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PREFACE

This report continues the description of the application of
electronic differential analyzers to partial differential equations of
physics and engineering by using difference techniques. Earlier
reports dealt with the lateral vibrations of beams, including both

. 1,13, 14
linear

and nonlinear'2 damping terms. In this report we are
concerned with both linear and nonlinear dynamic problems involving
heat flow. In all cases time is preserved as a continuous variable;
distance through the conducting medium is divided into stations and
derivatives with respect to the spacial coordinates are approximated
by finite differences. The resulting simultaneous ordinary differential
equations are then solved by the electronic differential analyzer.

Heat-flow problems treated include one and two-dimensional
flow in rectangular media as well as flow in cylindrical and spherical
media. In all cases theoretical accuracy of the difference method as
a function of the number of stations is analyzed and example computer
solutions are presented. Change of independent variable to improve
accuracy and to solve flow in semi-infinite media is discussed with
sample solutions. The heat equation for a medium having a conductivity
proportional to its temperature is solved with the electronic differential
analyzer and results are compared with a particular exact solution.

It should be pointed out that the heat equation can be solved
by the difference method with a passive network of resistors and
capacitors. The active-circuit approach presented here has the ad-
vantage of versitility, ability to handle nonlinearities, and low-
impedance outputs. In addition, the extreme flexibility'in time scale
of the electronic differential analyzer should allow a real-time simula-
tion of heat-transfer systems when those systems are part of an auto-
matic control process. Such a simulation could be extremely useful
in designing and testing the control system.

One should also note that all conclusions reached in this
report concerning theoretical accuracy of the difference method in
solving the heat equation can readily be applied to the wave equation.
This follows from the similarity between the two equations, the only

difference being in the time derivative term; the heat equation



involves a first-order partial time derivative while the wave equation
involves a second-order partial time-derivative. Thus the normal-
mode shapes for both equations will be identical, while the normal-
mode frequencies for the wave equation will be the square root of the
equivalent exponential decay constants for the heat equation. For

this reason one can obtain from the curves presented in this report
the errors in normal-mode shapes and frequencies as a function of
the number of stations for the wave equation in Cartesian, cylindrical,
and spherical coordinates.

The computer solutions were obtained on the electronic
differential analyzer installations in the Department of Aeronautical
Engineering. The computers used included an 80-amplifier facility
with components essentially similar to those discussed in another
report 3 and a REAC * facility. Solutions were recorded on an xy
plotting table. The reader of the previous reports may question the
inclusion in this report of background material on the theory of
electronic differential analyzers. This is done so that one not
familiar with this type of computer can read the report successfully

without recourse to previous reports.

* Reeves Electronic Analog Computer, Reeves Instrument Corp., New
York 28, New York
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CHAPTER 1

INTRODUCTION

It seems hardly necessary to point out the importance of the
heat equation and the many problems in heat transfer to which it is applicable.
Since the heat equation is a partial differential equation containing derivatives
with respect to both time and spacial coordinates, it is necessary to convert
it to one or more ordinary differential equations before solution by means of
the electronic differential analyzer. This is because the electronic differential
analyzer can integrate with respect to only one variable, namely time. If the
original partial differential equation is linear and has suitable boundary condi-
tions, it can be converted to ordinary differential equations by separation of
variables. The resulting eigenvalue equations can be solved directly by the
electronic differential analyzer. >~

If the heat-flow equation is nonlinear, the technique of separation
of variables cannot be used due to the failure of the superposition principle.
However, by considering the temperature only at discrete stations within the
conducting medium and by approximating spacial derivatives with finite dif-
ferences, the original nonlinear partial differential equatidns can be converted
to a system of nonlinear ordinary differential equations capable of being handled |
by the electronic differential analyzer. Even when the problem is linear, the
difference technique, although requiring more equipment, gives quicker and
more direct answers and easily allows the introduction of time-varying boundary
conditions, nonuniform thermal characteristics through the medium, arbitrary
time-dependent heat sources, etc. The directly-recorded voltage outputs of
the electronic differential analyzer represent the temperature and heat flux at
each station as a function of time.

1.1 Basic Equations for Heat Flow

The basic equation of heat flow is given by

cag—t‘j -v KVu+§S (1-1)

1
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where
u = temperature and is a function of the spacial
coordinates and time,
K = thermal conductivity, in general, a function of

the spacial coordinates,

¢ = specific heat, a function of spacial coordinates,

6 = density, also a function of spacial coordinates,

t = time,

S = rate of heat supplied per unit volume by sources,

in the medium, a function of spacial coordinates
and time,

The left-hand side of equation (1-1) represents the rate at which
heat is stored in a unit volume due to the heat capacity of the medium. The
right-hand side represents the rate at which the unit volume receives heat,
first due to heat conduction into the volume from the neighboring medium (the
V KV uterm) and second, due to the heat flow into the volume from sources
within the volume itself (the S term). The conductivity times the gradient of the
temperature (- K Vu) is a vector representing the heat flux. The components
of - K Vu represent the heat flow through a unit surface normal to the direction
along which the component is taken.

In a given heat-flow problem it is necessary to stipulate spacial
boundary conditions either on the temperature u or the heat flux -K Vu, as
well as the initial temperature distribution throughout the medium.

1.2 Equations for One-Dimensional Flow

In order to simplify the discussion to follow, let us assume that
spacial variations in the temperature u are confined to a single direction along

which the coordinate is x. Equation (1-1) then becomes

c® uxit) -a—{K(E)?i@_tl} +3E D) (1-2)
ot ax 9x

where we have defined the heat capacity C (x) by

C(x) = c(X) 6 (%) (1-3)
For example, u (X, t) in Equation (1-2) could represent the temperature distri-

bution in a medium between two infinite slabs, as shown in Figure 1-1. Let us
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=

TEMPERATURE = u(X T)

\\\\\::::i::::j\\\\\ (NSULATOR
[~ X 3

X =0 x=L

Figure 1-1. Temperature Distribution Between Two Slabs.

assume that the medium is bounded at x = 0 and at X = L. The heat flux

F§ along the x direction is given by

F- = -k (1-4)
X —_—
ox ;
It is convenient to define a dimensionless distance variable x such

that the distance through the conducting medium is unity. Thus let

(1-5)

il

from which
= = — = - = (1-6)
Also let us transform the variable characteristics of heat capacity C (x) and

conductivity K (x) into dimensionless variables ¢C (x) and ¢K(x) respectively.
Thus let
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C (Lx) = CO ¢C (x) (1-7)
and
K(Lx) = KO ¢K (x) (1-8)

Here CO and Ko are constants equal to the maximum value of C (x) and K (%)
respectively. For a homogeneous medium ¢C (x) = ¢K (x) = 1. From
Equations (1-6), (1-7), and (1-8) the one-dimensional heat equation (1-2) be-
comes

C, du(x,t) 1 9 du(x,t) 1 _ B
—— 9o (X) ——— = — — ¢ (x) —— +—5 (Lx,D) (1-9)

K ot L™ ox ax K
o} o}

Ko _
t = 5 1 (1-10)
CL
o
from which
2 0 dt Ko 9 -
— T = = 7 — (1-11)
ot ot dt COL ot
In terms of t Equation (1-9) becomes
b ) 20l B o 2D s () (1-12)
where LZ— COLZ
S (x,t) = K(—)S(Lx, Ko 1) (1-13)

For the special case of a uniform medium with no internal heat sources we
have the familiar equation

ou o u (1_14)

Equation (1-12) must have boundary conditions specified. For
example, if at all times the left side of the medium in Figure 1-1 is held at
zero temperature while the right side is insulated (no heat flow past the wall),

the boundary conditions become

uf(o,t) = 0 (1-15)
and
<1>K(1)auélx’—tl = 0 (1-16)




— ENGINEERING RESEARCH INSTITUTE <« UNIVERSITY OF MICHIGAN —
Let us denote the initial temperature distribution att = 0 by
u(x,0) = U (x) (1-17)

1.3 Solution by Separation of Variables

Before considering the solution of Equation (1-12) by the dif-
ference method let us review the solution by separation of variables. This
will not only give us complete theoretical solutions for specific problems
against which we can later check solutions by difference methods, but it
will also allow us to compare the normal modes for the continuous solution
with those using the difference technique. This latter comparison will, in
turn, allow us to estimate the accuracy of the difference method for more
general problems. Consider the case where S (x,t) = 0. Assume that the

temperature u (x,t) can be written as
u(x,t) = X(x)T(t) (1-18)

Substituting Equation (1-18) into Equation (1-12) we have

X (%) o () T = Ly () SKx) (1-19)
or
1 dT(t) _ 1 d by () dX(x) (1-20)
T(t) dt ¢C(X)X(x) dx dx

Since the left side of Equation (1-20) is a function only of t and the right side
is a function only of X, the only way they can be equal for all x and t is for

both to be equal to the same constant. Thus let

1 dT(t) _ _
T dt B
or
dT(t) _ )
@ teT() =0 (1-21)
In the same way
’adi;‘ $i (%) dX(X) tBoo(x)X(x) = 0 (1-22)

By separating the variables we have transformed the original
partial differential equation (1-12) into two ordinary differential equations
(1-21) and (1-22). The solution of Equation (1-21) is simply an exponential
function with decay-constantp, i.e

T (1) = Ae P! (1-23)

5
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where A is an arbitrary constant. Equation (1-22) is subject to the boundary
conditions of the original problem, since homogeneous boundary conditions
on u (x,t) must also be met by X (x). For example, for the medium with
zero temperature at x = 0 and zero heat flux at x = 1 the conditions on

X (x) are from Equations (1-15) and (1-16)

X (0) = g (1)L = g (1-24)

The solutions to Equation (1-22) can satisfy the boundary conditions (1-24)
only for discrete values By of the constant B, The solution X1 (x) corre-
sponding to the smallest allowable value By gives the temperature distribu-
tion through the medium corresponding to the lowest mode of exponential
decay with time. X2 (x) gives the shape of the second mode, which decays
exponentially with decay-constant f,, etc. The discrete values of B, are
known as eigenvalues, and the corresponding solutions Xn (x) are known as
eigenfunctions or normal modes. The higher the mode (i.e., the larger
the integer n), the larger the decay constant B and the faster will that
particular mode shape Xn (x) decay or die out.

One can show that any arbitrary temperature u (x,t) can be

represented by the proper combination of the normal modes. Thus

o0
u(x,t) = nZ:/—\l An Xn (x) e_ﬁnt (1-25)

The constants Arl can be evaluated by applying the initial condition of Equatiaj
(1-17) and by use of the orthogonality properties of Xn (x). Equation (1-22)

is known as the "Sturm-Lionville Equation," and it is easy to show from the

equation itself and the boundary conditions thatlo

fl

. o (%) X (x).xm (x)dx = 0 n # m (1-26)

= N n = m
n
where n and m are integers. Att = 0 Equation (1-25) becomes
[o.0]
U (x) = n§l A_X_(x) (1-27)

Multiplying both sides of Equation (1-27) by ¢ (x) Xm (x) and integrating

with respect to x from 0 to 1 we have
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co 1
f(,bc ) U () X_ (%) dx :nZ:>1 A Of bo (X)X (x) X_ (x) dx (1-28)

From the orthogonality relationship in Equation (1-26) it is clear that all the
integrals on the right side of Equation (1-25) vanish except the one where

m = n, from which the right side is An Nn. The solution for An is then
A =2 [ 6.(x)0Ux X (x)dx (1-29)
n Nn 0 C n

A method for calculating the complete solution to the heat
equation, at least when no internal heat sources are present, is now clear.
First the normal-mode decay constants By and the corresponding normal-
mode functions Xn (x) must be computed from Equation (1-22). Next the
mode coefficients An are found from Equation (1-29). Finally, the complete
solution is obtained by summing the contributions of all the normal modes,
as indicated in Equation (1-25). Although in theory an infinite number of
these modes is required to represent exactly the initial temperature dis-
tribution U (x), in practice only the first few modes are usually required
to give a suitably accurate representation for a reasonably well-behaved
U (x) function.

The electronic differential analyzer can be used to solve the
eigenvalue equation (1-22) for the mode shapes and eigenvalues. To do this
we let time on the analyzer represent distance x through the medium. In the
same way the analyzer can be used to calculate the coefficients An from
Equation (1-29).

Let us now consider the simple case where the medium is homo-
geneous and therefore ¢ = Pc * 1. Equation (1-22) becomes

4°x

de

+pBX = 0 (1-30)

which has sin \]—ﬁux or cos \l—ﬁx as a solution. For the boundary conditions

of Equation (1-24) to be met it is clear that the solution is

"

X (x) = sin (n-1/2)wx, n =1,2,3, .... (1-31)

from which
B = (n-1/2)%n? (1-32)
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From the Xn (x) functions and Bn values given above the complete solution
can be written as the infinite series given in Equation (1-25). As a
specific problem consider the case where the initial temperature throughout
the medium is equal to a constant Uo‘ Then from Equations (1-26), (1-29),

and (1-30) we can solve for the coefficients An, obtaining

\ZU0
Bn = qzn (1-33)
Thus the complete solution is given by
0
2U , 2.2
4 1) = o sin(n-1/2)wx o-(n 1/2)"n"t (1-34)

T  n=1 (2n-1)

This solution actually represent an infinite number of sinusoidal
temperature distributions across the medium from x = 0tox = 1. At
t = 0 the sine waves all add up to give the initial flat distribution. For
t > 0 the sine waves decay exponentially at different rates, with the decay
rates faster for those sine waves having more nodes and loops. The re-
sulting temperature distributions at various times are shown in Figure 1-2.
Note that after a short time has elapsed the distribution is almost pure
sinusoidal representing the first mode.  This is because the higher modes
decay so rapidly. - Later we will compare electronic differential analyzer
solutions of these same problems using difference techniques with the re-

sults shown in Figure 1-2.

1.4 Replacement of Partial Derivatives by Finite Differences

In the one-dimensional heat flow problem considered in the
previous section the temperature a was a function both of time t and dis-
tance x across the medium. Instead of measuring the temperature u at
all distances x, let us measure uonly at certain stations along x, as shown
in Figure 1-3. Let Uy be the value of uat the first x station, u, be the value
of u at the second x station, u, be the value of u at the nth station. Further,

let the distance between stations be a constant Ax. Thus u (x,1t) is

replaced by u; (t), u, (t), .... etc., and we can approximate oK du/dx
at the n-1/2 station by
K
ou n-1/2
¢, e = ——=(u_ -u,_,) (1-35)
K 9x Ax n n-1

n-1/2




0.0025
0.0l
0.04
0.8 '
0.16
0.6 |
0.32
u
Uo
0.4
t=0.64
0.2 .
0.0 | ] l 1
0.0 0.2 0.4 0.6 0.8
DISTANCE x THROUGH THE SLAB
Figure 1-2. Temperature Distributions Across Conducting Slab.
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// N
/) |
INSULATOR
u = U ,
Y 0 9Yio
/ = CONSTANT
/ Uo
x=0 x=L
Figure 1-3. Station Arrangement for N = 10-1/2.
Indeed the limit of Equation (1-35) as Ax—0 is just the definition of the
partial x derivative at that point. In the same way we can approximate
(8/0%) (px 9u/9x) at the nth station as
9 du 1 du du
S S = = [(p _— - ¢, A } (1-36)
9x "K 9x n Ax | "K 9x n+l/2 K 9x n-1/2

Thus the equation of heat flow balance at the nth station becomes from (1-12),

(1-35), and (1-36)

: dun 1

C = l:gb (u - ¢ —u_):]+f (t)
noo (Ax)z Kn+1/2 n+l n Kn—l/Z n n-1 n

10
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If the distance between x = 0 and x = L is divided into N

segments of length Ax (for example, N = 10-1/2 in Figure 1-3), then

_ 1 .
AX = J (1-38)

Introducing a new time variable T given by

T o= Nt - 12- t, (1-39)
(Ax)
we have from Equation (1-37)
dun
¢~ = = ¢ (u ,-u)-¢ (u -u )+@ (7) (1-40)
Cn dr Knﬂ/z ntl n Kn—l/z n n-1 n
where
1 1
(tr) = =5 S (= 1) (1-41)
d)n NZ NZ

Equation (1-40) is iterated for different values of n until the boundaries at
x = 0and x = 1 are reached. Boundary conditions will be discussed in
the next chapter. Note that the set of simultaneous first-order equations
represented by (1-40) at each station consist of ordinary differential equa-
tions; the only derivatives are with respect to the time variable . Thus

the equations can be handled by the electronic differential analyzer.

1.5 Principles of Operation of the Electronic Differential Analyzer

Although in previous reports in this series we have reviewed
briefly the principles of operation of the electronic differential analyzer,
to lend continuity to the present report this material is again included in
this section. The reader who wishes to become more familiar with this

4,11 Those already fa-

type of computer is directed to other references.

miliar with the electronic differential analyzer may omit this section.
The basic unit of the electronic differential analyzer is the

operational amplifier, which consists of a high-gain dc¢ amplifier having a

feedback impedance Zf and one or more input impedances, as shown in
Figure 1-4. To a high degree of approximation the output voltage e, of

an operational amplifier is equal to the input voltage multiplied by the ratio
of feedback to input impedance, with a reversal of sign (Figure 1-4a). If
several input resistors are used, the output voltage is proportional to the

sum of the input voltages (Figure 1-4b). If an input resistor and feedback

11
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Figure 1-4. Operational Amplifiers.
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capacitor are used, the output voltage is proportional to the time integral
of the input voltage (Figure 1-4c).

The operational amplifiers shown in Figure 1-4 can therefore
be used to multiply a voltage by a constant factor, invert signs, sum vol-
tages, and integrate a voltage with respect to time. To multiply several
voltages a servomechanism which drives potentiometers is the most com-
monly used device. In Figure 1-5 the block diagram of a servo multiplier
is shown. It consists of a number of linear potentiometers ganged together
.and driven by a servo motor. The reference voltage + VR is connected
across one of the pots, and the variable tap voltage VR is subtracted from
the voltage Z. The resulting error signal ¢ = Z - aVR is sent through a
high-gain servo amplifier and applied to the servo motor. The motor drives
the variable tap in the proper direction to reduce the error to zero, i.e.,
to make aVR = Z. In this way the tap position on all of the ganged pots is
proportional to the voltage Z. If + X and + Y are applied across each of the
remaining two pots shown in Figure 1-4, it is apparent that the variable tap
voltages will be XZ/VR and YZ/VR respectively. Thus the servo multi-
plier can generate output voltages proportional to the product of input vol-
tages.

For the electronic differential analyzer solutions obtained in
this report REAC* Servo Unit S-101 Mod 4 servos were used. Accuracy of
multiplication is about 0.1% of full scale (+ 100 volts).

By employing operational amplifiers for summation and in-
tegration, and servos for multiplication, we are able to solve nonlinear

heat-flow problems.

* Reeves Electronic Analog Computer, Reeves Instrument Corp., New York
28, New York
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CHAPTER 2

ONE-DIMENSIONAL HEAT FLOW

2.1 Equations to be Solved

In this chapter we will solve by difference methods the one-
dimensional heat flow problem discussed in Sections 1.3 and 1.4 of the pre-
vious chapter. The equation to be solved is

du(x,t 9 d t
b () 2L - By (2 gy (1-12)
with boundary conditions at x = 0 and x = 1 on the temperature u or the
heat flux $ic 9u/8x. As discussed in Section 1. 4, we can convert the above
partial differential equation into a system of simultaneous ordinary differen-
tial equations by considering the temperature u only at equally spaced sta-

tions along x. The equation describing heat balance at the nth station is

du
n ,
b~ —— = ¢ (u -u)-¢ (u, -u_ )+ _ (7) (1-40)
Cn dr Kn+l/2 n+l n Kn-l/Z n n-1 n
where 7 = Nzt, N being the number of stations or cells and where g n (r) =

(L/N°) s(;?— 7).

2.2 Boundary Conditions

Let us now consider the representation of the boundary condi-
tions when using the difference method. If at x = 0 the temperature u, is
specified, then this boundary condition is imposed by letting u, equal the
specified value in the difference equation for Uy [n =1in Equation (1-40)] .
Note that the boundary condition at x = 0 may require that u, equal zero, a
fixed constant, or a known time-varying function. Thus the problem of time-
dependent boundary conditions is readily handled. If at x = 1 the boundary
condition specifies the temperature, then unp the prescribed temperature at
x = 1, is introduced into the difference equation for u = N-1in
Equation (1-40)] .

On the other hand, the heat flux may be specified at x = 0 or

N-1 [

X = las a boundary condition. We recall from Equations (1-4), (1-5), and
(1-8) that

15
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_Ou KO ou
F- = -K(x) — = - — ¢, (x) — . (2-1)
X 9% L K gy

where F§ is the heat flux in the x (and hence x) direction. Approximating

du/dx by a finite difference we have

K N
Fo _ _ o

= 4]
X h41/2 L Kpti/z2

(Up ~uy) (2-2)

as the expression for the heat flux at the n+l/2 station. If the flux must be
equal to a specified value, say FN at x = 1, then from Equation (2-2)

f = - = F

p Unp/2 " UN-1/2) ¢ g

N
This expression for ¢KN (uN+1/2 - uN-l/Z) = fN is used in the difference
N-1/2 [n = N-1/2 in Equation (1-40)] . Clearly the required

flux FN at the boundary may be zero, a fixed constant, or a known time-

equation for u

varying function. Note that if we consider the temperatures as occurring

at integral stations, the heat flux occurs at half-integral stations. If the
boundary condition is on the heat flux, the boundary therefore occurs at a
half-integral station. On the other hand, if the temperature is specified at
the boundary, the boundary occurs at an integral station. Thus in Figure 1-3
the left-hand boundary, at which Uy is a constant, occurs at the zero station,
while the right-hand boundary, at which the flux is zero, occurs at the 10 +
1/2 station. Hence N = 10-1/2 in Figure 1-3.

2.3 Initial Conditions

The initial temperature distribution at zero time was specified

in Equation (1-17) as
u(x,0) = U(x) (1-17)

In the difference-equation formulation this becomes an initial temperature

condition at each of the stations. Thus in general let

u (0) = U = U (n/N) (2-4)

2.4 Complete Set of Difference Equations for One-Dimensional Heat Flow

Let us now write down the complete set of differential equations
representing one-dimensional heat flow when the temperature is specified as

u, atx = 0 and the heat flux is specified as fN at x = 1. From Equation

16
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(1-40) and the boundary conditions discussed in Section 2.2 we have

du
1
b — = ¢ u, - u,] - - +9
“ ar Kl-l/z[ 2~ ) qbKl/z[ul Go (Tl +F (r)
du
— = ¢ (u; ~u,) -9 (u, - uy)+@, (7)
¢C2 dr Ky 1, 37 02! TPk, e T TR
(2-5)
du
N-1-1/2
¢ e (up_ = Unry_1/5)
CN-1-1/2  dr Ky, N-1/2 °N-1 1/2

" Ky, (un_1o/2 ~ UN-2-1/2) F Pn-1-1/2 ()

é M:f - ¢ (u -u )+ (t)
"Cn-1/2 dr N "Ky; N-1/2 "N-1-1/2 N-1/2

The initial conditions require that Uy (0) = Ul’ u, (0) = U2 etc.

2.5 Electronic Differential Analyzer Circuit for Solving One-Dimensional
Heat Flow

The electronic differential analyzer circuit for solving the

simultaneous first-order equations given in (2-5) is shown in Figure 2-1.
Note that the output of each successive row of amplifiers is reversed. This
allows the necessary differences to be taken without the use of sign-reversing
amplifiers. Note also that the quantity fn’ which is related by Equation (2-3)
to the heat flux Fn’ is available at any half-station. Single resistors in the
circuit represent the heat-capacity parameter PCN and the conductivity
parameter ¢Kn at each s‘tation. The heat source variable g n at each station
is introduced as a time-varying input voltage.

Note that the integrator time scale is RC seconds in the circuit
in Figure 2-1. This means that RC seconds of real time on the computer
equals one unit of T.

It is possible to reduce the required number of amplifiers per

station from three to one. In many ways, however, the circuit of Figure

17
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Figure 2-1. Analyzer Circuit for One-Dimensional Heat Flow.
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2-1 is simpler despite the increased number of amplifiers, since it does
have the one-to-one correspondence between resistor values in the circuit
and parameters in the problem. For heat flow through a homogeneous
medium, however, a circuit using but one amplifier per cell is quite useful.
In this case $cy © ¢Kn = 1, and the circuit shown in Figure 2-2 is
utilized.

As an example solution, consider the heat-flow problem
discussed earlier in Section 1. 2. Here a uniform slab of unit thickness
has initially a unit temperature distribution throughout. The edge at x = 0
is held at zero temperature while at x = 1 the heat flux is zero, correspond-
ing to an insulated boundary. The theoretical temperature distributions
across the slab at various times are shown in Figure 1-2. This problem
was set up by the difference method for N = 6-1/2 on the electronic dif-
ferential analyzer. A recor;iing of the temperatures at each of the 6 stations
as a function of time is shown in Figure 2-3. For this solution the circuit
of Figure 2-1 was used, with ¢cy = ¢k, = 1and ¢n = 0. An integrator
time scale of 5 seconds was used for the solution, so that 5 seconds of time
in the computer solution was equivalent to unit v, which in turn equals
1/(6. 5)Z units of the dimensionless time variable t.

In Figure 2-4, points from the electronic differential analyzer
solution of Figure 2-3 are plotted on the theoretical temperature distribu-

tions shown previously in Figure 1-2.

2.6 Theoretical Accuracy of the Difference Method

Now that we have seen how the partial differential equation of
heat flow can be converted to a set of first-order ordinary differential
equations by difference methods and how the electronic differential analyzer
can be used to solve these equations directly, let us examine the accuracy
of the approximate solutions obtained by the difference equations. We re-
call that the gradient of the temperature half-way between two stations was
approximated by (1/Ax) times the difference between the temperatures at
the two stations. One can show by means of a Taylor series expansion12
that the error in the gradient introduced by this approximation varies as
1/( Ax)2 where Ax is the interval between stations. Thus we should expect
the accuracy of the difference method to improve as the square of the numbern

of stations.

19




'Uo('r)

- (r)

@2(1)

-d>3(r)

(<)

N-3/2'T

-®,

-

fN (<)

Figure 2-2. Analyzer Circuit for Heat Flow Through a Homogeneous
Medium.
20



21

Analyzer Solution for Heat Flow in a Uniform Slab
with Unit Initial Temperature Distribution.

Figure 2-3.
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Since one would like to use as few operational amplifiers as
necessary, it becomes important to estimate the exact accuracy of the dif-
ference method when relatively few stations are used. We will do this by
finding the normal mode shapes and decay constants for the difference-
equation representation of the uniform slab. These will then be compared
with the sinusoidal mode shapes and the decay constants given in Equations
(1-31) and (1-32).

For a uniform conducting slab the difference equation at the

ith station becomes from Equation (1-40)

dui
-(;' = ui_H - Zul +ui_1 (2"6)
where we have assumed no heat sources within the slab (¢n = 0). To find

the normal-mode solutions we assume that the temperature uy varies with
time as a, e-)‘T, where a, and \ are constants. If this is true, then (2-6)
becomes a set of N-1/2 simultaneous algebraic equations for the case of
zero temperature at x = Oand zero heat flux at x = 1. The only non-
trivial solution of this set of equations is obtained when the determinant of
the coefficients vanishes. This determinant, when expanded, becomes a
polynomial in N\ of order N-1/2. The polynomial will have N-1/2 positive
real roots )‘n’ which are the decay constants for the N-cell systems. To
solve this determinant for a specific N is tedious, and to solve it in general
would be next to impossible. Fortunately the roots A, can be found directly
by the following procedure.

Assume that the spacial mode shapes for the difference equa-
tions are the same as for the continuous equation, i.e., sinusoidal. If this
is true, then for the temperature Uy at the ith station we have by analogy
with Equation (1-31)

u; = asin(—n——LN/—%—)—"—l— e-)\nT, n =12,3, .... (2-7)

Substituting Equation (2-7) into Equation (2-b) and noting that

_ . (n-1/2)wi (n-1/2)w )
U +ui-l = 2a sin N cos N (2-8)
we have
. (n-1/2)mi _-\_T _ . (n-1/2)m -\ -1/2
'KnaSI§—N—)—e n' = as1n(ﬁv—ll’—e n'r(.Zcos—N_(n / Im_2)
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from which

n-1/2)w
N = 2[bcos$—-N ™)) (2-9)
2 .
Since the time variable T = N” t, the decay constant Py referred to the
dimensionless time variable t is N°\_. Thus
En - 2N% (1-cos E%Z—)T—r) (2-10)

After expansion of the cosine function in a power series we have
2 2
2.2 - mol/2) fo

2

B_ = (n-1/2
By (n ) N

1 (2-11)
In the limit of infinitely many cells the En values given in the above equation
reduce to those given earlier in Equation (1-32) for the continuous solution.
As we had predicted, the error in the decay constant Bn for the difference
method varies as 1/NZ, where N is the number of stations. In Figure 2-5
the percentage deviation in decay-constant due to the difference method as
a function of the number of cells N is shown.

To summarize, we see that when the spacial derivatives of
the one-dimensional heat equation in a uniform medium are replaced by
finite differences, the resulting mode shapes agree exactly with those for
the continuous solution, whereas the decay constants (eigenvalues) for each
mode are somewhat smaller. This means that the higher modes will decay
somewhat more slowly when the difference approximation is used. Fortu-
nately the higher modes are usually of less importance than the lowest

modes in most problems.

2.7 Universal Curves for Obtaining Temperature Distributions for

Arbitrary Initial Conditions

We have already seen in Figure 2-4 that the electronic dif-
ferential analyzer solutions of temperature distributions within a uniform
slab are fairly accurate, even when only 6-1/2 stations are used. The case
treated was for zero temperature at one side of the slab, zero heat flux at
the other side, and an initial unit temperature distribution across the slab.
In Figure 2-6 the solution of Figure 2-3 has been recorded with an ex-
panded time scale. In Figure 2-7 the temperatures at each of the stations
are recorded as a function of time for intial conditions Uy (0) =1, u, (0) =

uy (0) = u4(0) = ug (0) = ug (0) = 0. Figure 2-8 gives the solutions
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for u, (0) = 1 and the other temperature initially zero. In Figures 2-9
through 2-12 the same type of solutions are recorded for U, (0) = 1, Uy
(0) =1, ug (0) = 1, and ug (0) = 1 respectively. If we denote the temper-
ature at the nth station resulting from a unit initial temperature at the mth
station as U (t), then the complete solutions at the nth station for any
initial distirubtion Urn is simply

N-1/2

27 U_u__ (1) (2-12)

Un (t) = m=1 m nm

For the case where N = 6-1/2, as in Figures 2-7 through 2-12, the tem-
perature at the nth station is

6
u () = §=1 U_u (1) (2-13)

Thus from the curves in these six figures the temperature distributions
following any arbitrary intial distribution, approximated by 6-1/2 stations,

can immediately be obtained.
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CHAPTER 3

HEAT FLOW IN TWO AND THREE DIMENSIONS;
CARTESIAN COORDINATES

3.1 Heat Equation in Three Dimensions using Cartesian Coordinates

From Equation (1-1) we have for the basic equation of heat flow

in three dimensional Cartesian coordinates

___8u o ___ 0u 0 ___0u
Cx,y,z) — = —KI({x,y,2) — +— K(x,y,2) —
ot ox ox oy dy
9 du (3-1)
0z 9z

where X, y, and z are the spacial coordinates of the temperature u(X,y,z,t).
Assume that we are concerned with heat flow within a rectangle of dimensions
L. L, andL_in the X, y, and z directions respectively. Then we define

the dimensionless distance variables x, y, and z by

X
X = = (3-2)
LX
y y
y = — = axy _— xy = __X (3-3)
L L
Ly % y
z y L
z = —_— = G'XZ _ axz = -—-z( (3"4)
LZ LX LZ

Following our procedure for the one-dimensional case in Section

1.1, we let the heat capacity C and the conductivity K be given by

C (Lx X, Ly v, LZ z) = Co ¢C (x,y,2) (3-5)
and

K(LX X, Ly v, LZ z) = KO pr(x,y,z) (3-6)
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where $c and $y are dimensionless and equal to unity for a homogeneous

medium. As before we introduce a dimensionless time variable t given by

(1-10)

From Equations (3-2) through (3-6) and Equation (1-10) the heat Equation
(3-1) becomes

du _ 9 du 2 0 du 2 9 ou
?c 31 " 5% ¢K5§'+°xy5§¢K5§; te 8, Pkaz TS (Xy.2,1) (3-7)
where the heat source input S is given by
L% CoLx.2
S(s,y,z,t) == S (Lx x, L_y, LZ z, t) (3-8)
K J K,

Boundary conditions on the temperature or the heat flux must be
specified at the edge of the rectangular medium. To solve the equation by
the difference method we must consider the temperature only at stations
throughout the medium. Let Uy n equal the temperature at the Ilth station
Further, let there be

L, M, and N stations along the x,y, and z coordinates respectively. Then

in x, the mth station in y, and the nth station in z.

the heat balance equation at the Imn station is given by

¢C du]tJ'CnD = L2[¢K (ul1 -y ) - K ul_u!—l)]
mn 141/2,m,n LR AR TRy mn T
2 4.2
Y ¢K1,m+1/z,n L mtl,n "mn’ - YKy 05 Imn - ™, m-1,n
2

2| ¢ i . ) }
Ty N {K!,m,n-l-l/z(u!,m,nﬂ ulmn) ¢Kl,m,n—l/2(u!mn U‘!,m,n-l)

+S!mn (t) (3-9)

Boundary conditions are imposed in the same manner described in Section 2.2
while initial temperature conditions must of course be specified at each sta-
The electronic differential analyzer circuit would in principle be

similar to the circuit for one-dimensional heat flow shown in Figure 2-1.

tion.

3.2 Solution by Separation of Variables in a HomogeneousRectangular Medium

As in the one-dimensional case we shall estimate the accuracy

of the difference method by comparing the normal modes, shapes and decay
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constants of the difference equations with those for the continuous medium.

For an isotropic homogeneous rectangular medium with no heat sources

Equation (3-7) reduces to

2

ou azu > 9 u 2 9 u
— s ta — tao, —5 (3-10)
ot ox Y oy 9z
To solve this equation by separation of variables we assume that
u(x,y,z,t) = X(x)Y(y) Z(z) T (t) (3-11)
Substituting (3-11) into Equation (3-10), we have
2 2
1dT) 1 d*K(x) e ® d°Y(y) o2 d7Z(z)
- = — = -_— + y + (3—12)
2 2
T dt X dx Y dy Z dz
from which
dT _ -
g~ tBT =0 (3-13)
which has the solution
T (t) = Ae” Pt (3-14)

Also from Equation (3-12) each of the terms on the right-hand side must be

equal to constants “Byo -B., and B, respectively, where

Yy
B = ﬁx+ﬁy+ B, (3-15)
Thus
2
d X
5~ t B, X =0 (3-16)
dx
Yy B
+ L _ v = (3-17)
d 2 2
y a
and Xy
&z B,
>— + Z =0 (3-18)
2
dz a
XZ

Let us assume as boundary conditions that the temperature is everywhere

zero on the boundaries. The solutions to Equations (3-16), (3-17), and (3-18)

are then respectively
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Xi (x) = siniwx, 1 = 1,2,3, .... (3-19)
Yj (y) = sinjumx, j = 1,2,3, .... (3-20)
and Z, (z) = sinkmx, k = 1,2,3, .... (3-21)
Hence the decay constant ﬁijk for the ijkth mode is given by
2,2 2 .2 2.2
pijk = 7 (1~ + axy j o+ a_, k™) (3-22)

and the complete solution can be written as

[*¢] 0 [¢.¢]
2,.2 2.2 2
. . . -7 (17 + ta_ k)t
u(x,y,z,t) 212132 lkzz 1 Aijk sin irx sin jwry sin knz e Ll axy J TCyy )
(3-23)
The constants Aijk are evaluated by applying the initial condition
u(x,y,z,0) = Ul(xy,z) (3-24)

and are given by

1 1
A.. =8 f flf U(x,y,z) sin irx sin jry sin kwz dxdydz (3-25)
ijk 00”0

For the case where the initial temperature distribution is a constant UO the
constants A.. become
ijk
64U

= 52, %, j, and k all odd (3-26)
mijk

Ak
= 0, all other i, j, k values

3.3 Theoretical Accuracy of the Difference Method

Let us now solve for the normal modes of the three-dimensional

heat-flow problem when the difference method is used. From Equation (3-10)

the difference equation at the !mn station becomes

——————du!mn = LZ( -2u, _tu )+ 2 M? (u -2 +u )
dt ul+1, m,n ~Ilmn 1-1,m,n axy , m+t,n ““tmn" 1, m-1,n
+a 2Nz(u -2u +u ) (3-27)

XZ !,m,ntl “"tmn 1, m,n-1

where L., M, and N are the number of stations in the x, y, and z directions,

respectively. As in the one-dimensional case, we assume the mode shapes
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agree with those for the continuous temperature distributions. Thus let

_ . ind . jrm _. kmn -B..t _
= asin5g— sin*psin— e ijk (3-28)

Ymn
Substituting Equation (3-28) in Equation (3-27) we find that

2 kw

pijk = Z[Lz(l—cos%)+a 2 Mz(l—cos JE-)+<1 N)} (3-29)

Xy i N (1-cos

Expanding the cosine functions in power series we have

2.2 2 2
. 2[ -1+ )te 2i0- J—+ )+nXZ2kZ(1—k"2+...)]
J 12L Xy 12M% 12N

W

(3-30)
In the limit of infinitely many stations along each axis the ﬁi,jk values given
in Equation (3-30) clearly reduce to the exact values in Equation (3-22).
Again we see that the error in the decay constant ﬁijk decreases as the re-
ciprocal of the number of stations squared. For the homogeneousrectangular
medium considered above our assumption of exact agreement between mode
shapes for the difference approximation and the exact solution has proved

correct.

3.4 Solution in a Two-Dimensional Homogeneous Medium

For two-dimensional heat flow in a square isotropic homogeneous
medium with zero temperature on the boundaries it is easy to show that the

complete solution is given by

222

u(x,y,t) = 2\132:-\’1 A sin inx sin jny e (i74+57)t (3-31)
where 11
Ay = 4 [ [ U(xy) sinirx sin jry dxdy (3-32)
0 0

For the case where the initial temperature distribution is a constant Uo the

A. . constants become
1 16U

Ay = — ©, i and j both odd (3-33)
I wfij

= 0, all other i and j values

When the difference method is used the mode shapes are again sinusoidal,

and the decay constant is easily shown to be
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_ 2.0 im 20 _ jm
ﬁij = 2 [L (1- cos —I:—) + M™(1 - cos T/[-)} (3-34)

as compared with the value for the exact solution which is
By = mi+) (3-35)

In Equation (3-34) L is the number of stations along the x coordinate and M
is the number of stations along the y coordinate. The series expansion for
ﬁij in (3-34) becomes

2.2, in’ 2, et
Bii = w[l (1- +...) ] (1-J-M—2+...)} (3-36)

J LZ

The difference equation is the same as Equation (3-27) with N = 0 and axy =

1. Where the same number of stations are used along x and y coordinates,

L = M and the equation at the ¥m station is
du
B u +u - 4u, +u +u (3-37)
dr 1+, m "1, m+l fm f-1,m ! m-1
where
r o= L% (3-38)

Consider the 7 x 7 cell problem shown in Figure 3-1. Let the
walls be held at zero temperature and the initial temperature distribution be
unity. Due to the symmetry of the problem we need only consider the equa-
tions for 6 stations. Thus from symmetry Uy = Uy, Ugy = Upg = Uy,

Uys = Ugzg = Ugy, Ujg = Uy The six difféerence equations are

dull
= - 4u11+ Zu12
dr
du
12 _
= oupy - du, fus tu,,
dr
du
13
- = U4, - 3u,, +u
an 12~ °"13 T Y23 (3-39)
du _
22 _ i
= ?.u12 4u22 +2u23
dr
du
23 _
= U3 tuy, - 3u,3 tug,g
dr
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d33_

dr T U3 Uz
The electronic differential analyzer circuit is shown in Figure

3-2. Recordings of the analyzer solutions for the temperature as a function
of time at each of the stations are shown in Figure 3-3.
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Figure 3-1. Two-Dimensional Problem in Heat Flow.
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Figure 3-2. Analyzer Circuit for Two-Dimensional
Heat Flow in an Isotropic Homogeneous Medium.
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CHAPTER 4

HEAT FLOW IN CYLINDERS

4.1 The Heat Equation in Cylindrical Coordinates

In the previous chapter we considered the solution of the heat

- equation in three spacial dimensions using Cartesian coordinates, which are
convenient when the boundaries of the three-dimensional medium are rec-
tangular. When the boundaries are cylindrical in shape it is convenient to
describe the spacial equation in cylindrical coordinates. Let us treat the
case of a medium with constant conductivity and heat capacity throughout,
although the electronic differential analyzer solution for heat flow in non-
uniform media is in principle no more complicated. For a homogeneous
isotropic medium the dynamic heat equation becomes from (1-1)

c, 2 - kv u+s (4-1)

ot
In cylindrical coordinates T, ¢, and z the equation is given by

ou 1 9 2 2
— KO‘:—— ru,l 21 +a_“]+§(_?,¢,?z‘,t) (4-2)

TOT Or T 8¢°  0Z°

Assume the radius of our cylindrical medium is r, and the height is Z, We

shall then define a dimensionless radius r and height z by

r
r = -IT—
o
- = r
z z 0
Z = — = a,  —,a T (4-4)
z, rz rJ rz Zg
and a dimensionless time t by
- o ¢ (4-5)
Cr 2
00
from which Equation (4-2) becomes
ou 1 9 du 1 8% 2 8%u (4-6)
— = ——r —+— —5 ta — +5(r,¢,2,t) 4-
ot r or Or r2 a¢2 T2 3z
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where the heat source input S is given by
ro2 Cr
S(r,¢,z,t) = 2§ (r, T ¢ 2 2,

Ko Ko

t) (4-7)

Boundary conditions on the temperature or the heat flux must be
specified on the cylinder walls and the top and bottom. To solve the equation
by the difference method we consider the temperature only at stations along
r, ¢, and z. Thus let Ymn equal the temperature at the 1th station in r, the
mth station in ¢, and the nth station in z. Also let L, M, and N represent
the number of stations along the r, ¢, and z coordinates respectively. Then

the heat balance equation at the Imn station is given by

du 1!
______éinn T l_(l+1/2)(u1+1 m,n !mn)_(! 1/2 (u!mn_ul—l,m,n):\
2
M
+ (2")2!2 [ul, m+1, nnzulmn+u!, m-1, n:\
2 N2 -2 + +b. (1) (4-8)
%rz _LT Uom, nl 7Y, mn” M, m, n-1 Imn'"
where
r = L% (4-9)
and
1 1 21'rm u
? (t) = — S(=, ) (4-10)
lmn L2 L' M N —2

Boundary conditions are imposed as described in Section 2.2, while initial
temperature conditions at each station must be specified. The electronic
differential analyzer circuit for solving Equation (4-8) at each station, al-

though somewhat involved, is still quite straightforward.

4.2 Solution by Separation of Variable

As in the case of Cartesian coordinates we will determine the
accuracy of the difference method for cylindrical coordinates by comparing
the normal-mode decay constants and shapes for the exact solution and the
difference-method solution of the heat equation. For the exact solution by

separation of variables we assume that

u(r,e,z,t) = R(r)®P(¢) Z (z) (4-11)
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which, when substituted into Equation (4-6) gives

2 4,2
1dT 1 d dR 1 ¢> o.r” d“z
..B = e — = _____I‘-—_..«}——-?_‘ - 5 (4"}.2)
T dt rRdr dr r° ¢ d¢ Z  dz”
from which
dT \

Hquation (4-12) has the sclution
T () = Ae Pt (4-14)
where B is the usual decay constant. Since the first and second terms on

the right side of Equation (4-12) are functions only of r and ¢ while the third

is a function only of z, they must be equal respectively to constants -8

r¢
and B where
B = B, tB, (4-15)
Thus >
d Z BZ >y ,)
Z + 2 L = (4"16)
dz a
rz
and
¢
rd dR .2 By ° __l_d__? (4-17)
Rdr dr re ¢ d¢°
The soluticn to Equation (4-16) is {
. By
z, () = B - , z (4-18)
rz %rz

Here By are the discrete values which B, must take on for the boundary
conditions on the ends of the cylinder atz = 0 and z = 1 to be satisfied,
while Z (z) are the corresponding normal modes in z. For example, in the
case Where the temperature is zero at both ends, only the sine solution in
Equation (4-18) is admissable, and hence B1 = 0, Also in this caseJ[B1 /o:

= km and

B, = a kKmw,k = 1,2,3, .... (4-19)

If, on the other hand, both ends of the cylinder are insulated so that the
flux is zero at the ends, then only the cosine solution in Equation (4-18)

\
S

applies and
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kK w ,‘k = 0,1,2,3,.... (4-20)

Note that when the ends are insulated, g, may equal zero and a solution
independent of z is possible.

Returning to Equation (4-17), we see that both sides of the equation
must be equal to a constant, say B¢, so that

2
q¢ 9P
d¢2 o
and
1d _dR B
Ld (4R p. -“HR = 0 (4-21)
rdr dr re r2

The solution to Equation (4-20) is of course

¢ (¢) = D cos \[p_J ¢ +D, sin\[p_j ¢ (4-22)
where ;3 are the discrete values which {3¢ must take on. Since@ (¢) must be
perlodlc every 2w radians in ¢, it is clear that ‘/— = jor

By - 3= 01,2,3,4.... (4-23)

Substituting Equation (4-23) in (4-21) we have

2
LBy, LR =0 (4-24)
r

rdr dr

If weletp = \’ﬁr(’) r, Equation (4-24) becomes

2
Ld bRy 0-1L)R = 0 (4-25)

pdp dp p
which we recognize as Bessel's equation of order j, We can therefore write

the general solution to (4-24) as

R(r) = B J (\[p_m r) + E, N (\/E;(P r) (4-26)

where Jj and Nj are jth order Bessel functions of the first and second kind
respectively. Boundary conditions at the cylinder walls (r = 1) on the tem-
perature or heat flux will determine the discrete eigenvalues which ﬁr¢ may

take on. Since any one of these values will depend on the order i of the root
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of R (r) and the order j of the polar function @ (¢), we will denote the
eigenvalues by B ij Thus from Equatlon (4-15) the discrete values B, ik
which the decay constant B may take on are simply
ik = Pijt By (4-27)
If we denote the normal modes in the r variable as Rij’ then the complete

solution for an arbitrary initial temperature distribution can be written as

o0 o0 o0
- 22227 A.. R.. . (BBt ]
u(r, ¢,z,t) 3 % li—:IO Ale RlJ (r)(DJ (o) Zk (z) e ‘Pij' Pk (4-28)

where the constants Aijk are obtained from the appropriate triple integral
involving u (r, ¢, z, 0).

For the axially-symmetric case, @ = 1 and ;- 0 for j # 0.
Thus the Bessel functions in Equation (4-26) are of Zeroth order. If the
temperature is finite at r = 0, EZ in (4-26) must equal zero. Denoting the
roots of JO (p) as )\1, XZ’ R xi, we have for the complete, axially sym-
metric solution with zero temperature on the cylinder walls

2
u(r,z,t) ? ij Ay T, () Z (2) e (MBI (4-29)

where the constants Aik are obtained from a double integral involving the
initial temperature distribution u (r, z, 0).
For the case where the temperature in the cylinder is independ-

ent of z, the solution with zero temperature on the walls is simply

(e ]
. D Mot ]
u(r,t) A J (N, r) e 1 (4-30)
i=1l
. . 10
where Ai is given by
1
A, = —2 [ ru(r,00J (\;r)dr. (4-31)

1 720
[Jl("i)J

4.3 Theoretical Accuracy of the Difference Method for Cylindrical Heat
Flow

Now that we have written the exact solutions for the normal-mode

shapes and decay constants for heat flow in a cylinder, let us compare these
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with the values when the difference approximation is made. The latter are
calculated by assuming that the temperature Ymn at the Ith station in r,

mth station in ¢, and nth station in z can be written as

o _B

Umn () 7 By ¥ Z2p8 12

T (4-32)
i.e., that we can separate variables. Substituting Uon given above into
Equation (4-8) and letting ¢!mn = 0 (no heat sources), we obtain the fol-

lowing equations :

Zn+1 - (2- —_IZ_TBZ) Zn + Zn-l =0 (4-33)
a., N
o) - (2 - (2") PP, TP =0 (4-34)
m+l M o] m-1

and B _

1 1 P ﬁ
T[(!+1/2)(R1+1-R‘ (1-1/2) ) (Ry - Ry, J —7-—2)R1=0 (4-35)

where

B =B, th, (4-36)

The similarity with Equations (4-15), (4-16), (4-20), and (4-2l) is evident.
We already know from Section 2.6 that the mode-shapes for Equations (4-33)
and (4-34) agree exactly with those for the exact solution (i.e., are sinusoid-
al). If we recall that d)m must be periodic with period M, it follows from
analogy with Equation(2-20)that the discrete values Bj which B 0 must take

on are given by

2 2 2
g,z_I_VI_Z_(l-COSZJ")=j2[—3“2+...] (4-37)
I 2 M 3M

Note that in the limit of infinitely many cells M the B given above reduces
to J , the value in Equation (4-23) for the exact solut1on
For zero temperature or heat flux required on the ends of the

cylinder the discrete values Bk which -Bz must take on are given by

22
B = 2N°a_?(1-cos T - a fKint (-5
N

r 12N

+

5 ...) (4-38)
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Here again note that in the limit of infinitely many cells N the Bk from above
reduces to the value arzz 1«:Z TTZ given in Equations (4-19) and (4-20) for the
exact solution.

Having obtained in the case of the difference equations the formu-
las for the eigenvalues of the angular and height-dependent modes, and having
demonstrated that the mode shapes agree exactly with those for the con-
tinuous equations, we are left only with the problem of comparing the eigen-
values and mode shapes for the radial-dependent modes. We know that the
solutions Rij (r) for the continuous equations are Bessel functions of order j,
but to complete the comparison we must solve the set of equations represent-
ed by (4-35). This is a formidable task, since it is easy to show that the
mode shapes in this case do not agree with the exact Bessel-function solu-
tions and hence it is necessary to recalculate and solve the characteristic
equation for each numbe.r of stations L.. Furthermore, the eigenvalue Bj
given in Equation (4-37) must be substituted in Equation (4-35), making the
equations to be solved different for each j value as well as each L value.

For this reason it was decided in this report to limit the consideration of the
radial-dependent functions to the axially-symmetric case, i.e., the case for
which j = 0. If j = O, B¢ = 0 and Equation (4-35) becomes at the 1lth
station

1 Bio
This equation is the difference approximation to Bessel's equation of order
zero. Let us consider the case of finite temperature along the axis of the
cylinder and zero temperature at the walls, so that the boundary conditions

on Equation (4 -39) require that

- = 4-40
Rl/ 2 R-l/ 2 0 ( )
and
- 441
Ry 0 ( )
Note that ! takes on half integer values 1/2, 1-1/2, 2-1/2, .... because of

the boundary condition at the axis.
Thus Equation (4-39) is iterated L-1/2 times. The resulting set

of L.-1/2 simultaneous homogeneous equations can be solved for the L-1/2
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eigenvalues Bio and the corresponding normal-mode shapes. The procedure
for carrying out this computation is discussed in Appendix I. The eigenvalues
Bio for the exact solution are equal to the square of the zeroski of JO. Thus
BL.o" (2.4048)% = 5.7831, Bo o = 30.472, By o = T4.887, B, ( =

139. 04, ,55, 0 = 222. 93, 56, 0 326.57, etc. The percentage deviation of
the eigenvalues Bio from these true values are plotted as a function of the
number of stations or cells along r in Figure 4-1. For L greater than 10-1/2
cells the curves were extrapolated from the lower L values, which were
computed to better than 0.01%. Note that the eigenvalue error falls off as
1/L2 as expected.

In Figures 4-2 and 4-3 the mode shapes for a 4-1/2 cell solution
by the difference method are compared with the first-four modes of the
continuous Jo solution. Note the fairly tolerable agreement despite the
crudeness of the 4-1/2 station approximation. In Appendix I the mode shapes

for 10-1/2 cells are compared numerically with the Jo functions.

4.4 Analyzer Solution of Axially-Symmetric Heat Flow with Initially Constant

Temperature

In the same manner we considered the one-dimensional heat flow
problem in Section 2.7, let us obtain here the electronic differential ana-
lyzer solution for the radially-dependent temperature starting with an initially
constant temperature of unity. This corresponds to finding the temperature
as a function of time in an infinitely long homogeneous and isotropic cylinder
(or one of finite length with insulated ends) initially at unit temperature
throughout and with walls held at zero temperature. The problem was set up
on the electronic differential analyzer with 6-1/2 cells (L. = 6-1/2) using an
integrator time scale of 5 seconds. From Equation (4-8) we have at the tth

cell

du! 1

— = l_ [(1 +1/2) (g4 - up) - (2 - 1/2) (u! - u!_l):l (4-42)
The boundary conditions of symmetry requires that Y/ T u_l/_2 while the
boundary condition of zero temperature at r = 1 requires that up = 0. For

6-1/2 cells the equations become

du
/2 _
o [(ul—l/z - ul/Z)}
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du 2
1-1/2  _
dr 3 [2 R A BV U BV u1/2)}
du 2r
2-1/2 _
T - < L3 (113_1/‘2 uz-l/z) -2 (uz—l/z - ul_l/z)]
(4-43)
du 2r
3-1/2 T, - -3 } }
dr 7 L Wg1/2 7 U3i1/2) 73 Wsy/p = Y /0)
du 2
4-1/2 - - -
Tdr _9_[5 (Ws_1/2 = Ugmr/2) % (g u3'1/2)}
du 2
5-1/2 _
Cdr H[" (W 172 = Us-1/2) = 5 W5y /0 ~ Uy 2’}

Analyzer solutions for the temperature at each station as a function of the
dimensionless time variable t are shown in Figure 4-4. The exact solution

for this case of unit initial temperature is given by

o0
J(N,r) | 2
ur,t) = 2 2 ot e )‘Q t (4-44)
RN TILYY
It is interesting to note that att = 0 this series falls off considerably less

rapidly than the equivalent series in Equation(1-34)for temperature decay
in a slab. This in turn implies that the higher modescan play a somewhat
more important role in considering heat-flow in a cylinder.

In Figure 4-5 analyzer solutions for the temperatures are shown
at each station for ul/2 (0) = 1, the temperatures at the other stations being
initially zero. Figures 4-6 through 4-10 show similar plots, but in each
case with the non-zero initial temperature being Woy/20 Uso1/20 Y3-1/20
u4_1/2, and u5_1/2 respectively. If we let Uy, (t) denote the temperature at
the #th station when u. is initially unity, then the temperature ) (t) at the
1th station for an arbitrary initial distribution Ui at each station becomes

L-1

t) = 20 uy. (t) U (4-45)
u! ( ) i=1/2 ull 1
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For the curves in Figures (4-5) through (4-10) L. = 6-1/2. From these

six plots one can from Equation (4-45) obtain the time-dependent tempera-

ture at each station following an arbitrary initial distribution (or at least a

6-1/2-station approximation to the arbitrary distribution).
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CHAPTER 5
HEAT FLOW IN SPHERES

5.1 Heat Equation in Spherical Coordinates

Next let us consider heat flow in spheres. As in the Cartesian and
cylindrical cases we will investigate the accuracy of the difference method by
comparing the normal-mode shapes and frequencies with those for the exact
solutions. For a homogeneous and isotropic medium the heat equation in

spherical coordinates r, 6, and ¢ becomes from Equation (1-1)

1 Bzu e -

S . L3 28 +5(%,0,9,7)

— _—Z—:(r _)'f‘:?-}-—— 3—(51n6—a—u)+_2 > >
K ot r-or dr r 'sin©® 96 96 r sin" 6 3¢

(5-1)

where r is the radius coordinate,¢ is the azimuth angle measured from the x
axis in the xy plane, and 6 is the altitude angle measured from the z axis in
the rz plane. Defining a dimensionless coordinate r by
. r _
ro= 2 (5-2)
0
where ry is the radius of the spherical medium and a dimensionless time

variable t by

t= B¢ (5-3)
Cr
o
we have from equation (5-1)
d 1 9 29 1 9 ] 1 azu
M. L =)+ 5 2 (sin 0 22) + s >+ 5 (r,8,¢,t)(5-4)
ot r- ar 9r r sin 6 86 006 r sin 06 9¢
h
where roz Croz
S(r) 6:¢:t) = — s-(r r, e, ¢, t) (5—5)
K ° K

The medium within the sphere can be divided into stations along r,
8, and ¢ and the difference approximation to Equation (5-4) can be written in

terms of the temperatures at these stations. Also Equation (5-4) can be
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solved by separation of variables. The resulting equation in ¢ is simply the
one-dimensional wave equation[similar to Equation (4-16)] with sine and
cosine solutions, the equation in 8 has as solutions the associated Legendre

polynomials, and the equation in r is

Ld 24k, {:;3 —&%‘}—)JR -0 (5-6)
r dr dr r

where R is the radially-dependent temperature function, B is the decay con-
stant, and ! is an integer. We can compare the eigenvalues and normal-mode
solutions from each of these equations with the equivalent eigenvalues and
mode shapes when using the difference approximation. Since any temperature
distribution within the sphere is a combination of the normal-mode solutions,
we could therefore estimate the accuracy of the difference method as a func-
tion of the number of cells. Because the three-dimensional problem was
treated in some detail for cylindrical coordinates in the previous chapter,

let us consider here only the radially-symmetric case. From Equation (5-4)

we have in this case
— = — —(r" =) + S (r,t) (5-7)

Boundary conditions on the temperature or the flux must, of course,
be specified at r = 1. Atr = 0the symmetry condition requires that du/or
= 0,

5.2 Difference Equation for Spherically-Symmetric Heat Flow

Let us divide the coordinate r into N stations. From Equation

(5-7) the equation of heat balance at the nth station is given by

dun 1 2 2
— = [(n +1/2) (un+‘1 -u ) - (n-1/2) (u, - u ;) }+¢n () (5-8)
dr n
where
T = N°t (5-9)
and
1 n 1
@ (v) = S(~, = 7) (5-10)
n N N N
The symmetry condition at r = 0 requires that
/2%y 70 (5-11)
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The boundary condition at r = 1 will determine whether the total number

of stations N is an integer or a half-integer.

5.3 Solution by Separation of Variables in the Spherically-Symmetric Case

Let us now solve the exact equation (5-7) with S = 0 (no heat
sources) by separation of variables. The resulting decay constants and
mode shapes will then be compared with the equivalent constants and mode
shapes when the difference approximation is used. Assume that the solu-
tion u (r,t) is given by

u(r,t) = R{(r) e Bt (5-12)

Substitufing (5-12) in Equation (5-7) and letting S (r,t) = 0, we have

L4298, 8R = 0 (5-13)
r

dr dr

If we let X (r) = rR (r), Equation (5-13) becomes

2
X +px = 0 (5-14)
dr
which has the solution X = A cos ‘/[;t + B sin ‘/‘;t. Since R (0) must be
finite, it is clear that A = 0 and that
R (r) = —?—sinJﬁ t (5-15)

For a boundary condition of zero temperature at r = 1 it follows that ‘/[; =

jw, or

B, = §°v°, j = 1,2,3, .... (5-16)

Thus the normal modes Rj (r) can be written as

D )
RJ.(r) —ﬁ-}—sm_]wr,.] = 1,2,3, .... (5-17)
where we have normalized Rj (r) so that Rj (0) = 1. The complete solution
starting with an initial radial temperature distribution u (r,0) = U (r)
becomes
o0
B. 2 2
u(r,t) = 12 d sin jmr e Tt (5-18)
nmr j=1 ]
where
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1
B; = 2m] [ rU(r)sin jur dr (5-19)
0
For the case where the initial temperature distribution is unity
Bj = -2 (-1) . (5-20)
Note here that all modes are equally present att = 0.

5.4 Theoretical Accuracy of the Difference Method for Spherically-Symmetric
Heat Flow

For spherically symmetric heat flow in a uniform medium the
difference equation at the nth cell is given in Equation (5-8). For comparison
with our results of the previous sections, let ¢n (r) = 0and ug = 0 (i.e.,
zero temperature on the walls of the sphere). Letting u, = Rn exp[-(B/NZ) 7]
we have from Equation (5-8) at the nth station

1+i)? R -(z+——-—@-)R -y R =0 (52

2n an n-1

where
Ryjp = ByjpandRy = 0.

The resulting set of N-1/2 homogeneous algebraic equations can be solved for
the N-1/2 characteristic roots Ej and the accompanying mode shapes for each
N. How this is accomplished is explained in detail in Appendix II, along with
numerical results. The percentage deviation of the decay constants Ej from
the exact values given in Equation (5-16) is shown in Figure 5-1, where it has
been plotted as a function of the number of stations N for the first four
modes. Note again that the error falls off as 1/NZ according to expectation.
For N> 10-1/2 the curves have been extrapolated from lower N values, which
were computed to 0.01%. In Figures 5-2 and 5-3 the cellular mode shapes
are compared with the continuous ones for N = 4-1/2, while in Figures 5-4
and 5-5 the comparison is made for N = 10-1/2 stations. Comparison of
these Figures with the corresponding ones for cylindrical coordinates indi-
cates somewhat better decay-constant accuracy for a given N for spherical

heat-flow but considerably poorer mode-shape agreement.

5.5 Analyzer Solution of Spherically-Symmetric Heat Flow Starting with Unit

Temperature

As an example problem consider a sphere with unit initial tem-
perature throughout and zero temperature at the walls. This problem was
65
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Figure 5-1. Percentage Deviation of Decay-Constant

for Spherically Symmetric Heat Flow as a
Function of the Number of Cells.
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CONTINUOUS SOLUTION
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Figure 5-2. Comparison of 4-1/2-Cell and Continuous
First and Second-Mode Shapes for
Spherically Symmetric Heat Flow.
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Figure 5-3. Comparison of 4-1/2-Cell and Continuous Third
and Fourth-Mode Shapes for Spherically-
Symmetric Heat Flow.
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Figure 5-4. Comparison of 10-1/2-Cell and Continuous
First and Second-Mode Shapes for
Spherically-Symmetric Heat Flow.
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Figure 5-5. Comparison of 10-1/2-Cell and Continuous
Third and Fourth- Mode Shapes for
Spherically-Symmetric Heat Flow.

70



— ENGINEERING RESEARCH INSTITUTE -« UNIVERSITY OF MICHIGAN —

set up on the electronic differential analyzer with N = 6-1/2 stations and a

five-second integrator time scale. From Equation (5-8) the equations are

du
/2 _
P 4[‘“1-1/2 ] “1/2’J

dul_c;lT/Z— ) g [4 (a2 ™ Way2) - Moz u1/2)}
il% ] ;5%(‘13_1/2 T Yaar/2) Tt u1—1/2)]

(5-22)
?_1_13_(-1%2_ } 419;16 (uyyyp = U3oq/p) =9 (ug_qy, - uz-l/z)}
d“_t%z_ _ ;ILZS (Ugq)p = Ugiyyz) - 16 (uy_q)p - u3-1/z)]
du5;11T/2 i} 1‘; [36 (~ug_ /)= 25 (ug_y ), - u4_1/2)}

Recordings of the time-dependent temperature at each of the stations are
shown in Figure 5-6.

5.6 An Alternative Method of Writing the Difference Equations for Spherically
Symmetric Heat Flow

An alternative method for writing Equation (5-7) for heat flow
in a uniform sphere medium is

2
qu . L3, 5 r, (5-23)
r Or

This suggests the following formulation for the difference equation at the nth
station.

du 1
n

;;— = ; [(n+1) Uog Znun+(n—.1) un_l:l+¢n(7) (5-24)
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where 7 = Nzt as before. It is easy to show that the normal modes of
- Equation (5-24) with ¢n () = 0 agree exactly with the modes given in
Equation (5-17) for the continuous solution. The decay constants ﬂj are
given by

By = aN°(L- cos i) (5-25)

which are exactly the same as the decay constants when the difference method
is used for heat flow in a slab of unit thickness and both walls at zero tem-
perature.l‘o”14 Although the alternative expression in (5-24) for the difference
equation exhibits no errors in mode shape, the decay constants in Equation
(5-25) show considerably more deviation from the exact values than in our
original difference formulation in Equation (5-8) (e.g., -0.75% versus - 0.23%
for the first mode with 10-1/2 cells). Furthermore a representation similar
to Equation (5-8) must be used when the conductivity K varies as a function of

r, since in this case the heat equation becomes

ou
ot

C —

K (7 )——]+S(r ) (5-26)
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CHAPTER 6
CHANGE OF VARIABLE TO IMPROVE ACCURACY

6.1 Regrouping of Station Locations

Often a problem in heat transfer may be met where over the
medium of interest the temperature changes very rapidly in one region and
very slowly in another region. For small values of t the problem shown in
Figure 2-4 is of this type. The temperature near the left wall decays quite
rapidly at first, since the temperature gradients are very high in this region.
On the other hand the temperature near the right wall decays imperceptibly
at first. If, in solving the problem, we are particularly interested in the
behavior near the left wall during the first few instants, then it is clear that
the accuracy might be improved if we could space the x stations more closely
in this region. This can be done without increasing the total number of sta-
tions N by letting a new distance variable y = 4 x. If we rewrite the heat
equation in terms of y and take equally spaced stations along y, this will in
effect give us much closer spacing in the equivalent x stations. This is il-
lustrated in Figure 6-1, which compares the station locations in the two cases
when N = 6.5,

6.2 Solution of Temperature Distributions in a Uniform Slab

The original equation to be solved is

2
ou 9 u
—_— = 7 (1'14)
ot 9x
with boundary conditions
u(O,t) = M 0 (6-1)
9x
and initial condition
u(x,0) =1 (6-2)
We define the new variable y as
y = 22 (6-3)

from which
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U Us Us Ug Us Us § du
u=0 % % ': - % i——§ ay°©
r— \
N
u U, U U u u
I =2 3 4 6
U0 | | P f

7777
|
S

X ——#=

Figure 6-1. Comparison of Station Locations for the

Space-Variable Transformation y = ‘/}?

dy _ 1. -lY/29 _ 1 8 (6-4)

QBZL.i[L”ﬂ] (6-5)

ot 2y 9y | 2y 9y
with boundary conditions
y(o.1 = 2Lt <o (6-6)

Next we divide the medium into N equally-spaced stations along y.

The equation of heat balance at the nth station becomes from Equation (6-5)
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N N
R

1 N
n

24
A

A 1§
‘x\AX\ n

u u) - (u_ - u )] (6-7)
n+l1/2 it a2 n no-
Since Ax = 1/N, Equation 6-8 can be written as

dun 1] 1 i 1

@ ° a Larrr Cae ) T ETE G ) ] (608)
where a new time variaple T is defined as

N4
T

= = t
For the case under consideration, N
tions to be solved are

(6-9)

6.5 and the six simultaneous egua-

du2 1 1 ! 5
— = = | = (u, - u7) ST A ai‘,
dr 2 ~2.5 ° - 1.5 ~ .
du3 LI | ! 1
- - - i'—'—" (u4 - uq) I (L- ' '1)
dr 3 .5 4 -
{6-10)
|
du4 1 71 1 7
- = _ t“ (u5— 14) - -y, —u,,})
dr 4 L4.5 3.5 % 7
du 1 [ 1 1 7
—= = — | — ug - ug) - —ia; - uy)
dr 5 Ls.5 > 5 0 4]
du6 . 1 l’_ ' o :
T U T o We st
dr 6 5.5 ;
The initial conditions state that u, (0) = u, {v)
= ug (0) = 1.

= uy (0) = uy (0) = ug(0)
This problem was set up or the electronic differential analyzern
and the recorded temperatures at each stat::n are shown in Figure 6-2.

Note how rapidly the temperature u, decays cormpared with the other tem-
peratures.

This is because u

1 is only 0.0£27 units in x from the wall at
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zero temperature. On the other hand Figure 2-6 shows the same solution
when equally-spaced stations in x are used. In that figure u, occurs at
x = 0.154 and the temperature decay is not nearly so rapid. In Figure 6-3
points from the computer solution in Figure 6-2 are compared with the exact
theoretical temperature distributions obtained from Equation (1-34), Al-
though the accuracy of individual points in the figure is not as good as the
accuracies the difference-method displays in Figure 2-4, one can from the
points in Figure 6-3 draw much more accurate temperature distributions
for the first few instants of time t. This is due again to the closer spacing
of the stations near the wall.

There are other problems which have been solved by the author
where a new independent variable not only grouped the stations at closer
intervals where desired but also improved the decay-constant and mode-shape

agreement with the continuous solution.
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CHAPTER 7

SOLUTION OF HEAT-FLOW PROBLEMS IN SEMI-INFINITE MEDIA

7.1 Equation to be Solved

Up to now we have only considered heat flow in media of finite
dimensions. However, we may frequently be interested in calculating the
temperature in media which are infinite or semi-infinite in extent. For ex-

ample, consider the conducting bar shown in Figure 7-1.

u

u
C
o

|

u=0

NN

Figure 7-1. Semi-Infinite Bar.

Let the left end of the bar be imbedded in a perfect conductor held at tem-
perature U while the right end of the bar extends to infinity. Further,
assume that the medium surrounding the bar is at zero temperature, and that
the bar loses heat to the surrounding medium at a rate proportional to the dif-
ference between the temperature of the bar and the medium, i.e., proportion-
al to u. This assumption, often called Newton's law, is valid providing the
difference between the temperatures, expressed in degrees absolute, is
small, We will also assume that the thickness of the bar is small enough to
allow us to neglect any temperature variations across the bar. Thus the
temperature u within the bar is a function of distance x along the bar and time

1, and the heat equation becomes .
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c@mB - Lx@Y -k, u (7-1)

9t 9x ax
Here C (x)is the heat capacity per unit length of the bar, K (X)is the con-
ductivity, and kV is the energy lost to the surrounding medium per second per

degree per unit length. Boundary conditions are

u(0,1) = UO (7-2)
and limu (5,T) = 0 (7-3)
X 00

The second condition could equally well have required zero heat flux or tem-
perature gradient at x = , Let us introduce a dimensionless distance

variable x given by

X = (7-4)

b

where L is a length yet to be defined. Also let us write C (x) and K ()

respectively as

C (Lx) = CO ¢C (x) (1-7)

and
K (Lx) = K_ ¢g (%) (1-8)
where (PC (x) and ¢K (x) are dimensionless and where CO and KO equal the

maximum value of C and K respectively. From Equations (1-7), (1-8), and

(7-4) Equation (7-1) becomes

du 5 ou Ky
pe) —g—— "tk E U (7-5)
(o] — (o]
8 (— T)
C L
(o]

If we let L’k /K_ = 1, then
v (o]

L :\/-11{3 (7-6)

K k

A (7-7)
C L c,

Finally, from (7-6) and (7-7) we can write Equation (7-5) as
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) 9 9
oc (¥) 57 = 3% Pk (¥) 5= - u (7-8)
For the case of a uniform bar, which we shall treat here, ¢ (x) = ¢K (x) =
1 and
2
u . 2u_, (7-9)
at ox
with boundary conditions
u(0,t) = Uo (7-10)

and
limu(x,t) = 0

X —» 00

and initial condition

u(x,0) = U(x) . (7-11)

7.2 Exact Theoretical Solution

Before considering the solution of Equation (7-10) by difference
techniques, let us examine an exact solution. For the case where the initiall

temperature distribution is zero, one can show that the solution is given by
u(x,t) = cosh x - %ex erf (‘/t + _ZXF) + —é— e * erf (‘/t - ZX ) (7-12)

where we have let the boundary temperature U0 = 1. In the steady state
Equation (7-12) reduces to

u(x,t) = e X (7-13)

which is clearly the correct solution to Equation (7-9) when 8u/d8t = 0.

In Figure 7-2 the temperature distributions along the bar at
various times t, as calculated from Equation (7-12), are plotted. Note that
the temperature along the bar gradually rises to approach the exponential

distribution given in Equation (7-13).

7.3 Solution by the Difference Method Using a Change of Spacial Variable

Since it would require an infinite number of cells of finite spacing

to represent Equation (7-9) and the boundary conditions of Equation (7-10), it

82




"SOWIT], SNOTJIEeA

je Jeg 9}IUTjul-Twag e Juole suolnqri}sig aanjexadwa], °‘7-, o2andrg
MVE IHL ONOIV X 3IONVLSIA |
02 8l 9 b 2 ol 80 90 _ +0 20 00
o T
—I ]
/ /
N
——_ // /
/ v/ |
X // \
/
=1
/,/// /

00

20

<
o)

Q©
@)
N 3JYNLIVH3IdWAEL

@©
o

ol

83



— ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN —

is necessary to introduce a new independent variable y which will transform

the infinite range in x into a finite range iny." For example, let

y = 1- e_X (7-14)
In this transformation the boundary at x = 0 corresponds to a boundary at
y = 0, while the boundary at x = corresponds to a boundary aty = 1.
From Equation (7-14)
8 .8 dy _ -x8 _ (1-y)2 (7-15)
9x dy dx dy oy ‘
and Equation (7-9) becomes
9 d 9
du _ 1-y9)=1-y) ™ - 4 (7-16)
ot dy 9y
with boundary conditions
u(0,t) = 1, u(i,t) = o0 (7-17)

Note that the steady-state solution e given in Equation (7-13) becomes simply
1 - y in the new variable y. Note also that the heat flux at y = 1 1is zero even
for finite temperatures, confirming the fact that our solution is independent
of the boundary condition at x = o (i.e., at y = 1).

Now that the heat equation in (7-16) has only a finite range of
spacial variable y, let us break the distance along y into N equally spaced

stations. The difference equation at the nth station becomes

21-“ - u-h) - B2 gy ) - 0 ), - ) |
-

(7-18)
Equation (7-18) is iterated N-1 times, where the boundary conditions require
that Uy = Luy = 0.

It is easy to show that the steady-state solution to the difference
equations yields a temperature distribution which agrees exactly with the
continuous steady-state solution e ¥ o - y. The complete problem was set
up on the electronic differential analyzer for N = 7 cells, and in Figure 7-3
the time-dependent temperatures at eacn station are shown. The analyzer
solutions in the figure agree with the theoretical solution in Figure 7-2 to
within the width of the recorder-lines.
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Station

N oUW O

variable transformation, y =

tions on the x scale. This is done below.

y Coordinate X

.000
. 143
. 286
.429
. 572
.715
. 858
. 000

— OO0 OO0 0OO0

1 - e *, would be used.
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For the 7-cell example considered it is interesting to compare

Equivalent
Coordinate

.G00
.154
. 336
. 560
. 847
.252
. 945
0

—_—0 0000

From the simple example considered in this chapter it seems

clear that a wide variety of dynamic heat transfer problems through semi-

time-dependent boundary conditions, a non-uniform bar, and heat sources

distributed arbitrarily through the bar. In each case the same spacial

the equally-spaced station locations on the y scale with their equivalent loca-

infinite media can be solved by the difference method using the electronic dif-

ferential analyzer. Without complicating the circuitry we could have included
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CHAPTER 8

NONLINEAR HEAT-FLOW PROBLEMS

8.1 Introduction

All the heat-flow problems considered thus far in this report
have been linear. For this reason, it was possible in most cases to treat
the problems by separation of variables or the Laplace transform, even
though the solutions were much more easily obtained with the electronic dif-
ferential analyzer. However, in the present chapter we will treat a nonlinear
heat-flow problem, one which will require the solution of a nonlinear partial
differential equation. Solution of this type of problem by exact analytic
techniques is not possible except in very special cases, so that the use of a
computer of some type is virtually a necessity. The main difficulty in the
theoretical treatment of nonlinear boundary-value problems is, of course,
the failure of the superposition principle, i.e., the fact that the sum of two

or more solutions is not itself a solution.

8.2 Nonlinear Problem to be Solved

As an example of a nonlinear heat-flow problem consider the
temperature u (x,1) inthe slab shown in Figure 1-1. Let the left side of the
slab be hald at temperature f]—o and the right side be insulated. Furthermore,
let us assume that the conductivity K is a function of the temperature u, say

proportional to u. Thus
K = KO l_l- (8_ 1 )

and from Equation (1-2) the heat equation becomes

du _ 3 = ou (8-2)
C = = Z=Z[K u —=
o9t 0x [ O  9x ]

where for simplicity we have assumed uniform heat capacity Co and con-
ductivity as well as no heat sources. We realize, of course, that nonuniform

media containing arbitrary time-varying heat sources can be treated by the
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electronic differential analyzer with essentially no added complexity. The

boundary conditions are

T(0,T) - uw, L.t _ (8-3)

where L is the thickness of the slab. We denote the initial temperature

distribution as

u(x,0) = U (%) . (8-4)
Let us define a dimensionless temperature u equal to the ratio of the actual
temperature divided by the initial temperature at the right wall. Thus let
u(x, 1)
T(L)

u(x,t) = (8-5)

Let us also introduce dimensionless distance and time variables x and t

given respectively by

x = X (8-6)
L
t = > t . (8-7)
CL
o
Equation (8-2) then becomes
du _ 0 du _
3 " ax Yox (8-8)
with boundary conditions
u(0,t) = u,, du(l,t) _ (8-9)
o
9x
and initial condition
u(x,0) = U (x) (8-10)

8.3 Formulation of the Difference Equations and Analyzer Circuit

In the usual manner we next break the x dimension into N cells

and write the equilibrium Equation (8-8) at the nth cell. Thus

du

dr

Uni1/2 Masr " Un) T Upar/2 Uy Upy) (8-11)
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where

o= N . (8-12)

We are immediately faced with the problem of representing the temperature
u at half integral stations since the conductivity, which is a function of u,

occurs at the half-integral stations. Let us approximate u as the aver-

n+l/2
age of u and u_. Thus assume that
n+l n
u_,.,-u
~ n+l n _
“nt1/2 T T, (8-13)
from which Equation (8-11) becomes
dun uZn+1 B ZunZJr un-lz
= (8-14)

dr 2

The electronic differential analyzer circuit for solving this equation at the

nth station is shown in Figure 8-1. Note that a servo multiplier, as described

dUn
dr

NOTE: k VOLT EQUALS — i
UNIT TEMPERATURE 100

Figure 8-1. Analyzer Circuit for the Temperature

at the nth Station; Conductivity Pro-

portional to the Temperature.
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in Section 1-5, is used to generate the square of the temperature at each
station. In the Figure it is assumed that the temperature u never becomes
negative. The time scale of integration is RC seconds.

In the equation at the first station the prescribed boundary tem-
perature UO is introduced, while at the N-1/2 station we let u

N+1/2
un-1/2 because of the zero heat-flow condition.

8.4 Analyzer Solution for Uniform Initial Temperature Distribution Across
the Slab

The nonlinear heat-flow problem discussed in the previous section

was set up on the electronic differential analyzer using 6-1/2 stations and
with 50 volts equal to unit temperature (k = 50). Solutions were obtained
for an initially flat temperature distribution of unity. Time dependent tem-
peratures at each station are shown in Figures 8-2, 8-3, and 8-4 for left-
wall temperatures UO of 0, 0.2, and 0. 5 respectively. Note that the tem-
perature decays are not truly exponential, even after some time has elapsed.
The actual type of decay which is present will be discussed in the next sec-

tion.

8.5 Exact Particular Solution by Separation of Variables; Comparison with

the Difference-Equation Solution

In order to establish the accuracy of our difference-approximation
solution to the nonlinear heat-flow problem let us look for a particular solu-

tion to equation (8-8) by separation of variables. Thus let
u(x,t) = X(x)T(t) (8-15)

Substituting Equation (8-15) into (8-8), we have

14T 1 d ypdX | (8-16)
T dt X dx dx

where a is a constant. Thus we have the two separated equations

dT 2
F"'QT = 0 (8-17)
and
d , dX _ i
&Xa-;(— +aX = 0 (8 18)

The time dependent solution T (t) is from Equation (8-17)
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1
T (t) = (8-19)
at + 1
where we have let T (0) = 1. This is quite a different type of decay function

than the exponential decays obtained in the linear case.

For Equation (8-18) let us use the boundary conditions
. dX - 0 - -
X (0) = d*x(l) = 0; X(1) = 1. (8-20)

This is a nonlinear eigenvalue problem which can be solved with the electronia
differential analyzer. We let time on the analyzer be distance x through the
slab, and the problem is started at x = 1. The integration proceeds toward
X = 0. The value of a is varied for each solution until the condition X (0) =
0 is met. Thus several trial solutions are required to converge to the correct
solution. The latter is plotted in Figure 8-5, and the value of a = 1.114 was
used for this solution, '

Thus if we start the problem with the temperature distribution
shown in Figure 8-5 the distribution should maintain exactly this same shape
while it decays according to Equation (8-19). To test our difference-approxi-
mation accuracy we set up the initial temperatures across the slab exactly
as given in Figure 8-5. After release of the initial conditions the solutions
shown in Figure 8-6 were obtained. Over the time interval shown the shape
of the distribution stays constant to within one percent of the correct in-
stantaneous values, and the time-dependent decay agrees with Equation (8-19)
to within about one percent. For at least this special case, then, the differ-
ence-equation approximation gives a reasonably accurate solution to our non-
linear heat-flow problem for N = 6-1/2 stations.

It seems hardly necessary to point out that we can solve problems
where the conductivity is proportional to uZ, u3, etc, by the same techniques
used in this chapter. Problems where the conductivity or heat capacity are
arbitrary functions of temperature can also be handled with the electronic

differential analyzer by using function-generating equipment. 1
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APPENDIX 1

CALCULATION OF DECAY CONSTANTS AND MODE SHAPES

I.1 Continuous Equations to be Solved

HEAT FLOW

function R (r) in the case of axially-symmetric heat flow in a cylinder is

given by the equation

If we are interested in the case of finite temperature at the axis and zero

temperature at the wall, the boundary conditions become

The solution to Equation (I-1) with the boundary conditions of Equation (I-2)
is given in terms of Bessel functions of order zero. Thus the normal modes

or eigenfunctions become

Here the eigenvalues 8. are given b )\.2, where X\ . is the ith root of J (p).
g io g MU i o)

I. 2 Difference-Equations to be Solved

In Section 4. 2 we saw that the radially-dependent temperature

d
L I g_§+gr¢R=o. (I-1)

dR(0) _ p) = 0. (I-2)
dr

R (r) = J,0nr), By = B = 3% (1-3)

from Equation (4-39)

where Bio is the eigenvalue for the ith mode of the difference equation and

The difference approximation to Equation (I-1) at the fth cell is

~4

1

- B,
! [(ul/z) (Ryy 1~ Ry - 0-1/2) (R - Ry )+ =2 Ry = 0 (1-4)

1
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L is the number of stations or cells along r. The boundary conditions

require that

Ry s R =0 (I-5)
and
R, = 0 (I-6)
Equation (I-4) is iterated L-1/2 times. If we let
‘3io
Yi ?‘ (I-7)

the following set of L.-1/2 simultaneous algebraic equations is obtained.

2Ry 5~ (2- )Ry 5 = 0
L2 R, ,-(2-v)R .+ _R._ -0
1.5 2.5 Yi' *1 5715 fos
3 2 )
2583 5 (2-v)R, ;455 R ;=0

1-8)

L+1/2 L 1-1/2 ) (
T By (2-v) R +=——R, =0

L-1.5 L _
-2 By " Q@-v) R ,+=—5 By, 5 =0

_(z_yi)RL_IJFM_-iR -0

L -1

1.3 Solution by Means of Characteristic Equations

The above set of equations will have a non-trivial solution only
if the determinant of the coefficients vanishes. From this determinant we
obtain a polynomial in )\i of order L-1/2, the roots of which are just the

eigenvalues Ay Thus for L, = 1.5 the characteristic equation is

2 - Y; = 0 (1.5 stations), (I-9)
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which has one root, Y, = 2. From Equation (I-7) the eigenvalue Bl o
2.25 Y, * 4.5, compared with the exact value of 5. 7831 for the continuous
solution (see the next to last paragraph in Section 4.3). For L = 2.5 we

find for the characteristic equation

8 -12 Y; + 3yiz = 0 (2.5 stations) (I-10)
which has two roots, Y, = 0.84530 and Y, = 3.1547. From Equation (I-7)
Bl 0 = 5.2831 and Ez 0 19.7169. These compare with the exact values

for the continuous solution of 5. 7831 and 30.472 respectively. Similarly for
L = 3.5 4.5, 5.5, and 6. 5 we obtain

16 - 48y +30y % -5y = (2-v)(8-20y, +5y,5) =0 (I-11)

(3.5 stations) ,

128 - 640 y, + 720 y,° - 280y > +35y," = 0 (4.5 stations), (I-12)

256 - 896 y, + 3360 yiz - 2240 v + 630 v - 63y -

(2 - yi)(128 - 896 y; * 1232 yiz - 504 Yi3 + 63 Yi4) = 0 (5.5 stations)

(I-13)
2 3 4 5
438.85714 - 4608 y; + 11520 v,“ - 11520 v, + 5400 v, - 1188 y,
+ 99 yib = 0 (6.5 stations) (I-14)

In each case the roots y; can be found, from which the eigenvalues Bio are
calculated. The ith mode shape is obtained in each case from Equations
(I-8) by substituting the known Y; into the first equation, assuming RO. 5 = 1,
and solving for Rl. 5- The second equation can then be used to find R
the third for R3. 5 etc.

2.5

I.4 An Alternative Method for Obtaining the Mode Shapes and Frequencies

Since the characteristic equations become very tedious to obtain
and solve for more than 5-1/2 stations, an alternative procedure is used.
Instead of solving for the characteristic equation we make a guess at the
eigenvalue Y; for L, cells and use Equations (I-8) to solve for the R values

at each successive station. If we have chosen A correctly, RL should

99




— ENGINEERING RESEARCH INSTITUTE -« UNIVERSITY OF MICHIGAN —

vanish. We can select Ro 5 arbitrarily as equal to unity. Thus for 10. 5

stations the equations for the successive R values become from (I-8)

Ry g = (1-vj/2)Ry 5 = 1-vy]/2 (Ry ; = 1)

Ry 5 = ~0.540.75(2-y) R, ,

Ry 5 = 0.666666667R) . +0.833333333 (2- ) R, ,

Ry s = -0.75R, (+0.875(2- v R,

Rg 5 = "0.8Ry ;+0.9(2-vy)R, . (I-15)
Rg 5 = - 0.833333333 R,  +0.916666667 (2 - v,) R,

Ry g = - 0.857142857 R, . +0.928571429 (2 - y;) R,

Rg s = - 0.875Ry ;+0.9375(2 - y) R, ,

Rg 5 = - 0.888888889 R, ; +0.944444444 (2 - y)) R, ,
Rig.5= - 0.90Rg +0.95 (2 - Vi) Ry ¢

In general we will not have selected the correct Y4 and R (in this case
RlO 5) will not vanish. However, if we have selected a y; close to the
correct value (and this is easy to do by extrapolation from Y; values for
fewer cells), the RL value will be fairly close to zero and an extrapolation
to a better estimate of Y; is readily made. After two or three trials the

Y; value can be obtained to at least 0. 01% accuracy, and the ith mode shape
has of course been calculated in the process of getting \7%

The above technique was used to obtain the eigenvalues Y; and
hence Bi for 10.5 cells. Table I summarizes the percentage dev1at10ns of
Pio from the exact decay-constant values as obtained from the squares of
the roots xi of JO (p). A plot of the results and extrapolations from those
results appears in Figure 4-1,

In Table II the mode shapes for 4.5 and 10.5 cells are compared
with the exact shapes given by R ()‘i r). In each case the value of R was

0.5
set equal to the theoretical JO value at that point.
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PERCENTAGE DEVIATION OF DECAY CONSTANT WITH
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TABLE I
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Number ‘Percentage Division
of Cells 1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode 6th Mode
1.5 -22.19
2.5 - 8.65 -35.30
3.5 - 4,51 -19.60 -41.94
4.5 - 2.74 -12.28 -27.53 -45,179
5.5 - 1.85 - 8.36 - 19.21 -33.06 -48.27
6.5 - 1.34 - 6.05 - 14,09 -24.72 -37.03 -50. 00
7.5 -19.09
8.5
9.5 -19.03
10.5 - 0.51 - 2.35 - 5.59 - 9.98 -15.82 -22.42
11.5 ~ -19.01
TABLE II
COMPARISON OF 4.5 - CELL MODE SHAPES WITH Jq
1st Mode 2nd Mode
Station Jo(x, r) Rl (JO - Rl) JO ()‘Zr) RI (JO - Rl)
0.5 0.9822 0.9822 0.0 0.9081 0.908%i 0.0
1.5 0.8457 0.8458 -0.0001 0.3167 0.3088 0.0079
2.5 0.6012 0.6014 -0,0002 -0.2818 -0.2930 0.0112
3.5 0.2990 0.2993 -0.0003 -0.3621 -0.3739 0.0118
4.5 0.0000 0.0000 0.0 0.0000 0,0000 0.0

101




Station

W N~ o
S, NG TS T T

Jo()\3r)

(CONTINUED)

3rd Mode
Ry

— ENGINEERING RESEARCH INSTITUTE

TABLE II

(JO - Rl)

0.7819

-0.2185 -0.2658
-0.2381 -0, 2554

0.2879

0.7819

0.0
0.0473
0.0173
0.3219 -0.340
0.0000 0.0000 0.0

TABLE III

UNIVERSITY OF MICHIGAN

COMPARISON OF 10.5 - CELL MODE SHAPES WITH J
o

1st Mode

Station Jo(xlr) RI (JO—'RQ)
0.5 0.9967 0.9967 0.0
1.5 0.9707 0.9707 0.0000
2.5 0.9197 0.9197 0.0000
3.5 0.8457 0.8457 0.0000
4.5 0.7516 0.7516 0.0000
5.5 0.6410 0.6410 0.0000
6.5 0.5181 0.5182 -0.0001
7.5 0.3878 0.3878 0,0000
8.5 0.2548 0.2547 0,0001
9.5 0.1239 0.1239 0.0000
10.5 0.0000 0.0000 0.0

3rd Mode

Station JO()\3r) Ry (JO - Rl)
0.5 0.9580 0.9580 0.0
1.5 0.6529 0.6508 0.0021
2.5 0.1892 0.1842 10,0050
3.5 0.2185-0.2253 0.0068
4.5 0.3997-0.4060 0,0042

102

; 4th Mode
Qﬁx4r) RI (JO- R,)
0.6147 0.6147 0.0
-0.4008 -0.5293 0.1285
0.2675 0.3764 -0.1089

-0.1304 -0.1873 0.0569
0.0000 0.0000 0.0
2nd Mode
Jo(xzr) RI (Jo"RY)
0.9828 0.9828 0.0
0.8505 0.8502 0.0003
0.6126 0.6118 0.0008
0.3167 0.3153 0.0014
0.0204 0.0184 0.0020
-0.2211 -0.2235 0.0024
-0.3673 -0.3699 0.0026
-0.4003 -0,4027 0.0024
-0.3276 -0.3294 0.0018
-0.1794 -0.1804 0.0010
-0.0000 0.0000 0.0
4th Mode
J(hyr) Ry (J, - Ry)
0.9227 0.9227 0.0
0.4069 0.3990 0.0079
-0.1881 -0,2012 0.0131
-0.4008 -0.4121 0.0113
-0.1599 -0.1617 0.0018

—
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3rd Mode 4th Mode
Station Jo(x3r) R! (JO - Rl) Jo()\4r) Rl (J0 - RI)
5.5 -0.3128 -0.3163 0.0035 0.1962 0.2035 -0.0073
6.5 -0. 0560 -0. 0556 -0.0004 0.2883 0.2965 -0,0082
7.5 0.1973 0.2009 -0.0036 0.0631 0,0642 -0.0011
8.5 0.3001 0.3046 -0.0045 -0.2011-0,.2071 0.0060
9.5 0.2094 0,2123 -0.0029 -0.2202-0.2267 0.0065
10.5 0.0000 0.0000 0.0 0.0000 0.0 0.0

5th Mode

Station JO()\5r) Rl (JO - Rz)

0.8776 0.8776 0.0

0.1479 0.1307 0.0128
-0.3871-0.4097 0.0226
-0.1851-0.1885 0.0034
0.2431 0.2582 -0.0151
.2111 0.2199 -0.0088
-0.1459-0.1552 0.0093
-0.2206-0.2313 0.0107
0.0668 0.0713 -0.0045
0.2146 0.2257 -0.0101
0.0000 0.0000 0.0

O O 00 ~J O U b WV = O
ool Ot v Ot v O v 01O
o

[y
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APPENDIX II

CALCULATION OF DECAY CONSTANTS AND MODE SHAPES FOR
THE DIFFERENCE APPROXIMATION TO SPHERICALLY-SYMMETRIC
HEAT FLOW

II.1 Continuous Equations to be Solved

For spherically -symmetric heat flow the radially-dependent
temperature function R(r) is, according to Equation (5-13), the solution of
the equation

L ?4B)  gR = 0 (II- 1)
r- dr dr
For the case of finite temperature at the center and zero temperature at the

wall the boundary conditions become

dR(0) _ -
—qp— - R() =0 (II-2)

From Section 5. 3 the exact normal-mode solutions Rj to Equation (II-1) are

1 .
Rj(r) = 3 s1nJI3‘jr (I1-3)

where the eigenvalues Bj representing decay constants are given by

53 = jZ"Z’ J

given by

= 1,2,3, .... (I1-4)

II. 2 Difference Equations to be Solved

The difference approximation to Equation (II-1) at the nth station

is from Equation (5-2)

1.2 1 Bj 1 .2
(1+=—)"R -2+— -=)R_+(1 - —)"R = 0 (II-5)
an n+l 2n2 NZ n on n-1
where
R-O. 5 = RO, 5 = 0 and RN =0 (I1I-6)
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Here N is the total number of cells or stations into which the radial co-

ordinate is divided, while Ej is the eigenvalue for the jth mode of the dif-
ference equation,

Equation (II-5) is iterated N-1/2 times, giving the following
N-1/2 simultaneous algebraic equations:

4R g -(4-vj) Ry 5 = O

16 _ 4 -
9 R, g - v R 5+g R =0
36 16 =0
25 B3 (35 - V) By 5 - 35 By 5
(11-7)
2 2
0.5 8n” +2 - 0.5
222y g T -y R+ (B2 R = o0
n n+i 4n2 n n-1

2 2
N-1.5 8(N - 2)"+2 _
(——=2) R —[ - Y ___.__) = 0

) Byoy AN - 2)2 Vi | By T Ry-3

N-2 A
2 .
8(N -1)" +2 1.5,2 _
- - v, | Ry (————) Ry., = ©
[ 4(N - 1) j ] Fe N - N-2
where ] Bj .
Yj = .N-Z )

II. 3 Solution of the Difference Equations

As explained in Section I. 3 the above set of simultaneous equa-
tions will have a non-trivial solution only if the determinant of the coefficients
vanishes. Solution of this determinant will give us the characteristic equa-
tion, an N-1/2 order polynomial, the roots of which are the eigenvalues y.
Once the eigenvalues are found the mode shapes are obtained from the fol-
lowing equations, derived directly from (II-7).

Rl.5 (1 - 0.25 Yj) RO

R, 5 = - 0.25 Ry o +(1.25-0.5625 y;) R 5 (11-9)

105




— ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN —

R3. 5 = - 0,444444 Rl. 5 +(1.44444 - 0. 694444 yj) RZ. 5
R4.5 = - 0.5625 R2.5+(1.5625 - 0.765625 Yj)R3.5
etc.

Here we can let RO. 5 arbitrarily be equal to the correct value for the
continuous solution, as obtained from Equation (II-3).

Since the determinant of the coefficients in Equation (II-7) is
very tedious to solve for large values of N, it is easier to use the technique
discussed in Section I. 4 to evaluate the eigenvalues Yj', In this method we
guess at Yj for N cells, substitute into Equations (II-9) and find RN If
RN does not vanish, we make a second calculation with an improved Yj’
and in this manner quickly converge to the exact Yj values. This method
also gives us the mode shapes and was used to prepare Table III, which
presents as a function of N the percentage deviation in decay constants B .
from the exact decay-constant values given in Equation (II-4). The results
are plotted in Figure 5-1. Table IV compares the mode shapes for 4-1/2
and 10-1/2 cells with the exact mode shapes given by Equation (II-3). The

results are shown graphically in Figures 5-2 through 5-5.

TABLE III

PERCENTAGE DEVIATION OF DECAY CONSTANT FOR DIFFERENT
NUMBERS OF CELLS FOR SPHERICALLY-SYMMETRIC HEAT FLOW

Number
of Cells 1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode
1.5 -8.90
2.5 -4.47 -25.38
3.5 -2.19 -16. 28 -33.58
4.5 -1.29 - 9.75 -25.48 -38.01
5.5
6.5 -0.61 - 4,60 -12.34 -23,19
7.5
8.5
9.5
10.5 -0.23 - 1.73 - 4,73 - 9.11 -14.74
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TABLE IV

COMPARISON OF 4.5 - CELL MODE SHAPES WITH Rj = 1 _ sin jmr

1 jrr

Station R‘(r)St M%ie R, -R_ R,(r) “"gYO% g, - R,
0.5 0.9798 0.9798 0.0 0.9207 0.9207 0.0
i.5 0.8270 0.8619 -0.0349 0.4i35 0.5157 -0.1022
2.5 0.5642 0.5992 -0.0350 -0.0980 -0.0960 -0,0020
3.5 0.3135 0.2823 0.0312 -0.2015 -0.2506 0.049]
4.5 0.0000 0.0000 0.0 0.0000 0.0000 0.0

3rd Mode 4th Mode

Station R3(r) Rn R3 - Rrl R4(r) R, R2 - Rn
0.5 0.82699 0.82699 0.0 0.70532 0.70532 0.0
1.5 0.00000 0.15117-0.15117 -0.20675 0.14700 -0.05975
2.5  -0.16540-0.29574-0.13034 0.09207 0.03962 0.05245
3.5  +0.11814 0.17697-0.05883 0.03499 -0.01042 -0.02437
4.5 0.00000 0.00000 0.0 0. 00000 0.00000 0.0

TABLE V
COMPARISON OF 10.5 - CELL MODE SHAPES WITH R, = J_:rr_ sin jrr
1st Mode 2nd Mode

Station R (r) R R -R) R,(r) Ry R_{___IEE
0.5 0.99623 0.99623 0.0 0.98516 0.98516 0.0
1.5 0.96676 0.97398-0. 0072 0.87103 0.89849 -0.0275
2.5 0.90932 0.91948-0.0102 0.66658 0.69901 -0. 0324
3.5 0.82699 0.83822-0.0112 0.41350 0.43953 -0.0260
4.5 0.72410 0.73519-0.0111 0.16113 0.17516 -0.0140
5.5 0.60598 0.61605-0,0101 -0.04528 -0. 04394 -0, 0013
6.5 0.47865 0.48708-0.0084 ~0.17487 -0, 18309 0. 0082
7.5 0.34841 0.35480-0.0064 -0.21723 -0.22990 0.0127
8.5 0.22150 0.22568-0.0042 -0.18301 -0.19463 0.0116
9.5 0.10370 0.10567 -0, 0042 -0.09909 -0.10569 0. 0066

10.5 0.00000 0.00000 0.0 ~0.00000 0.00000 0.0
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3rd Mode
Station R3(r) Rn R3 - Rn
0.5 0.96676 0.96676 0.0
1.5 0.72410 0.78129 -0.0572
2.5 0.34841 0.39767 -0.0493
3.5 0.00000 0.01525 -0.0153
4,5 -0.19356 -0.20882 0.0153
5.5 -0.19748 -0.22242 0. 0249
6.5 -0.07437 -0.08844 0.0141
7.5 +0. 06445 +0.06851 -0.014!
8.5 +0.12778 0.14247 -0.9147
9.5 0.09169 0.10339 -0.01i7
10.5 0.00000 0.00000 0.0
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4th Mode
R,(r)

Rn

.94139
. 54308
. 04981
. 20675
. 14517
. 04478
. 12819
. 04834
. 06686
. 08187
. 00000

0.94139
0.63497
0. 09333
-0. 23135
-0.18336
+0, 04072
+0.15179
+0. 06298
-0.07708
-0. 09822
0.00000

Ry- Ry
0.0
-0.0919
-0. 0435
0. 0246
0.0382
0. 0040
-0.0236
-0.0146
0.0102
0.0164

0.0
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