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PREFACE

In a previous report, the solution of linear beam-vibration
problems by difference techniques using the electronic differential
anhlyzer was described.l This report extends the application of the
same techniques to lateral-beam vibrations where nonlinear damping
terms are present. Examples considered include cantilever beams
with velocity-squared damping and Coulomb damping. Analyzer solu-
tions give recorded output voltages representing lateral displace-
ment, velocity, and bending moment as a function of time and at
various stations along the beam. Approximate theoretical checks of
the computer accuracy are given in several cases.

The computer solutions were obtained with the electronic
differential analyzer facility of the Department of Aeronautical
Engineering, University of Michigan.
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CHAPTER I

INTRODUCTION

Nonlinear partial differential equations are almost impossible to solve
exactly in all but a few special cases. Unlike linear partial differential
equations they cannot be treated by separation of variables, since for the non-
linear equations superposition of normal mode solutions does not result in
another solution. Hence at the onset we are led to computing techniques in
order to solve nonlinear partial differential equations. Solutions can be
obtained by replacing all derivitives with finite differences and by using dig-
ital machines, or they can be accomplished by replacing derivitives with respect
to all variables but one by finite differences and by using electronic differen-
tial analyzers. In this latter method the original nonlinear partial differen-
tial equation is converted to a system of simultaneous ordinary nonlinear

differential equations.

1.1 Equation for Lateral Vibration cof Beams

In this report the nonlinear partial differential equation which we
shall consider is the description of lateral (transverse) vibration of beams
having nonlinear damping terms. Consider the cantilever beam shown in Figure 1-1.

Let y denote the transverse motion of the neutral axis of the beam, x equal
distance along the beam, and t be the time variable. The equation describing

the dynamic behavior of the beam is®

2 — —_ —_—— - — —_———
Comr() T4 o) fe (X + o) L = FEE) (1-1)
ox ox= ot 3t 2

Here EI(x) is the flexural rigidity, p(x) is the mass per unit length, and
F(;,E) is_the external force per unit length. The damping force per unit length
is TF, (dy/dt), where fg is a nonlinear function of the transverse velocity
(dy/dt). We recall that the bending moment M is given by
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Figure 1-1. Cantilever Beam.

while the shear force V is

V(x,t) = OM(x,t) (1-3)
ox :

For the cantilever beam of length L shown in Figure 1-1 the boundary conditions
are

.§(O’t) = —— = 0 (clamped end) (1-4)
ox
and
M(L,t) = V(L,t) = 0 (free end) (1-5)

In writing Equation (1-1) we have neglected deflection due to transverse
shear or rotary inertia, which means that the transverse dimensions of the beam
must be small compared with the beam length L. The effect of transverse shear
can be included if necessaryl’3.

Let us lump the variable characteristics of the flexural rigidity EI(;)
into a dimensionless variable @¢(x), so that
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EI(x) = EIo @e(x) | (1-6)
Here EI, could represent the maximum value of EI(;). In the same way we let

o(x) = po falx) (1-7)
and

c(x) = cg Polx) (1-8)

It is also convenient to define a dimensionless distance variable x such that
the beam length in x is unity. Thus

x = X (1-9)
L
from which
9 _dax _ 13 ¥ _ L& . etec. (1-10)
>x  ox dx L 3x  ox2 12 3x2

From Equations (1-6), (1-7), (1-8), and (1-10) the beam Equation (1-1) becomes

2 2y 1 " Lt 2y 1 =, -
cal ¢f(x) &y + LLEQ‘¢C(X) fc(é:f) + Bo Pa (x) —:Z = — f(x,t) (1-11)
%2 dx2  EI, Ot EI, 2 El,

Next we introduce a dimensionless time variable t given by

v - L B
> (1-12)
L Po

Since Equation (1-11) is nonlinear, the behdiior of the solution will in general
depend on the magnitude of the displacement y. For this reason we consider a
dimensionless displacement y defined as

;(X;t) , (1-13)
Yo

y(x,t) =

where Yo is a reference value of ;; Yo might be defined as the maximum expected

value of y.

In terms of Equations (1-12) and (1-13) Equation (1-11) becomes
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92 Ry 1t 2
— Pe(x) L+ T2 o(x) £ () + dy0) T L re,t) (ab)
dx? ox2  EIg y, ot ot2
where
£(x,t) = LT F(x,t) (1-15)
EI, Yo

Equation (1-1k) is the equation describing beam vibration with nonlinear damping
which we will solve in this report. For a cantilever beam it is subject to the
boundary conditions

y(o,t) = ylot) _ 4 (1-16)
ox
and

Be (1) éfZiiLEl = 9 ¢f(1) éflil;ﬁl = 0 (1-17)

ox2 ox dx2

We will denote the initial conditions as

y(x,0) = ¥(x) (1-18)
and
a—yéf&) = Y(x) (1-19)

Two examples will be considered. For the first example the damping
force is proportional to the square of the transverse velocity. Thus

g (ég) = 9% é% (example 1) (1-20)
ot ot |ot

Here the sign of the damping term is always the same as that of the transverse
velocity, and as a result energy is always extracted from the system. For the
second example the damping force is of the Coulomb type. Thus

fc(é,}’:':) = l) £> 0
ot ot
_ (1-21)
= -1, éZ.< 0

ot

4
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Here the damping force is always constant but depends in sign on the sign of the
transverse velocity.

1.2 Finite Difference Method for Approximating Derivatives

Instead of considering the transverse displacement y of our beam at all
points along the beam, let us consider y only at certain stations along x, as shown
in Figure 1-2. Further, let the distance between x stations be Ax. Thus we de-
fine y, as the transverse displacement at x = Ax, yo as the displacement at
X = 2Ax, ypn as the displacement at x = nAx. Clearly a good approximation to
dy/dx |n41/2 (i.e., the partial derivitive of y with respect to x evaluated at the
n+l/2 station) is simply

Yn4l “In

oy = = (1-22)
Ax
n+l/2
Indeed, in the limit as Ax + O Equation (1-22) defines Jy/dx at x = (n+l/2)Ax.
In the same way
32 113
ol el 2 N~ (-23)
%= |n n+l/2 n-1/2
or a
32 Ype1 = Oy + Yp-
Y - vnt+l n2 n-1 (1L-24)
ox2 0 (Ax)

Higher order derivitives are computed in the same manner.

The displacement y, at the nth station is a function only of time. Hence
if we replace x derivitives in Equation (1-1L) with finite differences, a system
of ordinary nonlinear differential equations will result, equations which can be
solved directly by the electronic differential analyzer.

1.3 Principles of Operation of the Electronic Differential Analyzer

The reader unfamiliar with the theory of operation of the electronic
differential analyzer is directed to other references4’5. To review briefly, we
recall that the basic unit of this type of computer is the operational amplifier,
which consists of a high-gain dc amplifier along with feedback impedance Zs and
one or more input impedances, as shown in Figure 1-3.
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Figure 1-2. Cantilever Beam Divided into Stationms.

To a high degree of approximation the output voltage ey of an operational amplifien
is equal to the input voltage divided by the ratio of feedback to input impedance,
with a reversal of sign (Figure 1-3a). If several input resistors are used, the
output voltage is proportional to the sum of the input voltages (Figure 1-3b). If
an input resistor and feedback capacitor are used, the output voltage is propor-
tional to the time integral of the input voltage (Figure 1-3c).

The operational amplifiers shown in Figure 1-3 can be used to multiply
a voltage by a constant factor, invert signs, sum voltages, and integrate a voltage
with respect to time. To multiply several voltages a servomechanism which drives
potentiometers is the most commonly used device. In Figure 1-4 the block diagram
of a servo multiplier is shown. It consists of a number of linear potentiometers
ganged together and driven by a servo motor. The reference voltage + VR is
connected across one of the pots, and the variable tap voltage aVR is subtracted
from the voltage Z. The resulting error signal e = Z - QVR 1s sent through a
high-gain servo amplifier and applied to the servo motor. The motor drives the
variable tap in the proper direction to reduce the error to zero, i.e., to make
QVR = Z. In this way the tap position on all of the ganged pots is proportional
to the voltage Z. If + X and + Y are applied across each of the remaining two
pots shown in Figure 1-4, it is apparent that the variable tap voltages will be
XZ/VR and YZ/VR respectively. Thus the servo multiplier can generate output
voltages proportional to the product of input voltages.
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For the electronic differential analyzer solutions obtained in this
report REAC* Servo Unit S-101 Mod L4 servos were used. Accuracy of multiplication
is about 0.1% of full scale (+ 100 volts). Drift-stabilized dc amplifiers of our
own designé were used along with computing resistors calibrated to 0.02%. Ampli-
fier gain is about 12 x 108 and average offset referred to input is approximately
1074 volts.

By employing operational amplifiers for summation and integration, and
servos for multiplication, we are able to solve the cantilever beam with velocity-
squared damping.

* Reeves Electronic Annlog Computer, Reeves Instrument Corp., New York 28, New
York
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CHAPTER 2
CANTILEVER BEAM WITH VELOCITY-SQUARED DAMPING

2.1 Beam Equation Including Velocity-Squared Damping

For flexural vibration of a beam with damping proportional to the square
of the transverse velocity, we have the following equation from Equations (1-1k4)

and (1-20):

2 2 L4 — —
o) T =240 L Ehe gy T = fx, 1) (21)
dx2 &2  EI, y, ot | ot dt2
Since y = Yoy and t = L2~JpO/EIO t, Equation (2-1) becomes
2 > 2
T o) T ool) X | Xy o) T 2 pgy, o) (2-2)
ox? ox2 ot | ot ot
where
¢ = 2% (2-3)
Po

For a cantilever beam the boundary conditions are given in Equation (1-16) and
(L-17). We recall that the transverse displacement y, distance along the beam
x, and time t in Equation (2-2) are all dimensionless.

2.2 Equivalence of Damping-Coefficient Size and Amplitude of Vibration

In any nonlinear equation the behavior of the solution is not independent
of the magnitude of the dependent variables, as with a linear system. At first
thought one might therefore assume that our nonlinear beam Equation (2-2) must be
solved not only for different damping constants c¢ but also for different amplitudes
of transverse vibrations. Actually, this is not true. Consider first the case
where f(x, t) = O and where we know the solution y(x, t) for a given damping

10
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constant ¢ and for given initial conditions. If we now double the size of the
initial conditions, the solution will be simply 2y(x, t) providing the damping
constant is c¢/2. This is evident from the damping term in Equation (2-2).

In the same way if we know the solution for a given force f(x, t) and

damping-constant ¢, the solution for a force af (x, t) will be o times as big as
the previous solution providing the damping constant is c/a.

2.3 Difference Equations for the Cantilever Beam with Velocity-Squared Damping

As explained in Section 1.2 we will consider the transverse displacement
y only at stations along the beam. In this way derivitives with respect to x ecan
be replaced by finite differences. Following the procedure of our previous reportl
we introduce a new distance variable X such that the distance AX between stations
is unity. If the beam is divided into N stations or cells, then

X = Wxanmd & - v, (2-k)
dx X

It is also convenient to introduce a new time variable T given by

T =1Ptand O _ B9 (2-5)
ot oT

Equation (2-2) then becomes

2
o000 Ty ope) X |Hle da00) TL — X, 1)z L2 (x,7) (2-6)
X DY ar | ar 2 N

The difference equation at the nth cell is from Equation (1-24)

a2 dyyn |4y
1) S0 4 cd o |Za ) - Mpy] + 20 - Moy + Op(T) (2-7)
dn are o 4r ar

where my is proportional to the bending moment and is given by
my o= Pe (mpy - 2wy 4w ) (2-8)

Boundary conditions for the difference technique are discussed more
completely in a previous reportl. For the clamped end the condition of zero dis-
placement and slope is approximated by letting

Yo = Y1 = O . (clamped end at X = 1/2) (2-9)
1l
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For the free end the condition of zero moment and shear is approximated by
letting
my = My, = O (freeendatX = N+ 1/2) (2-10)
Note that the N-cell cantilever beam has its built-in (clamped) end at X = 1/2
and its free end at X = N + 1/2. From Equations (2-7), (2-8), (2-9), and (2-10)
the complete set of difference equations for the cantilever beam with velocity-
squared damping becomes
a2 dyz | dy2
Bg —‘&+"¢2—— = -Ng +2mp -m + & (7)
2 gr2 dar ar
%y dys | dy
Pa 23 + cfeg =221 = -m+2mg-mp o+ 0 (T)
3 ar dr |dr
(2-11)
a%y dy. dy.
N-2 N-2 N-2
¢d’N-2 > + C¢CN-2 = - mN_l + 21111\]'_2 - 'mN_B + CDN-Q (T)
dr ar ar
Yy ¢ Ay | Wy ()
b — 4c - - = 2m - m + 0 T
dn- c N-1 N-2 N-1
N-1 ar? N-1 4+ dar
ﬁ d2y dyN dyN- o £ oy (2)
d +Cha, T | | T "~ Iy-1 N A\t
N gr® “Tar |ar
where
m = P Vo
my = ¢f2 (ya - 2y2)
my = Pp. (Yo - 2ys + y2)
(2-12)
my-p = ¢fN-2 (yN-l - Yy ¥+ yN“'B)
my.p = Peyy Oy - 2yyoy + yy-g)
12
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Initial conditions y,(0) and dy(0)/dr must of course be specified to
define the complete problem.

2.4 Analyzer Circuit for the Cantilever Beam with Velocity-Squared Damping

The electronic differential analyzer circuit for solving the equation
at the nth cell is shown in Figure 1-5. The velocity dyn/dT times its absolute

R
B (1) ~AMAM— ¢, kRZ

% .
100cee,

INITIAL CONDITION CIRCUITS OMITTED FOR CLARITY
ALL RESISTOR VALUES ARE MEGOHMS
ALL CAPACITOR VALUES ARE MICROFARADS

FPigure 2-1. Analyzer Circuit at the nth Station for the
Cantilever Beam with Velocity Squared Damping.

value is obtained by grounding the center tsp of a servo-multiplier potentiometer
and connecting dyn/dT to both ends of the pot. In the figure it is assumed that
the servo reference voltage is 100 volts and that k volts on the computer equals
unit y. The time scale of integration is RC seconds; thus one unit of T equals
RC seconds of actual time in the computer solution. The circuit of Figure 2-1

is iterated N-1 times to solve Equations (2-11) and (2-12). 3(N-1) operational
amplifiers and N-1 servo multipliers are required to solve the N-1 simultaneous
nonlinear ordinary differential equations. For a complete circuit diagram in-
cluding the connections at the built-in and free ends the reader is referred to
the previous reportl.

For the uniform cantilever beam which we will consider from now on
¢Cn = ¢dn = ¢fn = 1. An integrator time scale of 0.2 seconds (R = 0.2

13
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megohms, C = 1 microfarad) was used in all cases. We let 50 volts equal a unit
transverse displacement y, so that k = 50 in Figure 2-5.

2.5 Damped First-Mode Oscillation

An 8-cell uniform cantilever beam with velocity-squared damping was set
up on the electronic differential analyzer. The correctness of the circuit is
easily established by measuring the frequency of first-mode oscillation when no
damping is present (Rp = «). This should agree closely with the theoretical
value fO{ an 8-cell beam, which is 0.70% higher than the frequency for a continu-
ous beam . First-mode oscillations were excited either by driving the beam circuid
with a sinusoidal voltage ®g (7) having the first-mode frequency or by applying
initial conditions representing the shape of the first-mode frequencyl. For the
latter case the displacement yg at the free end of the beam is recorded as a
function of time in Figure 2-2 for several values of the damping-constant c. Note
that the damping effect is large for big amplitudes of oscillation and decreases
as the amplitude falls off. This is due to the velocity-squared damping.

2.6 Approximate Theoretical Solution

Let us consider the uniform cantilever beam with velocity-squared damping

when the external force f(x, t) = 0. In this case
4 2
_a_if_ +c§l,§1 B_Z = 0. (2-13)
ox ot ot ot

We have seen in Section 2.2 that increasing the damping constant ¢ by a factor «
is equivalent to keeping the same damping constant but increasing the initial
amplitude y(x, O) by the same factor . The resulting solution is just o times
the first solution. Thus if we solve Equation (2-13) for a given damping (say

¢ = 1) but for a number of amplitudes of oscillation, we have also covered the
solutions for different damping constants c.

Let us assume that the beam is vibrating periodically with frequency w
and is only lightly damped. A fairly accurate approximate solution to Equation
(2-13) can be written by considering the energy Eq absorbed per cycle. This

will be
1  to+ 2n/w
By = o OY
ot

0 Yt

s

Sy dx dt
St s (2-14)

ot

where w 1s the frequency of oscillation and to is the time at which the particular
cycle in which we are interested starts. Let us assume next that the beam is

14
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Figure 2-2.
Beam with Velocity-Squared Damping.

Damped First-Mode Oscillations of Uniform Cantilever

15
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oscillating at one of its normal-mode frequencies, so that the motion is approxi-
mately sinusoidal. Also we will choose one time scale such that t5 = 0. Let
¥a(x) equal the amplitude at t = O and yp(x) equal the amplitude one cycle
later. We will define an approximation yg1,(x) cos wt to y(x, t) over the entire
cycle as

Yo (%) + yp(x)

Yap(x) cos wt = cos wt (2-15)
o)
Then Ey,, the kinetic energy at t = O is
1,2 [+ .2
Epg = =0 Ve (%) ax (2-16)
2 Yo
and Eyy, the kinetic energy at t = Enﬂb is
1l 2 12
Byp = = jyb (x) & (2-17)
2
0
We can calculate approximately the energy absorbed over one cycle from
Equation (2-14), since we assumed y(x, t) = yap(x) cos wt for this period. Thus
Ey = cw \jl Yap (%) dx R/ cos2 wt |cos wt |dt]
0] 0]
or
\l 8
By = %3(»2] Vap (X) X (2-18)
0

Let ym(x) equal the dimensionless mode shape having unit amplitude at the free end.
Then

1 L _
IBACERR W [ 9 60 e (2-19)
0 0
1 1
j vg (x) ax = 3 (l)f va (x) dx (2-20)
0 0
- f‘l Vo () @x = ¥ (1)fl y2 (x) ax (2-21)
0 0

Clearly the difference between kinetic energies before and after the
cycle of oscillation is the energy absorbed over the cycle. Thus

16
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Exa - Exp = Eg (2-22)

or from Equations (2-16) through (2-21)

3
1 1 8 l) J ym (X) dx
;‘mayz (1) - £'w2y% (1) = —2-w2[ZE£__:ZE££2]3 Ol (2-23)
> 2 j Vg (x) ax
0
For the first mode of a uniform cantilever beam
1
J[ Ve (x) dx
(")1 = 0.736 (2-2k)
J[ y2 (x) dx
0

Thus for the first mode

yp (1) = y5 (1) -3.92¢ | ) (2-25)

Equation (2-25) can be used to solve for the amplitude ¥p (1) at the free end
following one cycle of oscillation starting with amplitude yg (L). If the damping
is very slight, [yg (1) + yp (1)]/2 2 yp (1) and the logarithmic decrement & is
given by

] 2 1.9 cyy (1), 8<<1 (2-26)

Equation (2-26) predicts that when the damping is slight, & is directly proportional
to the amplitude of oscillation. In Figure 2-3 3 is plotted as a function of am-
plitude of oscillation from Equations (2-25) and (2-26) and compared with computer
results. Evidently Equation (2-25) is quite accurate and Equation (2-26) is ac-
curate for small damping.

2.7 Impulse Response of the Cantilever Beam with Velocity Squared Damping

A number of solutions were recorded following unit impulses of one-fifth
second duration applied simultaneously at each station along the beam. A five-cell
uniform cantilever beam was used for these solutions. Shown in Figure 2-4 is the

17
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INITIAL AMPLITUDE OF OSCILLATION AT FREE END OF BEAM

Figure 2-3 Variation of Logarithmic Decrement &
with Amplitude of Oscillation.

18
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displacenent at each of the stations following the unit impulse. In Figure 2-5
recordings of the bending morients are shovm. Four different damping cases are
1

showm.

The response of nonuniform cantilever beams or beams with other end
fastenings could have been obtained with equal ease. Any arbitrary forces along
the beam can be considered, as well as time dependent boundary conditions and
transverse-shear cffects. For a complete discussion of these and other cases for
letersl vibration of linear beams the reader is directed to the previous reportl.
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Figure 2-4. Unit Impulse Response of 5-Cell Uniform
Cantilever Beam with Velocity-Squared Damping
Displacements at Stations 2, 3, L4, and 5.
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CHAPTER 3

CANTILEVER BEAM WITH COULOMB DAMPING

5.1 Beam Equation Including Coulomb Damping

. From Equations (1-19) and (1-21) the equation for lateral vibrations of
a beam with coulomb damping is given by

0% 32 d 32
S22 Pe(x) 52+ oq Bolx) £o(5D) + Ba(x) SE = £(xyt) (3-1)
where
fc(%%) =1, %f >0
L Yo o
and where
¢q = ;z;o (3-3)

For a cantilever beam the boundary conditions are given in Equations (1-16) and
(1-17). The lateral displacement y, distance along the beam X, and time t are all
dimensionless. .

If we know the solution y(x,t) to Equation (3-1) for f(x,t) = 0, given
initial conditions, and a given damping constant Cqs» the solution for initial con-
ditions o times as big will be simply ay(x,t) providing the damping constant is
Qcy. Similarly, if we know the solution y(x,t) for zero initial conditions, a
given demping constent cy, and a given external force f(x,t), then the solution
for a force af(x,t) is simply ay(x,t), providing again that the damping constant
is acy. Thus if we can find the beam response for a given f(x,t) and all cq
values, we also know the solutions for any force af(x,t), where & is a constant
factor.
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3.2 Difference Equations for the Cantilever Beam With Coulomb Damping

Following the procedure outlined in Section 2.3, we can rewrite Equa-
tion (3-1) as a set of simultaneous ordinary nonlinear differential equations by
considering the lateral displacement only at discrete points along the beam.

Thus at the nth station

dyh
ar

c
¢d 2 +,_§_¢Cn fol=—) = -mpyp + 2my - my_ g + 0p(7) (3-4)

n are N4

where m, is proportional to the bending moment and is given by
oy = ¢fn (Yp+1 - 2¥n + ¥n-1) (2-8)

In Equation (3-4) we recall that N represents the number of cells into which the
beam 1s divided. A new distance variable X = Nx makes AX, the distance between
stations, equal to unity. The time variable T in Equation (3-4) is equal to N2t
and

1
0,(1) = 25 2.(7) (5-5)
The built-in boundary condition at X = 1/2 implies that Yo = 0. The free

condition at X = N + 1/2 implies that m, =my,q =0. A set of N-1 equations

similar to (2-11) and (2-12) is obtained for the complete cantilever beam with
coulomb damping.

3.3 Analyzer Circuit for the Cantilever Beam with Coulomb Damping

The electronic differential analyzer circuit for solving the equation
at the nth station ig shown in Figure 3-1.

The fc(dy/dT) function is represented by amplifier As in the figure.
This amplifier has no feedback and is loaded with Ry, a resistor selected so
that the amplifier output saturates at the same voltage k, for either positive
or negative outputs. A very small positive or negative input voltage (less than
4 millivolts) will produce a full output voltage k, of negative or positive sign
respectively. The result is an accurate simulation of the coulomb damping force
represented by fc(dy/dT), which is summed into amplifier Ay in Figure 5-1. The
circuit is iterated N-1 times to solve the complete N-cell beam.
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Figure 3-1. Analyzer Circuit at the nth Station for
Cantilever Beam with Coulomb Damping.

3.4 TImpulse Response of the Cantilever Beam with Coulomb Damping

A 5-cell uniform cantilever beam with various amounts of coulomb damp-
ing was set up on the differential analyzer with an integrator time scale of 0.5
geconds. Response 5 at station 5 is shown iIn Figure 3-2 following a unit im-
pulse of one-fifth second duration. Note the dead-space effect due to the
coulomb damping; the displacement y. does not in general return to zero but ends
up at some finite displacement for which the elastic forces are insufficient to
overbalance the coulomb friction.

It seems hardly necessary to point out that arbitrary combinations of
velocity-squared, coulomb, viscous and other types of damping can readily be
handled by the electronic differential analyzer. For a more complete discussion
of other types of beams, time-dependent boundary conditions, theoretical accuracy
of the difference technique, etc., the reader is referred to a previous report.?!
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