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I. INTRODUCTION

In recent years the study of viscoelastic fluids has become im-
portant and active because of the broad applications of these fluids in
industry and science. These applications vary greatly in scope, including
such diverse topics as the transporting and processing of substances, re-
duction of drag forces on moving bodies or in pipe lines, use as lubricants
with unusual properties, and for substitution of body fluids. Experiments
have shown that several phenomena observable in these fluids are not pre-
dicted by the classical theory of viscous flow. This has led to the for-
mulation of rheological equations of state of greater complexity than those
for the Newtonian fluid.

Maﬁy rheological models have been proposed to describe the me-
chanical behavior of viscoelastic materials. In 1962 Williams and Bird(l)
discussed these proposed models and concluded that of the relatively simple
ones, Oldroyd's m.odel<2> is the most reasonable one to represent viscoelastic
materials at the presént time. They also used the model to study steady
viscoelastic flow in tubes. By a proper choice of material constants they
obtained results showing good agreement with experimental data up to mod-
erate rates of shear.<l’3> The model used exhibits the main non-Newtonian
flow preperties observed in flowing viscoelastic liquids such as polymers
and colloidal solutions. Those properties are: a variable apparent vis-
cosity which decreases with increasing rate of shear in simple shear, a

Weissenberg climbing effect, and a Robert-Weissenberg normal stress pattern.
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Leslie(u> used Oldroyd's model to study the creeping flow past
& sphere by using perturbation techniques. His calculated drag force agrees
with experimental results at low flow rates. Due to the complexity of the
model there have been no other solutions for complicated flow reported in
the literature. However, some problems using special cases of Oldroyd's
model (assuming some of the material properties to be zero in order to make
the problem mathematically tractable) have been reported. In 1961 Jones(5)
considered inelastic liquids in the study of flow past a plate. In late
1962, KUlshrestha(6) considered a very special case of Oldroyd's model for

(7)

helical flow. Tanner: also reported a solution of the Rayleigh-Benard
problem for Oldroyd's fluid B.

In this study Oldroyd's model (1958) has been used to describe
the mechanical behavior of viscoelastic materials for a steady, two dimen-
sional, incompressible flow past a semi-infinite flat plate coated with
viscoelastic materials. For the purpose of analysis, it is assumed that
the coating is soluble in the main flow and that the mixture of the coating
in the main flow is of small enough concentration to have constant diffu-
sivity as well as constant density.

The equations of motion and diffusion are obtained by a boundary
layer analysis. It is found that the set of partial differential equations
has a similarity solution only when the external stream velocity is pro-

portional to the cube of the distance along the plate. This represents a

flow of Falkner-Skan type past a wedge of 90 degrees.
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The main purpose of this study is to investigate how the fric-
tional force is affected by the properties of the viscoelastic material
and by diffusion. A detailed investigation is preformed for a flow past
the wedge of 90 degrees with and without diffusion. The method of steep-
est descent, which has been shown to be a highly efficient and accurate

(8)

method in solving boundary layer equations, is employed here to solve

the set of complicated ordinary non-linear differential equations.



II. CONSTITUTIVE EQUATIONS

For the idealized viscoelastic liquids considered here, the stress
813 at any point in the flow may be considered as the superposition of two

independent stress systems, that is
Sij = " P8y T P4

in which g. are the components of the metric tensor, p is a scalar
1 J

J
(not necessarily the pressure), and Py 5 contains the non-isotropic part
of the stress tensor. In 1958 Oldroydkg) proposed a mathematical model

for Ds 5 which qualitatively describes many effects observed in real vis-

coelastic fluids., The proposed rheological equations of state relating

pij and the rate of deformation tensor
_ Ju:  Ous
4y =1 | 24 4
2 oxli = oxd
are

oy plk 1 . J 1 J/@ !
Pix * kli%;;”' -ty (pyddgy + p%dyg) vy pyy A gy + g Pygdyy

: diy j ! i

Here u', xi, and Xé are the viscosity, relaxation time, and retardation

time of the material, respectively, at very small rates of strain, and

Wi, Ko, Vi, Vo and u are five material constants with the dimension

&

of time, =— 1s the Jaumann derivative, and wu; are the components of

the velocity vector.
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The Jaumann derivative is a time derivative of the components of
a tensor as measured with respect to a rigid coordinate system which trans-
lates and rotates with a fluid particle. This derivative (as well as Oldroyd's
convected derivative) satisifies the requirement of invariance of response
in rheological equations of state, When the Jaumann derivative operates
on a second order tensor with components b.. and is transformed to the

1J

fixed coordinates x* , one has in cartesian coordinates

Poij abij uk abij _o.. K+ K
" ik ~ J kj~ i
bt ot ox
in which (Dij are the components of the vorticity tensor; i.e.

1 duj _ é&i

WL = - -
1 2 oxd ox?t
The Jaumann derivative operating on either contravariant or covariant com-

ponents of a tensor will result in the same form since

.. ij
&Eihl =0 and HE
Pt

=0

where are the components of the metric tensor. Thus, the use of the

81
Jaumann derivative removes an objection against Oldroyd's convected deriv-
ative, which in general gives different forms for contravariant and covar-
iant components of a tensor. In any case either the Jaumann or the Oldroyd

derivative may be used in Equation (l); the only difference is in interpre-

tation of the parameters pé and ué.

To understand some of the implications of the constitutive equation

(1), a few simple solutions will be described:
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(a) Simple shearing £10w(2):  If the velocity components are

taken to be of the form

V)=V, = o, v3 =7 %5
where 7y = constant, then the constitutive equations give
o1 ! 2
piy = lvouw v F(9) 1y
_ (— ] '- l_ 1 2
Doy =Pyt LApmy) b= (- wy) F(0)1

Pyy = Ppym [OH) w'= O+ u)) F(y)] 92

= F = =O
P yF(y) , D P,

in which

F(y) = p'(1 + 0572)/(1 + 0972)

) - ,2 1 *— 3 1 _ 1 1— 1
op  ZATF ulug = v) = by (ug-vy) (3)
O E ANy Fopg (us - % vo) =y (up - vd)

The results obtained in Equation (2) show that the normal stresses are in
general unequal and, therefore, in order to maintain a simple shearing
flow, not only a shear stress but also normal stresses should be applied.

If the material constants are related in the manner ki = ké 5 ui = ué,

and either vi = vé or 3ué = Qpi, none of the non-Newtonian effects

will be observed in this flow.
(b) Steady flow in a circular pipe(l): In this flow cylindrical co-

ordinates (r,@,z) are convenient and the velocity components are taken to be
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The equations of motion and constitutive equations (1) then give

SR . p

1
oz > Prg T3 Pr (1)

with shear stresses and normal stresses given by Equation (2), the suffixes

1, 2, 3 being replaced by © , r , z , y now denoting - de/dr. For a

given pressure gradient P , Equation (4) shows that the shear stress pro-
file in a pipe flow is exactly the same as that of Newtonian liquids. How-
ever, Equation (2) shows that the normal stresses and the velocity profile

are different from that of the Newtonian case. Because of this the volume-

tric rate of flow of a pseudoplastic liquid (o,/01< 1) is larger than that

of a Newtonian liquid at a given pressure gradient; in the case of a dila-
tant fluid (o,/0; >1), it is smaller. Representative values for the mate-

rial parameters are(l):

Material cl(secg) op/0q u! (poise)
4.0% Aqueous Carboxymethy- 2.53}(10-LL 0.67 1,52
cellulose at 85° F
(low flow rate)
Cholesterylbutyrate at 0.0297 0.45 0.862

100° C
(nigh flow rate)

The tensile normal stress is one of the causes of the Merrington

Pzz

effect(3>—- a Jet swelling as it exits from a tube.

(2)

(c) Flow between rotating vertical cylinders In a cylin-
drical coordinate system the only non-vanishing velocity component for this

problem is taken to be v, = rQ(r). The stresses obtained from the
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constitutive equations (1) are given by Equation (2) with the suffixes
1, 2, 3 replaced by z , r, 6 respectively and where ¥y now denotes

rdQ/dr. From the equations of motion one has

- Szz=DP - Pzz = - P8z +.jrp392dr +p (r) + const. (5)
in which
! 1
D) =B - g + [ (o mee) (6)
If the liquid has the properties o1 = 0o, = 0 , one obtains
p'(r) = 2u'(2u] - A - 2u5 + Ap) M rh (7)

where M 1is a constant relating to the couples applied on the cylinders.
(This is a result including Rivlin's liquid C (1948) and Oldroyd's liquids

A and B (1950).) Equation (7) indicates the deviation of S,, from that

found in a Newtonian fluid; this may cause the climbing or sinking of the
free surface near the inner cylinder (Weissenberg effect).

(d) Flow between a flat plate and a rotating wide-angled cone(2’3):
Assuming that the only non-vanishing velocity component in spherical coordi-
nates (r,0,f) is Vg = rQ(0)sin® , the constitutive equations (1) then

give the stresses shown in Equation (2) with suffixes 1, 2, 3 replaced by

r, o, ¢ and where 7y now denotes sin & dQ/3g. Many experimental

measurements have been made on the normal stresses and some of these show

that

Pry = Pog # p¢¢ (8)
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This relation is known as the Roberts-Weissenberg normal stress relation.
Equation (2) can also give the relation (8) if one sets A = H] and

From the simple examples above it is seen that Oldroyd's model
gives at least a qualitative representation of some of the effects observed
in viscoelastic liquids; it is also probably the simplest model available
at present time which will describe all of these effects.

In the present study a steady, two dimensional, incompressible
fluid flow problem is considered. Using Cartesian coordinates (x', y')

directed along and perpendicular to the body, the constitutive equations

(1) along with the continuity equation yield

ot | DR 2 Lfay 2, ]
| e (3 S ey S K e * By *
ca [ By (R (2], L2 By, By g )

(R 2::)2; AR AN
M 2 By~ ne - 212 5
OB iy,
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ov!

( au' Bv { D_ Bu' ov! _3'
Bx‘ By ox! dx!' '
£ 1)
xlay’ Bx')
! ov!
o+ B B ] i o # B
[ ! ov!
| Bt (S ey * S By 5 S [P * By * P
) ov! D ov'y, 1 , du' u' .
ol PR el A RS i [l |
ov! ou', ov!' ou'yT 1,0u', ov' ov'!
T e R Al Al i M AN
. Pzz ou! ou' 5 '
Pt M Dy {ai ik Sy a;.Pyy]
2
Y ég‘) 1l ;ou' oy ov!
oy (2 2B B
[P t_ du ' dur, dv
A Ea b S R AR i 8
.y Dpyg + L ou_ ov | ov! + 1 ou '+ ov'
pyz [ Dt 2 ( oy BX:FXZ] "1 {By' yz 2 ( FXZ
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where 2-  is the substantial derivative, u' and v' are the velocity
Dt
components in the x' - and y' - directions, respectively.

To make equations (9) dimensionless, the density p , the viscosity

no s a characteristic free stream velocity U, , and a characteristic length

L are chosen as reference quantities. A Reynolds number Re can then be

~defined as

where € < < 1 for the case under consideration. In order to perform a

boundary layer analysis one lets

x' =Ix , y' =ely, u' =0 u, v' = €U v, p' =g H- ' (10)

L
(M5 11y G MDy 83, Vi, Vi) = e o Mo B Bos Moy gy vys V)
(11)

> ,0 ,0 ,0 )=epUa(r , T ,7 ,7 ) (12)
xx” Txy’ Tyy T zz xx” xy' yy o zz

where unprimed quantities in Equations (10) and (11) are assumed to be of
order one or less. For the purposes of the present analysis, in writing
Equation (11) it was assumed that the order of the seven dimensionless ma-
terial constants are all equal to or less than that of e . This require-
ment ensures that the flow of a Newtonian fluid will be a limiting case.
The order of magnitude of stresses shown in Equation (12) is a conseguence
of Equation (11) for large Reynolds number. This can be verified by the

substitution of Equations (10) and (11) into Equation (9).
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Now the substitution of Equations (10) - (12) into Equation (9),

for large Reynolds number, yields

\
Tex = (M + By1-ve) %ETW -1(Ap + po-vp) (Bu) + 0(e)
Y
T Ry tug) U “L (b)) Wy 403w o
xy = 5L H17Ho Sy Tyx > (N Hq =Hg) S Tyy 2 5 Ty
%ﬁ + 0(e)
2
Ty + (Ag-up+ vp) %E Ty = H(Ap-tptvp) ( du ) + 0(e) | >(13)
N
2
ou Ju
zz T V1 g; xy - M2 ( g;) + 0(e)
p - Lo +p)® 5 —olep )
Xz o) ay VZ XZ
p +L (O -p)W® p  -ofep )
yz - 1 1 dy Xy X2z Y,
v

From Equation (13) one can obtain explicit forms for the Ty in terms

of the shear rate %E . They are, upon neglecting higher order terms in
v
€)
=] Outtigeve) - (gt >1+A2() (14)
Txx = "W (pthp-vp 1th1-vy (ay J
- 1+ A

[ 2
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du
du 1+ Aatay)

T =y (15)
= oy 1+ Al(éE 2
oy
2
[ 1+ A0 2
Tyy = pl (xe—p2+v2) - (Xl-p1+vl) 2 ay ] (%3 ) (16)
i u
1+ Al(ay)
=l
1+ Ay ! 2
Tyy = K [vg—vl 2 :y 5 ] %? ] (17)
1+ A, (S
1[5
in which
2
A E oM gk - 2 v) - ey (18)
The last two equations of Equation (13) show that
pXZ = pyz = O (20)

Equation (15) indicates that in general the apparent viscosity, defined

oy
W = X S u 1+ A 5_u)2]/[1+/\ (@B)e] (21)
apparent éE 2 dy 1 dy
Jy
depends on the shear rate and has the limiting wvalues
du Ay du
5 - as =— =0 and “h—= as ™ O ®
app. H 3y Happ. " A dy
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Equation (14), Eguation (16), and Equation (17) also show that the normsl
stresses are in general unequal, and that to obtain a two dimensional flow
a stress T,, normal to the flow has to be provided.

The seven material constants N1 5 My , etc. and the viscosity
M are normally functions of the concentration of the viscoelastic compo-
nent of the solution and hence can be represented by power series in the
concentration c¢. Since the seven material constants will approach zero
and the dimensionless viscoelastic u will approach unity when the concen-
tration c¢ approaches zero, it is reasonable to assume for a dilute ma-

terial solution (i.e. for small values of c) that

L =1+ ¢ , N, =ac |, = be , --- , ete. (22)

1 By

Consequently Equations(18) and (19) can be written as

Al = BCQ A2 = Ong (23)

)

In Equations (22) and (23), &, B, y , etc. are constants for a given

viscoelastic material. A more general representation of u , Ay, ete.

in terms of c¢ 1is possible within the scope of the similarity solution
(see Chapter III), since any function of c¢ alone is allowed by similar-
ity for certain boundary distribution of c¢. However the linearized form
is felt sufficient to give an indication of the effects of the variation

of the material parameters.



III. THE GOVERNING DIFFERENTIAL SYSTEM

For the flow problem considered in this study the governing

equations of continuity, motion, and diffusion are, respectively,

.a.l. + ..al'_ = 0 (2)4_)
ox! oy
du' du' d op Op

p( at S 4, Su = -9 4 Pxx . “Pxy (25)
ox' dy! x! x! dy!

o[ AT A S . (26)
x' 3y ! ' ' dy

i .8.39- + t ?.EE. _ K agpc + BEQC (2 )

u BX' v ayl - axlg ay'Q 7

in which x' and y' are Cartesian coordinates along and perpendicular
to the plate, u' and v' are the components of mass average velocity
in the x' - and y' - directions, p is the mass average density of the

solution, P. is the mass density of the coating, and k is the mass

diffusivity of the binary system.
For flow rates at which Equations (10) - (12) holds, the substi-
tution of Equations (10) - (12) into Equations (24) - (27) yields the fol-

lowing set of dimensionless boundary layer equations:

Su v

= 0 28
ox Jy (28)

-15-



S + 0(e) (29)
ox dy dx dy
o (p - myy) _
= 0(e) (30)
oy
dc dc 1 | 3% o
u é‘; + v g;; =-S" (—;é- + 0(e“c) ) (31)

in which U(x) 4is the dimensionless velocity of the inviscid flow, and

ez Pe_ concentration of the coating
P
T]O

S = ~—= = Schmidt number
Kp

The dimensionless shear stress Ty is given by

Ty p.:_i.[1+/\2 (:_;)Ej/[1+/\l(§§)2] (32)

where p , Ay, and Ao are functions of the concentration c¢ and are
expressed by Equation (22) and Equation (23) for the approximation of a
dilute solution.

The boundary conditions of the problem are

at y=0: u=v=0 , c=cqg (33)

as y @o : u—U , ¢ (3k4)

It is assumed here that the dissolved viscoelastic material at the plate

has a constant concentration Co » and that the external flow is a solution

of the coating with concentration cy. When the outer fluid is Newtonian,

Cl 1ls zero.
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A, Similarity Transformation

The general solution of the system of partial differential equa-
tions (28) - (31) with the complicated shear stress-shear rate relation
(32) is extremely difficult. A similarity transformation is sought to
simplify the mathematics of the problem and to illustrate the general
behavior of the flow.

From the continuity equation (28), a stream function V(x,y)

can be introduced such that

wo= Ny o= - N (35)
dy ox
Letting
¥(x,y) = blx) £(n) , 7 zgi(z)l , ¢ =a(x) g(n) (36)

the boundary layer equations for the dilute viscoelastic solution take

the forms

2

3 (?._g_ 2 £ 2
w22 re gy - g d__.[(l+7ag) g1+l D (&€ } (37)
X n b m o X oy dn 148 (a_[E)E(gf )2
o mn

b 2
aXU fng -aU_Xxfg =1 al ¢ (38)

b M § 12 M

o’

in which the subscripts =x and n denote the differentiation with respect

to x and 7 , respectively.
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(i) 1If the velocity of the outer flow, U, varies with x

Equation (37) and Equation (38) can be written as

2 2
£fr - mff -1 = kp Q_[(l+7nln3um'2g)fnn 1+« K3(ann)2 J (39)

n dn 2
1+ £
B K3(g Tm)

= 1o

K .
(n-2) £, - nfe, = gg By (40)

respectively, if one chooses

1
o(x) = & U(x) , a(x) = K,k e v - [@Lu} em=1 - ()9)

13 2
L kS Ky

where k; and m are arbitrary constants. Equation (39) indicates that
1f the material constant 7y is zero or if m is equal to 2, the set of
partial differential equations (28) - (31) can be transformed into a set
of ordinary non-linear differential equations.

(ii) When the external flow has no pressure gradient and U is

a constant, Equation (37) and Equation (38) become

1+ OCUl*ng(gfnn)2 ]

- = d

fg-fg=_1_ (43)

with now

b(x) = (2K1Ux)l/2 , a(x) = k b(x) (4L)
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where k) and kp are arbitrary constants. Again, if 7y is zero, the
boundary layer equation of motion and diffusion for flow past a semi-
infinite flat plate with zero pressure gradient can be reduced to ordinary

differential equations.

B. Governing Differential System

In general the viscosity of a viscoelastic liquid depends on the
concentration of the solution. Therefore, if this is to be included in the
problem, from the above analysis the only similarity transformation one can
have for the problem is that when m equals to 2. Now if the arbitrary

constants k. are chosen such as

1
-3/2 c
K.l =E 3 KE = 3 3 K'.3= O/K‘.l

then Equation (36) and Equation (L41) give

1/ 1/ 1/
0G0 =B 7 n =y (2] R vny) = (@07 ), e = cgeln) (55)
X

This transformation implies that the flow problem is a special type of

flow, that is a flow of Falkner-Skan type past a 90 degree wedge.(9>

The transformed governing differential system for this special flow is

2 - 2p 2 2p 2
£2 -2 1= 3 a%[‘l + Be) fon (1 + Agfryn )/(14Bg®e,,2)]  (46)

2 =
£ st = gy (47)
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where R = 70 » AZ ac§E3 , and B = 508E3.

(33) and (34%) now become

The boundary conditions

at 1 =0 f=f=0, g=1 (48)
€1
as qow i £ 1 g - g(w)= L (49)
o
The coefficient of skin friction, Cy , will be given by
c, = TW|”=O = (4R) £__ (0) [1+4 £ 2 (0)]/[1+B £ 2 (0)] (50)
a7 53/ m m nm



IV. METHOD OF SOLUTION

The governing differential equations (46) and (47) with the
boundary consitions (48) and (49) are next solved. Since the general
solution of Equations (46) - (L49) can not be obtained in terms of known
functions, it is necessary to use either purely numerical methods or
series expansions.

The method of series expansions accompanied by the method of
steepest descent is employed here to solve the problem. This method was

first used by Meksyn(8)

to solve the boundary layer equation for a Newtonian
fluid. Several classical problems for Newtonian fluids have been reworked
by this method, and the results obtained are very striking, in that only
a few terms in the expansion are sufficient to obtain close agreement with
accepted numerical results.

In applying the method to solve Equation (46) and Equation (47),

one first expresses the dependent variables f(n) and g(n) in power

series of n such that

£(n) = T A n (51)
=0 n.v
oo B

gn) = £ 2 q° (52)
n=0 n!

in which A.n and Bn are constant coefficients to be determined. The
expansions in Equations (51) and (52) are valid only for sufficiently
small values of 1. By using the boundary conditions (48) one finds,

from Equations (51) and (52) that

Ao = Al = O) BO = l
-21-
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Substituting the expansions (51) and (52) into Equation (47), the coef-

ficients of the same power of 1

in both sides of the equation must be

(53)

identical. This gives the relations between the B, and A, , which are
found to be
B = 0O \
B3 = 0
B, = =-28A5B,/3
Bg = -25A381/3
Bg = =-284,B,/3
By = -28AgB1/3 + hoseAgBl/g
ete. /
Similarly, the substitution of Equations (51) - (53) into Equation (46)
yields
Az = [1+ 3BjAM, + BAS —ZBIAgIO 1/Det N
A, = 2[3BAq - 3KBE§ - 2AE I, - (E§+ 2AsB1A3) Inl/Det
Ay = 615 ByAN, - GKBE)E, - 2A5E Tp-(2Exhy + B5) Ty
-(2E1E2+ AEAuBl) IO]/Det
Ag = 24[B MMy - G (1+BAS) - 3KB(2E,E; + E5) - 2AnE|Iq
- (A, + E5) Ip - 2(AgE; + BiEp) Tp -(2M)AB,/3
2
+ 2E1E3 + EZ)IO]/Det

2

l) I

- (2A.2E2 + E 3" 2(A2E3+ ElEE) I- (2A2Eu "




-2%-

l .
+ 2 B)R, + ES) I;- 2( 3 Byl + Eg) + ByE4)Tol/Det (5h)
etc.

in which

Det = 2A,To- 34A5(1+R) + 3(2KBAp- 1 - R)

2
1 + BAS
= 2
My = R(1+AA2) - 2KBA, ,
I, = -B- 3AA3(1+R) - 3ARBjA, Bp = Ag+ AgBy
I, = - 3A(A,/2 + RE,) , Ep = Ay/2 + AgBy
M Z Ag/2 - SA§/12 , Ey = Ag/6 + BiAy/2
I3 = - 3A(Ag/6 + RE3) Gy = - ApAs/12
My = Ag/8 - MpAsS /10, B, = Ag/2k + ByM;/3
- - 2
I, = BG, - 3A(Ag/2h + RE,) , G = - AA [20 - A3/6O

Equation (53) and Equation (54) indicate that all of the expan-

sion coefficients A, and B, can be related to A2 and B, for given

parameters A, B, R, and S. The remaining unknown coefficnents Ap
and Bj are determined by the boundary conditions (L9).
The method of steepest descent is next employed to determine

A2 and Bl' This is a method of evaluating a certain type of integral.

The main idea of the method is that if an integral of the form

I = | ekw(z)¢(z)dz
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in which k is large and @(z) is a slowly varying function of =z has

a col(saddle point) at =z = 20 then the main contribution to the integral

when it is integrated along a Debye path (a path along which Im. kw(z) =

constant) comes from the region near 2. The method furnishes an asymp-

totic expansion for the integral in a series of gamms functions.

In its application to the problem considered here, the variable
z 1is the real variable 7 , and the Debye path is the one in the direction
of 1 positive and real.

Integration of the diffusion equation (L47) twice gives

in which

Fn) = B[ e(an, By = fele) -2/ [T T W an (56)

It is seen from the series expansion that the integral in Equation (55)
has a col at 1 = 0 and that the function F(n) is multiplied by a
large parameter §S. Thus the method of steepest descent can be used to
provide an asymptotic expansion for g(n).
In the course of evaluating g(n) one first expands the function

F(n) around the col (n = 0 in this case), and obtains

F(q) =25 43 % %n#2 (57)
37 s (m43)!

(This shows that the integral has a col of order two at 7 = 0) Next, one

lets

ey A, ©
r=F(n) = g3 F ME oz 3F 5 (58)
3 no (a+3)! n=
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It is well known from the theory of inverse function(ll)l2) that this

equation can be solved for n in the form

o L(m+1)
n= % m .3 (59)
m=o0 m+l

in which the coefficients b, can be determined in terms of the a, Dby

m

Cauchy's theorem of residues. From the relation

+ + 4+
0 b, (07,07,07) :
¢< ) d_'r‘l .=_g5 ) J g'_T_ = oni -bm (60)
L(m+1) 3 T
T3
(0%) . +
where ¢ denotes an integration path around the O once, and
(o*,0%,0™) +
g0 denotes triple circuits around O, it is seen that by is
—Z(m+1)
the coefficient of n”l in the expression T . Hence, Dby, is the
coefficient of n™ in the expression
_ L(m+1)
2 34 e
[ao tagn +agnt a4 ] (61)
It is found that
]_/1" \
by = [ >
Sho
A
b, = b5 3



b, = bg [ I (ﬁi) ° ]
- 20A, 16 ‘A,
? (62)
3
b =b“[-_‘i+_7_ S () ]
3 Ol goa, 180 45 1206 Ay

2 2 L
b, =bg{- fe Aghs MMM a8 h)]

2 2 3
50bA,  108A7 180A7 216A3 3110k A,

etc.
The integral in Equation (55) can now be written in terms of T and inte-

grated asymptotically, giving

L{m-2)
T 0
SIS VAP I b, T dr
0 30 m=0
R 1+m 6
> ke b T ( == ) (63)

in which the I, are incomplete gamma functions. Therefore g(n) takes

T

the form
g('r]) ,\,]_+-1; Bl bY meT(lim') (6’4)
D =0

The corresponding value of n for a given T can be obtained from Equa-

tion (59). Application of the boundary condition (49) gives

B, ~3lg(«) - 1)/ % bur | Lem (65)

m=o 3
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This is the first of the two relations which will be used to determine

the unknown coefficients A2 and Bq.

To obtain the second relation the boundary-layer equation of

motion, Equation (46), is used. This equation can be rewritten in the

form
of
—= =H 6
—— (ierg) (n) (66)
in which
H(n) = L { £S -1 -3Rg.f.. + 2 | (1+Re)f
S(1+mg) L " ntnn . [ nm
(B-A)g®f, 2 }
x ]
1+B ggfnng
Letting
o M og
F]_(T]) =§Of +Re dn (67)
n
§(n) = £qq ) + [ UV n(n) ay - (68)
o |

integration of Equation (66) once yields

fa(n) = LW g (69)

and a further integration gives

) = 1 T i) an (70)
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a form which can be evaluated by the method of steepest descent.

Before applying the method to evaluate Equation (70), the pro-
perties of its integrand should be investigated. Since the form of F(n)
indicates that the integral in Equation (56) has a col of order two at

n = 0, the function Fq(n) will dictate that the integral (70) also has
a col of order two at 0 =0. Fi(n) is also known to be a positive

function. When 7 becomes very large, the equation of motion takes the
form

£ .|.——J——2 f ~ 0 (71)
m Slomg(e] M

because fn—>l, ft-1ng - g(w) and fﬂﬂ -0 as 1n — o, Integration of

Equation (71) yields

27,
fﬂﬂ ~ constant x e—nJC[l+Rg(w)] (72)

Thus, the comparison between Equation (69) and Equation (72) shows that
¢(n) approaches a constant value as n 2« , and can be expected to be

a slowly varying function of 1n throughout most of the region for small
values of the Schmidt number. However, for a large Schmidt number Equation
(68) and the function H(n) show that @(n) will be a rapidly varying
function near the boundary because gn changes very rapidly near the
boundary. This implies that the integral in Equation (70) evaluated by the
method of the steepest descent will be an extremely divergent series for a

very large Schmidt number.
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Now if one introduces a small parameter ¢ and rewrite Equation

(70) in the form

NODEI A Bn)an (73)

then this integral can be evaluated asymptotically by the method of steep-
est descent for small Schmidt numbers.
To evaluate the integral in Equation (73) by the method of steep-

est descent, the functions Fi(n) and @(n) are first expanded in series

forms about the col 1 = 0; that is

Fi(n) =m0 2 g, #(n) = = gpn” (74)
n=0 n=0

The coefficients gq, can be found by the substitution of Equations (51)

and (52) in Equation (67). They are

% T 37 | 3(mw)
¢ - 1 [ 2RBjA; . %A }
ooy L (ur)2 3(1m)
L2
S U - e 1 T T e 8 B >(75)
2 50 | LR | 4R | 3(14R) | 14R 3(1+R)
3
e - 1 [_ 40A,, EB_l‘ +40A3 RBy| 108 RB1+ oA ]
3 6! 1+R | 1+R 3(1+R) | 1+R/ 3(1+R)\ 1+R/ 3(14R)
etc,
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The coefficients [, are obtained easire from Equation (69) rather than

n

from Equation (68). Thus, the substitution of Equation (51) and Equation

(74) into Equation (67) gives

by = A, \
zl = A3

A
-

no
—~
—J
(O
~—

10 245
3 737 | %Y 3T

10A0A, 285 | RBlg}

5, = [ |
b w8 3(1+R)  1+R | 1+R;

ete. ’
Again one lets
T =F (n) = n3n§o 4" (77)
and obtains
« gy F)
n= I o= T (78)

As in obtaining the coefficients b, , one finds that bﬁ is the coef-

ficient of 1™ in the expression

~E(m+1)

: 2 3 3
Ly + qgn + an™* aut --- ]
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thus
-L
by = o>
b = -2 p2 A
3 0 q
- 2
b, = b3 S22, ?_1) }
L QW £
n [ 4 74190 d 3
oy = byt | - + 2_3.5_(_ J
L 39 945 81 | q
etc.
Next, one lets
w %(rn-z)
dn - 3
e

Then, by Cauchy's theorem of residues and the relation

50 g(n) an - ¢{95050") __d(n) a
~(1+m) T

(O+,O+,O+)

= n, &L =6 niny

the coefficient h, is seen to be equal to one third of the coefficient

Lme1)

of n-l in the expression @(n) 3 . If Equations (74) and (76) are
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used, then hy, is the coefficient of nf in the expression

1 5 5 - ;(m+l)
'5 [.,,60+ 2l'r] + Zen + - ][qo + a1 + oYy + === ] 3
so that
1 N
ho = 3 Agbd
6 2 1+R
RB, |° 234, |RBy| 34, A2
h2=b'3[-A_g._l +33 l+31+_ 3]
80 | 1+R 120 | 1+R 20  16Ap >(82)
RB- |7 134, |RB; |° 794, | RB
h, = b!h[-.& —1 + 3 14 al 1
3 O 720 |14R 240 1+R| 540 1+R
2 \
1 RBl) L TAs  Thaby o3  oa3 }
1hhA, 1+R/ 135 108A, 388845 243(1+R)
J
etc.
The integral (73) can now be integrated in terms of T, that is
L L(m-2)
T - T )
ra(n,8) = o e S dr
m=0
o0 [
= 3 o, | ER) e (83)
m=0 ‘ 3

in which TI'. are incomplete gamma functions; the value of 7 corresponding

to a given T can be obtained from Equation (78).
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By putting ¢ = 1 in Equation (83) one has

= s 1+m
) = L, Pl | SR ()
after applying boundary condition (49), Equation (84) gives
-3 Lt
L= Z bl | 3 ) (85)

This relation together with Equation (65) is used to determine the two unknown

constants A, and By for given values of the parameters A, B, R, and S.
It is of course possible to determine A2 and Bl in an analytical

form from the two relations Equation (65) and Equation (85) if only a finite
number of terms in the relations are considered. However, since b, in
Equation (65) and h, in Equation (85) are rather complicated functions of
A, and By, the expression for general values of the parameters is much

too cumbersome to obtain, and a trial and error procedure would be necessary

to determine Ap and By. For a large Schmidt number, Equation (62) in-

dicates that the series in the denominator of Equation (65) will converge
rather rapidly. But for a small Schmidt number, the series in Equation

(65) is a divergent asymptotic series, therefore, only the first few con-

verging terms should be congidered in the determination of A2 and Bl.(l3)
Equation (65) can now be written as
M .
B =3[g(w) -1]/ £ byl {_li_n_l) (86)

m=o 3

for the determination of Ay and Bl, where M is an integer depending

mostly on the Schmidt number. By a trial and error procedure, A, and By
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can be obtained from Equation (85) and Equation (86) for given values of
the parameters A, B, R, and S.

After values of Ap and Bj have been determined, thé concentra-
tion distribution of the coating and the velocity profile can be obtained
from Equation (64) and Equation (84), respectively. The coefficient of the

skin friction can then be calculated from Equation (50), in which fnn(o)

= A,
The series of Equation (78) and Equations (84) and (85) which

involve the coefficients by and h, are in general divergent. These

divergences arise because the integral in Equation (70) does not involve
a large parameter and because the expansion used for ¢(n) has a small
radius of convergence about n = 0. The sum of a divergent series can
not be obtained directly. However, since the sum of a divergent series

is the finite numerical value of the convergent expression from which the

(1k)

divergent series is derived, it is possible, by a suitable transfor-
mation of the series; to obtain an asymptotic series which sums to the
correct value. In the present study the transformation due to Euler is
used.

To understand Euler's method for summing a divergent series,

one can consider the function

X(x) = (L+x) (87)
This function when expanded about x = O takes the form

X(x) =1 -x + Xo X+ - (88)
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It is seen that when x = 1 the original function (87) has a value of

el o
-

but the expansion (88) gives no value for x > 1 because it is a divergent
series., Euler's transformation changes the divergent series (88) into a

convergent series which gives a proper representation for large values of x.

The principle underlying Euler's transformation<15’l6) is that
of analytic continuation. If a power series
© +
P(x) = ¢ ot (89)

is convergent for only sufficiently small values of x, then by the trans-

formation

X -y, ox = L (90)
1+x , 1-y

Equation (89) expanding in powers of y becomes

P(x) = 3 pytl (91)
n=o
in which
n n
ﬁoz O[O, ——-)Bn=Olo +(l) Oll + (2)0524-—-—4' Oén
(n) _ n(n-1)(n-2) --- (n-m+l)
m m.

The series in Equation (91) is valid for sufficiently small values of y.
The transformation (90) indicates that a small value of y can correspond

to a large value of x. Therefore Equation (91) can represent the sum of
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Bquation (89) when x is large. For the special case when x = 1, y = % p
one has
°° % -(n+1)
P(1)= = o, = % B2 (92)
n=o n=o

This relation (92) is the one used by Euler. By applying Euler's transfor-
mation (92) to the series (88), one finds from the transformed series that
‘when x =1

X(1) == +0+0+ =-—-+0

N -

Thus Euler's transformation eliminates a singularity which does not belong
to the function itself but which was introduced by the method of expansion.,

In the evaluation of a divergent series, Euler's transformation
can be repeatedly applied until a convergent expression is obtained, and the
‘transformation can be started at any term of the original or the transformed
series. However, if only a finite number of terms is used in summing the
series, too many repeated transformations will reduce the accuracy of the
sum because the convergence of these first few terms will be slowed down

by repeated transformation.



V. RESULTS AND DISCUSSION

The University of Michigan IBM 7090 computer was used to perform
the calculations needed. In the course of computing a given set of Ao
and Bl with the given parameters A, B, R, and 8, Equations (53) and
(54) were employed directly to calculate B, and Ap. However Equations
(62), (79), and (82) were not used to calculate by, by, and hy; instead
the recursion relations used in obtaining them were programmed to avoid
possible errors in transfering to the machine.

Case I. Viscoelastic Ligquids With Homogeneous Properties (g=1 Through-
out The Flow Region) Flowing Past The Wedge.

For this case the coefficients B, are all zero, since g=l.
To determine the correct value of A2, eight terms of the series (85) are
considered. It was necessary to transform this divergnet series twice using
Euler's transformation. The first transformation was started at the very
first term of the series, and the second transformation at the second term
of the transformed series. It is noted from the boundary layer equation of
motion that when R =0 and A/B = 1, the non-Newtonian phenomena will not
be observed, that is the flow pattern of this case is the same as the one
due to a Newtonian liquid. The results obtained for various values of A
and B are shown in Figure 1 and Figure 2.

Figure 1 shows the relation between fyn(0) and the ratio A/B
for B = 0.10 - 0.60 when the parameter R is zero. Since fﬂﬂ(o) is the
slope of the velocity profile at the body, it is legitimate to say that a

larger value of fnn(O) implies a thinner displacement thickness.

-37_
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Thus, Figure 1 shows that the displacement thickness increases with increasing
A/B for a given B. TFor the case of a Newtonian liquid, that is when

A/B = 1, the obtained result fnn(o) = 0.761 is in very good agreement with
(17)

Hartree's result (0.758). This implies that the method used is probably
quite accurate.

Figure 2 shows the relation between the coefficient Cgq of the
skin friction and the ratio A/B for R = 0.

In the Newtonian flow problem, it is well known that the friction-
al coefficient Cg 1is linearly proportional to fnn(0) under the conditions
of the boundary layer assumption. But the results obtained here for visco-
elastic liquids do not show such a simple relation. While fnn(o) decreases
with increasing A/B as shown in Figure 1, Figure 2 indicates that Cg
increases with increasing A/B. Therefore the skin friction of a visco-
elastic liquid past the body is rather strongly affected by the values of
the material constants Aq, Wy, etc., and a displacement thickness thinner
than that in a Newtonian fluid does not necessarily imply a larger friction-
al force for viscoelastic liquids.

The general expressions for normal stresses in terms of given A
and B given by Equations (14), (16) and (17) show a rather complex depen-
dency on the seven material constants. For the special case which has been
shown to predict the general form of some experimentally observed relations
between steady state and oscillatory phenomena suggested by Williams and
Bird(18)  that is when |

A VlZ%%‘l) “O=OJ“2=>"2)V2:%>‘2
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Equations (14) - (17) become, after similarity transformation,

2 232
Txx = 72 Tyy= 7 2 Tgps % E3“ fnn(kl'xg)/(l + % K1E3fnn)
_ w32 2 3 2 \2g3¢°
Ty = EY2wE (14 = Mot fﬁn)/(l + SME £an)

Thus, for pseudoplastic fluids (4/B< 1), 7 is a tensile stress while

XX
Ty and T,, are compressive stresses; for dilatant fluids (A/B > 1),
Tyx Decomes a compressive stress while Tyy and T,, become tensile stres-

ses. Hence, in order to have a steady, two dimensional, incompressible
viscoelastic flow, depending upon whether the fluid is a pseudoplastic or
a dilatant liquid, it is necessary to apply a compressive or a tensile
stress normal to the plane of the flow.

The effect of the parameter R on either f_._(0) or the fric-

ﬂﬂ(
tional coefficient Cq can be obtained from the results given in Figure 1
and Figure 2 by a simple modification. It is seen that if the characteris-
tic viscosity used in forming the dimensionless quantities is taken to be
no(l + R), the equation of motion then obtained is independent of R,

Thus, for given values of the parameters A, B, and R, the corresponding

fhn(o) and (g can be found, using Figure 1 and Figure 2, from the relations

/2

(n=0,R=0)/1[1+ R]l

(93)
1+ R]1/2 C4(R = 0)

—~
=
n
O
-
=}
~
I

f
gyl

«Q
>
=
I

respectively, for given values of A and B.
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Case II. Newtonian Solvents Flowing Past The Coated Wedge

Here the case is considered when the Schmidt number is larger
than zero and g(») in Equation (86) is equal to zero.

Figuresv3 - 5 show the relationship between the frictional co-
efficient C3q and the Schmidt number S for B = 0,3, R = 0.00-0.08 with
the ratio A/B = 3/4, 1, 3/2 respectively. The results obtained here in-
dicate that the frictional coefficient Cq will increase or decrease from
the corresponding value of the homogeneous viscoelastic flow with concen-

tration cy and approaches a limit when the Schmidt number increases. It

will next be shown that this limit is the frictional coefficient of a
Newtonian liquid past the wedge.

For a large Schmidt number, the diffusion layer is much thinner
than the Prandtl boundary layer. Thus the boundary layer may be divided
into two regions, the first being a region of constant concentration far
from the boundary, the second, a region of rapidly changing concentration
in the immediate vicinity of the coated surface. For the case considered
here the concentration of the first region is g(») = 0, and the governing

differential equation for the region is

f2 - 2 ffyy -1 = 3
The governing equations of the thin diffusion layer are Equation (46) and
Equation (47). Since the diffusion term of Equation (L47) is comparable
to the convective term and fin (n) 1is expected to be order one in the
diffusion layer, the transformation

- s73, , F= /3 ¢ (9%4)
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Figure 3. Relationship Between the Schmidt Number S and
the Frictional Coefficient Cq for psedoplastic

coatings with 3B = 4A = 0.9.
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L6
should be chosen for a large Schmidt number. By the transformation (94),
Equations (46) and (47) become

3 [Py (1+ Re)(1 + a%5)/(1 + 3PFE)] = o(s/3)  (95)

2
":"3" F gg = gcc (96)

Integrating Equation (95) once, one has

Fo (1 + Re)(1 + AggFig)/(l ¥ BgaFEC) = const. T T (97)

for S =

This shows that the thin diffusion layer has a constant shear stress T, .

From Equation (96) it is known that g decays rapidly and approaches zero

as ¢ = o , thus Equation (97) can be written as

FCC =T, as { 2o and 8 -ow (98)

Integration of Equation (98) yields

FC = Tot + const. , for S =
(99)
l .
F = 5 n}@g + const. ¢ + (const.)g, for S 2w
(13)

To match the solutions of the two regions it is required that
fﬂﬂ (0) = Fre ()

This implies that 7, is the dimensionless shear stress at the body for

Nowtonian flow past the wedge. Furthermore Equation (99) satisfies the

matching conditions
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Hence as the Schmidt number approaches infinity, the frictional coefficient

C; has to approach that of the Newtonian case.

As mentioned in the previous chapter the method utilized in this
study does not give the correct numerical result for a large Schmidt number.
It is unlikely in fact that any of the standard methods can be directly ap-

plied. However the above analysis shows that the frictional coefficient Cy

will approach that of a Newtonian fluid as the Schmidt number becomes large.
Hence based on the calculated results, the curves in Figures 3 - 5 can be
extended smoothly to approach the Newtonian limit. Due to the fact that
6nly the finite numbers of terms are used to obtain the results, some of
the calculated results shown in Figure 3 - 5 are away from the expected
curves., However the deviation in all cases is less than one percent of
the total Cg .

Figures 6 - 8 show the relation between the frictional coeffi-

clent Cd and the ratio of parameters A and B for Schmidt number

S

O, 1, 3, and 5 when B =0.3 and R = 0.00, 0.0k, and 0.08. For

S

]

O and 1 the calculated results are probably quite good, but when the
Schmidt number becomes large, the deviation increases due to the method of
solution. The curve shown in these figures have been adjusted according
to Figures 3 - 5 for Schmidt numbers greater than 3.

From the results obtained in this case one can conclude that for

dilatant coatings the frictional coefficient Cq will decrease with increas-

ing Schmidt number and approaches the frictional coefficient of the Newtonién
case when the Schmidt number approaches infinity. If the coating is a
pseudoplastic material, the frictional coefficient in general will increase

and approaches that of the Newtonian case as the Schmidt number increases;
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however for some of the highly pseudoplastic coatings the frictional coef-
ficient will decrease first and then increase to approach the Newtonian limit

as the Schmidt number increases.

Case III. Viscoelastic Liquids Flowing Past The Coated Wedge

The case where g(C) # g(w) # O has not been studied in detail
because the results for this case can be predicted qualitatively from the
results obtained in Case I and Case II.

If the external flow now considered is a solution of the coating with
the dimensionless concentration g(w), it 1s expected that the frictional co-
efficient will increase or decrease from that of the homogeneous viscoelastic
flow with concentration CO as the Schmidt number increases, and will approach
a limit as the Schmidt number becomes very large. However the limit now is
the frictional coefficient of the viscoelastic liquid with g(e) flowing past
the non-coated wedge as can be shown by an analysis similar to that of
the previous section. This limit can be obtained from Figure 2 and Equa-
tion (93) by a suitable choice of the values of R, A, and B because

— - 2 —
R=vycyg, A= occOE5 , B = BcgE5 . Since the values for Cy for S =0

and S — » can be obtained from Figure 2 and Equation (93), the relation-
ship between Cq ana S can then be predicted at least qualitatively for
the case considered.

Now, Figure 2 and Eguation (93) indicate that for dilatant fluids
if g(») < 1, the skin friction will decrease with increasing Schmidt number;

on the other hand, if g(e) > 1, C3 increases with increasing Schmidt number.

For pseudoplastic fluids, depending on the values of R, A, and B, the fric-
tional coefficient Cg may either decrease or increase with increasing

Schmidt number when g(«) § 1.
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The velocity distribution of the flow was obtained for Case I
and Case II from Equations (78) and (84) by calculating 7 and fn(n)
for a given value of T . Similarly, the concentration distribution of
the viscoelastic material can be obtained from Equations(59) and (64).
Figure 9 shows the velocity profile of the homogeneous viscoelastic flow
when B = 0.3 and R = 0.00. It indicates that the general form of the
velocity distribution of the viscoelastic flows is very similar to that
of the Newtonian flow (A/B = 1). If the viscoelastic liquids having

0 < % < 2, their velocity profiles of the flow will fall between the

two curves of % = 0 and 2 shown in Figure 9.

Figure 10 shows the velocity profile and the concentration dis-
tribution of the non-homogeneous viscoelastic flow when B = 0.3, R = 0.08
and the Schmidt number 8 = 1., It is seen that the velocity profiles of
the liquids with % = % and 3/2 are both very similar to each other
and the deviation from that of the Newtonian flow is small. The concen-
tration distributions shown in Figure 10 indicate that the thickness of
the diffusion layers is almost independent of the material properties and
has the same order of magnitude as that of the velocity profiles when the
Schmidt number equals to one. The thickness of the diffusion layer will
of course decrease as the Schmidt number increases. But the comparison of

Figures 9 and 10 shows that the order of magnitude of the boundary layer

thickness is relatively insensitive to the Schmidt number.
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VI. CONCLUDING REMARKS

In this study the constitutive equations of Oldroyd show that

in order to have a two dimensional viscoelastic flow a normal stress

perpendicular to the flow is necessary. Depending on the values of the

material constants this normal stress can be either a tensile or a compres-

sive stress, and is a function of the rate of deformation.

the wedge

(1)

(ii)

(iii)

The results obtained for a two dimensional viscoelastic flow past
of 90 degrees show that:

The thinner displacement thickness does not necessarily imply a
larger frictional force,

For a homogeneous viscoelastic flow, the frictional force in-
creases as the degree of dilatancy of the material increases,
and decreases with increasing degree of pseudoplasticity of the
material.

For a non-homogeneous viscoelastic flow with given material
constants, depending on whether the material is pseudoplastic

or dilatant and the ratio of the material concentration of outer
flow and the concentration at the body, the frictional coeffi-
cient will decrease or increase from that of the homogeneous
flow with the concentration at the body as the Schmidt number
increases, and will approach a limit when the Schmidt number
becomes very large. This limit is the frictional coefficient

of the homogeneous flow with the concentration of the outer

flow.
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From the results obtained in this study, one can see that if the
frictional force should be reduced by applying a soluble coating, then the
coating must have the following properties: (a) highly pseudoplastic ma-
terial, (b) the viscosity is equal to or less than that of the solvent,

(¢) a small Schmidt number.
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