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PREFACE

This report summarizes the results of some theoretical investi-
gations and differential analyzer solutions for the problem of wave propa-
gation in a medium with varying indices of refraction. In particular, the
problem of wave propagation underwater is considered when the index of re-
fraction changes as a function of depth and the effect of the bottom is
neglected. The electronic differential analyzer solutions were limited to
the determination of the eigenvalues and eigenfunctions associated with
the depth-dependent wave potential,

The above work was sponsored by the Office of Naval Research.
Under the same contract, an electronic differential analyzer was designed
and constructed to allow further study of the underwater-sound problem.
The description of this equipment is given in a separate report.l

The author would like to acknowledge the assistance given by
Dr. C. E. Howe in obtaining the differential analyzer solutions presented
in this report. Dr. J. R. Sellars was mainly responsible for the approxi-
mate eigenvalue formulas developed in Chapter 2 from the asymptotic forms
of the Hankel functions. The thecretical investigation was carried out by
Dr. C. L. Dolph, who has written the portion of Chapter 1 which summarizes
this effort. The author is also indebted to Dr. H. R. Alexander of the
Acoustics Branch, Office of Naval Hesearch, for his help in clarifying the
derivation of the bilinear-gradient equations, and to Dr. H. W. Marsh, Jr.,
of the U. S. Navy Underwater Sound Laboratory, New London, without whose

interest and support this research program would not have been possible,

R. M. Howe
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CHAPTER 1
OUTLINE OF THE PRCBLEM

1.1 Introduction

The propagation of waves in a semi-infinite medium having
varying indices of refraction has been the subject of a very consider-
able number of researches. This report is concerned with a small part
of that problem, namely, the determination of the normal modes making up
the depth-dependent wave-potential function describing propagation of sound
waves underwater. The problem is complicated by the fact that the velocity
of sound varies with the depth of the water} In particular, we shall con-
sider the special case where a positive velocity gradient exists from the
surface to some finite depth, at which point the velocity gradient reverses
and becomes a negative constant for all lower depths. For this reason
the problem treated here is known as the bilinear gradient. The medium
of nroragation is considered to be semi-infinite, i.e., the effect of the
ocean bottom is not included,

The electronic differential analyzer, along with tabulated solu-
tions to Stokes' equation, is used to solve the depth-derendent equation.
No attempt is made to normalize or interpret the eigenfunctions obtained;

this task is left to other workers in the field.

1.2 Eguations to be Solved

Cylindrical coordinates will be utilized to describe the wave
potential function 'q/(r,z,t) where r is the radial distance from the

origin, z is depth below the surface, and t is time, The wave equation is

vzl—l} _ 1 Pk T/ (1-1)
r,z 2 2
c” dt

where ¢ is the velocity of propagation, and is a function only of the
depth z. Note that the wave potential ﬁ; is assumed independent of the

polar angle, Assuming that the time variation of‘ﬂ? is sinusoidal with
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frequency W, so thatﬁ}= vr@th , we have

V2V *Y=o0 (1-2)
r,z

where
k = _%;_ ’ (1‘3)

and where ﬂris a function only of r and z, By serarating variables in

the usual way the following types cf solutions are obtained:
V(2 =1, () ua) (1-4)

where U(z) srtisfies the equotion

a%v

d22

s (K -Y7) U=0 (1-5)

Here Y is an eigenvalue to be determined by the boundary cohditions on

U(z)., These are

U(0) =0 (1-6)
and lim U(z) —» outgoing wave (1-7)
7 —» 00

That is, the wave potential vanishes at the surface and corresponds tc

an outgoing wave at infinity.

Next we assume a linear variation cf velocity with depth. Thus

c =c. (l+bz) (1-8)

0

where o is the velocity at the surface and where b is & constant. Assum-

ing that bz << 1 5
R =2

c2 c 2
0

2
w
(1-2bz) = ko2

llz

(1-2bz) (1-9)
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We are interested in the case where b = bl for Z<fzo, and b = b2 for

Z )'zo. If we define a dimensionless depth variable f by

5 z (1-10)

equation (1-5) becomes

2 —
v, L2 l_koz (1-20,2, § ) - J §) =0 (1-11)
0z

2 0
d$ <1
and

2
Q_L’%l +202[ (1-2b,2,§ + 2b,2,-20,2,) YJ() = 0
a §

§71 (1-12)

Note that equations (1-11) and (1-12) are written so that there is no
discontinuity in the velocity at § =1,
Equations (1-11) and (1-12) can be rewritten as

b
d*u 3. 2 1 1 ¥ JuE=o
—, +t 227 k. b —_— - ———.§ -
a2 0 0 2l . Py 27 kzb
2 % ¢ 0 "0 "2
0£ £« (1-13)
and
2 3.2 by 2
aU | 2z kb, [14 1 £ Y ]U(§)=O
2 T b, ‘""""‘2;"
ik 2b,2, 2 22k, D,
51 (1-18)
Let us now define the following parameters.,
by (1-15)
a = 1 — ———
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2 3 2
s = —220 kO b2
2 2
.. 0~ ¥ (1-17)
%
2z0k0 5

Equations (1-13) and (1-14) finally become

2

Zs‘U‘? v g [f (¢) ~ Y] u$) =0 £20 (1-18)
where

£(8) = (1-a)é 0£f< (1-19)

= f -a ‘f -1

These eaquations are subject to the end conditions U(C) = O and Ufe) —»
outgoing vave. Since norrally b2<10, we see that s is a positive reczl
parameter. Tor the reverse gredient case, bi?O and hence a is a positive
real parameter greater than 1. The independent variablfagjfsreal, but
in general the wave potential U (§) and the eigenvalue Y will be complex,

The boundary conditions can be met only for certain discrete
values of Y, We denote these eigenvalues by‘lm (m = 1,2,,..), where
Y, is the smallest allowable velue of Y, Y2

The wave potentisls ascociated with each Yr ere called normel modes or
-1

is the next emallest Y, etc.

eigenfunctions U (¢). The problem is to find Y and U (€) for the low-

est modes (we will consider the first three modes in this report),

1.3 Method of Solution
For £ » 1 equation (1-18) becomes

4y
LN [§ -a+Ym] U =0 (1-20)
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If we let

p=s(§-a+1) , (1-21)

equation (1-20) becomes

+pUl =0 (1-22)

which is known as Stokes' equation, The solutions to this equation are
modified Hankel functions of order 1/3. These functions (there are two
types, hy (p) and h, (p) ) are tabulatedo2 It turns out that the function
h, (p) satisfies the boundary condition at infinity, namely that U, (p)
correspond to an outgoing wave. Thus in terms of our original variable

§ we have as a solution

u, ) =h2{s (§—a+‘1’m)} £21 (1-23)

where the solution is valid only for‘f;>l and is subject to a prior
knowledge of Ym°

Thus the problem becomes one of patching onto the solution (1-23)
a solution valid in the region O ff< 1 and at the same time selecting
the proper eigenvalue Yﬁ so that this second solution vanishes at f =0,

The differential analyzer will, therefore, be utilized to solve the equation

dzUm 3
- + s [}l«a) + Ym] Um =0 (1-24)
d$

subject to the end conditions
v, (0) =0 (1-25)
v, (1) =h, gs(lna + Ym)} (1-26)
L L@, sty (1-27)
s d '
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The method of attack is to assume a trial Yﬁ’ find Urn (1) and
du

L 51;E (1) from theHarvard tables, and with these starting conditions

s
at § = 1, integrate toward § =0. In general the resulting U (0) will not

be zero, It is then necessarv to assume new trial values of Ym and re-
determine U (0) in each case. In this way we can interpolate to the T

which yields a solution for which U (0) = 0, as recuired,

1.4 Review of the Status of the Mathematical Theory
by C. L. Dolph

Although considerable time and effort has been expended on various

aspects of the complex eigenvalue problem encountered in propagation theory,
nothing like a satisfactory mathematical theory has yet been devised. Since
there are a number of sources such as Sommerfeld (3), Kerr (4), Marsh (1),
and Friedman (5) which develop this problem from the physical situation,
this report will be limited to a few observations concerning it.

In the course of examining the theory of anomalous’ propagation,
an attempt was made to understand somewhat more clearly why the variational
process introduced by MacFarlane (6) was capable of giving correct results.
An examination of the curves of Ament and Pekeris (7) who also used this
same formal vrocess led to the observation that the imaginary part of the
eigenvalues, if different from zero, was of constant sisn., Subsequent
investigation showed that the paver of Hartree (8) contained an argument,
which, by a slight reinteroretation,made it avparent that this must
necessarily be the case. Although the usual Rayleigh quotient leads to a
saddle point, the definiteness of the imaginary part of the eigenvalues
has the possibility o” leading to a one sided estimate for the imaginary
part of the eigenvalues and a min-max orinciple as in the usual positive-
definite real case where a minimum is involved. A corresponding estimate
for the real part does not appear possible. Moreover, it was shown that the
usual theorems concerning the reduction of a real symmetric or hermitian
quadratic form to the sum of scuares by means of real orthogonal transfor-
mations were capable of generalization to this case, Here the coefficients
of the form are symmetric but complex-valued, and the complex sum of squares
remains invariant provided that the matrix of the coefficients has a

minimum function which possesses simple roots. It should be noted that

6
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this condition on the roots can be shown to be automatically satisfied in
the real symmetric or hermitian cases., It is interesting to note in the
finite dimensional complex case that the proof of the above spectral theorem
makes use of the fact that an orthogonal basis can be constructed, The
vectors in it are orthogonal to each other in that the sum of their pair-
wise complex products vanishes so that a vector may be orthogonal to itself.
The fact that such an orthogonal basis can be chosen in an infinite dimen-
sional svace has been established by J. McLaughlin at the University of
Michigan. This result has apvarently been obtained previously and inde-
pendently by Kaplansky (9).

The existence of this spectral theorem naturally led to consid-
eration of possible infinite dimensional generalizations in a sequence
space having an inner product of the above form. Such a generalization as
well as a theory of operators in such a space appears necessary before the
calculus of variations method can be considered rigorously established, A
basic difficulty occurs at once in such a generalization in that the space
of vectors with the property that the sum of the squares of their complex
components is finite does not form a linear space. It is easy to see that
the sum of two vectors of this space may not lie in this space., Although
the subset of this space consisting of all vectors whose components are
zero excent for a finite number at the beginning does form an infinite
dimensional linear sub-space, it appears to be a difficult matter to complete
this space in the proper way. Work in this direction is still continuing
but little progress is expected until the riesht completion has been found.,
The difficulty can perhaps be summarized by remarking that these consider-
ations avparently lead to a conditionally convergent situation rather than
the more usually treated one of absolute convergence, As has been suggested
by J. Dieulonne, one prossible way out of the difficulty might be to employ
the snaces of Kothe (10), Here the basic approach would be to start with
the denumerable set of eigenfunctions and build ur the largest complete
space. That there are possibilities in this direction for the conditionally
convergent situation has already been indicated by FKothe.

Many researchers(B,ll) believe that the occurence of complex
orthogonality in these problems can be best understood from the viewpoint
of a hermitian inner product and the introduction of an adjoint differential
problem. If this is properly done, the complex orthogonality can be shown

7
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to result from the bi-orthogonal relation that exists between the given
problem and its adjoint. Friedman and his student, M. Kotik, have obtained
some interesting unpublished results in this direction for a special class
of problems; in fact they have been able to deduce a point-wise convergence
theorem for some twice differentiable functions. Their results are also
interesting in that they have investigated a case of isotropic eigenfunctions
in some detail and have made a start toward an elementary divisor type of
theory. R. S. Phillips (11), working in the usual Hilbert space framework,
has given a discussion of second-order differential equations subject to
complex-homogeneous linear boundary conditions. In this he has shown by

use of Weyl's notion of the limit point and limit circle that in some cases
the operator may be essential real while in others its spectrum may not be
contained in any strip of one half of the complex eigenvalue plane., R.
Phillips has a student continuing this work but he has reported that no
progress has yet been made toward an expansion theorem. The basic tool

in all of these investigations appears to be that of the resolvent., This
can be constructed, formally at least, if all the eigenvalues'can be confined
to one-half of the complex plane. The use of the calculus of residues

and Cauchy's integral formula are then available provided that the necessary
estimates can be made. These have been successfully accomplished by
Titchmarch (12) in the real case and work is continuing on the problem of
finding appropriate estimates for this problem,

From the above it is apparent that considerable doubt exists as
to the proper framework for the complex eigenvalue problem even though it
~dates back to the work performed by Watson in 1910. Thus, no one knows
for sure whether it would be better to view problems of this sort as non-
hermitian, non-normal operators in the usual Hilbert space framework or
whether it would be better to treat them as symmetric operators in a space
with a symmetric complex valued inner product, It is also not known
whether the difficulties encountered in the evaluation of the norm of the
eigenfunctions of ref. 7 in the plane-earth approximation are basic or
whether they are another manifestation of the anamalous behavior of the
wave equation in two-dimensions. In any event there are many unanswered
questions concerning the whole problem. In view of the quite wide spread
interest and importance of problems of this type it is to be hoped that

some answers will soon be forthcoming. The present writer has had the keen

8
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interest and help of his colleagues, Dr. I. Marx and Dr. J. McLaughlin and

present plans call for our continued collaboration on these problems.
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CHAPTER 2
APPROXIMATE NCRMAL-MODE SCLUTION
USING ASYMFTOTIC FORMS

2.1 Solution for the Linear Gradient

By use of the asymptotic forms of the modified Hankel-function
solutions, we can get approximation formulas for the eigenvalues Ym fqr
the bilinear gradient problem. These approximate eigenvalues give an
excellent point of departure for the differential analyzer solutions.

Let us consider first the simplified case of a linear velocity

gradient (a=0). The depth-dependent equation becomes from (1-18) and (1-19)

a%u(é) . [f +Y ] u(é) =0 (2-1)

a2

with end conditions U(0O) = O and U(o0) - outgoing wave. The solutions

of equation (2-1) can be rewritten as

0(§) =, §o(§ o} (2-2)

vhere h2 is the modified Hankel function of the second kind and satisfies
the outgoing-wave boundary condition at § =00 . To determine the eigen-
value Y it is necessary to impose the boundary condition U(0) = O.

The h, { s(§ +Ym)g function given in equation (2-2) can be
represented approximately by the first term of the asymptotic expansions
for h2°2 Since the imaginary part of the eigenvalue Ym is known to be
positive,7’8 the argument s (& +Ym) always lies in quadrants 1 and 2,
The asymptotic expression valid in this region is

L(.3 12,3 12

Lop 232, w2 2 1M
e (2-3)

A/
%®)=¢p

or

=

. {s(§+Y)‘}3/2+%-i— .

(2-4)

D
wl

3/2 .

2 . i -
=3 S( +Y) o —

U(§)‘—"vo({s(§ +Y)} e { $ } 12 e

10




ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN —

The boundary condition U(0) = O i= met when

~
2

3/2
- —%— (s7) +-$gl- - 20T = 0, m=0,%1,12, ... (2-5)

The equation for the eigenvalues Ym is then
2 2

. = =i
gL [i%—m—;lﬁ]B e 3 mm,2,5, .., (2-6)

where we have discarded m=0, and negative m values; since the imaginary
part of Yh is always positive. The accuracy of formula (2-6) can be
seen in the following table, which compares the eigenvalues Yﬁ gotten
from equation (2-6) with the exact values obtained by intervolation
from the Harvard Tables,

Comparison of Eigenvalues Obtained from Approximation Formula

Equation (2-6) with Exact Values for Linear Gradient (a=0).

stfrom Ixact Value
r T f)__‘
Mode Equ, (2-6) _Sf st
1 -1.16+32,01 -1,170+12.025
2 «2,04+12,53 «2,044+13,540
3 -2,76+1l,,78 ~2,761+11,,781

Evidentelly the eigenvaltues obtained from the first terms of the asymp-
totic exrressions are nuite accurate for the case of a linear velocity

gradient.,

2.2 Solution for the Bilinear Gradient

Consider next the case of the bilinear velocity gradient. From
equations (1-18) and (1-19)

2
e @ Jaafer] o 0efe (2-1)

2
and d"U + 83 [g —a+Y] U=0 1 f§ (2-8)

11
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with the end conditions U(0) = O and U(e® ) —3p outgoing wave. The

solutions can be written as

~2/3 : -2/3
U(§)= An, {s(l—a) [(m)f +y] + Bn, {s(l-—a) [(1-a>§ +y]
0 %541 (2-9)
and
u(§) = cn, {s(g -a+Y)} 1¢¢§ (2-10)

Note that foryf>l orly the h, function is included, since it satisfies

the outéoing—wave boundary cindition et £=09,

The modified Hankel functions given in eocuations (2-9) and
(2-10) can be represented approximately by the first terms of their
asymptotic expansionso2 Again since the imaginary part of Y is always
and h, valid in

1 2
the first and second quadrant. Taking only the first terms of those

positive, it is necessary to use the expansions for h

expansions, we have 3/2
12 0% s,
W~ & T3 T
hy(p) = p e (2-11)
and equation (2-3) for hz(p)o Thus 3/2 3/2 3/2 3/3
BYRRE el (SR B L GRS E
U(§)i= Al [§(1=a) +YJ e +Ble

0 €641 (2-12)

where the phase constants in the exponents have been included in the con-
stants A' and B'., Differentiating eocuation (2-12) and neglecting the
/

contribution of g;g § (1-a) +Y ] _l/h, ?e have y

d B 3/2 3/2 342 3/2

<V _%: 8 _ 2:5 _

au(§) v o L[ - 55 g{(-adf + 3 (AT
§ = is A'[}(l—a)+Y] -e +Bie

Q.

04£% 1 (2-13)

12
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In the region f..], the aroroximate solution is

2 - 3 s 3/2 (£-a+v) )3/2 gis,/z)_a+y)3/2
U(E);\/C' (gma+Y) [e +ie ]
(2-14)
£z1
(§oa+Y)”l'A as beforj, it follows that
3/2
51542§ -a+Y) 3/2

3/2 -1/1 is (§~a+Y)3/Q’
T 0ris (£wa+Y) ' [—-e o ]

If we take dU(é} and neglect

a
d$ §

wipo

e,
o &
L~
(V22N

€21 (2-15)

We must now match at é =1 the solutions for U() and U'(§) for
04§21 with the solutions for U(g) and U'(§) for$21. Since our task here
is to find the eigenvalues Ym for which U(0) vanishesj we are not concerned
with evaluating the constant Atwhich sets the magnitude of the solution
in the region 0£££1, but only with evaluating the constant B' in equation
(2-12). The constant B! determines the ratio of U*(1)/U(1) from equations
(2-12) and (2-13). This ratic must equal the U'(1)/U(1) given by equations

(2-14) and (2-15), which is L 3/2 3/2
3is (1-a+Y)
s [ ]
Ur(l) . is ie -1 (2-16)
U (1 3/2 3/2 B

$s  (1-at)
[ie +1 ]

On the other hand, from eauations (2-12) and 2-13)

3/2 3/2 3/2 3/2
3/2[’ % (1-a+Y) % is  (1-a+Y) ]
ur(l) is e =L d(5o17)
U (1 ' L, %& w@h 2/2 3/2 T
31 1u -at¥)  gis (1-a*Y) -
{:V € +1 |

After comparison of equations (2~ 16\ and (2-17) it is obvious that

B! = ie (2-18)

13
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which, substituted in equation (2-12), gives

3/2 3/2 3/2 3/2 3/2 3/2
-1 -2, 8 Y -, as 2. S Y
= 51 T T =—(1l-atY) £i
u0)Zary Mle a4 0 1R e > 1@
3/2 3/2 3/2 3/2 3/2 3/2
-1 2. s Y -4, as _ L. s Y i
R s e R e U S = 2
(2-19)
From the boundary condition U(0)=0 it follows that
3/2 3/2 3/2 3/2
and
3/2 3/2
Y - a(l-a+tY) + 3;T (a“§}2 (% -m) =0 (2-20)
S

For the linear velocity gradient(a=0), equation (2-20) reduces to

2/3 21 "
Y =-§ [_Q%E(m-%)] e ° (2-6)

which agrees with our rrevious result for a = 0, from which we conclude
that m=1,2,3,... In equation, (2-20), then, m=l yields the eigenvalue

Yl corresponding to the first mode, m=2 yields Y, for the second mode,

2
etce,

Equation (2-20) is only an aporoximation, and its usefulness
should not be overemphasized, since it can be solved for Yﬁ only by
trial and error, in any case, However, it leads to an important simpli-

fied formula for Ym whenYm>>l—ao In this case we can write,

14
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3/2 3/2 1/2
x 2 - -
(Y +1-a) Yoo+ 5Y  (1-a) (2-21)
Substituting this equation into (2-20), we obtain
3/2 1/2 . Ti
3 gl L
Ym -5 aYm 2;575“ m=— ] ] e (2-22)

Taking the 2/3 power of both sides of equation (2-22), we find that

3/2 1/2 2/1 ) Per 1 2/3 .32.rri (2-23)
(Y -3 2%, ) =Ym*c”*=§[2(m"2>] ©
2/3 Eﬂi
or Ym'::% [%—r—(mm %) ] e 3 ta, Y>>a, Y>71. (2-24)

Thus for large eigenvalues (as is the case when s << 1 or when the mode
number M is large), equation (2-24) gives a very simple approximate form-
ula for the eigenvalue. To illustrate this; the following table compares
the eigenvalues Y obtained from equation (2-21,) with the exact values
(subject, of course, to computer errors) obtained with the differential

analyzer,

Comparison of Eigenvalues Obtained from Approximation Formula (Eau, 2-24)

with Computer Values,

Differential Differential
Mode Equ.(2-24) Analyzer Mode Equ.(2-24) Analyzer

s=0.5 1 =1.22+i4.02 =1.23+i4.05 s=0.5 1 =0.32+i4.02 -0,32+i4,04
a=1l.1 2 =2,98+i7.06 -2.98+i7.08 a=2,0 2 -2,08+i7,06 -2.06+i7.04
3 ’1#-1+2+i9056 '“Z&n Z{«l+i9056 3 "3-52+i9056 "'3050+i9.5é

s=1,0 1  -0,06+i2.,01 0.03+i1.98 s=1,0 1 +0,84+i2,01 1.,01+il.91
a=1,1l 2 -0,94+i3,53 -0,86+i3,45 a=2,0 2 -0.04+i3,53 0.13+i3.40
3 -1.66+iL,78 -1.57+1L.68 -0.76+14.78 -0,65+ik.57

Evidentally for s € 0.5, equation (2-24) is an excellent approximation

to Ym,

15
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CHAPTER 3
PRINCIPLES OF OPERATION
OF THE ELECTRONIC DIFFERENTIAL ANALYZER

3.1 Introduction to Operational Amplifiers

The basic component of the electronic differential analyzer is the

operational amplifier, which is shown schematically in Figure 3-1. It

7

consists of a dc voltage amplifier of high gain, an input impedance Zys

7

and a feedback impedance Zpo

Zg

e e D,C,AMPLIFIER | e

Figure 3-1. Operational Amplifier,

If we neglect the current ints the dc amplifier itself (i.e., neglect the

current to the grid of the input tube), it follows that il =1 Let us

50
also neglect the voltage input e' to the dc amplifier in comparison with
to the operational amplifier,

the output voltage e, or the input voltage e

2 1
We then have
11= i,
or
a._ %
24 £
from which Zf
€)% = =5 € (3-1)
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which is the fundamental equation governing the behavior of the oper-
ational amplifier, In general Zf/Zi is made the order of magnitude
of unity., We shall now consider the scheme by which the operational
amplifier can be used to perform three different functions:

(a) Multiplication by a constant.

If we wish to multiply a certain voltage e, by a constant factor

1
k, we need only make Zf/zi = k, From equation (3-1), then, the output

voltage e, of the operational amplifier will be given by

e2 = - k ele (3""2)

Thus the required multiplication by a constant has been achieved, except
for a reversal of sign. For example, if we wish k to be 10, we may let

Zi = 1 megohm resistance, Z, = 10 megohms resistance. If we also desire

f

the sign of e, to be the same as eys We must feed e, through an additional

operational aiplifier with Zi = Zf = 1 megohm, Thii second operational
amplifier merely acts as a sign changer by multiplying any voltage by -1.
(b) Addition,
In order to add a number of voltages, say &5 € and €. the

'y

arrangement shown in Figure 2-2 is used, Hence ia + i 4+ ic =1, and

b
if we

LG .
to—o Zyg = Zy
€q
1 e

b
P— A — -
e, b e | D-C.AFLIFIRR | e,
= 3 = L
o} ZTC' =
e, :

Figure 3-2. Operational Amplifier Used for Summation.
17
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neglect e' as small compared with €y We have

fa,%, %, %
Za Zb Zc Zf
or
7 VA 7
£ £ £
e, = ~{=—— e + —= + = { , (3-3)
2 Z, ‘a Zbeb Z, %

Thus the output voltage e,

is the SE? of the three input voltages,
each multiplied respectively by a constant - E-—(n = a,b, or ¢c). The
operational amplifier can, of course, be used in general to sum any number
of inmut voltages.

(¢) Integration.

If we make the input impedance Zi a resistor ard the feedback
impedance Zf a capacitor, then the operational amplifier serves as an
integrator., Referring to Figure 3-3, we see that if we neglect e' and let

i, = i, as before, we have

1 2
) lldtand o El
27 7 )T 1R

from which

e, = - Eb]:— jeldt o (3-4)

The output voltage e, is then the integral with respect to time of the

2

input voltage e (multiplied by a constant factor - ﬁ%—)‘
C
, 1
R 2? te,
Fe AAAAN D.C.AMPLIFIER -

e —— e

el ‘ 0
L L e

Figure 3-3, Operational Amplifier as an Integrater

18
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3.2

Solution of an Ordinary Differential Equation with Constant Coefficients

In order to demonstrate how operational amplifiers performing

the above three functions can be combined to solve ordinary linear

differential equations, we will now set up the amplifier circuits required

to solve the following differential equation:

2
dx dx =
a, dt2 + a 3t + a_x 0 (3-5)

subject to the initial conditions

and

x(0) = V1

dx -
& 0) =V, . (3-6)

The constants 8y a5 and a, are assumed positive. Since the electronic

differential analyzer integrates with respect to time, the independent

variable t in equation (3-5) above will be time. The dependent variable

x is represented by voltage.

The computer circuit for solving equation (3-5) subject to initial

conditions (3-6) is shown schematically in Figure 3-4.

Al el

J:fv,a

J—

1

i,

All Resistor Units are Megohms

Al1]1 Capacitors are 1Mfd,

Ground Connections are Omitted for Clarity

Figure 3-4. Computer Circuit for Solving

0 LJ
a.Xx tax+t+ax=0
2 1 o} °

19
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If we assume that the output of amplifier A2 is a X

gets multiplied by - %ﬂ and integrated once in.passing through amplifier

; then this voltage

A3, the output of whicg is therefore -x, This voltage is multiplied by
-1 and integrated once to give x as the output of Aho In order to obtain
+% instead of -x it is necessary to pass -x through sign-reversing amplifiec.

A,. x and x are then multiplied by -a, and -8, respectively and summed in

1 1
amplifier A2, the output of which is now —alﬁ -a X, But we originally
assumed the output of A2 to be a2§2 Hence, aég = - ali -a X which is jus.

the equaticn which we wish to solve,

The initial conditions (3-6) are imposed as voltages impressed
across the integrating condensors of A3 and AA in Figure (3-4). When the
two switches holding the initial voltages across the condensors are
simultaneously opened, the solution of the problem as a function of time

begins, i.e., the voltage output of Ah represents x(t).

3.3 Solution of Differential Equations with Variable Coefficients

Suppose the coefficients a , and a_ in equation (2=5),

; a
instead of being constant, are funcfioni of the independent variable t,
Then it is apparent that the resistors marked 855 l/al, and l/aO in
Figure 3-4 must vary as a function of time, If we can accomplish this,
then the differential analyzer can solve the more general problem of
ordinary differential equations with coefficients which are functions

of the independent variable [?or example, the bilinear gradient equation
(1-18) ].

It is often more convenient to vary a resistance with time in
discrete steps instead of continuouslyolh915As an example, a resistance
varying linearly with time can be approximated by the staircase function
shown in Figure 3-5, The staircase function is arranged so that at the
end of each time interval At the area under the stepped curve is equal
to that under the linear curve. The accuracy attainable by using such
a crude approximation is surprisingly good, even when the time increments
A t are made relatively largealA It is this step-method of approxi-

mating variable coefficients which is used in obtaining the differential

20
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analyzer solutions to the bilinear gradient problem. For a complete
descriotion of the circuitry involved, the reader is referred to

other reDOrts.lh;l5,16

— — LINEAR FUNCTION
——STEP APPROXIMATION z

A At ¥

RESISTANCE R

TIME T

Figure 3-5. Stepn-Method of Approximating a Linear Function,

21
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CHAPTER 4
SOLUTION OF THE BILINEAR GRADIENT PROBLEM
BY THE ELECTRONIC DIFFERENTIAL ANALYZER

4,1 Transformation of the Equation into Computer Units

In the bilinear gradient differential equation (1-18) the
independent variable § starts with the value 1 and runs to the value O,
Actually, the computer indevrendent variable, which is time t, will start
at t = 0 and run to t = 1, where one computer time unit is now the length
(or duration) of the solution. Thus we make the following change of in-

dependent variable
$=1-1¢ (4-1)
and

d -d d d
= = R (14’_2)
’
dé dt 4 f 2 dt2

Equation (1-1) remains

2
aue) , 3 [.f(t) + Y’] U(t) =0 (4-2a)

a2

but now
f(t) = (1-a) (1-t), 04t <1, (4-3)

4.2 Sevaration into Real and Imaginary Parts

We have already pointed out that in general the wave potential

U is compvlex, as is the eigenvalue Y., To solve the problem with the differ-

ential analyzer it is necessary to break the complex functions into real

and imaginary parts., Thus we let

22
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U=10, +il, (b=
Y=Y +iY, (4=5)

After substituting (4-4) and (4-5) into equation (4-2a) and equating real

and imaginary parts to zero, we find that

1 4 Ur
= + f(t)U + YU -7Y.U, =0 (L-6)
SB dt2 r rr i7i

and
1 d2Ui
L = _7)
3 2 + f(t)Ui YU+ YU =0, (4-7)

Initial conditions for the above equations become from (1-26), (1-27),
and (4-1)

{ (1-a+Y) ]

U, (0) {s(l a+Y) ]

w(msa[ &uaqgl
U, (0) = I [ g a+Y)§]

4.3 Computer Circuit for Solving the Bilinear-Gradient Problem

0,(0)

R e
1] n,

(L-8)

1
b ol—

The electronic differential analyzer circuit used to solve
equations (4-6) and (4-7) for the case when a = O (linear gradient) is
shown in Figure 4-1. Note in this case that Y <'O and Y.>O° The
circuit required for a>1 (bilinear gradient), Y 20, Y;7 0 is shown
in Figrre 4-2., If Y <0, it is only necessary to restore the R/S2Y

input to the p051tlons shown in Figure 4-1,

23
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R/s2Y,
S VAV PA
Cli-t) jie ¢ !
< 2w [T w [
e T sl
) U, s U I Yy -Up
?R/SZY;
—
Rjs2Y: j
C'l—t) | LC | € '
“Ta l R/s2 R/s . | D
.—/\/\/\/\.—.
")V, ;’ -1y, U, -U;
a>i, Y,>0, Y.>0 R/s2Y;
Figure 4-2.




ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN —

The (1-t) factor in the f(t) function of equation (4-3) is
incorporated into the feedback resistor of amplifiers A1 and A5 as a
staircase type of function (see Section 3.3). The interval 0 £ t£1 is
broken into 20 equal time intervals, The first resistance step is 0,975
megohms, etc., finally down to 0.025 megohms on the 20th step. Thus the
constant € in Figures 4-1 and 4-2 is actually unity.,

The initial-condition voltage circuit is omitted in Figures
L-1 and 4-2 . Actually, the initial conditions are applied in a somewhat
different manner than that shown in Figure 3=A016

The unit of computer time is RC seconds, so that one unit of
t corresponds to RC seconds in real time. For the work done on the bilinear
gradient, a feedback camacity C of 5 microfarads was employed, along with
an R value of 2 megohms, Thus one unit of t corresmonds to 10 seconds,
and the length of a computer solution is 10 seconds. The interval of time

between sters on the staircase resistance simulation of f(t) is 10 = 20

or 0.5 seconds.,

4.4 Measurement Techniques

Initial conditions were set in as voltages across the integrating
[

capacitors by reading the output voltages U, U, =50, --'S-Uv:°L with a
type K-2 Leeds and Northrup potentiometer., This allowed the voltages to be
set with a precision of 0.01%, Since the K-2 potentiometer can only
measure voltages up to 1.6 volts whereas we might wish to set in initial
voltages as high as 100 volts, a potential divider arrangement was connected
across each output whenever that particular voltage was read. Then only
about 1/50 of the actual output voltage was read by the potentiometer.

The general technique for obtaining the normal modes was dis—
cussed at the end of Section 1.3. It involves measuring U (§) and Ui(§ )
when § =0, or for the computer variable t, measuring Ur(t) and Ui<t) when
t = 1. The computer voltages representing Ur(l) and Ui(l) are measured by
actually stopring the solution at the end of one unit of computer time
(10 seconds of real time) and by reading the Ur and Ui voltages held on
integrators A3 and A7 respectively. These readings can again be made with
the K-2 potentiometer to a high precision., The integrators are made to

"hold" their output voltages by means of a relay which disconnects the
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input resistors to the respective dc amplifiers. This "hold" relay is
energized 10 seconds after the solution is begun by control circuits
originating in the synchronous equivment running the resistor steps
(see Ref 16 for complete circuit descrintion),

If we have chosen the eigenvalue Yf + iYi properly, then Ur(l)
and Ui(l) should both he zero (corresronding to zero wave potential at the
surface). Actually, a finite value for Ur(l) and Ui<l> will in general
exist, and the interpolation method described in the next section must be
employed to find the correct eigenvalue.

The resistors in the computer circuit were calibrated to the order
of 0.01% accuracy. Capacitors were calibrated by connecting three amplifiers
(two integrators and one summer) to solve the equation (RC)27£ +x =0,
and by measuring very accurately the resulting period of sinesoidal os-

15 A 100 kilocycle frequency standard stepped down to 1,2,2.5,5,

cillation.,
or 10 cycles per second was utilized as a time reference and as a means

for driving the resistor-stepping equipmento16 Most of the solutions were
obtained with the amplifiers balanced manually; in the unit being delivered
to the Navy the amplifiers are drift stabilized, and frequent rebalancing

should be unnecessary.
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CHAPTER 5
COMPARISON OF CCHPUTER RESULTS WITH
THEORETICAL RESULTS FOR A LINEAR GRADIENT

5.1 Theoretical Solutions for the Linear Gradient

In order to check the solutions of the electronic differential
analyzer, we considered first the problem of a linear gradient (no dis-
continuity). This is equivalent to letting the parameter a equal zero
in equation (1-19), so that now f(§) = é over the entire range in depth
variable . The Hankel function solution (1-23) which in general is valid
only for§>l is now valid for the whole ranse 0 < §<°0for a =0, We
have seen in Section 2.1 that in this case the eigenvalues Ym are given

aovproximately by

2/3 2mi/3
Y;’-]; [—j—zq-(m--][:)] e ‘ (2-6)

m

Thus for a given value of the parameter s we can calculate theoretically
the anproximate eigenvalues Yﬁ and compare these eigenvalues with those
obtained by the computer. Furthermore, for the a=o case we can directly
cross-check the U and U' values obtained from the computer with the entries

in the Harvard tables.

5.2 Method of Interpolation to the Exact Eigenvalues

The computer was set up to solve the a = O case in the range
0 ffflo The circuit of Figure 4-1 was used, and initial voltages were
set in according to equations (1-26) and (1-27). In order to compute
these initial voltages it was necessary to go to the Harvard tables of the
h2(?) function2, where z = x + 1y, The increments in x and y for these
tables are 0.1, and since it is inconvenient to interpolate the functions,
the smallest increments in assumed eigenvalues Y which we used were 0.1/s,
Thus for s = 1, Yl (for the first mode) should be - 1.16 + 12,02 according
to ecuation (2-6), Instead of trying to get the computer solution for

Y = -1,16 + 12,02 (this necessitates the determination from the tables of
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Complex Ulo) Plane
s=1,a=0, First Mode

i |

BH Interpolation
V=-1.168 + { 2.023

0.3

10.2

U; (o)

-0.3

Figure 5-1.
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h, [} 0,16 + i 2.02] ard h, =[b.16 + i2.02] ), we obtained computer
solutions for Y = - 1,1 + 12,0, -1,2+120, -1,1+12,]1, and - 1.2

+ 1 2,1, This entailed setting in initial conditions involving hz(z) and
h'z(z) vhere z = - 0,1 + 1 2,0, - 0.2 +1i 2,0, - 0,1 +1i 2,1, and - 0.2 +

i 2.1 respectively, which involve no interpolation in the tables. By
bracketing the true eigenvalue Yl in this manner we ought to be able to
interpolate to Y. This has been done in Figure 5-1, where U(0) for various
assumed eigenvalues Y has been plotted in the complex U plane. In each
case the U(O) value was taken from Ur and Ui computer solutions using the
technique described in Section 4.4.

The eigenvalue obtained from the differential analyzer results
shown in Figure 5-1 is Yl = - 1,168 + 1 2.023 compared with a theoretical
value of - 1.16 + i 2,01 from equation (2-6). Since equation (2-6) is
only approximately true, it seemed desirable to check the computer Yl
against a more exact theoretical value for Yl“ With this thought in mind a
plot similar to Figure (5-1) was made using the values of U(QO) obtained
from the Harvard tables., By interpolation from this graph a value Yl =
1.170 + 1 2,025 was obtained, which shows better agreement with the value

obtained from the electronic differential analyzer.

5.3 Comparison of Differential Analyzer Solution and Harvard Tables,

We have seen in the previous section how, by starting at§ =1
and integrating to §= 0, we can obtain Ur(O) and Ui(O) from the differential
analyzer for a given Yr + iYi’ By chosing a number of different values
for Yr +.iYi, we can make the plot shown in Figure 5-1 and interpolate to
the correct eigenvalue for which Ur(O) = Ui(O) = 0 . A check of the analyzer
solution for a = o, s = 1 with the theoretical eigenvalue showed agreement
to the order of 0.1%. A more direct check of the computer accuracy is
obtained by comparing computer values for U(0) and U'(0) for a given
Yr + iYi withthe equivalent entries in the Harvard tables. This has been

done in the following table:

Comparison of U(0) and U'(0) as Obtained with the Differential

Analyzer with Values from the Harvard Tables.

s =1, a =0, First Mode
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Y U(0) u'(0)
Differential Analyzer -1,1+i2.0 -0,098+10,110 -1,819+i1,075
Harvard Tables -1,1+i2.0 -0,100+10.,119 -1,829+11.070

Another method of checking the accuracy of the differential analyzer involves
solving the linear gradient problem exactly., With s =1, a = o, for example,
interpolation from the Harvard tables indicates that Y,= -1.170 + 12,025.
If we wish to run the solution from € = 1 to §=0 witg this eigenvalue,
we must find h, (-0.0170 + 12.025) and h,! (—0,0170 + 12,025) from the tables,
To do this, the following interpolation formulas are used:

h2(20+t) = hz(zo) + h2'(zo)t (5-1)

and hz'(zo+t) = - h2<ZO)t + hZ'KZO) (5-2)

where Z5 ie the table entry and 2 + t is the desired entry. Equations

(5-1) and (5-2) are accurate to the order of 0.l% or better. The initial
conditions obtained from these equations, along with the correct eigenvalues,
are then set into the computer. The computer solution for Ur(O) and Ui(O)
should now vanish. The table below shows the results obtained with the

differential analyzer to corroborate this,

Summary of Differential Analyzer Results, Linear
Gradient(a=o0,s=1), for Correct Eigenvalues.
Solution Started at § = 1,

Interpolation Analyzer Solution
Mode ~\from Harv, Tables Ur(O) Ui(O)
1 -1.170+i2.025 -0,0055 -0,0005
2 -2.044+13,540 -0.0027 +0,0100

Evidentally U($§ ) practically vanishes at § = O as required,
when the correct eigenvalue is utilized. Having thoroughly checked the
differential analyzer solutions against the theoretical solutions for the
linear velocity gradient(a = o), we next proceeded to solve the bilinear

gradient problem with the analyzer,
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CHAPTER 6
DIFFERENTTIAL ANALYZER SCLUTIONS TO THE
BILINEAR GRADIENT PROBLEM

6.1 Determination of the Eigenvalues

In Section 5 we described the method for obtaining differential
analyzer solutions when a = O (linear gradient). The method of solution
for a >0 (i.e., a bilinear gradient) is exactly the same. The approxi-
mation formula (2-24) for the eigenvalues is utilized as a starting point.

Note that this formula can be written as
Y =Y +a, (6-1)

where Ymo is the eigenvalue for the mth mode when a = 0, For a given

a and s the eigenvalue from (6-1) is computed, and then bracketed with
integral eigenvalues so that the corresponding initial conditions given in
equations (1-26) and (1-27) can be looked up directly in the Harvard tables.
Note that the computer variable t = l—.§, so that - —%— g%— = % %%— . Hence
the initial condition aprlied to amplifiers A2 and Aé in Figures (4-1) and
L-2 is merely given by h,' [s(l—a+Yﬁ)] , as shown in equation (1-27).
Analyzer solutions for each of the trial eigenvalues are run off, and U(O)
is recorded by '"holding'" the solution 10 seconds after it has begun and

by reading Ur and Ui with the K-2 rotentiometer. A plot similar to that

in Figure 5-1 is made, and the correct eigenvalue for which U(O) vanishes

is obtained by interpolation. This eigenvalue, along with the appropriate
initial conditions intervolated from the Harvard tables with equations
(5-1) and (5-2) , is set into the differential analyzer and a solution run
off., This solution should then represent an exact solution to the problem,
that is, Ur(O) and Ui(O) should vanish. Again this is checked with the
potentiometer while the solution is being "held" at &= 0 (t=1). At the

same time, % U'r(O) and % UYi(O) are carefully recorded with the K-2
potentiometer. By knowing the derivitives of the wave potential at the sur-

face, we can later turn the problem around backwards and integrate from the

surface on down.
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The reader is referred to Appendix I for a complete sample
calculation for a given a and s.

Eigenvalues were obtained for a = 1.1 and a = 2 and s values
of 0.5, 1, and 2. The results are tabulated in Appendix II. For s < 0.5,
the eigenvalues are given quite accurately by equaﬁion (6-1), and the normal-
mode solutions are practically identical with those for s = 0.5, except for
the necessary scale change in independent variable. For s = 2 the solutions
are somewhat critical, particularly for the higher modes. There is some
question as to how practical it would be to attempt solutions with the
differential analyzer for s values much above s = 2. The asymptotic solutions

ought to get better for these high values of s, however.

6.2 Rerun of Analyzer Solution from the Surface on Down
Originally it seemed desirable to have plots of the U(S§) and U (S)

functions over the range Oﬁét5£§25 The method for finding the eigenvalues

involves differential analyzer solutions from §=1t08§=0. However, by
recording the derivitive of wave potential at the surface (ioen, % égigl)

we are able to turn the problem around backwards on the analyzer and rerun

it from\§ =0 to (§==2, since now we know the eigenvalue and all initial
conditions at the surface [U(0) = 0] .

Note that the computer time variable t is now actually J§, and

not 1 = 8. The only change needed in the computer circuit involves readjust-
ment of the f(t) function which appears as a variable feedback resistor in
amplifiers A  and A5 of Figures (4-1) and (4-2). The £( &) given in

equation (1-19) is shown in Figure (6-1). For a = 2 the function f(ﬁg) is
always negative, and hence - £(8) can be represented by the staircase
approximation described in Section 3.3. For a = 1.1, the function f(~§]
changes sign, but by setting up 0.1 + f(g) with the stair case approximation,
we are able to simulate a function which is always posi‘tive° The net result
is an output [- 0.1 - f(g):]Uf from amplifier A;, to which 0.1U must be
added to obtain (§ )Ur' A similar method is utilized for obtaining f( S)Ui
when a = 1.1.

Again a computer time constant of 10 seconds was employed, so

that now the length of computer solution is 20 seconds, corresponding to
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‘§ going from O to 2. A total of 20 steps were utilized to simulate

£(§ ) as before, but in this case the resistor values were changed once

per second instead of twice per second.

The U_(4), U, (£), - % u_'(§) and -

% Ui'(f ) curves obtained
from the electronic differential analyzer for O£ f <

2 are shown in Appendix
III. The first three modes for a = 1.1 and 2, and s = 0.5,1, and 2 are
included. The comnuter outrut voltages were recorded with a Sandborn,

Model 60, Two-Channrel Recorder. Accuracy of the recordings should be the

order of 2% of full scale.

t5)

o5

-l.0 ‘ T__

Figure 6-1. Bilinear Velocity Gradient.
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APPENDIX I
SAMPLE CALCULATION OF EIGENVALUES AND EIGENFUNCTIONS

Third Mode : s =10, a=2.0

~J

From equation (6-1), Y3 - 0.76 + iL.78

Initial Conditions from From Analyzer
Trial Eigenvalues Harvard Tables Solution
v, u(1) S U@ 0(0)
- 0.6 + i4.5 1.196 + i3.650  6.509 + ikL.765 - 0,110 + 10,163
- 0.7 + i4.5 0.632 + i3.180  4.825 + 1L4.607 + 0.120 + i0.152
- 0.7 + i4.6 0.091 + i3.645  L4.415 + 16.226 + 0.116 - 10.087
- 0.6 + iL.6 0.624 + iL4.294  6.294 + 16.722 - 0.120 - i0.074

From interpolation plot similar to Figure 5-1, Y3 = - 0.650 + 14.566.
For an exact solution, U(1) = h,(-1.650+ik.566), % UT(1) = hy' (-1.650+14.566).
In equations (5-1) and (5-2), let = - 1.7 + iLk.6, t = 0.050 ~ 10.034.
Then
U(1) = hy(z_*t)

(0.091+13.645)+(4.415+16,226) (0.050-10.034)
0.524+13.806

f

% Ur(1) = h2‘(zo+t) (4.415+16.226)+(0.091+13.645)(1.7-1L.6)(0.050-10.034)

5.459+15.941

"

]

Using these values for intitial conditions when Y, = - 0.650 + iL.566, we

3

find from the analyzer solution

i

U(O) - 0.012 + 10.007 (ideally, U(O) should vanish)

and
Ly (o)
S

1

- 1.515 + i2.450

To solve the problem in reverse, we use U(0) = O and - % Ur(o) =
1.515 - 12,450 as initial conditions for the analyzer. We then proceed to
integrate fromt = 0 to t = 2 (i.e., from§ =0to & =2).

Al
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APPENDIX II
SUMMARY OF COMPUTER RESULTS
1 L 1 !
s lMode 2 % 4 20 (0 =50 ©
0.2 1 0.0 - 5.850 10.125 - 1.835 1.060
1 1.1 - L.750 10.125 - 1.835 1.061
1 2.0 - 3.850 10.125 - 1.836 1.062
2 0.0 -10.22 17.70 2.121 - 1,214
2 1.1 - 9,12 17.70 2,121 - 1.214
2 2.0 - 8.22 17.70 2,121 - 1.214
3 0.0 -13.805 23.905 - 2.279 1.300
3 1.1 -12.705 23.905 - 2,279 1.300
3 2.0 -11.805 23.905 - 2.279 1.300
0.5 1 0.0 - 2,340 4.050 - 1.835 1,060
1 1.1 - 1,225 L,.0L9 - 1.868 1.088
1 2.0 - 0.315 4 .0L8 - 1.923 1.123
2 0.0 - ,.088 7.080 2.121 - 1.214
2 1.1 - 2.978 7.078 2,165 = 1,257
2 2.0 - 2,062 7.077 2,197 - 1,295
3 0.0 - 5,422 9.562 - 2.279° 1.300
3 1.1 - 4.408 9.558 - 2,322 1.341
3 2.0 - 3,500 9.556 - 2.375 1,367
1.0 1 0.0 - 1,170 2.025 - 1.835 1.060
1 1.1 0.032 1.980 = 2,132 1.581
1 2.0 1.011 1.910 - 2,155 2,044
2 0.0 - 2,044 3.5L0 2,121 - 1.214
2 1.1 - 0,860 3,450 2,123 - 1.88;
2 2.0 0.130 3.40 1.933 - 2.59,
3 0.0 - 2.761 L.781 - 2,279 1.300
3 1.1 - 1.573 L.677 - 2.056 2,126
3 2.0 - 0.650 L .566 - 1.515 2.450
2.0 1 0.0 - 0.585 1.012 - 1.835 1.060
1 1.1 0.4 0.46 - 0,293 1.513
1 2.0 1.09 0.225 - 0.401 1.668
2 0.0 - 1.022 1.770 2,121 - 1,214
2 1.1 - 0.161 1.468 0.580 - 0.683
2 2.0 0.679 1.400 0.679 - 0.657
3 0.0 - 1.380 2.391 - 2,279 1.300
3 1.1 - 0,583 2.171 - 0,553 0,332
3 2.0 0.263 2.173 - 0.656 0.298
A2
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