-Beam Pfoblem

(a) The equations to be solved.

In chapter 2 we reduced the differential equations of the vibrating

beam to the following three simultaneous equations:

d
oot (215
;LZ L4 (o =0 - (2-17)
"5 %, at ’
and
2
d 1
-d—-(q) —§>+ SN%§4’I_B+;L-§¢SO( =0 . (2-24)

We remember that y is the dependent variable (volts in the case of the computer),
and that 7 is computer time (corresponding to distance along the beam). S and N
are dimensionless parameters depending upon the physical characteristics of the
beam, and )\ is the characteristic root of the equations such that the appropriate
boundary conditions are satisfied., Bending moment is proportional to df/d T and
shear force is proportional to «. The length of the computer solution is L.

For a uniform beam ¢d = ¢f = ¢r = ¢g = 1, so that equations (2-15),
(2-16), and (2-24) reduce to

d
r Rl (2-15)
1rfax g (3-5)
y+5)\2d’r— 35
2 1
+SNA-B+——-O(=O (3-6)

These equations are of course subject to the end conditions given in Table II at
the end of Chapter 2,
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(b) The computer circuit.

The computer circuit for solving the above three equationsis
shown in Figure 3-4. The output functions of each of the operational units are
clearly labeled so that the reader should have no trouble in tracing through the
circuits to see how the three equations (2-15), (3-5), and (3-6) are set up.
Note that the input to each of the integrating units is the derivative of the
output of the same unit.

By combining several functions in one amplifier, one can simplify the
circuit of Figure 3-4 to that shown in Figure 3-5. This arrangement could be
further simplified by eliminating A7 and feeding the output of A6 (-B) directly
into Ah through a resistor of value L /SN)\ megohms., Since L /bN)\ is generally
large compared with 1 megohm, it is more convenient to distribute this factor
through several resistors. The addition of A, also allows the feedback resistor

7
Az/Lh to be changed in gang with the feedback resistance of A,.

3.3 Method of Obtaining the Correct Solution

(a) Initial conditions.

The initial conditions utilized on the computer depend upon the
type of end fastening for the beam in question., For a "free-free" beam we see
from Table II at the end of Chapter 2 that the initial conditions (and also

final conditions) are

% = = =2 -
%%,=o, X=0at T=1L (3-8)

The initial conditions given in (3-7) are imposed by short-circuiting the
feedback capacitors of amplifiers A2 and A5 in Figure 3-5 through initial-
condition relays. This is equivalent to making the vertical shear force and
bending moment zero at the one end of the beam. At the same end the deflection
and slope must be finite; these conditions are imposed initially on A3 and Aé
through voltages V3 and V,. The solution of the problem is begun by releasing
simultaneously the four initial condition relays, two of which were holding
dB/dT =0 and X = 0, and two of which were holding y = V3 and -8 = V6‘
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(b) Trial and error method of obtaining the normal-mode solution.

The first-trial settings of V3 and V6 were arbitrary, and in
general a correct solution will not result. For a correct solution d8/dT must
go through zero at precisely the same instant as o« goes through zero. The time
elapsed between the start of the solution and the instant when d8/dT = o= 0 is
then the length L of the computer solution. A typical first-trial solution is
shown in Figure 3-6a, in which the condition dB/dT (L) = o(L) = O is obviously
not met. The small pips on the dB/dY curve indicate when o« has passed through
zero (see Chapter 5 - Section 4). By varying V3 and holding Vé constant (or
vice versa), the ratio VB/Vé can be varied until an exact solution is obtained,
The trial solutions leading to an exact first mode solution are shown in Figure
3-6. Usually about half a dozen trial solutions are needed until an exact solu-
tion is reached. Higher modes are obtained in exactly the same manner. Second
and third mode solutions are shown in Figure 3-7 and Figure 3-8.

If we are looking for the solution of a given uniform beam, then we
must have chosen originally a suitable computer-solution length L. But the
values for the feedback resistorIiA in.Al and A7 (Figure 3-5) had to be selected
arbitrarily, so that in general the observed computer length L for a correct
solution will be different from the L originally chosen. It is then necessary
to select a new R7 and rerun the solution, obtaining a new L. By repeating this
process several times and by interpolating, we can arrive at the value of R7

which gives a correct solution of the desired length L. The frequency parameter

\=L° ‘/ Ry - : (3-9)

On the other hand, if we are interested in solving the problem for a

A\ is then given by

whole family of beams characterized by different values of the parameter S (i.e.
having various thickness to length ratios), we may keepIiA fixed, and calculate
\ from equation (3-9) and S from the formula

-1R_ . (3-10)

S

(][5

=7
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Figure 3-8, Near-Correct Third-Mode

Solution for a Uniform, Free-Free Beam
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In this procedure every correct solution of length L represents a certain beam,

but we cannot choose the exact 1/S value for that beam beforehand.

(c) Method of recording computer solutions.

Computer output voltages are recorded by means of a Brush, Model
BL-202, two-channel magnetic oscillograph. Since the pen motors require more
current than the operational amplifiers can furnish, computer voltages are first
fed through Brush, Model BL-913, dc amplifiers, which in turn drive the pens of
the magnetic oscillograph. The Brush dc amplifiers were modified as described
in a previous report10 in order to reduce zero-drift to a negligible value. The
frequeney response of the oscillograph and modified amplifier together is flat
out to 20 cps, which is entirely adequate for the vibrating-beam solutions,

except where sharp pulses are also recorded (see Sections 5.4 and 5.5).

3.4 Computer Solutions for a Free-Free Beam, Infinitely Long

In order to check the accuracy of the computer it is instructive to
solve the vibrating-beam problem for the case in which the length of the beam
is very long compared with the thickness. This means that rotary inertia and
shear forces are negligible (N = S = 0); such an idealized beam is often termed
"infinitely long". The frequency parameter A for the first five modes of an

3

infinitely long free-free beam are given by Timoshenko” and can be obtained from

the roots of equation (1-33).

(a) Comparison of computer solutions with theoretical solutions.

In order to solve the problem of the infinitely long beam the
connection between A2 and A3 in Figure 3-5 was broken, along with the connection
between A7 and AS' I%X was set equal to unity (1 megohm), so that >\= L2 or
JS:; L. By using the experimental techniques described in Chapter 5, we obtained
the values for 4 \ shown in Table III.

Evidentally the computer solutions are accurate to hundredths of a
percent. It is felt that one of the chief limitations on accuracy attainable
was the inability to measure the length L of the solution to better than a few
milliseconds. In Chapter 5 Section 6 an electronic clock is proposed which

would eliminate this inaccuracy in measurement.
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TABLE III
COMPARISON OF COMPUTER AND THEORETICAL SOLUTIONS

FOR A "FREE-FREE" BEAM, INFINITELY LONG

-1 =L

Mode (Computer) (Theoretical) .
1 L4735 sec 4,730
3 10.997 10.996
A 14.136 14.137

(b) Method of interpolation for higher mode solutions.

When obtaining solutions of higher modes one finds that the ratio
of VB/Vé in Figure 3-5 becomes extremely critical. A change in these initial
voltages of one part in five thousand causes considerable deviation from one
solution to the next when a third or fourth mode is being sought. As a result
the solutions for the third and fourth modes do not repeat from run to run, and
it is extremely fortunate ever to get an exact third or fourth mode solution.

Let us define the length L' of an inexact solutions as the time
elapsed from the start of the solution to the instant & goes through zero near
the "end" of the inexact solution. If the value of dB/d7 at & = O is plotted
as a function of L', we obtain a curve similar to the one shown in Figure 3-9.
From this curve the length L of an exact solution can readily be obtained by
interpolation. The L values for the third and fourth modes in Table III were
obtained in this manner.

It turns out that when one includes shear and rotary inertia effects
(N and S finite), the initial conditions for obtaining higher modes become much
less critical and solutions for these modes are more easily obtained,

The cause for the lack of repetition of solutions for higher modes is
believed to be the polarization of the dielectric in the capacitors of the
integrators. Thus a solution begun after the capacitors were charged in one
direction before being returned to their initial voltages will differ from a
solution begun after the capacitors were charged in the oppesite direction before
being returned to their initial voltages,
30
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Figure 3-9, Method for Obtaining Exact
Solution Length L from Inexact Solutions
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3.5 Computer Solutions for a Free-Free Beam of Finite Length

The differential equations presented in Chapter 1 for the vibrating
beam include the effects of shear and rotary inertia forces, and hence are
representative of a beam whose thickness may be appreciable in comparison with
its length. The relative effects of shear force and rotary inertia present in
the vibrating beam are represented respectively by the values of the dimension-
less parameters S and N (see equations (1-21) and (1-22)). For a long, thin
beam, S will be small; for a short, thick beam, S will be large. N, on the
other hand, depends only on the ratio of shear modulus G to Young's modulus E

for a given shape of beam cross-section.

(a) Method of varying parameters.

The computer was used to find the frequency parameter X.for a
considerable range of S and N values in the case of a free-free beam, The
circuit shown in Figure 3-5 was used; the resistorIiA was set equal to unity.
The value of RS was chosen arbitrarily, and N was made 0, 0.1, 0.2, and 0.3 by
setting R = e, 10, 5, and 3 1/3 megohms. For each value of R and R the
length L of the solution of the first three modes was determined., The parameter
S for each of these solutions is given by equation (3-10), while A= L2 since
Rx = 1.

(b) Results of the computer solutions.

Figure 3-10 shows the family of curves obtained when Ais plotted
as a function of 1/S for the four values of N, The actual data obtained, along
with more accurate curves, can be seen in Appendix 1.

The values chosen for N(O, 0.1, 0.2, 0.3) seemed appropriate for the
various types of beams which might be encountered. Variation of A\ as a function
of N is almost linear, so a much wider range in N could be obtained by interpola-
tion from the above values of N without too much loss in accuracy.

The parameter 1/S ranges from very high values down to about 14, 35,
and 72 in the case of the first, second, and third modes respectively. These
lower limits on 1/S correspond to length-thickness ratios of about 2, 3.5, and
5 for a rectangular steel beam; i.,e., the length to thickness ratios for the

beams represented in Figure 3-10 go down to the region where the wave-length of
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vibration is almost the same as the thickness of the beam itself. This is the
region where one would expect the assumptions involved in deriving the original

beam equations (1-1) to (1-5) to break down.

(¢) Orthogonality of the modes.,

Dolph13

the normal mode solutions are not in general orthogonal. The solutions are

has shown that when rotary inertia forces are included,

orthogonal when rotary inertia effects are neglected. Therefore it is of con-
siderable interest to compare the mode shapes obtained with and without rotary
inertia effects included. This has been done in Figure 3-11, where three modes
are shown, both for N = O (no rotary inertia) and N = 0,3, Evidentally there

is no great difference in mode shapes. It therefore seems safe to say that a
Fourier series of the modes for N = O would not be too bad a representation of
an arbitrary function, particularly if we only worry about the first few modes, .

even though an appreciable rotary inertia effect is present in the beam.

(d) Comparison of computer results with theoretical results,

The roots of equation (1-33) determine the frequency parameter )\.
Since this equation is transcendental, the only method of determining the roots
is by trial substitution of values of )\. However, the computer actually solves
for the roots A of equation (1-33), so to check the accuracy of the computer
solution it is only necessary to substitute the value of A.obtained by the com-
puter into equation (1-33). In general, due to inaccuracies in the computer,
the equation will not be satisfied exactly (i.e., the bracketed term yielding
the root in question will not be quite zero). By substituting two additional
)\'s which are slightly different than the original X, one can easily interpo-
late to find the A for which one of the bracketed terms in equation (1-33) does
indeed vanish. This theoretical X is compared with the computer \ for a third
mode solution in Table IV,

Even though we know beforehand almost the exact value of Ak, the task
of computing )\ from equation (1-33) requires a good many man-hours of work plus
the use of a calculating machine, The accuracy of the computer, as exhibited
in Table IV, is not as good as that exhibited in Table III. The percentage error
in Table IV, however, is doubled since we are comparing A directly and not Ji(,
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FIRST MODE
—— N=0, 1/S =162
—— N=0.3,1/5 =151

BENDING MOMENT

SECOND MODE
———N=0, 1/5 =162
——N=0, 1/5 =151

I\ BENDING MOMENT

THIRD MODE
—N=0, 1/8
— _N=0, 1/S

BENDING MOMENT

Figure 3-11, Comparison of Mode Shapes with and without Rotary Inertia Included

35



AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM-67

TABLE IV
COMPARISON OF COMPUTER AND THEORETICAL SOLUTIONS FOR A

FREE-FREE BEAM, INCLUDING SHEAR AND ROTARY INERTIA FORCES

Third Mode
1/s N M Computer) \(Theoretical)
551 0 111.43 111.32
537 0.2 108.56 108,32

which is actually what the computer finds (L = 1[X). The error can probably be
attributed to a small increase in the time-constant of the integrating units
between the time they were calibrated and the time the solution was run off,
Additional errors are involved in measuring the length L of the exact solution,

It is probably safe to say that the A's of Figure 3-10 are good to
0.2%. By incorporating better measuring and calibration techniques, we feel
that this accuracy could be improved by a factor of 10 (see Chapter 5, in par-
ticular Section 5.6).

Accuracies of 0.01% or even 0,1% are obviously of no great engineering
significance in this vibrating-beam work. Usually the physical quantities
describing the beams themselves are not known to this accuracy, and most engineers
would be very happy with 1% accuracy in normal-mode frequency predictions. The
purpose behind these measurements of high accuracy is really twofold; (1) to
check the accuracies attainable with the electronic differential analyzer, and
(2) to stimulate further investigation of lateral vibrations of actual beams in

the laboratory in order to check the theory given in Chapter 1.
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CHAPTER 4

APPLICATION OF THE ELECTRONIC DIFFERENTIAL ANALYZER

TO THE SOLUTION OF NON-UNIFORM BEAM PROBLEMS

4.1 The Equation to be Solved

In Chapter 2 we found, after separation of variables, the following

equations for the non-uniform beam:

11°1 d ) 2
v+ 5329 ar (% =0 - e
2
d d 1
Eﬁ-(‘fagr)*s"ii‘?rﬁ*g;“?s“ =0 (2-24)

where the notation has been defined in Section 1.,2. These equations are subject
to the boundary conditions given in Table II. Note that ?d, ¢s’ ¢}, and ¢r are
all functions of the independent variable T, Since &, B, and dB/d7T are
dependent variables, it is necessary to vary somehow the gain of the operational
amplifiers as a function of 7 (computer time) in order to obtain ¢sc(, l/¢ﬂ da/dY
(¢;x), ¢f dg/d?T; and ¢rB respectively. In other words, we have the problem of
solving differential equations with coefficients which are varying functions of
the independent variable. Several of the methods for accomplishing this are

described in the next section.

L.2 Methods for Varying the Gain of an Operational Amplifier as a Function of

Time
(a) Two methods of approach.,

In Section 3.1 we saw that the output voltage e, of an operational

amplifier is given by
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2
e, =~-z"¢e

5= =7 (3-1)
1

l b

where & is the input voltage, and Zf and Zi are feedback and input impedances
respectively. Our problem is to find an arrangement whereby

--2(T) e (4-1)

€2 1°?
where £(¥) is the variable coefficient., Evidentally equation (4=2) will be

realized providing we can make

Z

== £ . (4-2)
1

But this can be accomplished if we let Zi be a fixed resistor Ri and make Zf a

resistor Rf which varies with time according to the relation

Likewise, if we wantve2 = - 1/£(7T) ey, We may let Z, be a fixed resis-
tor Rf and Zi be a resistance Ri which varies with time in accordance with

Thus one scheme of changing the operational amplifier gain as a
function of time T is to vary the feedback or input resistance as a function of
time,

A second scheme for varying the gain of the operational amplifier is
indicated in Figure 4-1. Here the impédances Zi and Zf are fixed; the resistance
r between the tap on the potentiometer R and ground is made to vary with time in
accordance with £(T) = r/R, where £() is the function f£(T) multiplied by a
constant factor K so that the maximum value of f(7) is unity. Thus we let

fm =x 1M , (4-5)
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— 1 e,= -+@e,

)

Figure 4=1, A Method for Obtaining Variable Gain

and if we set K = Zi/Zf, then e, = - £(7) els which is the relationship desired.
In general the voltage e, in Figure 4-1 will Pe fed into an additional

operational amplifier having input resistance R{. Unless R is very much smaller

than R{, an appreciable error in e, results. In order to eliminate this error

we must arrange r(Y) such that

W = 1M . " (4-6)

Thus we see that there are two general methods for varying the gain
of an operational amplifier; (1) by varying feedback or input resistors, and
(2) by varying the tap position of a potential divider across the output. (1)
has the advantage of allowing division as well as multiplication by a function
f(M. (2) has the disadvantage ofbintroducing an error unless the correction
factor given in equation (4-6) is incorporated.

Let us consider several methods for varying resistors as a function

of time .
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(b) Cam operated variable resistances.

Angular rotation of an output shaft can be made any desired func-
tion of the angle of rotation of an input shaft by driving the output shaft
through a properly-shaped cam turned by the input shaft. The output shaft is
then connected to ﬁhe sliding~-contact shaft of a linear potentiometer, so that
the resistance of the potentiometer will vary with input shaft angle by the
desired functional relationship. If the input shaft is turned at constant speed
by a synchronous motor, the resistance of the potentiometer will vary properly
with time,

This scheme can be used to vary the gain of an operational amplifier
as a function of time by either of the two methods described in (a). Its
accuracy is limited by the precision of the cam and connecting linkage as well
as the linearity of the potentiometer. The proper cutting of cams may also

involve a costly or time-consuming procedure.

(¢) Non-linear potentiometers.

It is possible to obtain a potentiometer wound so that the resis-
tance is any desired function of the angle of rotation of the sliding-contact
shaft, If this shaft is driven at constant speed, then the resistance of the
non-linear potentiometer will vary with the desired function of time. Again cost

and lack of flexibility may be serious disadvantages to this method.

(d) Stepping-relay method.

One method for varying resistance as a function of time which has
been used with considerable success by the authors of this report is the so-
called stepping-relay method. In this scheme the resistance, instead of being
varied continuously, is changed in discrete steps after equal time intervals.
For example, a linear function of resistance with time would be replaced by the
staircase function shown in Figure 4-2. Note that at the end of each step the
integral of the step-function (the area under the curve) is the same as the
integral of the continuous function. The circuit for obtaining the resistance

steps of Figure 4-2 is shown in Figure 4-3.
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At 7T =0 the contact is in the position shown in the figure. After

time AT has elapsed the contact moves to position (2), after additional time AT
to position (3), etc. The contact is moved around by the stepping relay mecha-
nism, which is energized every A7 seconds once a problem solution has begun.
The AT pulses to drive the stepping relay are obtained through a synchronous
contactor driven by a synchronous motor. For complete details of the entire
stepping-relay mechanism, the reader is referred to a previous report by the
authors.9

The step-method is most effective when used to vary directly the input
or feedback resistors of the operational amplifier, as described in Section 4.la.
The input or feedback circuit is never opened during the switching operations
because bridging-type relay contacts are employed,

The extension of this step-approximation scheme to arbitrary continuous
functions is obvious, The whole scheme has proved highly satisfactory, and sur-
prising accuracy is obtained even when the steps are made comparatively large.
Bessel's equation and Legendie's equation have both been solved with good results
on the electronic differential analyzer using the stepping-relay method of vary-

9

ing coefficients.” A total of forty steps were employed in this work.

Several advantages are apparent for the stepping-relay scheme., First
of all, it is easy to build up any desired function of time. One need only plug
appropriate resistors into a panel provided for this purpose. Then too, accuracy
of resistance is limited not by the percentage accuracy of full-scale resistance,
but only by the percentage accuracy of the resistor in question. Thus 0.1%
accuracy can be maintained in going from an operational amplifier gain of 1/50 to
50, This cannot be realized with the methods of continuously varying the resis-
tance described in Sections 4.lb or 4.lc. A third advantage to the stepping-
relay scheme is that the total resistance utilized can be of the order of megohms,
which is convenient when that resistance is being used as input or feedback
impedance in the operational units,

Many times the data for a given engineering problem involving variable
coefficients is presented in the form of discontinuous or stepped functions. The
stepping relay method would seem ideally suited for transforming this type of
data into the computer circuit.

One disadvantage to‘the stepping-relay method is that it introduces

discontinuous functions. However, in most computer circuits one or more
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integrators follow the amplifiers employing the stepping relays, so that the
discontinuous functions get smoothed out fairly well. If one desires to synthe-
size an input or forcing function using the step-method, a smoothly-varying
function can be obtained by setting up the derivative of the desired function
with resistance steps and by then running the resulting stepped function through
an integrating unit.

The stepping-relay method of varying amplifier gain is utilized in the

computer to solve the non-uniform beam problem.

(e) Binary digital method.

An alternative circuit arrangement for varying resistance by steps
is shown in Figure 4-4. Here any desired resistance is obtained by selecting
the proper series combination of the resistors at the top of the figure. A par-
ticular resistor is added to the total series resistance R if the relay across
this resistor is open. When the relay is closed, this resistor is short-circuited
and makes no contribution to R. If we desired R to be 41 ohms, we would close

relays R., R, and R2 and leave ‘relays Ré’ Rh’ and Rl open., R would then be equal

b
tolx 33 + g x1l6+1x8+0x4+0x2+1x1=4]1 ohms. In the binary
system which is employed here the number 41 is then represented as 101001. The
position which each of the relays Rl to R6 will assume is controlled by the
position of the corresponding toggle switches in one of the rows of toggle
switches shown in Figure L4-4. Thus for Step 1 the switches are set in positions
up, down, up, down, down, up, going from left to right. This represents the
number 41 and makes R = 41 ohms,

The position of the 6-gang stepping relay determines which row of toggle
switches is connected to the resistor-controlling relays Rl to Ré. During the
first step, the top row of toggle switches controls the total resistance R; during
the second step, the second row of toggle switches controls R, etc. Any step
function of resistance varying with time can be set up merely by positioning the
toggle switches properly to represent the function at each step. The same set
of resistors and resistor-controlling relays is used over and over again.

If we wish 0.01% accuracy of maximum R, 13 resistors instead of 6 will
be required (213 = 8192 = IOA). This means of course that we need 13 resistor-

controlling relays, 13 toggle switches in each row, and a 13 gang stepping relay.
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The total number of steps possible is determined merely by the number of steps
available on the stepping relay. Naturally there must also be as many rows of
toggle switches as there are steps.

It would probably be desirable to add an additional digit to change the
sign of a function. This could be done by adding an extra gang and accompanying
relay. A sign-changing operational amplifier would be connected into or out of
the circuit, depending on the sign of the variable coefficient.

The initial cost of this binary digital circuit would probably be some-
what higher than the stepping-relay circuit used at present (Figure 4-3), but the
increased versatility would soon pay off in decreased man hours of operation,

Any function could be set up in a matter of a very few minutes - merely the time
required to position the toggle switches., Furthermore, the digital scheme
requires only one set of 13 precision resistors for 0.01% accuracy, whereas the
arrangement of Figure 4-3 necessitates a vast supply of different resistors which

could in themselves involve considerable expense,

4.3 Computer Circuit for Solving the Non-Uniform Beam Problem

The equations to be solved for the non-uniform beam are repeated again

for convenience.

%’Zr" £+ B (2-15)
2
1L 1 d )
T AL —
2
d (6 a8 X 1 -
= (‘Pf =)+ s > 4>re + - ¢‘s°< 0 (2-24)

The computer circuit for solving the above equations is shown in
Figure L4L-5. The variable functions ¢d’ 4;, ¢f and ¢r are approximated by the
step-method described in the previous section. No initial condition circuits
have been indicated. These will be dictated by the type of end-conditions
appropriate for the beam in question (see Table II at the end of Chapter 2).
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The techniques for solving the uniform beam are again used to obtain
the solution of the non-uniform beam. When a starting button is pressed, the
initial condition relays are released and the stepping relays begin changing the
appropriate resistors. One of the initial voltages is varied until a solution
with the correct end conditions is obtained. In general this solution will have
a length different from the assumed 1éngth L for the computer solution. R)\must
then be varied until a correct solution of length L is obtained (or a length
close enough to L to allow interpolation foi%)' The frequency parameter \is

then given by

N=1? [&, (3-9)

where Hixis the exact feedback resistance for Al and A7 which gives a correct
solution of exact length L,

For beams of reasonable length to width ratios the value of the feed-
back resistor of Al in Figure 4-4 will be much more critical than that of A7.
Hence R)\in equation (3-9) should be the value of the feedback resistor of Al’
although ideally this resistor should be equal to the feedback resistor of A7.

For solving the non-uniform beam problem it is quite important to have
a good standard-frequency source available for driving the stepping relays (see
Section 5.6). This is necessary not only to insure good accuracy but also to
allow solutions to repeat when solving for the critical higher modes., The time
scale of the computer is fixed; so, therefore, must be the time scale of the
stepping-relays,

As was the case for the uniform-beam computer circuit, here again care
should be taken to maintain the gains of amplifiers in the main loop (A,-A.-A, -

17274
As'Aé‘A -Al) close to unity. This means that one should make an intelligent

guess fgr )‘ beforehand, and choose L so that R)\ is about 1 megohm,

The electronic differential analyzer has been used to solve several
non-uniform vibrating beam problems to date with good success,g’11 although shear
and rotary inertia forces were not included properly in either case., It is in
the solution of the non-uniform beam problem that the computer should have its
greatest utility, for here is a realm in which mathematical solutions that include

shear and rotary inertia forces are virtually impossible by any hand methods.
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CHAPTER 5

COMPONENTS AND EXPERIMENTAL TECHNIQUES

5.1 Components

(a) Power supply.

The dc power supply for the direct current amplifiers furnishes
the following voltages: +300, -190, and -350. The absolute values of these
voltages are extremely close to the values given and are held constant to % 1.5
millivolts by continuous automatic checking against a standard cell. The ac
ripple is approximately 1 millivolt. The details of the power supply are given

in Appendix 4.

(b) Direct current amplifiers.

The dc amplifiers used in this work are those described previ-

9’10, modified for use with the power supply voltages given above (see

ously
Appendix 2). Improved amplifiers with a continuous automatic balancing feature

are in the process of construction, These are described in Appendix 3.

(c) Resistors, feedback and input.

For most of the work the feedback and input resistors were Con-
tinental "Nobeloy X" type. This type of resistor has a low voltage coefficient
and a low noise characteristic. The temperature coefficient is less than 0,05
percent per degree Centigrade negative. There is some change of resistance with
age so that for very accurate work frequent calibration is necessary. The
humidity characteristics are fair, but not perfect. A ten megohm resistor is
temporarily changed in value about ten percent when breathed upon by a good slow
"ah" with the open mouth very close to the resistor. A coat of ceresin wax
removes most of this difficulty.

For the most accurate work it is suggested that precision wire-wound
resistors be used., These can be obtained with a temperature coefficient as low

as ¥ 0,002 percent per degree Centigrade,
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There would be considerable advantage in housing the computing
equipment in a constant temperature and constant humidity room. However, this
procedure would probably be very expensive, since considerable power is dissi-
pated,

One exception to the use of low temperature coefficient resistors

occurs in the case of resistors associated with feedback capacitors.

(d) Capacitors, feedback,

The feedback capacitors used in the integrating circuits are
Western Electric D161270 Condensers, 1 microfarad, with polystyrene dielectric.
The characteristics of these capacitors are not known by us but it is assumed
that they are not far different from those of the Plasticon laboratory-grade
condensers with polyethylene dielectric manufactured by the Condenser Products
Company. These Plasticon condensers have a negative temperature coefficient of
0.04=0.05 percent per degree Centigrade,

When an amplifier is used as an integrator it is important that the
feedback capacitance, C, and the associated input resistance, R, be such that
the product RC remains constant. If the temperature coefficients of both R and
C are negative the product RC will be temperature sensitive. Such was found to
be the case., Fairly satisfactory results were obtained by using Akrohm precision
wire-wound resistors with a positive temperature coefficient of approximately
0.017 percent per degree Centigrade. Using this type of resistor with a Western
Electric condenser gave an RC product that remained constant to within 0.05
percent for a temperature change of 5°C.

Ideally R and C should have equal and opposite temperature coefficients,
as well as the other properties demanded by accurate computing. The Condenser
Products Company make condensers with temperature coefficients from +800 to -800
parts per million per degree Centigrade. The suitability of these condensers

should be investigated.

5.2 Measurement of Resistances

Most of the resistors used have a tolerance of % 1 percent and must be
calibrated if better than one percent accuracy is desired. The ordinary box
bridge, or test set, was not found suitable, particularly for measuring resis-

tances of one megohm and higher. The bridge arrangement shown in Figure 5-1
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proved to be satisfactory both in accuracy and in speed of measurement.

All of the equipment, with the exception of the galvanometer and re-
corder, is mounted on a small polystyrene panel (1/4" thick). The bridge proper
consists of two "ratio" resistors, Rl and RZ’ the unknown resistor, R*, and a
decade box, R_. General Radio (or equivalent) jacks, with standard 3/4" separa-
tion, are provided for plugging in the resistors and the galvanometer and
recorder connections.

The resistors Rl and R2 are General Radio Type 500 with plug type
terminals. Minimum requirements are two 10,000 ohm standards and one each of
1,000, 100 and 10 ohms. A decade box similar to General Radio Type 602-L
(111,100 ohms total, in steps of 10 ohms) makes a suitable variable resistor at
Rs’ B2 is a battery of suitable voltage (45 volts)‘and B is a shorting plug
which may be removed to insert either a protective resistance or an additional
battery in series with B2.

The bridge may be balanced either by the galvanometer G or by a Speedo-
max recorder (0 - 10 mv), the recorder being used merely as an indicator. The
dry cell B1
be put on the recorder to place its zero point for bridge balancing at the middle

and the associated network permits a five millivolt bias voltage to

of the scale., The use of the recorder as a null indicator gives speed to the
measurements and good sensitivity. With Rl = 10,000 ohms and R2 = 100 ohms a
sensitivity of well over one-tenth of one percent exists in measuring a ten
megohm resistor. Resistances as high as 30 megohms have been measured. For most
measurements an accuracy of the order of one-tenth of one percent is to be ex-
pected.

In using the bridge care must be taken not exceed the current rating
of any of the resistors. If Rl were made permanently 10,000 ohms and a fixed
10,000 ohm resistor were connected in series with Rs (and added to the value of

Rs) the bridge would be protected against overload up to B2 = 90 volts.

5.3 Measurement of Capacitance

A very suitable method for determining the capacity of condensers
involves measurements of the period of oscillation of the computer circuit shown
in Figure 5-2, At least three capacitors are needed. In the circuit shown Cl

and 02 are two of the 1 mfd condensers to be measured. Rl and R2 are one megohm
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resistors which have been carefully calibrated. Ri and Rf are a pair of accur-
ately matched resistors of equal value.
The circuit is an undamped harmonic oscillator representing the equation

v+ RleClczy =0,

for which the frequency is given by

2 1

RjRC1Cy

)

The circuit is put into operation by simultaneously opening switches Sl and 82,
and the output is recorded on a Brush oscillograph. Timing pulses from an
accurate source are recorded on the same oscillograph. The timing pulses should
be accurate to at least 0.0l percent. In the work associated with this report
seconds pulses f;om WWV were used, From the oscillograph records the period of
oscillation is determined. This procedure is repeated for condensers Cl and 03’
and then for C2 and C3.

On the assumption that resistors Rl and R2 differ but very little from

one megohm and that the capacitors differ but little from one microfarad, we

write
Rl =1+ r s C1 =1 + ) s
R2 =1+ Ty 02 =1+ 5 s
C3=1+c30
Also let
- T—l
T=l+e=-2'ﬁ-wo

Then for the first oscillator set up, using Cl and CZ’

To=1+€,= J F1f261%2
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= @D r A e+ )

_=ﬁ+rl+r2+cl+c2

=1 + 2 .
Hence
€ 1'% %
12 - 2 ¢
Similarly,
€ tTarte e
13 - 2 ’
and

Solving these last three equations for Cys Cos and c3 , we obtain ‘

(2]
|

r. +r
1 v T
1= € 6i3 - 623 -T2

r, +r
c €, -1 2
2 12 23 13 2 4

i
(4 )
+
(&)

=613+623-612--—-—-—-——-2 .

°3
From the observed deviations, 612, 613 and 623, of Tfrom unity and the known
values of ry and Ty the values of C1s Co» and Cq and hence Cl’ 02 and C3 can be
determined,
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Having measured the capacitances in this manner it is possible to
select resistors to obtain a desired RC product to within 0.0l percent. In
selecting these resistors cognizance must be made of the fact that the tempera-

ture at the computer may be several degrees higher than room temperature.

5.4 Pulse-Forming Circuit for Checking End Conditions

Frequently occasions arise which make it necessary to determine accur-
ately when a function becomes zero, or when two functions become zero simultan-
eously. Ordinarily a precise observation is difficult because of such effects
as recorder pen lag, error in determining the exact point of crossing the zero
axis, etc. A method which aids in making more precise measurements is shown in
Figure 5-3,

Assume that a function F1 crosses the zero axis with a finite slope.
Amplifier Al
resistor to amplifier A2 acts as a load on amplifier Al, preventing, due to

increases the amplitude by a factor of 30, The 0.05 megohm input

saturation effects, a large voltage from being developed across the output of
Al. However, the rapid passage through zero of the output voltage is a faithful
reproduction of the function Fl as it passes through zero,

An additional gain of 200 is obtained through amplifier A2, the output
of which is a saturation voltage at all times except for the extremely abrupt
passage through zero, The differentiating CR circuit produces a sharp pulse at
the exact instant of the paésage through zero of the output voltage. This pulse
can be recorded directly, or mixed in amplifier A3 with another function F2.

Using the output of A, it is possible to observe on the same record the passage

through zero of each gf the two functions, Fl and F2.

Figure 5-4 shows a sinusoidal input function, Fl. The output of ampli-
fier Al is shown in Figure 5-5 and that of A2 in Figure 5-6. Figures 5-=7 and
5-8 show the pulse recorded at paper speeds of 1 division per second and 25
divisions per second, respectively.

Figure 5-9 shows the output of amplifier A3 when the same function is
fed into amplifiers Al and A3. It can be seen that the pulse occurs slightly
before the function, as recorded, crosses the zero axis. This effect is caused
by pen lag in recording the sinusoidal function. On the same record are shown

seconds time pulses as received from WAV. In this particular recording of the
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Figure 5-4. Sinusoidal Input Function, Fl
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Figure 5-7. Pulse Recorded at a Speed of 5 div/sec
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time signals the noise level was rather high, but the time pulses are readily

distinguishable.

5.5 Use of Time Signals from Radio Station WWV

Very accurate timing pulses are needed for several reasons: (1) to aid
in the measurement of capacitances, (2) to determine L, the exact time taken by
the computer to complete its solution, and (3) to operate stepping relays for
changing computer resistors when studying non-uniform beams., By far the most
satisfactory method of obtaining accurate timing pulses is to use an oscillating
quartz crystal frequency standard or equivalent, as described in a previous re-
portlo. Such a standard should have an accuracy of at least 0.0l percent under
all operating conditions,

Since a standard frequency source was not available for the present
work, seconds time signals from Radio Station WWV were used instead. WWV trans-
mits continuously, day and night, standard radio frequencies of 2.5, 5, 10, 15,
20, 25, 30 and 35 megacycles per second with an accuracy of one part in 50,000,000,
Each of these carrier frequencies is modulated by three audio frequencies, 1, LLO
and 600 cycles per second. A 1,000 cycles per second pulse of 0.005 second
duration may be heard as a faint tick every second, except the 59th second of each
minute. The time interval marked by the pulse every second is accurate to one
microsecond,

The two audio frequencies of 440 and 600 cycles per second are trans-
mitted alternately for four minutes out of each five minute interval. The audio
frequency is interrupted at precisely one minute before each hour and each five
minutes thereafter (59th minute; 4 minutes past the hour; 9 minutes past the
hour, etc.); the alternate audio frequency is resumed in each case after an inter-
val of precisely one minute. This one minute interval is used to announce
Eastern Standard Time and to give certain other information,

In order to receive the seconds-pulses, exclusive of other modulation
frequencies, the output of a radio receiver tuned to one of WWV's carrier signals
is passed through a 1,000 cycle filter, The output of the filter is rectified
and the resulting DC pulse used to place time markers on the oscillograph record.

Figures 5-10a and 5-10b show the circuit arrangements used. In Figure

5=10a a General Radio band pass filter Type 830R is employed. This filter permits
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the use of a full wave bridge rectifier as shown. In Figure 5-10b the filter
is a surplus property Radio Filter FL-8-A, Since this filter has a terminal
common to both input and output, a half wave rectifier is used. The networks
associated with the filter outputs were not scientifically designed, but merely
selected by trial and error to give satisfactory pulses. The time pulses ob-
tained are shown in Figure 5-9.

These time pulses were obtained and used during the latter part of
August and the first part of September (1950). At night and during the forenoon
suitable signals could usually be picked up on 5 or 10 megacycles; sometimes one
carrier frequency was better than the other, After about 2:30 P.M. it was diffi-
cult to receive satisfactory signals, For this and other reasons it would be

highly desirable to have a local standard freguency source,

5,6 Proposed Electronic Clock

In many problems it is necessary to determine with a high degree of
accuracy the length (in time) of a solution obtained by the computer, Thus far
the procedure has been to pecord simultaneously the solution of the problem and
accurate time pulses. The time of solution is then determined by measuring (in
centimeters) the length of solution shown on the oscillogram and a nearly equal
length (in centimeters) covered by an integral number of time pulses. From these
two measurements the length (in time) is computed.

Considerable labor could be saved and better accuracy obtained by using
an electronic clock for measuring the time it takes for the computer to obtain
the solution. This electronic clock would consist of a local standard frequency
source and an accurate electronic counting device. The standard frequency source
should furnish pulses at the rate of 1,000 per second. The counting device would
consist of a set of decade scaling units to indicate elapsed time to the nearest
0,001 second. The Decascale Unit SC-11l of Tracerlab Inc., would serve very well
for the basic counting units, '

The clock would be started by a pulse at the time the solution is begun
and stopped by a pulse at the end of the solution. This latter pulse could be
obtained in the manner described in Section 5.4 above, The clock would indicate
the length (in time) of the solution without calculation or measurements of

length., Figure 5-11 shows a block diagram of the proposed electronic clock.
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5.7 Technique for Measuring the Length of the Computer Solution

In order to obtain the frequency parameter \ of the vibrating beam it
is necessary to measure the length L of the computer solution (see Sections 3.2
and 3.3). L is defined as the elapsed time from the beginning of the solution
to the instant when the proper end conditions are met. For the free~free beam
the initial and end (or final) conditions are that dB/d1’= 0 and that &€ =0
(i.e., that shear and bending moment are zero).

The function dB/dT is recorded from the computer, along with pulses
occurring at X = O (using the technique described in Section 5.4). One of the
initial voltages is varied until a solution satisfying the proper end conditions
is obtained, In order to determine more accurately when the correct end condi-
tions have been realized, the dB/dT record is "blown-up" by a factor of ten in
the region where it is near zero in value, i.e., at the end of a correct solution.
The dB/dT record is also blown-up by a factor of ten at the beginning of a solu-
tion. A correct solution obtained in this manner for a second mode is shown in
Figure 5-12. The pulses superimposed on the dB/dY curve occur at the instant X
goes through zero, The length of the solution L is just the time between initial
and final pulse. This time is obtained by comparison with the WWV seconds-pulses

on the upper channel,
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CHAPTER 6-

PROPOSED WORK

In addition to continuing the investigation of the general utility of
the electronic differential analyzer for obtaining solutions to theoretical and
physical problems, there are a number of specific lines of investigation suggested
by the work done thus far, including the following:

(1) the publication of a complete set of frequency and mode-shape

curves for all types of uniform beams,

(2) an experimental study of the proper end conditions for a

cantilever beam,

(3) the comparison of experimentally determined eigen-frequencies

for vibrating uniform beams with the eigen-frequencies obtained
with the computer,

(4) a check on the accuracy obtained in using the electronic

computer to determine solutions for non-uniform beams,

(5) the degree of validity of the basic equations of Chapter 1

for eigen-vibrations having wave-lengths comparable to the
transverse dimensions of the beam, and

(6) a complete and comprehensive bibliography of the work which

has been done on the problem of vibrating beams.

6.1 A Complete Set of Frequency and Mode-Shape Curves for all Types of Uniform

Beams

In this report we have included data and families of curves giving the
relation between frequency parameter A and shear and rotary inertia parameters
S and N for the first three "normal modes" of vibration of free-free beams. A
definite contribution would be made by obtaining similar data and curves for all
types of uniform beams, Including the one already done, these would be:

(1) Free-Free Beam,

(2) Clamped-Free Beam,

(3) Hinged-Free Beam,

(4) Clamped-Clamped Beam,
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(5) Clamped-Hinged Beam, and

(6) Hinged-Hinged Beam.

Although some of the above types of beams are more important than others, it is
suggested, for the sake of completeness, that data and curves for all types be
obtained.

In determining the data for the free-free-beam curves as given in this
report the values for rotary inertia parameter N (0.0, 0.1, 0.2 and 0.3) were
selected somewhat arbitrarily. It is desirable to determine values of N for
beams of various materials and forms of cross-section. The cross-sectional forms
should include cylinders, hollow cylinders, rectangles, I shapes, U shapes, etc,
From the values of N found in this way one can determine the most suitable values
to be included in the data for the families of frequency curves, Publication of

these data and curves, together with typical mode shape curves, is desirable.

6.2 An Experimental Study of the Proper End Conditions for the Clamped End of

2 Beam

There seems to be some question concerning the correct expressions for
the type of restraint placed on a beam end when it is "clamped". When the effects
of rotary inertia and transverse shear force are neglected, the boundary condi-
tions at the built-in end are assumed to be y = O, and dy/dx = O. When the
effects of rotary inertia and transverse shear force are included, several

7,8

authors have given the boundary conditions as y = 0 and B = O, where 8 is the
neutral axis slope due to bending moment,

This latter condition means that dy/dx, the slope of the neutral axis,
has a finite value at the built-in end of the beam. This condition seems to
contradict the usual definition of a clamped beam. However, in general there will
be distortion in the built-in portion of the beam so that the assumption made in
deriving our basic equations of Chapter 1, namely that the planes of flexure
remain parallel, will no longer be valid. In order to solve the problem rigor-
ously we must consider carefully not only the elastic properties of the beam but
also of the supporting wall., To apply the equations of Chapter 1 with either end
condition (y =B =0 ory = dy/dx = 0) is an oversimplification. The problem is
not merely academic, since preliminary results with the electronic computer indi-
cate a difference of about 20 percent in eigen frequencies of the first mode, for

a 1/S value of 11, depending upon which end condition is used.
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One interesting sidelight to this problem is that Dolph has shown13 the
8 = 0 end condition is the only one which leads to orthogonal solutions when the
effect of rotary inertia is included.

A direct experimental approach to the problem is to construct a small
uniform cantilever beam and experimentally to observe its eigen-frequencies.
These values should then be compared with those obtained by calculations using
the two proposed sets of end conditions.

To compute the eigen-frequencies from theoretical considerations it is
necessary to know the values of the modulus of elasticity, E, and the modulus of
rigidity, G. It is suggested that these moduli be determined dynamically, follow-
ing the general procedure given by Goensh. Attention is called to the fact that
static and dynamic determinations of G differ by approximately one percent.

Little difficulty should be experienced in exciting transverse and
longitudinal vibrations in a steel bar by an audio oscillator with an electro-
magnetic drive, The excitation of torsional vibrations cannot be obtained as
easily. One method worth considering is the use of a fluctuating, as opposed to
a rotating, magnetic field. This fluctuating field could be obtained by means
of a four pole stator, similar to that used in a small two phase motor. One pair
of opposing poles should be excited by direct current, the other pair by alter-
nating current. One would expect the round rod, acting as a rotor, to receive
oscillatory torque impulses of the same frequency as the alternating current
applied to the stator, and that relatively large torsional oscillations would be
set up in the rod when the correct frejuency is applied.

In setting up the experimental cantilever beam care must be taken to
imbed the beam tightly in the "wall" at all points. The mass into which the beam
is imbedded should be so large that no measurable vibration of the wall mass takes
place. |

A somewhat less direct method, but one which might possibly give more
enlightenment on the conditions which exist in the built-in portion of the beam,
involves the use of the electronic computer for solving non-uniform beams. Con-
sider the cantilever beam as consisting of a uniform rod of relatively small
diameter imbedded in another uniform beam of much larger diameter. By obtaining
a series of solutions for greater and greater sizes of this large beam it is

possible to approach the ideal case of having the smaller beam clamped in a rigid
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massive wall. From the observed curves of y, dy/dx, o<, and B there should be
some indication of the conditions which exist when the mass of the '"wall' becomes

infinite.

6.3 Comparison of Experimental and Computer Values of Eigen-Freguencies

Goensh has made some very precise experimental measurements on vibra-
tions of free-free cylindrical steel bars and on an aluminum bar of rectangular
cross-section. In most cases the necessary data is given to four significant
figures. The comparison of his results with those obtained by the electronic
differential analyzer would serve as a good check on the validity of the equa-
tions.

Alternately, the check could be made with vibrating beams set up and
measured in the laboratory.

Dolph13 has shown that when the effect of rotary inertia is included,
the solutions are in general not orthogonal. Dolph further argues that when
rotary inertia effects are included, equations (1-1) to (1-5) are fourth order
in both time and displacement along the beam, resulting in four boundary and four
initial conditions. But the standing wave hypothesis involved in separating the
time variable from equations (1-1) to (1-5) allows only two initial conditions
in time to be satisfied. Thus the validity of equations (1-1) to (1-5) might
seriously be questioned. Good laboratory checks on beam frequencies, where
rotary inertia effects are quite appreciable, ought to throw considerable light

on this whole question,

6.4 Checking the Computer for the Solutions of Non-Uniform Beams

It is assumed that a non-uniform beam may be represented approximately
by a finite number of equal length uniform beams having appropriate dimensions
and properties. It is suggested that small non-uniform beams be constructed and
that the experimentally determined eigen-freyuencies be compared with those ob-
tained by using the electronic computer. At least one of the beams should consist
of a series of equal length uniform beam increments. In this case the computer
solution would be made without approximations and a direct check could be obtained
between frequencies determined by experiment and by the computer.

In addition a beam should be constructed of continuously varying size,

preferably with symmetry about the center of the beam. For solution by the
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computer this beam would be approximated by a finite number of uniform beam
increments. Frequency comparisons would indicate the accuracy with which the
computer gives the frequency when operating on the approximated equations,
Another check on the computer would be to use the approximation data
available for the ship APA87. This ship is 400 feet long and is considered
divided into 20 eyual-length sections for each of which are given the necessary
properties and dimensions, This ship problem has been solved by several other

methods,

6.5 Validity of Basic Equations for Bigen-Vibrations of Wave-Lengths Comparable

to Transverse Dimensions of Beams

For higher and higher modes of vibration of a beam the corresponding
wave-lengths become smaller and smaller. The question arises as to what happens
when the wave-lengths become comparable in size to the transverse dimensions of

4

the beam. Goens™ attacks the problem analytically and shows that above a certain
critical frequency limit a change in the type of oscillation should develop., He
states that Giebe and Scheibe, working with prismatic quartz bars of a few milli-
meters thickness, obtained limiting frequencies which, from data unpublished at
the time of writing his paper, seemed to be somewhat smaller than the above
mentioned critical frequency. Goens raises the question as to whether this
limiting frequency has any physical meaning, even under the assumption that the
basic equations give at least a qualitative description of the vibration process
under such extreme conditions.,

It would be of interest to determine to what extent the basic equations
used in the present approach to the beam problem are valid when the wave-lengths

become comparable in size to the transverse dimensions of the beam,

6.6 The Need for a Complete and Comprehensive Bibliography

Originally there was no thought of making the study of vibrating beams
‘a major project associated with the computer. The problem was presented to the
group working with the electronic differential analyzer as the solution of a
specific fourth order differential equation subject to certain boundary conditions
for a free-free beam. The problem was welcomed as an opportunity to show what the

computer could do,
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The computer, itself, demonstrated that the assumed end conditions
were in error. Furthermore it was soon discovered that the use of the fourth
order equation for non-uniform beams neglected many derivatives which are impor-
tant, However, after some investigation it was found that by using the basic
relations from which the fourth order equation was derived the computer could
obtain solutions without neglecting any derivatives.

If, before attempting to solve the fourth order differential equation
by the computer, adequate reference had been made to easily available literature,
it is probable that neither of these problems would have arisen. Subsequently,
enough reference has been made to various articles to find that there is avail-
‘able a considerable amount of information and data which would be helpful in
continuing work on the general problem of vibrating beams. Among the vast amount
of work which has been done on vibrating quartz crystals there is considerable
information directly applicable to the present problem.

If work is continued on vibrating beams, it is suggested that a complete

bibliography, with abstracts, be compiled.
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APPENDIX 1

SUMMARY OF NORMAL MODE FREQUENCIES FOR A FREE-FREE BEAM,

INCLUDING TRANSVERSE SHEAR AND ROTARY INERTIA FORCES

Notation (see Chapter 1)

2
N-wl?) &
EI

S =
KAG 12
kG

N'=-E';—

)‘o = \NforS=N=0 (i.e., for an infinitely-long beam)

L = length of computer solution in seconds
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FIRST MODE
"FREE-FREE" BEAM
A, = 22.373

-i— = 0.0446967
(o]

1 2 1 A\ 1 2 1 A

= N A=L° = Sx100 . N -1¢ i A

sp? 5 » sL? A 5 N 100

29.55 0,0 22,203 656.1 99.240 3.982 0.0 20.867 83,09 93,268
0.1 22.099 653.0 98,775 0.1 20.412 81.28 91.234
0.2 22,034 651.1 98.484 0.2 19.909 79.28 88.986
0.3 21.930 648.0 98,019 0.3 19.430 77.37 86.845

19.83 0.0 22,090 438.0 98.735 2,977 0.0 20,421 60.79 91.275
0.2 21.837 433.0 97.504 0.2 19.193 57.14 85,786
0.3 21.697 430.3 96.978 0.3 18.602 55,38 83.144

14,92 0.0 21.977 327.9 98.229 1.990 0.0 19.483 38,77 87.082
0.1 21.809 325.4 97.479 0.1 18.697 37.21 83.569
0.2 21.678 323.4 96.893 0.2 17.893 35.61 79.975
0.3 21.511 320.9 96,147 0.3 17.148 34.12 76.645

9.92 0,0 21,772 216.0 97.313 1.502 0.0 18.636 27.99 83.296
0.1 21.520 213.5 96.187 0.1 17.707 26,60 79.144
0.2 21.326 211.6 95.320 0.2 16,810 25,25 75,135
0.3 21,114 209.5 94,372 0.3 15.928 23.92 71.192

6.958 0.0 21.548 149.9 96,312 0.9963 0.0 16.991 16.928 75.944
0.1 21.197 147.5 94.743 0.1 15.952 15.893 71.300
0.2 20.867 145.2 93,268 0.2 14.900 14.845 66,598
0.3 20.593 143.3 92.043 0.3 13.883 13.832 62,052

L.946 0.0 21.197 104.8L 9L.743
0.1 20,739 102,58 92,696
0.2 20,349 100.64 90.953
0.3 19.927 98.56 89.067
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SECOND MODE

WFREE-FREE" BEAM
A, = 61.6696

%; = 0.0162154L

1 2 1 A 1 2 1 A
= N \=L = = x100 —= N A=L1° = x 100
sL? R s1? 5 N
29.55 0.0 60.934 1800.6 98.807 3,982 0.0 56,190 223.7  91.1lh
0.1 60.746 1795.0 98.502 0.1 55.145 219.6 89.420
0.3 60.482 1787.2 98.074 0.3 52.98, 211.0 85.915
19.83 0.0 60.528 1200.2 98.148 2.977 0.0 54,361 161.83 88.148
0.1 60.187 1193.5 97.595 0.1 53,086 158,04 86.081
0.2 60.063 1191.0 97.394 0.2 51,926 154.58 8L.200
0.3 59.939 1188.6 97.193 0.3 50.652 150,79 82.134
14.92 0.0 60.125 897.1 97.495 1.990 0.0 51.094 101.68 82,351
0.1 59.815 892.4 96.992 0.1 49.421 98.35 80.138
0.2 59,537 888.3 96.541 0.2 47.734 9499 T7.402
0.3 59.213 883.5 96.016 0.3 46,050 91,64 7h4.572
9,92 0.0 59.367 588.9 96.266 1.502 0.0 48,066 72.20 77.941
0.1 58.390 584.2 95.492 0.1 L46.158 69.33 TL.847
0.2 58.446  579.8 94,772 0.2 L4o209 66,40 T1.686
0.3 57.912 574.5 93.906 0.3 42,250 63.46 68.510
6.958 0.0 58.446  L06.7 94.T72 0.9963 0.0 42,576 42,42 69.038
0.1 57.821 L402.3 93.759 0.1 40.284 40.13 65.322
0.2 57.199 398.0 92,750 0.2 37.896 37.76 61.450
0.3 56.475 393.0 91.576 0.3 35.355 35.22 57.329
LL6 0,0 57.18L 282.8 92,726
0,1 56.355 278.7 91.382
0.2 55.413 274.1 89.354
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THIRD MODE
"FREE-FREE" BEAM
Xo = 120.890

1
= 0,008271983
Y

1 2 1\ 1 2 1 )\
= N A=L = 2 x100 =~ N A=1° = x 100
sL® SN sL? 5 X
29,55 0.0 119.40 3528 98.767 3,982 0.0 109.29 435.2 90.40L4
0.2 118,81 3511 98,279 0.2 105.78 421.2 87.501
0.3 118.61 3505 98,113 0.3 104,04 41h.3 86.061
19.83 0.0 118,77 2355 98.2L6 2,977 0.0 105.33 313.6 87.128
0.1 118,16 2343 97.741 0.1 103.33 307.6 85.474
0.2 117.81 2336 97.452 0.2 101.24 301l.4 83.475
0.3 117.57 2331 97.253 0.3 99.14 295.1 82,008
14.92 0.0 117.74 1756.7 97.394 1.977 0.0 98.66 195.05 81,611
0.1 117.25 1749.4 96.989 0.1 95.90 189.59 79.328
0.2 116.52 1740.0 96.467 0.2 93,20 184.26 77.094
0.3 116,25 1734.4 96.161 0.3 90.44 178.80 74.811
9.92 0,0 116,23 1153.0 96.145 1,502 0.0 92.37 138.74 76.408
0.1 115.30 1143.8 95.375 0.1 89.36 134,22 73.918
0.2 114.40 1134.8 94.631 0.2 86,27 129,58 71.362
0.3 113.53 1126.2 93,911 0.3 . 83.14 124.88 68.773
6.958 0,0 114.08 793.8 94.366 0.9963 0,0 81,07 80,77 67.060
0.1 113.06 786.7 93.523 0.1 77.67 7T77.38 64,248
0.2 111.98 779.2 92.629 0.2 T4l 73.84 61,303
0.3 110.97 772.1 91.79% 0.3 70.34 170.08 58,185
L.94L6 0.0 111.43 551.1 92.174
0.1 109.96 543.9 90.958
0.2 108.56 536.9 89.300
0.3 107.02 529.3 88.526
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APPENDIX 2

DESCRIPTION OF THE OLD DC AMPLIFIER

The work covered in this report was carried on using the dc amplifier
shown in Figure A2-1. This circuit is similar to one presented by Ragazzini
et a.ll2 and has been used with very satisfactory results in the electronic
differential analyzer.’’’ It has an overall dc gain of about 40,000, which is
completely adequate for the problems solved thus far. This amplifier is liable
to drift off of balance over extended periods of time.

The amplifier chassis is pictured in Figure A2-2. Balance potentio-
meter controls are provided, along with jacks for plugging in feedback or input
impedances. A more complete description of these amplifiers is given in a

previous report.9

OPERATE BALANGE
. —
70 INPUT JACK ON GHASSIS <+
250K
~75MMFD -1
| -
I :
7.5
IMEG 39MEG MEG
1 1 [x
0.002MFD 6SL7 osfépﬁ__:tfszw

________________ b —— — 0
OK , , %eoo« —_—

o—
INPUT 50 OUTPUT
o 0002
L e LT decgege | 5 [
= 500WW %—\ =
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APPENDIX 3

THE DRIFT-STABILIZED DC AMPLIFIER

A3-1l  Importance of Low-Drift Operation

The d¢ amplifier described in Appendix 2 and used for the work covered
in this report is liable to drift off of balance over extended periods of time.
This drift may be due to very slight changes in power supply voltages or in
amplifier components., In general the drift is quite small during the several
seconds required for a computer solution, particularly when the feedback is
enough so that the operational amplifier is operated at a gain of about unity.
However, it only takes a zero-drift of the order of a millivolt to affect notice-
ably the behavior of higher-mode solutions (see Section 3.4b),

For many types of problems it is desirable to run solutions for several
minutes at a time (this may be necessary, for example, if a recorder of low
frequency response is used). It may even be necessary to stop the solution mid-
way through a problem, perhaps to read the computer voltage outputs with a
potentiometer, Low-drift dc amplifier operation is an obvious requirement if

elther of the above procedures are employed.

A3-2 General Description of the Drift-Stabilized DC Amplifier

An ingenious method for practically eliminating dec drift was worked
out by RCA and Leeds and Northrup, and is shown schematically in Figure A3-l,
The arrangement consists of a conventional de¢ amplifier of gain A and having
input and feedback impedances Zi and Zf respectively., The dc¢ amplifier actually
has two isolated inputs, at P and P', The net input voltage is the sum of the
two voltages appearing at these points, The potential at the point P is fed
through a 60 cycle vibrator, chopped into ac, amplified, and reconverted to dc,
This amplified d¢ signal is fed into the dc amplifier at P'. From here it gets
amplified through the dc amplifier and fed back through Zf to P, which is driven
back to zero potential (relative to ground). '

The function of the additional drift-free loop, therefore, is to main~
tain zero potential at the junction point P, If ideally met, this condition
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Figure A3-l, Drift-Stabilized DC Amplifier

guarantees that e, = = Zf/Zi el,’where e, is the inpu? voltage, e, is the output
voltage., Thus the amplifier is kept in balance, since if e, = O, then e, = 0.

It can be shown that the effective gain of the dc amplifier and ac loop
gystem is A + AG, where A is the gain of the dc amplifier and G is the gain of
the auxiliary, drift-free loop. The frequency response of the auxiliary loop
begins to decrease at around 0,1 cps, so that this drift-stabiling loop can only
correct for slow drifts. At higher frequencies for which G —>» O, the net gain of
the system is still A, while for low frequencies, where G >>1, the net gain is
A(G + 1), Thus for the actual amplifier described here, where A = 40,000 and
G = 2000, the effective gain of the system at low frequencies (<0.1 cps) is
about 80,000,000,

A3-3 Circuit Description of the Drift-Stabilized DC Amplifier

The actual circuit employed for the drift-stabilized dc¢ amplifier is
shown in Figure A3-2, This circuit is essentially similar to one developed by
the Rand Corporation for their electronic differential analyzer.

The input proper and error-signal input are fed into the dc amplificr
through cathode followers (each half of a 6SU7). Three stages of amplification
follow using a 5691, 12SJ7, and 1631 tube respectively. The 6SU7 and 5691 tubes
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Figure A3-3, Panel for Drift-Stabilized DC Amplifier
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are operated at reduced filament voltages of 4.2 and 5.25 volts respectively.
This prevents the flow of appreciable current to the grids,

A Leeds and Northrup Model 3338-9 special vibrator is used to chop the
error signal into ac. A 5693 tube and a 6SL7 tube are employed in the ac ampli-
fier, and the same L & N vibrator reconverts the ac signal to the amplified dc
error signal. The error signal itself can be read directly off the error-
indicating meter. It is desirable in normal operation to have the amplifier
balanced with the manual control so that a minimum of error-signal is required
to keep the system in balance.

Relays are provided in order that initial conditions can be imposed on
the operational amplifier; a solution can also be stopped and held fixed at any
time,

The amplifier panel is shown in Figure A3-3. Jacks are provided on the
face of the panel to receive General Radio plugs with standard 3/4" separation,
so that input or feedback resistors can readily be plugged into the unit. OSpace
is available back of the chassis to plug in a feedback capacitor when the unit
is to be used as an integrator. A switch is provided to select manual or auto-
matic balance operation. The manual balance control operates a ten-turn heliopot.
Error-signal can be read directly off of the meter on the panel provided for this
purpose.

The signal-ground connections for all amplifiers should be connected
to the power ground at just one point. This is necessary to prevent circulating
ground currents from introducing voltage errors in the operational amplifiers,

The +300, +100, =190, and -350 volt dc power for the amplifier is
supplied by the highly-stabilized power supply described in Appendix 4. All
filaments are supplied by direct current. This is necessary to reduce 60 cycle
ripple level, particularly in the ac loop, where any 60 cycle pickup is amplified
and reconverted to dc error signal.,

In the final dc amplifiers we plan to replace all 125J7 and 6SL7 tubes
by 5693 and 5691 tubes respectively in order to prolong tube life,

A3-l, Performance Data on the DC Amplifier

The drift-stabilizing loop can work only when a feedback impedance is

present across the dc amplifier. Therefore it is necessary to measure the

.
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wide-open gain of the amplifier with the balance control on manual, i.e., with
the stabilizing loop disconnected. Amplifier gain as a function of frequency is
shown in Figure A3-4. Note that the Bode criteria for stability is met; the gain
does not fall off faster than 12 db per octave. No combination of input or feed-
back impedance can cause the amplifier to go into oscillation. Output saturation
voltage as a function of load resistance is shown in Figure A3-5.

The automatic balance feature works extremely well; the stabilizing
loop holds the output voltage within 50 microvolts of balance for an operational
gain of unity. When the amplifier was set up as an integrator with a time con-
stant of one second and with the input short-circuited, an initial output of 100
volts held constant to better than 0.1% for over one hour.

Because of the rapid decrease in the stabilizing-loop gain for fre-
quencies above about 0.1 cps, recovery of the amplifier from a saturation condi-
tion is very slow when operated on automatic balance. For this reason the
stabilizing loop cannot be used when the amplifier is employed in the zero-
pulsing circuit described in Section 5.4.

At the time of writing of this report only one of the drift-stabilized
amplifiers had been constructed. Performance was deemed highly satisfactory,
and nine more are presently under construction. Eventually we hope to have
twenty or even thirty of these amplifiers available for the electronic differen-

tial analyzer.
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APPENDIX 4

DESCRIPTION OF THE HIGHLY-STABILIZED POWER SUPPLY

AL-1 Power Supply Requirements for the Computer

The high-gain dc amplifiers used in the electronic differential
analyzer require well regulated dc power supplies, since the output balance of
these amplifiers will be highly sensitive to any changes in the plate-voltage
supplies of the vacuum tubes, Even with the considerable feedback employed in
the operational amplifiers themselves, the output balance is still sensitive to
fluctuations in the power-supply voltage. The solution of vibrating-beam prob-
lems depends in a very critical manner on the initial starting voltages and hence
on the initial balance of the amplifiers. Amplifier balance is also very sensi-
tive when the pulsing techniques described in Section 5.4 are employed (where
the overall operational amplifier gain used is 6000). Thus the importance of
well-regulated power supplies is apparent.

The dc amplifiers used for the work described in this report (see
Appendix 2) require power supply voltages of +300, -190, and -350 volts. The
new amplifiers now being put into operation (see Appendix 3) require +100 volts

in addition to the above voltages,

AL-2 General Description of the Highly-Stabilized Power Supply

A well known scheme for obtaining a highly-regulated dc¢ power-supply
voltage is shown in the block diagram of Figure A4-1l., The output voltage from
the rectifier and filter is regulated in the usual way by means of loop (a), in
which a VR tube is used as the reference voltage. This loop is able to provide
regulation over a wide range of frequencies (for example it eliminates most of
the 60 cycle ripple) but in general will be subject to slow drifts. Loop (b)
provides an additional feedback which takes care of any slow drifts. The output
voltage in this loop is compared with a standard cell reference. Any dc error
signal is chopped into ac by means of a vibrator, amplified, and reconverted to
dc with the phase sensitive rectifier. This amplified dc error signal is finally

fed back into the regulator amplifier,
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The (a) loop therefore serves the purpose of stabilizing the output
voltage against fast or sudden fluctuations while the (b) loop prevents the
output voltage from drifting away from the voltage set by the standard cell
reference., The frequency response of the (b) loop is such that it cannot

compensate for fluctuations faster than about O.l cps.

Ah=3 Components and Circuits Used in the Power Supply

The 60 cycle 115 volt input to the power supply is regulated by a
Sorenson Model 2000S Regulator. The rectifier and filter circuits are shown in
Figures A4-2, Ah=3, Ah-4, and A4=5, while the regulator circuits are given in
Figures A4~6 and A4=7. The current capacities of the various voltage supplies
are sufficient to operate 20 computer amplifiers under the most adverse load
conditions and 30 computer amplifiers under normal load conditions,

About 1/350th of the =350 volt output is tapped off with a precision
potential divider and compared with the standard cell voltage (see Figure AL=6).
The other voltage outputs (-190, +100, and +300) are compared with the =350 volt
supply by means of potential divider arrangements (Figures AL-6 and AL-7). Since
only a small fraction of the =350 volt output is used for comparison with the
standard cell, the gain of the ac amplifier in the =350 volt loop needs to be
considerably higher than that of the ac amplifiers for the -190, 4100, and +300
volt loops, where a considerable fraction of the voltage is compared with the
~350 volt supply.

The 12AU7 and 6AU6 tubes in Figures A4-6 and AL-7 are part of the ac
amplifiers. The 6AL5 tubes are used in the phase sensitive rectifier, the out-
put voltage of which can be observed directly by means of an error-indicating
meter, Two Leeds and Northrup Model 388l standard vibrators are used to chop the
dc error signal.

The panel housing for the highly-stabilized power supply is shown in
Figure A4-8. Current and voltage outputs for each of the four supplies can be
read directly off of panel meters, The error signal of the (b) loop for each of
the supplies can also be read directly from panel meters, Full scale on the
meters represents an error signal of 25 volts.

If it becomes desirable to add current capacity to the power supplies,
it is only necessary to increase the capacity of the rectifier, filter, and

control circuits. The regulator circuits can remain unchanged.
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The output voltages of this supply remain constant to the order of
one millivolt under normal conditions of operation. 60 cycle ripple in the out-
puts is also the order of one millivolt.
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Figure AL~8, Panel Housing for the Highly-Stabilized Power Supply
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APPENDIX 5

TIME CONSTANT OF THE ELECTRONIC INTEGRATOR

R¢
———— AN
1S
I
Ri
— A e
e I €0
Figure A5-1.

The DC amplifier has a gain of - /U so that

= ../Ue . (AS"l)

e
o
The total current entering the input junction must be zero

e -€ e,=e
O 1

& +C(8,-8) + 5— =0, (A5-2)
1

Using (A5-1) to eliminate e in (A5-2) gives

_e.9(1+.]:)+cé (14»-l)-4>3j—'+-—e-2 (45-3)
Ry M o /Ry Ry
. i % M1 1
6 = e——— o = | ——— (A5=h)
° Ric (1 +/%) ¢ [Rf //Ri (1 +/%; ]
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Integration furnishes the result

t t

1 1|1 1
eo=_m~——i~feidt-6—+m-—T Jeodt. (45-5)
RiC (1 + ) ) Fe PR, (1 +/-J-) |

o o

It is seen that a finite value of/A’reduces slightly the value of the
coefficient before the integral of e; as compared with the simplified derivation

which assumes e = o, More important is the coefficient

1
ARG (14 /,i)

introduced before the integral of e,. This second integral acts as a time
constant of exponential decay for the integrator. This can be seen by assuming

ei =0 for t > tl and e, = Eo fort > tl. Then equation (A5-4) can be solved

to give
e =8 exp (- (A5-6)
o) o) RC
where
1 _1 1
R = + (AS"")

Ry ME. (1 +/%) )

Thus we see that when e, =0 the integrator time constant is equivalent to two
leakage resistors paralleled across the condenser: the first is the actual re-
sistance Rf and the second, due to the finite gain of the amplifier, is
/‘Ri (1 + 1/M). When Rp = 0 and RiC = 1 the time constant is closely equal to/-l.
The general solution of (A5-4) for e, as a linear time operation on
e is

e, =k exp (-bt) - a exp (-bt) | exp (bt) e; dt (A5-8)

o
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where
a 1
R.C (1 +/zl‘-
1|1 1
b=+
C Rf /lRi (1 +/a]$)]

and k is determined by the initial value of e, when the integrator is started
at t = O,
Condensers with C = lO_6 farads are available with R, > 10 ohms.
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