GLASSY CARBONS Semi-Annual Progress Report for the Period January 1, 1973 to June 30, 1973 June 1973 ARPA Order Number: 1824 Program Code Number: 1D10 Contractor: The Regents of the University of Michigan Effective Date of Contract: 1 June 1973 Amount of Contract: $150,000 Contract Number: DAHC15-71-C-0283 Principle Investigator: Professor Edward E. Hucke Department of Materials & Metallurgical Engineering The University of Michigan Ann Arbor, Michigan 48104 (313) 764-3302

The views and conclusions contained in this document are those of the author and should no be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government.

TABLE OF CONTENTS Summary............... I. Introduction............. 1 II. Materials Preparation......... 5 III. Structural Studies........... 8 A. Solid Structure........... 9 X-ray Studies............ 9 Electron Microscopy and Diffraction..... 12 Thermodynamics........ 13 B. Pore Structure............ 32 Small Angle X-ray Scattering....... 35 Electron Scanning Microscopy...... 41 Pycnometry............. 45 Surface Area............ 45 Mercury Porosimetry........46 IV. Property Evaluation............ 46 Hardness.............. 47 Compressive and Ultimate Tensile Strength...47 Sonic Modulus and Internal Friction..... 48 Resistivity...........48 References............. 51 Appendix.............. 53 iii

SUMMARY Measurements of the physical and mechanical properties of a large number of glassy carbon samples produced from controlled pyrolysis of furfural alcohol resins has demonstrated that the structure can be tailored very substantially. The ability to control properties such as density and fine structure leads to interesting and potentially useful mechanical, physical, and chemical properties. Section thickness in excess of 2 inches 0 have been achieved in very fine pored (<100A) glassy carbons in processing times of less than six days. The carbon's fine structure determined by electron microscopy, electron diffraction and X-ray diffraction is not homogeneous on a size scale below 100 Angstroms. The material is 0 paracrystalline with the crystallite size ranging from 10-100A depending on processing, and with some very crystalline features 0 occasionally existing in sizes up to 500A. Thermodynamic measurments of the configurational enthalpy and entropy of various glassy carbons relative to graphite confirms that their structures are significantly different. Comparison of the measured values with calculated entropies shows that there must be substantial disorder existing within the solid carbon rather than its structure being merely microcrystalline graphite. The thermodynamic measurements also yield a measure of the fraction of surface sites covered by oxygen which is found to be higher for glassy carbons than for graphite. v

Helium, xylene, mercury intrusion, small angle X-ray scattering, surface area analysis, and scanning electron microscopy show the pore structure of glassy carbons may be either 0 isolated or interconnected, and in a size range from 5A to 50 microns. Mechanical strength has an approximate inverse relation to the pore size. The pore structure allows a decrease in density, as well as the opportunity to vary mechanical properties and provide chemical filtering and absorption appliances with substantial strength. vi

GLASSY CARBONS I. Introduction This report covers work carried out during the period January 1973 to June 1973. Results of the previous contract periods are summarized in three previous semi-annual reports.1'2'3 Since various property evaluations are being carried out simultanesouly, the data tables included in this report are cumulative and have been revised to reflect additional samples as well as corrected in certain instances where more reliable measurements were obtained. Cumulative data tables are given in Appendix A. Glassy carbons have already been shown to have an unusual set of properties, particularly with respect to inertness and high strength to weight ratio. These attributes, together with the ready availability and high temperature capability of carbon naturally lead to potential applications in a wide variety of extreme conditions, such as reentry shields and sliding seals. Aside from mechanical applications, the unusual inertness in the human body has lead to various biomedical applications, while its electrical properties have shown experimental promise as a semi-conductor switch4, and its molecular sieve properties suggest applications in chemical separations5. Glassy carbon is still a new material and at present is -1

costly and available commercially only in thin sections. The high cost and section limitation both stem from the need to use very long pyrolysis cycles in order to obtain material without cracks. A major objective of this research has been to achieve larger section bodies with rapid processing times. All of the glassy carbons are made from a variety of polymers and gaseous precursors and are hard, strong and light; but many subtle variations exist and considerable tailoring of properties is possible. A major difficulty in comparing the various carbon materials is that no simple criteria are available to distinguish one from the other. In general, many of the physical and mechanical properties show significant differences and one can give a comparison of one material with another only by specifying a complete property set. All of the properties derive ultimately from the structure and therefore it is important to be able to elucidate, control, and specify the structure of the material. The lack of a well-defined crystalline structure severely complicates matters since not only are the usual microstructural features (.1 to 100 microns) important, but also variations in the ultrastructure (3 to 100 Angstroms) are encountered. Even a seemingly straight-forward property such as real density becomes elusive because it can vary on the size 0 scale of the order of 50A. With an understanding of structural variations possible, extension in the range of properties achievable can be made. From data previously available in the literature and the early -2

results of this program2'3, it has become obvious that "glassy carbon" is not a single material, since even though it contains essentially only carbon atoms, its structure can be varied at all size levels. It seems more appropriate to think of glassy carbon as a material that may have short range atomic coordination with a variable state of crystallinity; but in addition, where rather large fractions of thermally stable voids can be arranged at size levels from 5 Angstroms to 50 microns. This accounts for the low density and extremely wide variation in properties that can be achieved. The incorporation of voids into materials is not unique. However, it is unique to have up to 30% void remain stable in material at temperatures close to sublimation when the pore size is well below 100 Angstroms. The porosity is often on such a fine scale and so stable that it must be considered as a feature of the crystal structure. The pore structure may be completely closed giving the material a gas impermeability or interconnected yielding sieve-like properties. In addition to the pore structure, previous results3'6'7 have shown the presence of a small amount of very crystalline regions ranging upwards in size to a micron. The regions are well crystallized graphite and other crystalline polymorphs of carbon. The bulk of the structure also possesses some crystallinity on a scale of the order of 100 Angstroms or less, but the perfection of the crystallites is very poor by usual standards; -3

and while the crystalline perfection may improve after heating to very high temperature, a well-defined graphitic structure is not achieved without unusual methods. The structure is better described as para-crystalline in the sense used to describe certain polymers. In fact, the glassy carbon structures are best considered polymers with vanishing contents of other than carbon atoms. The carbon structures are related to the polymer structures from which they evolve during pyrolysis. This observation follows from the differences obtainable in structure and properties of carbons after heating to 3000~C by merely changing the thermal history of the polymer in a temperature range below 100~C where polymer structure is being formed. Thus, even though most of the atoms present in the precursor polymer are later removed, the resulting carbon inherits part of the structure. The present study is largely concerned with structures obtainable together with the simultaneous measurement of certain key physical and mechanical properties. It is desired to achieve in different samples as wide a variation in structure and properties as possible. The materials are being investigated from the viewpoints of the solid structure and the pore structure, which of course are related. Since significant differences can be induced in both over a size range of more than four orders of magnitude, no single technique is sufficient. Instead, combined techniques must be used. Each is discussed in the following sections of the report. Representative property measurements are being -4

carried out in conjunction with the structural examinations. Due to the large number of samples processed, complete structural and property evaluations are not attempted on every sample. Apparent density, real density, wide angle X-ray diffraction, scanning electron microscopy, and strength measurements are made on every suitable sample. Small angle X-ray scattering, selected area electron diffraction, transmission electron microscopy, thermodynamic analysis, surface area analysis, mercury porosimetry, electrical resistivity, hardness, modulus of elasticity, and internal friction are carried out on a selected small number of samples. II. Materials Preparation During this report period over 380 samples of glassy carbon were prepared with over 100 different processing conditions. The work has continued to concentrate on furfural alcohol and a furfural alcohol resin, Durez 16470 as a carbon yielding material, with para-toluene sulfonic acid (PTSA) as the polymerization catalyst. A single sample made from an experimental heat setting resin (Hercules H-54) has also been produced by molding according to the manufacturer's recommendations. While glassy carbons are obtained in all cases, the yield of good material and response varies for each system. Thus far, the best results have been obtained with the Durez-PTSA system, although this may be due only to the greater experience with this system. -5

Catalyst levels from 2 to 20% by weight based on the monomer or resin content have been explored.'Temperature(s for addition of the catalyst and subsequent curing time and t-emperatures have been varied from several minutes to several weeks with temperatures from -11~C to 150~C. In all cases where a particularly interesting set of properties has been found, a duplicate set of specimens has been made to check reproducibility. In general, reproducibility is fair, but only if meticulous care is exercised to exactly reproduce all conditions. Standard sample cylinders approximately 3 cm in diameter and 20 cm in length have been adopted. Samples up to 15 cm in diameter have been produced from coarser pored material, while a few samples of 5 cm have 0 been made from very fine pored (<100A) material. The latter samples are far thicker than any other similar material previously reported even though the pyrolysis time of 6 days is much shorter than usual commercial practice. The yield of crack free material has continued to improve due mainly to increased care in catalyst addition and prevention of trapped bubbles prior to and during casting. The presence of bubbles has been found to cause cracking in the subsequent pyrolysis of the samples. In order to yield good material, it has been necessary to perform the hardening of the resin systems with a minimum temperature gradient throughout the piece, which often requires cooling after addition of the catalyst. The length of time curing, curing temperature and catalyst level have been varied over wide ranges -6

in order to vary structure. The single-most important factor in obtaining crack free materials in pyrolysis is obtaining a uniform slow heating rate. While heating rates have been varied from 5 to 50~C per hour in the range of room temperature to 1000~C, the yield of crack free material is much greater at the slower rates. Rates up to 200~C per hour appear to cause no difficulty in heating material previously pyrolyzed to at least 700~C. Both flowing nitrogen and reduced pressure pyrolysis have been employed. Thus far, flowing nitrogen appears to yield less difficulty with respect to cracking. On selected samples, carbon recovery and shrinkage data have been gathered. In both cases the data are comparable with those of the literature, namely a carbon recovery based on the total resin weight of about 55% and linear shrinkage of about 29%. However, differences in both shrinkage and recovery of about 10% can be noticed with varying of curing and pyrolysis schedule. The Hercules resin H-54 gave a particularly high carbon recovery of 90.9% based on the original resin weight and a very small shrinkage (8.7%). For these reasons this resin merits further study. Rather subtle differences exist in the cured resins which result in different properties after pyrolysis. Thus far no satisfactory means for quantitatively studying the resin have been developed. Exploratory work using scanning calorimetry has been initiated in an effort to see if the differing final results can be detected from the thermal changes occuring in the polymer stages. -7

The single-most important processing variable is the maximum pyrolysis temperature (HTT) which has long been known to affect the structure and properties. However, all the other processing variables have some influence even though at this time the data show no clear-cut correlations. Part of the difficulty in finding a correlation is undoubtedly due to the fact that the exothermic polymerization causes heating of parts of the sample above the temperatures of intended control. It is also probable that many of the effects noted in mechanical properties may be due to the existence of very fine cracks or possibly residual macroscopic stresses in specimens that appear to be macroscopically sound. In this case, a particular processing change may appear to cause a large effect on the properties, but may only aid in yielding a more flaw free sample. III. Structural Studies While the eventual goal of this study is to correlate structure at various stages of the process with properties, the results thus far are largely drawn from samples taken at only two processing stages. The first stage corresponds to a maximum temperature exposure in the range 650-1000~C, while the second stage is that formed at about 2000~C. Some samples have been examined at HTT between 1000~C and 2300~C, since for given processing conditions maximum values of mechanical properties were noted in this range. The techniques chosen for structural examination fall -8

into two broad categories with respect to the information yielded. The first yields information predominantly about the state of the solid make-up of the structure, while the second deals mainly with the void structure. In the first category this study is employing bright field and dark field transmission electron microscopy, electron diffraction, wide angle X-ray diffraction and scanning and electron microscopy. The last two methods also yield information on pore structure. Additional techniques used to establish the pore sturcture are small angle X-ray scattering, helium pycnometry, mercury porosimetry, and surface adsorption. An attempt is also being made to gain structural information through a precise measurement of the thermodynamics of the equilibrium C = C graphite glassy Since the effort required to carry out the above techniques varies substantially, a complete set of data is collected on a limited number of samples after screening with more routine tests. A. Solid Structure X-ray Studies Several useful measures of the state of non-graphitizing carbons can be derived from wide angle X-ray diffraction. The usual data for d(002), L, d(10), and L have been measured for _c a -9

a sample from each processing condition with the results reported in Table 1 of the appendix. The procedures are the same as previously reported2. The "crystallite size" parameters, L and La are in reality only line broadening parameters and can not be literally interpreted as the size of graphite crystals, since the analysis considers only size broadening of highly crystalline material and ignores strain effects8 and the possibility of a distribution of layer spacings. However, these parameters are useful for comparing different samples of glassy carbon and they do correspond very roughly to a paracrystalline size determined by electron diffraction and microscopy. The results obtained to date are similar to others in that they show an increasing L and La, and decreasing d(002) as the pyrolysis temperature is raised. One such example of this variation can be seen in Figure 3. These results are consistent with the idea that the structure is based on imperfect layers from 15 to 50 Angstroms thick with a layer spacing significantly o larger than graphite (3.35A). As previously reported, a large number of samples, but not all, show multiple reflections within the (002) line giving the impression of a multiple phase material. These samples have been designated as 2P, 3P or NVS in Table 1 where other than a smooth broad 002 peak exists. These results give strong support for the behavior postulated by Houska and Warren9 for carbon blacks where they concluded nearest-neighbor pairs of layers assume the ordered graphite relation independently. Layer spacings -10

0 0 of 3.35A and 3.44A exist presumably corresponding to ordered and disordered pairs, respectively. In the present study the 2P or 3P samples show very good agreement with these values. There is a strong tendency toward multiple reflections with higher pyrolysis temperature, and some correlation with longer curing times and higher catalyst concentration. However, there are many reversals and no satisfactory reason can now be offered to explain why this behavior is sometimes present and sometimes not. It is possible that sharp lines are always present in the (002) but that their intensity is too low to allow resolution in all but exceptional cases. The electron diffraction results support this finding. The only clear-cut correlation between the X-ray data and any processing variable or measured property exists with HTT. While additional correlations may be possible, it appears at present that the X-ray data are not very sensitive indicators of the structural differences that influence the measured properties. The table below indicates the relation of Lc to pyrolysis temperature. HTT 0C Lc, Angstroms 700 15-18 1300-1450 18-26 1500-1700 19-29 2000-2300 25-110 However, for a given HTT, a variation outside the experimental uncertainty exists for samples with no other apparent processing differences. -11

Electron Microscopy and Diffraction Transmission electron microscopy (TEM) is being used to examine the microstructure of selected glassy carbon samples. Samples for direct TEM and selected area electron diffraction (SAED) are prepared essentially the same way reported earlier' 2,3 No new features have been observed by any of the electron microscopic techniques, although many additional examples of all those reported previously3 have been encountered. It may be concluded that all the glassy carbons thus far examined are 0 quite heterogeneous on a size range below 100A. The various techniques used yield structural parameters that are at least approximately consistant within themselves and with the wide angle X-ray data. A large portion of the material is very disordered and 0 appears to be granular on a size range of 20 to 60A. The size and crystalline perfection of these areas increases with HTT but never very closely approaches graphite. The granular material 0 is arranged in platelets (150-500A) and in a few cases rod-like morphology. In addition there is a small but definite amount 0 of very crystalline material which sometimes is larger than 500A. Of this crystalline fraction, most gives a well-defined graphite pattern while some give patterns definitely not assignable to graphite. These areas are detectable well before any evidence is seen in X-ray diffraction patterns. In general, these findings parallel those of Whittaker7, and give a hint to the cause of the variability of properties achievable in the material. -12

Thermodynamics The measurements of the Gibb's free energy change for the equilibrium CGraphite CGlassy have shown encouraging results as a means of structurally differentiating various glassy carbons. This measurement as a function of temperature allows the evaluation of both the configurational enthalpy and entropy. The first gives a measure of the energies of missing atoms, strained bonds and similar defects while the second relates to the disorder relative to perfect crystalline graphite, 2,3,10. The measurement currently employed measures electrically the difference between graphite and glassy carbon maintained in their respective equilibrium oxygen partial pressures at a given temperature. It has been demonstrated that the cell yields a precise value for the equilibrium (g) + CGraphite 2CO(g) when one side of the cell is held at a known oxygen partial pressure, i.e., air. It was also previously shown that the cell gave near zero output with the same graphite on both sides and gave the expected linear free energy versus temperature relation when an unknown glassy carbon was used on one side. The equilibrium could be attained on either heating or cooling and was stable in the temperature range studied, 700~-1025~C. Additional -13

examples of this behavior are given in Fig. 1 for a commercial carbon and for an experimental resin (H-54) supplied by the Hercules Chemical Company. The lines shown are least square fits. The configurational entropy and enthalpy are the slope and intercept at zero absolute temperature, respectively. Values for all the samples thus far analyzed are included in Table 4 and presented in graphical form in Fig. 2. On this plot the origin represents perfect crystalline hexagonal graphite. It is quite apparent that the various glassy carbons are remarkably different in thermodynamic properties. It should be pointed out that the earlier fused salt runs are less precise and subject to some uncertainties due to electrolyte evaporation and other experimental problems. At least several additional runs are planned in order to further check consistency of results between the two kinds of cell. The graphite used for the reference is UCC-grade AGSR. Run ZC-15 shows a trial run using a stress recrystallized graphite. In this case the EMF was 1 mv or less throughout the temperature range giving rise to a rather large experimental uncertainty. Both AH and AS, while small, are opposite in sign from the expected result. Refinements in experimental apparatus and technique may yield more information on this point. The measurements are for the free energy of carbon saturated with oxygen at a total pressure of 1 atmosphere. For many of the samples the oxygen partial pressures under these condiditions are below 10-18 atmospheres. These conditions are -14

-10,000 -lofoool....................-.. -8000- ~ oC e.~ o U i- -4000CGraphite- CGlassy Carbon -2000 700 800 900 1000 TEMPERATURE (~C) FIGURE 1 -15

12,000 I 10,000 8000 E E 6000 O7 < 4000 (1) 2000 ~ 0o ZC Solid Electrolyte [l'0 L] Fused Salt Electrolyte 4 8 12 16 AS (cals/gm-mole.~K) FIGURE 2 -16

marginal'~ for the calcia-doped zirconia electrolytes and therefore yttria-doped thoria and other oxygen sensors are under study at present to extend the measurement range. The lower range is set by time required to reach equilibrium and the conductivity of the solid electrolyte. It appears that 650~C is about the lower practical limit even with crushed samples. Thus far, one series has been completed where only one major variable was changed. The results are shown in Fig. 3, together with a number of other properties measured on the same samples. The entropy and enthalpy show the expected trend, however, it is apparent that not much change occurs from 1250~C to 1800~C. The enthalpy shows a somewhat larger change in the same range. Both entropy and enthalpy are quite large, but are neither the largest nor smallest of all the samples now measured. Values of r1500 cal/mole and 5 cal/mole-~K for enthalpies and entropy have been reported from other types of measurements on related systems1. The X-ray data correlate roughly in this series with the thermodynamic measurements. However, d(002) shows a significant change while the atomic configuration is almost constant. This may well be due to strain relaxation which is confirmed by the lowering of AH. These findings are consistant with the formation of closed pores as indicated by the steady drop in xylene density. This is confirmed by the drop in surface area open to nitrogen (Table 7) and the trend of intrusion pore volume as measured by Hg porosimetry (Table 8). Unfortunately, no reliable void -17

2.10 e- 2 1 OGlassy Carbon Sample#: 321-13; Heated in Vacuum Held for 1 Hour at HTT' 2.09 d -v 1.56 3.68 XYL 1.52 c 3.68.l 002 >1 ". 3.64 18.5 1.48 c 0 co S 3.60 -J 16.5- 9 -1.44 8 __7E +- 7 45F I \ + o, -40 o OUU <0 4" —-I -F AS, <4 3< 1000 1200 1400 1600 1800 HTT (~C) FIGURE 3

measurements from small angle X-ray scattering are yet available for these samples. It is also worthwhile to note that a given value of d(002) does not necessarily correspond to a given disorder. For example, the Beckwith-2000~C sample shows X-ray parameters roughly equal (Table 4) to those of 321-13-1800~C, but it has far higher disorder, i.e., 10.5 versus 4.23 cal/mole-~K. There is also some indication that the atmosphere of high temperature treatment is important. Sample 321-13 shows a higher disorder after treatment to 2000~C in N2 than 1800~C in vacuum. It is also worth noting from Fig. 2 that the highest values of disorder do not necessarily indicate a high value of enthalpy. The cell measurements also yield useful information about the fraction of sites occupied by oxygen by using an independently measured value for the oxygen exchange equilibrium: C02(g) + Cf = CO(g) + C I f O PCO' C KI P C C02 f C + C = C In this formulation C refers to the number of sites for surface oxygen per unit weight and the subscript designates the total number (Ct), the number of occupied (Co), and the number free, (Cf). -19

The value for K determined in the range 8000-14000C is Zn K = _11,575 + 8.50 T The same value of K applies for activated graphite, activated charcoal, and Ceylon graphite and it is therefore presumed to be independent of type of carbon12. Simultaneous exchange of oxygen and carbon can occur according to the reaction CO = CO(g) + n Cf (1) where n is either 0,1, or 2, depending on the type of surface oxygen complex. If one considers the bulk reactions, C(s) + C02(g) = 2CO(g) II CO(g) + ~02(g) = C02(g) (2) CGraphite =CGlassy III together with reaction I, it is possible to derive an expression for Co/Cf as a function of the experimentally measured quantities, C X K-KI K 1- III Cf =f 2 KI In this expression P is the total pressure and is well approximated by P = PCO + PCO 2 -20

while X and Xf are the fraction of occupied and free sites, respectively. Of course, X +X 1 o f and n K - _20,503 + 21.0 II T Figure 4 shows the results for 1 atmosphere for graphite and for sample 321-13 with HTT of 1060~C and 1800~C. On the same plot the measured AGIII are shown for comparison. An interesting observation is that for 321-13 (1800~C) the fraction of occupied sites is significantly higher than for graphite. This may well account for the well-known lower reactivity of glassy carbon relative to graphite. Various attempts to calculate the thermodynamic properties from assumed models of structure are being made. While it may, of course, be possible to find models that yield agreement with the AS and AH measurement, it will of course never be possible to establish the existence of the particular model in this manner. It is, however, possible to show that some structural models are not consistent and can therefore be ruled out. First, it may be asserted that the relatively large configurational entropies already measured can not be rationalized with a purely microcrystalline model. If the material were perfectly crystalline, there would be no configurational entropy associated with the solid. Introduction of large numbers of -21

0.028 o \ 321-13- hr-vac 0.024 — 4000 0.020 2 0.016V \^ / —2000 E u 0.012- \ 0.008i!...0 0.004 - ~ Graphite 0_ —- 2000 600 800 1000 1200 TEMPERATURE (~C) FIGURE 4 -22

atomic defects within layer planes is unlikely and still would not yield entropy values of the magnitude observed. If one uses the estimate of surface area (500 m2/gm) derived from small angle X-ray scattering measurements13 together with reasonable values for surface entropy (1 erg/cm2-0K) and energy (2000 ergs/cm2) for carbon, it would be possible to account for only 1.5 cal/mole-~K in entropy and 3000 cal/mole-~K enthalpy. Assuming a crystal size approximated by 9c and Za from X-ray data would yield as an upper bound interfacial entropy and enthalpy of 1.2 cal/mole-~K and 2500 cal/mole, respectively. Since many of the carbons studied have yielded entropies substantially in excess of any of the estimates, it is concluded that there must be substantial disorder on a scale of atomic dimensions within the solid phase. A first approximation calculation of the entropy introduced by introducing stacking faults through random mixing of rhombohedral stacked sequences and hexagonal sequences can be made as follows: Consider an ensemble of N carbon atoms stacked ideally in n~ layers of equidistant and parallel planes. Let the fraction of carbon atoms participating in rhombohedral and hexagonal stacking be x and y, respectively, then No. of atoms in rhombohedral sequences = Nx n. No. of planes in rhombohedral sequences = Nx N = n.*x No. of planes in hexagonal sequences = ngy -23

n. x No. of sequences of planes stacked ABC = n -y "oY No. of sequences of planes stacked AB = Total No. of sequences = n (x/3 + y/2) The number of ways Q of arranging the n. planes in the above sequences is -n (3' + 2)] x = (nZ3)! (n )! The usual Sterling's approximation yields v 2' n j 2 n x nx ny n y ZnQ n2X +Z) k~n x+ XVI P n P in 9 = n9(3 + 3) 3n[na(| + )] - 3 2n 3 n nQ 2 1 The entropy can then be calculated using for perfect N 4 2 graphite layers. X(%) S, cal/mole-~K 1.020 5.078 10.120 25.216 50.296 where X is the percent of carbon atoms participating in rhombohedral stacking. If it were assumed that the planes were not made up of hexagons as is usually thought, but were instead quinoidal as suggested by Ergunl4, each plane would have three angular -24

rotational positions. In this case the total entropy would be increased, but still not to the values observed. X(%) S, cal/mole-~K 1 1.11 5 1.17 10 1.21 25 1.30 50 1.39 Another model has been assumed using mixed tetrahedral and trigonal bonding. While there is inadequate direct evidence to substantiate the contentions of Ergun and Tiensuul8, Noda and Inagaki 7, Kakinoki 5 and Kakinoki et al. 16 that glassy carbon contains some tetrahedral bonding, there is inadequate precision in the radial distribution functions1920~ to rule out this possibility. Of many crystalline forms in which carbon exists, only four, i.e., hexagonal and rhombohedral graphite and cubic and hexagonal diamonds, can be completely characterized, and these are true allotropes, all occuring naturally. The following coherency relationships have been found2 in hexagonal graphite and hexagonal diamond: (100) Hexagonal diamond//(001) Hexagoial graphite [001] Hexagonal diamond//[210] Hexagonal graphite [010] Hexagonal diamond//[010] Hexagonal graphite The planar and linear atomic densities along the above planes and directions match within 10%. In the proposed structural model -25

various crystalline forms of carbon are considered. It has been assumed that the structure is basically layer type, and the vacant sites and different kinds of carbon-carbon bonds do not interact with each other. A statistical method has been used to calculate the configurational entropy by Boltzman's equation and a first nearest neighbor quasi-chemical approach has been used to compute the configurational enthalpy. The presence of other types of bonds is assumed not to change the energetics of the existing bonds. Configurational enthalpy, entropy, and the corresponding vibrational contributions have been combined to obtain the total Gibb's free energy of the defective crystal. Then, the equilibrium structural properties have been predicted by minimizing the total Gibb's free energy. Consider an ensemble composed of (N+n) atom sites, out of which there are n vacant sites and N occupied by carbon atoms. Let the percentage of tetragonal bonded atoms be X and the real density be d2 gm/cm3. Every trigonal and tetragonal atom [N(1-X/100) and X/100, respectively] has 3/2 c-c bonds in the plane and h c-c bond out of the plane. The number of bonds of all kinds considered in this model along with their bond lengths and energies are listed below. The number of bonds have been calculated using first nearest neighbor interaction and the bond energy has been computed using the bond length-bond energy relationship as proposed by Feilchenfeld22. 1-2 6 L

Quasi-Chemical Parameters Bond Energy Nd Bond Length Kcal/g-mole No. of Bonds d bonds Kind of Bond (Pij) A (Eij) AA 3/2N(1-X/100) 2 1.'415 - 109 BB 3/2N (X/100)2 1.555 - 82 AB 3N(X/100) (l-X/100) Variable Variable A'A' ~N(l-X/100)2 3.35 - 8 B'B' ~N (X/10) 2 1.555 - 82 A'B' N(X/100)(l-X/100) Variable Variable A and B refer to the trigonal and tetragonal atoms, and the dash refers to the bonds out of the plane. The configurational enthalpy of the disordered crystal is: -H (Kcal/g-mole) = P..E.. = 167.5 - 7(X/100)(l-X/100) c. 13 1].j The configurational entropy of glassy carbon of density d2 and having X% of tetragonal atoms is: Sc d- d 2 n d i+(dl-d2)n~ dld -4R [0 1-00 )n 2 + (l —- ]n( 1 —o + (liO]n(l 0] The density of the glassy carbon without missing atoms' (di) can be calculated based on the unit cells of hexagonal graphite and hexagonal diamond. Both the structures have four carbon atoms per unit cell, and hence the volume of the unit cell composed -27

of X percent of diamond type of atoms would be VX = [35.17 - 12.51(X/100)] x 10-24cm3 The density would therefore be: dl = 2.27 (1-0.003557X)-1 It is evident from the papers of Takahashi and Westrum23 and Takahaski et al.24 that the heat capacity, and hence both vibrational enthalpy and entropy of glassy carbon approach the value of graphite at higher temperatures. Hence, in formulating the total Gibb's free energy at higher temperatures, the vibrational enthalpy and entropy of graphite have been used. This implicity but unfortunately assumes that the heat capacity of glassy carbon is not a function of its density, d2, and the degree of disorderness, X. In the proposed model the appropriate values of energy are reasonably well-known for graphite-graphite and for diamonddiamond bonding. However, recent work25 on vaporization indicates that a significant amount of the carbon that vaporizes is in molecular groups. This would affect the value used somewhat. The most serious uncertainties lie in selecting the values to be used for the mixed bonding of the type A'B' and AB. It is reasonable to assume that these energies are bounded by the values for graphite-graphite and diamond-diamond and therefore the calculation has been carried out using three sets of values. Probably the best guess is that the in plane -28

-146 E AB=-82,000 cal/gm-mole bonds EA'' = - 8000 cal/gm-mole bond 300~K -15000 ~d, -154 500 0 0 20 40 60 80 100 X (Percent) ~~~E -.1~FIGURE 5. -162 -170 -1 74 -176 0 20 40 60 80 I 00 X (Percent) FIGURE 5

-159- EAB' -82,000 cat/gm-mote bonjs s I 0 E Boa -8000 cal/gm-mole bonds AB -161 d2s2 E ~ ~~~~~~~~~IG E 6 -163 E 0I~~~~~~~~~~~ 4000000 -169 -lf5 ~ ~ ~ So 0 2 4 6 8 10 90 92 94 96 98 100 X (Percent) FIGURE 6

bonding approaches diamond and the between plane bonding approaches graphite. The results of the free energy minimization for this case are shown in Fig. 5 and 6. The minima always occur at d2 = d- but the shapes and locations of the curves are not very much affected by density. This model yields several interesting features. The system displays the characteristics of phase separation except that it should be noted that in this case the overall X of a material may change since it is not subject to conservation of mass considerations. The results clearly show that at low temperatures, phases of nearly perfect graphitegraphite and diamond-diamond are most stable. The graphite phase is, of course, slightly more stable. As the temperature increases the minima shift away from the end points. It should be pointed out that the minima are very "shallow", i.e., very small free energy differences are involved with shifting of the fraction diamond bonding near the end points, and there is a significant free energy barrier to jump between the "pure" phases. In this case any local regions that by way of early structural arrangement in the precursor polymers involved substantial mixed bonds would tend to move toward the closest pure phase, but could not easily jump the free energy barrier between. Any regions starting with pure bonding would at high temperature develop a modest amount of mixed bonding, but the free energy changes are very small as can be seen in Fig. 6 which shows an expanded scale view of the end point regions. -31

If the mixed bonding energies are changed to assume the interplane and intra-plane mixed bonding of graphite, the diagram assumes a different character. In this case shown in Fig. 7, a minimum exists in the mid-region of the diagram. The minimum is very shallow at low temperatures. These parameters would predict a substantial amount (X50%) of diamond bonding should exist at high temperature. The same general features are shown in the model where interplane mixed bonding is that of graphite while intra-plane mixed bonding is that of diamond (Fig. 8). This is the case of the fabled diamond cross-link. In this case a minima occurs in the center region of the diagram, but the free energy of this minimum is substantially lower than the other cases. Such a model would predict that glassy carbons would have substantial diamond bonding. The predicted density of 1.37 gm/cm3 is not far from the experimental values. From the foregoing results, it is clear that mixed bonding could very well be present in glassy carbons, but that the form of the free energy curves is quite sensitively affected by the exact energy of the mixed type bond. Further work in refinement and extension of model calculations is continuing. B. Pore Structure The details of pore structure are being investigated with a variety of techniques, including small angle X-ray -32

-168 30 0 E 2 E EAS -109,000 cal/gm*mole-bonds -176 \ EA' B' -8000 cal/gm mole bonds 3000~K -184 0 20 40 60 80 100 X (Percent) FIGURE 7

-185 EAB =-109,000 cals/gm-mole-bonds 300~K EABg=-82,000 cals/gm-mole-bonds -8'-186' -- d2 I.OOgm/cc /D d 1.gm/cc -187..I. 41 45 49 53 57 X (Percent) FIGURE 8 -34

scattering, scanning electron microscopy, pycnometry, surface adsorption, and Hg porosimetry. Small Angle X-ray Scattering Small angle X-ray scattering is being used to study microporosity of selected glassy carbon samples. Recent theoretical developments26"28 in small angle X-ray analysis allow the determination of general structural parameters of both the solid and pore phases. Determination of pore size, pore shape, distribution of pore sizes, internal surface area, length of coherence, range of inhomogeneity and X-ray density can be done when a detailed analysis is made. In addition to these parameters, a knowledge of the helium density permits the determination of closed and open porosity. Thus far, only preliminary investigations on a few selected samples has been accomplished due to experimental difficulties. Guinier's analysis is used to determine the pore size. The analysis also indicates whether a sample is monodisperse or polydisperse. Porod's plot is used to obtain a preliminary idea of the variation of electron density in the samples. For the evaluation of Guinier's radius, RG, of pores the approximation I(s) = n2 exp[- 4 72 R2 s2] 3 G is considered valid at sufficiently small angles. Here I(s) is the scattered intensity, n2 is a constant for a particular -35

sample and s is 20/A (20 = scattering angle, A = wavelength of radiation). The plot of log I(s) - s2 should be a straight line if the sample is monodisperse, i.e., pore size distribution is very narrow. The size of the pores may be calculated from the RG if shape of the pores is known. Porod's plot (log I(s) versus s) has been shown to be linear over a wide range of s values if the density transitions between the phases are sharp. A Rigaku-Denki small angle unit equipped with a proportional counter, automatic step-scanner and digital print-out is being used to measure the scattered intensity. As reported earlier3, the slot collimation is being utilized because pinhole collimation gives a very small intensity requiring very long experiments. As expected, slit collimation has reduced the experimental time considerably. Ni-filtered Cu Ka radiation is used with a pulse height discriminator to insure that the proportional counter registers counts from a narrow wavelength range. A graphite crystal monochromator will be employed to provide a more perfectly monochromatic wavelength for accurate analysis. Figures 9-11 show the Guinier's plots for some of the samples studied. In these plots I(s), the observed scattering intensity measured using slit collimation, requires correction for slit smearing. A computer program for making the collimation correction is in progress. The present results have been drawn using the smeared intensity and should be interpreted cautiously. -36

00 0 Beckwith 2000 32 ^ * LMSC-2000 ~-32 j Ls0 l V-10-42 32 GC-20 a 4 GC-10 16 8 It I I 1 2 I 3 I3 0 0.5 I 1.5 2 2.5 3 3.5 2 104 [-2] FIGURE 9. Guinier's plots for various commercial samples -37

64 32 a 317-24 (2000) * 317-45 (2000) D* 318-35 (2000) A 0 315-46 (2000) 16" 4 2 I I I 0 1 2 3 sx 10 [A'2] FIGURE 10. Guinier's plots for four of our samples which obey Guinier's law well. -38

)b^~ m"r* 311-19 (750) * 312-31 (2000) 64 A 318-42 (2000) 32 6 16 0 1 2 3 s2 X 104 [ 2] FIGURE 11. Guinier's ps plots for samples sowing polydispersity. -39

In most of the cases the log I(s) -s2 plot is found to obey Guinier's law; i.e., a linear relationship from very low o s2 to about s2 = 2x10-4 A-2. Figure 9 shows the plots for five commercial samples which obey Guinier's law very well. The RG values for these samples along with the reported values are given in Table 5. As can be seen, our values are much higher than values reported in the literature. One possible reason for this discrepancy may be the collimation corrections yet to be made. Guinier's plot for several samples which obey the law well are shown in Figure 10. One can, however, see that in all of these cases the intensity tends to rise at very low s2 values, whereas this was not observed in any commercial samples. This indicates that in the samples shown in Figure 10, pores larger than given by RG are present though probably in small percentages. Figure 11 shows Guinier's plots for samples 311-19 (750~), 312-31 (2000~) and 318-42 (2000~), none of which obey Guinier's law well. In 312-31 (2000~) and 318-42 (2000~) a straight line portion at higher s2 values may be imagined. However, 311-19 (750~) does not follow a linear relationship at all. It may be inferred for 312-31 (2000~) and 318-42 (2000~) that most of the pores are of a size given by the respective RG values, however a substantial fraction is of larger size. The sample 311-19 (750~) is completely polydisperse. Table 6 gives RG values for samples made at the University of Michigan. -40

The wide range of pore size sometimes encountered is contrary to the notion that glassy carbons have a very narrow pore size range. Figures 12-14 show Porod's plots for various samples studied. Figure 12 shows equivalent plots for commercial samples. All the plots have two regions. First, a very flat region at lower s values. The second at higher s values is a straight line. The slopes of the straight line portion varies from sample to sample between 2.8 and 3.5. The straight line portion indicates sharp density transition from one phase to another as pointed out by Porod. Figure 13 shows that the regions at lower s values are not as flat as observed for commercial samples, however, a straight line portion is present in all cases. Figure 14 plots for polydisperse samples show the absense of flat regions. One can see that 311-19 (750~) which is completely polydisperse obeys Porod's law very well from very low to very high s values. Further conclusions must await suitable corrections for collimation. Electron Scanning Microscopy At least one fracture surface of each sample has been photographed by SEM. The pictures have proved valuable in checking the uniformity and size of solids and voids in all but 0 the finest material having pore sizes below 100A. The pore size values obtained agree reasonably with the pore size determined by Hg porosimetry, while the particle size agrees reasonably -41

100 10 LMSC-2000 Beckwith-2000- \-.GC-10 GC-20 0. I 10 s[1.13 x 0-I'] FIGURE 12. Porod's plots for various commercial samples. -42

10 i-." - 317-24(2000) 318-35 317-45(200 0.I1. I I 0.1 I 10 s[l.13 x 10' A'] FIGURE 13. Porod's plots for some of our samples obeying Guinier's law well. -43

312-31 (2000) I0 — 318-42(2000) 0.1 s [1.13xl& 10'' FIGURE 14. Porod's plots for samples showing polydispersity. -44

with impregnated polished sections obtained with the light microscope. No structural features in addition to those previously reported1'2'3 have been encountered. Pycnometry Xylene immersion density measurements have been substituted for He density due to the inability to achieve accurate, reproducible results. The xylene densities are quite reproducible and show much less sample to sample variation. It was found that the grinding of samples in either alumina or tungsten carbide lined ball mills introduced enough wear material from the liner and/or balls to cause a measurable difference in density. The presence of A1203 or WC was confirmed by X-ray analysis of the powders. This is a remarkable result in view of the high hardness of the liner materials. At present, samples are pulverized by a small steel hand hammer mill. If prolonged crushing is avoided, no significant iron is picked up. Data for samples thus far measured, together with the geometrically determined apparent densities, are given in Table 9. Figure 3 shows one example of the variation of xylene density with HTT. Surface Area Additional surface area data have been gathered since those in Table 7 reported previously3. One series (321-13) was run to establish the change in surface area with HTT. In this case a sample heated only to 367~C was included. It showed a relatively large surface area (257 m2/gm) but smaller than that -45

found for many 700~C samples. At higher temperatures the surface area falls continuously in line with expectation. However, comparing the Hg pore volume and pore size distribution (Table 8) indicates that this drop in surface must be associated with a 0 pore size smaller than 30A, the approximate lower limit for Hg intrusion. Mercury Porosimetry Mercury porosimetry was used to determine pore size distribution, interconnected pore volume, density and median pore diameter values. A summary of data obtained to date is shown in Table 8. In most cases, a rather sharp pore size distribution was observed, however, a few samples yielded a wide distribution. Results to date indicate the possibility of tailoring a pore spectrum at all size levels. Higher processing temperature (HTT) closes the very fine pores and causes them to grow according to surface area and X-ray scattering results. The macropore system, even though it 0 is very fine (330A) in some cases, changes relatively little up to 2000~C. IV. Property Evaluation Because the glassy carbons under investigation were produced under a wide range of processing variables, a large degree of variation in structure and physical properties was observed. The mechanical properties investigated thus far include hardness (DPH), compressive strength, ultimate tensile strength (Dimetral -46

compression) and sonic modulus of elasticity. In addition, internal friction and electrical resistivity were measured on selected samples. Hardness Hardness testing has been temporarily suspended, since it has thus far been impossible to find a technique that yields meaningful data. Compressive and Ultimate Tensile Strength Further results are reported in Table 9 and presented on "reduced" basis in Table 10. Values were revised where additional data warranted change. Various correlations have been attempted between strength properties and processing variables, apparent density, real density and pore size without great success. The raw data show a broad correlation with apparent density; with higher strength occurring at higher density. Also, a fair correlation exists with intrusion pore diameter, higher strengths with smaller pores. An additional correlation between strength and mean carbon path determined microscopically was attempted, but the results were not encouraging. The reduced data shown in Table 10 show less range than the raw data. As one method of data reduction, the various mechanical properties are divided by density to yield value of specific strength. On a specific basis these carbon materials compare very favorably with the best available structural materials. Considering the high temperature capability of -47

carbon, the comparison becomes even more favorable. In addition, the area dependent properties have been normalized by either multiplying or dividing by the area fraction carbon, which is proportional to the volume fraction unavailable to He (i.e., P /Pl e), assuming all pores open to He. It can be seen that this normalization considerably reduces the range of values exhibited by the various carbons. However, since the compressive and tensile strengths are certainly dependent upon macro-structure as well as fine scale binding of carbon atoms, some range of reduced properties is to be expected. Sonic Modulus and Internal Friction Additional sonic modulus data have been included in Tables 9 and 10. No new conclusions can be drawn. However, the previous conclusion that glassy carbons have a wide range of modulus is again confirmed. This conclusion is warranted even when made on an area reduced basis. Internal friction measurements have been discontinued for the present. While remarkable differences in behavior of the various samples have been noted, no straightforward method of correlating these changes to structure has been developed. Resistivity Refinements of the measuring set-up have allowed more accurate measurements, particularly at low resistivity. Cumulative data is presented in Tables 9 and 10. It is interesting to note that the resistivity of nearly all samples on a reduced basis falls between 10-3-10-4 -48

Q2-cm which is the same as for other glassy carbon materials pyrolyzed to 2000~C. -49

References 1. E. E. Hucke, "Glassy Carbons", Semi-Annual Report, January 1972, Contract No. DAHC15-71-C-0283. 2. Ibid, June 1972. 3. Ibid, January 1973. 4. K. Antonowicz, A. Jesmanowicz, and J. Wieczorek, Carbon 10, 81 (1972). - 5. Joseph Lawrence Schmitt, Jr., "Carbon Molecular Sieves as Selective Catalyst Supports", Ph.D. Thesis, The Pennsylvania State University, December 1970. 6. A. G. Whittaker and P. L. Kinter, Science 165, 589 (1969). 7. A. G. Whittaker and B. Tooper, 11th Biennial Conference on Carbon, Extended Abstracts and Program, Gatlinburg, Tennessee, June 4-8, 184 (1973). 8. S. Ergun, 11th Biennial Conference on Carbon, Extended Abstracts and Program, Gatlinburg, Tennessee, June 4-8, 189 (1973). 9. C. R. Houska and B. E. Warren, J. Appl. Phys. 25, 1503 (1954). 10. E. E. Hucke and S. K. Das "A Proposed Method for the Evaluation of the Thermodynamic Properties of the Glassy CarbonGraphite Equilibrium," Preliminary Reports, Memoranda, and Technical Notes of the ARPA Materials Summer Conference, July 1971, Contract No. DAHC15-71-C-0253. 11. M. C. Shen and A. Eisenberg, Rubber Chemistry and Technology 43, 95 (1970). 12. S. Ergun and M. Mentser, Chemiztr y and Physicz oa Carbon, Vol. 1, p. 203, Marcel Dekker, Inc., New York, 1965. 13. R. Perret and W. Ruland, J. Appl. Crystallography 5, Part 3, 183 (1972). 14. S. Ergun and R. R. Schehl, Carbon 11, 127 (1973). 15. J. Kakinoki, Acta Cryst. 18, 578 (1965). 16. J. Kakinoki, K. Katada, T. Hanawa and T. Ino, Acta Cryst. 13, 171 (1960). 17. T. Noda and M. Inagaki, Bull. Chem. Soc. Japan 37, 1534 (1964). -51

18. S. Ergun and V. H. Tiensuu, Acta Cryst. 12, 1050 (1959). 19. R. R. Lindberg, "Radial Distribution Analysis of Glassy Carbon, Masters Thesis, Stanford University, October, 1969. 20. S. Ergun, to be published in Phys. Rev. 21. J. S. Kasper, Abstracts, papers presented at the Eighth Conference on Carbon, Abstract No. 179, Carbon 6, 237 (1968). 22. H. Feilchenfeld, J. Phys. Chem. 61, 1133 (1957). 23. Y. Takahashi and E. F. Westrum, Jr., J. Chem. Thermo. 2, 847 (1970). 24. J. Yokoyama, M. Murabayashi, Y. Takahashi and T. Mukaibo, TANSO 65, 44 (1971) (in Japanese). 25. R. T. Meyer, 11th Biennial Conference on Carbon, Extended Abstracts and Program, Gatlinburg, Tennessee, June 4-8, 55 (1973). 26. G. Porod, Z. Kolloid 124, 83 (1951). 27. G. Porod, Z. Kolloid 125, 51 (1952). 28. W. Ruland, J. Appl. Cryst. 1, 308 (1968). -52

APPENDIX -53

TABLE 1 SUMMARY OF X-RAY DATA (All values in Angstroms) Symbols Used in the Tables Experimental Condition All the samples were run in a Phillips-Norelco Diffractometer using CuKa radiation under the following conditions: Tube Voltage: 45KV Tube Current: 14mA Proportional Counter Voltage: 1.622KV Proportional Counter Time Constant: 4 sec. Chart Speed: 1/2 inch/min. Scan Speed: 1.2 degree (20)/min. Slits: 10/006"/1~ at Primary/Scattering/Secondary Sample used of thickness of 3mm in all cases except where otherwise designated. The value of d(10) refers to the unresolved (100) and (101) peak. (002) Peak Type S: "Smooth" (or single phase) Peak NVS: "Not Very Smooth" Peak 2P: "2 Phase" Peak 3P: "3 Phase" Peak (002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La Graphite, solid S 3.37 Very 2.13 Very 3mm & lmm thick High High Graphite S 3.37 Very 2.13 Very High High Graphite, natural S 3.35 Very 2.13 Very (Reported) High High Graphite, synthetic S 3.37 Very 2.13 Very (Reported) High High -54

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La Commercial Samples Lockheed, solid 2000 S 3.53 21.2 2.09 98.0 Lockheed, reported 2000 3.56 19.0 - Beckwith, solid 2000 S 3.55 23.2 2.09 112.0 Beckwith, reported 2000 3.54 15.0 -- 50.0 Tokai, solid 1000 S 3.70 14.2 2.07 43.7 Tokai, reported 2000 - -- -- -- Atomergic Chemicals 2500 S 3.40 38.4 2.09 69.0 Co., V-25, solid Atomergic Chemicals 2500 Co., V-25, reported Atomergic Chemicals 1000 NVS 3.44 42.0 2.10 71.0 Co., V-10 Atomergic Chemicals 1000 Co., V-10, reported Hercules H-54 1795 S 3.49 28.0 2.09 51.0 311-9 2000 S 3.54 28.0 2.10 57.0 311-19 700 S 3.63 18.0 -- -- 311-20 2000 S 3.53 27.2 2.10 46.0 311-21 2000 S 3.52 27.2 2.10 54.0 311-22 2000 2P 2.49 29.0 2.12 >125.0 3.45 311-25 700 S 3.70 21.0 -- -- 311-30A 2000 S 3.51 23.4 2.10 54.0 311-31 2000 S 3.50 25.0 2.10 51.0 312-8 2000 S 3.52 27.0 2.10 42.0 312-9 2000 2P 3.52 27.0 2.10 57.0 3.45 312-10 700 S 3.65 16.2 -- -- 312-10 2000 S 3.49 35.0 2.11 53.0 312-14 2000 S 3.51 29.0 2.09 61.0 312-14A 2000 3P 3.46 32.0 2.12 >150.0 3.43 3.36 312-15 2000 S 3.52 27.1 2.11 51.0 312-16 2000 3P 3.47 32.1 2.11 51.0 3.43 3.36 312-21 2000 S 3.51 30.8 2.10 57.0 312-26 2000 S 3.51 27.8 2.09 48.0 312-28 2000 S 3.51 27.2 2.10 51.0 312-29 2000 S 3.51 34.0 2.10 57.0 312-31, solid 2000 S 3.57 27.6 2.10 56.0 312-32 2000 S 3.51 30.8 2.10 54.0 312-33 2000 NVS 3.48 30.8 2.10 52.8 -55

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 312-34 2000 2P 3.46 33.0 2.11 46.2 3.44 312-39 2000 S 3.49 29.8 2.10 53.0 312-40 2000 2P 3.48 30.1 2.09 54.0 3.45 312-43 2000 2P 3.48 33.2 2.11 51.0 3.43 312-44 2000 2P 3.48 42.0 2.11 51.0 3.44 312-48 2000 3P 3.46 30.4 2.10 37.0 3.43 3.37 312-49 2000 S 3.52 31.1 2.11 61.0 315-1 2000 S 3.53 27.2 2.10 48.0 315-2 2000 2P 3.49 29.0 2.10 54.0 3.43 315-3 700 S 3.71 16.2 -- 315-5 2000 2P 3.49 29.0 2.11 54.0 3.44 315-8 2000 2P 3.49 28.2 2.10 56.0 3.44 315-9 2000 2P 3.47 33.0 2.11 47.0 3.44 315-14 2000 S 3.53 26.3 2.10 54.0 315-18 2000 3P 3.40 45.0 -- -- 3.382 3.351 315-20 680 S 3.70 16.3 - 315-20A 2000 2P 3.53 28.0 2.10 57.0 3.43 315-21C 2000 2P 3.52 27.8 2.10 57.0 3.43 315-22 665 S 3.67 16.4 -- -- 315-22 2000 S 3.52 28.0 2.10 51.0 315-24A 2000 2P 3.47 20.0 3.38 315-25A 2000 S 3.52 26.5 2.09 48.0 315-26B 2000 3P 3.50 26.5 2.10 46.0 3.41 3.37 315-26C 680 S 3.69 17.1 -- -- 315-28 2000 2P 3.52 26.0 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 -- -- 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2 -- -- 315-34 680 S 3.69 15.4 -- -- -56;

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 315-36 2000 3P 3.52 24.3 2.10 48.5 3.43 3.37 315-37 680 S 3.63 17.5 -- -- 315-37 2000 S 3.50 26.3 2.098 42.0 315-38 680 S 3.63 18.8 -- -- 315-38 2000 2P 3.49 27.1 2.097 46.0 3.43 315-39 2000 2P 3.53 27.2 2.098 57.0 3.43 315-39 680 S 3.63 20.0 -- -- 315-40 2000 S 3.54 25.6 2.097 51.0 315-41 2000 NVS 3.49 23.6 2.098 51.0 315-42 2000 S 3.56 27.2 2.098 46.0 315-43 2000 NVS 3.52 24.3 2.098 51.0 315-43 700 S 3.67 17.4 -- -- 315-44 2000 2P 3.55 23.1 2.10 40.2 3.45 315-45 2000 S 3.49 27.2 2.10 46.6 315-46A 2000 2P 3.55 23.1 2.098 57.0 3.43 316-6 2000 NVS 3.50 27.0 2.11 57.0 316-7, Run 1 2000 S 3.49 28.0 2.10 45.0 316-7, Run 2 2000 S 3.52 27.0 2.10 53.0 316-15 2000 2P 3.40 32.0 -- -- 316-28 2000 S 3.50 27.2 2.10 51.0 316-32 2000 2P 3.42 53.0 -- -- 3.40 317-1 700 S 3.71 20.0 -- -- 317-1 2000 S 3.46 45.0 2.11 63.0 317-2 700 S 3.68 15.7 -- -- 317-2 2000 NVS 3.48 24.6 2.09 47.0 317-6 700 S 3.71 13.0 -- -- 317-6 2000 NVS 3.55 22.0 2.10 55.0 317-7 700 S 3.68 16.0 -- -- 317-7 2000 NVS 3.46 27.5 2.10 50.0 317-8 700 S 3.71 11.5 -- 317-8 2000 2P 3.56 20.0 2.10 44.0 3.46 317-10 2000 NVS 3.48 26.0 2.10 68.0 317-11 700 S 3.71 16.3 317-13 700 S 3.72 15.0 - 317-13 2000 NVS 3.47 24.0 2.08 66.0 317-14 700 S 3.71 15.7 317-14 2000 NVS 3.45 27.0 2.09 46.0 317-15 700 S 3.71 15.3 317-15 2000 NVS 3.47 26.0 2.09 54.0 317-16 2000 S 3.54 24.0 2.09 53.0 c. C,,,

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 317-18 2000 S 3.59 21.0 2.09 58.0 317-19 700 S 3.68 16.5 - 317-19 2000 NVS 3.49 30.0 2.09 52.0 317-20 700 S 3.66 17.5 -- -- 317-20 2000 S 3.50 25.6 2.09 48.0 317-24, Run 1 2000 NVS 3.52 24.0 2.09 45.0 317-24, Run 2, solid 2000 NVS 3.49 21.0 2.09 50.0 317-25 2000 S 3.53 20.0 2.09 50.0 317-26, Run 1 2000 NVS 3.48 26.0 2.09 48.0 317-26, Run 2, solid 2000 2P 3.46 24.2 2.10 51.0 3.43 317-28 2000 NVS 3.46 25.0 2.09 52.0 317-29 700 2P 3.43 21.5 -- -- 3.42 317-29, Run 1 2000 NVS 3.43 65.0 317-29, Run 2 2000 NVS 3.426 75.0 317-30 2000 2P 3.44 29.5 -- -- 3.40 317-31A 2000 S 3.58 22.0 2.10 46.0 317-32 700 S -- -- -- -- 317-32 2000 2P 3.51 23.6 2.08 49.0 3.48 317-33 700 S 3.68 17.0 -- -- 317-33 2000 S 3.414 92.0 2.10 49.0 317-34 700 S 3.68 17.0 -- -- 317-34 2000 3P 3.44 30.0 2.09 50.0 3.42 3.36 317-35 700 S 3.71 16.0 -- -- 317-35 2000 3P 3.50 26.5 2.10 62.0 3.43 3.36 317-37 700 S 3.68 15.6 -- -- 317-37 2000 NVS 3.43 43.0 2.10 63.0 317-38 700 S 3.68 15.6 -- -- 317-38 2000 3P 3.54 25.0 2.09 51.0 3.43 3.37 317-39, Run 1 2000 3P 3.45 28.0 2.10 52.0 3.43 3.36 317-39, Run 2, 2000 3P 3.52 24.2 2.09 45.0 solid, lmm thick 3.42 3.37 317-39, Run 3, 2000 3P 3.52 23.5 2.09 49.0 solid, Imm thick 3.41 3.37 -58

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 317-40 2000 3P 3.49 24.8 2.10 48.0 3.42 3.36 317-41A 2000 S 3.53 26.5 2.10 48.0 317-41B 2000 S 3.53 28.0 2.10 54.0 317-42 2000 3P 3.49 26.0 2.10 42.6 3.42 3.36 317-43 2000 3P 3.45 26.0 2.09 56.0 3.42 3.35 317-44 2000 3P 3.48 30.0 2.09 55.0 3.42 3.36 317-45, solid, 700 S 3.75 12.9 -- -- lmm thick 317-45, Run 1 2000 3P 3.48 25.0 2.09 60.0 3.40 3.35 317-45, Run 2 2000 3P 3.46 24.0 2.09 42.0 3.42 3.35 317-46 2000 3P 3.43 31.5 2.10 75.0 3.42 3.36 317-47 2000 3P 3.50 27.0 2.10 60.0 3.42 3.36 317-48, Run 1 700 S 3.71 16.2 317-48, Run 2 700 S 3.87 17.4 -- -- 317-48, Run 1 2000 3P 3.45 40.0 2.10 60.0 3.43 3.37 317-48, Run 2 2000 3P 3.46 34.0 2.10 59.0 solid, lmm thick 3.43 3.37 317-49 700 S 3.71 15.7 - 317-49, Run 1 2000 3P 3.49 29.0 2.09 62.0 3.41 3.35 317-49, Run 2 2000 3P 3.46 33.0 2.09 60.0 solid, lmm thick 3.44 3.37 317-50 700 S 3.67 15.6 318-1 2000 S 3.55 28.0 2.10 54.0 318-2 2000 S 3.51 27.0 2.10 55.0 318-3, Run 1 700 S 3.70 16.7 -- 318-3, Run 2 700 S 3.69 16.7 -_ L o -

(002) Temp. Peak Sample Designation, (oC) Type d(002) Lc d(10) La 318-3 2000 2P 3.46 26.0 2.11 51.0 3.41 318-4 700 S 3.66 16.8 318-6A 2000 S 3.50 31.0 2.09 59.0 318-7, Run 1 2000 S 3.50 28.0 2.10 65.0 318-7, Run 2, solid 2000 S 3.49 28.0 2.10 45.0 318-8, Run 1 2000 S 3.45 39.0 2.10 63.0 318-8, Run 2 2000 S 3.45 43.5 2.10 77.0 solid, 2mm thick 318-9 2000 2P 3.48 32.5 2.11 57.0 3.46 318-10 520 S 3.74 15.2 - 318-10 2000 S 3.49 33.8 2.12 50.0 318-11, Run 1 2000 NVS 3.42 77.0 2.10 38.0 318-11, Run 2 2000 NVS 3.43 78.0 2.11 40.0 318-12 2000 3P 3.49 31.4 2.09 59.0 3.43 3.36 318-13 2000 NVS 3.42 44.0 2.10 58.0 318-14 700 S 3.65 16.0 - 318-14 2000 3P 3.48 30.5 2.10 60.0 3.43 3.36 318-15, Run 1 700 S 3.75 16.0 318-15, Run 2 700 S 3.75 15.1 -- -- 318-15 2000 3P 3.45 30.2 2.10 60.0 3.42 3.37 318-16 700 S 3.72 15.7 -- 318-16 2000 2P 3.43 39.0 2.09 49.0 3.41 318-17 700 S 3.68 16.7 -- -- 318-17 2000 NVS 3.45 42.0 2.11 59.0 318-18, Run 1 700 S 3.68 16.4 -- -- 318-18, Run 2 700 S 3.71 16.3 -- -- 318-18 2000 S 3.55 25.6 2.10 44.0 318-19 2000 S 3.52 26.0 2.09 59.0 318-20 700 S 3.67 16.0 -- -- 318-20 2000 S 3.53 21.0 2.09 48.0 318-21, Run 1 700 S 3.78 14.0 -- -- 318-21, Run 2 700 S 3.75 15.4 -- -- 318-21 2000 S 3.55 23.6 2.10 55.0 318-22 700 S 3.70 15.4 -- -- 318-22, Run 1 2000 NVS 3.44 65.0 2.10 55.0 318-22, Run 2 2000 NVS 3.44 64.0 2.11 54.0 318-23 700 S 3.74 16.0 -- 318-23 2000 S 3.63 63.0 2.10 73.0 318-24 700 S 3.64 16.7 --

(002) Temp. Peak Sample Designation (oC) Type d(002) Lc d(10) La 318-24 2000 S 3.44 45.0 2.10 68.0 318-26, Run 1 700 S 3.69 15.7 - 318-26, Run 2 700 S 3.75 16.1 318-26, Run 3 700 S 3.69 16.7 -- - 318-27 2000 2P 3.45 35.4 2.10 47.0 3.41 318-28 700 S 3.75 18.0 -- 318-28 2000 2P 3.47 27.0 -- 3.42 318-29, Run 1 2000 NVS 3.45 30.0 2.08 62.0 318-29, Run 2, 2000 2P 3.50 30.5 2.10 65.0 solid, lmm thick 3.44 318-29, Run 3 2000 2P 3.52 31.0 2.10 60.0 3.42 318-30 700 S 3.64 15.2 -- -- 318-30, Run 1 2000 2P 3.48 34.1 2.11 69.0 3.43 318-30, Run 2 2000 3P 3.45 31.0 2.11 63.0 3.41 3.36 318-31, Run 1 2000 2P 3.45 35.5 2.10 64.0 3.43 318-31, Run 2 2000 3P 3.47 31.0 2.11 63.0 3.41 3.36 318-32, Run 1 700 S 3.64 15.7 318-32, Run 2 700 S 3.63 16.0 -- -- 318-32 2000 S 3.44 47.0 2.10 65.0 318-33 700 S 3.66 16.7 -- 318-33 2000 NVS 3.46 28.0 2.11 64.0 318-34 700 S 3.63 16.5 -- -- 318-34 2000 3P 3.49 37.0 2.10 59.0 3.43 3.36 318-35 700 S 3.71 15.3 -- -- 318-35 2000 3P 3.50 34.0 2.11 67.0 3.44 3.37 318-36 700 S 3.68 17.0 -- -- 318-36 2000 2P 3.51 28.0 2.10 49.0 3.44 318-37 700 S 3.71 16.1 -- -- 318-37 2000 3P 3.46 33.6 2.10 52.0 3.43 3.376 318-38 700 S 3.71 15.6 318-38 2000 3P 3.47 28.0 2.10 49.0 3.43 3.37

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 318-39, Run 1 700 S 3.71 17.0 318-39, Run 2 700 S 3.65 17.2 -- solid, lmm thick 318-39 2000 S 3.51 26.1 2.09 60.0 318-40 700 S 3.71 15.0 - 318-40 2000 2P 3.52 28.0 2.11 54.0 3.45 318-41 700 S 3.71 14.8 - 318-41 2000 S 3.50 28.0 2.09 57.0 318-43, Run 1 700 S 3.69 17.0 318-43, Run 2 700 S 3.71 13.8 -- -- solid, 1mm thick 318-43, solid 2000 S 3.44 31.0 2.12 58.0 318-44 700 S 3.72 15.6 318-44 2000 S 3.55 27.2 2.10 44.0 318-45 700 S 3.71 15.7 -- -- 318-45 2000 S 3.56 25.4 2.10 46.0 318-46 700 S 3.71 15.9 - 318-46, solid 2000 S 3.53 26.2 2.11 51.0 lmm thick' 318-47 700 S 3.71 15.0 -- 318-47 2000 NVS 3.49 29.0 2.10 48.0 318-48, Run 1 2000 S 3.53 26.8 2.10 54.0 318-48, Run 2 2000 S 3.52 29.2 2.10 42.0 318-50, Run 1 700 S 3.71 14.3 -- -- 318-50, Run 2 700 S 3.71 15.5 -- -- 318-50 2000 S 3.53 26.0 2.10 46.0 318-51 2000 S 3.56 27.2 2.10 56.0 318-52 2000 S 3.53 26.5 2.10 54.0 318-53, Run 1 2000 S 3.52 26.5 2.10 54.0 318-53, Run 2 2000 S 3.54 30.0 2.10 60.0 318-54 700 S 3.66 17.0 -- -- 318-55 700 S 3.71 15.2 -- -- 318-56 2000 S 3.54 27.0 2.10 54.0 318-58 700 S 3.71 18.0 -- -- 318-58 2000 NVS 3.51 28.2 2.10 51.0 318-59 700 S 3.68 16.7 -- -- 318-59 2000 S 3.51 26.0 318-60 700 S 3.70 15.7 318-60 2000 2P 3.47 32.0 3.44 318-61 700 S 3.71 18.6 -- -- 318-61 2000 S 3.52 23.3 2.09 55.0 318-62 700 S 3.70 15.3 -- -- 318-62 2000 S 3.56 22.5 2.10 51.0 321-1 700 S 3.66 5.0 -- -- 321-2 700 2P 3.63 17.4 -- - 3.57

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 321-2 2000 3P 3.54 22.8 2.10 51.5 3.43 3.38 321-3 700 S 3.64 17.4 321-3 2000 S 3.53 24.3 2.10 51.0 321-4 700 S 3.64 17.2 -- -- 321-4 2000 - - -- - 321-5 700 S 3.63 15.4 -- -- 321-5 2000 S 3.49 26.4 2.09 53.7 321-6 700 S 3.64 17.0 -- -- 321-6 2000 S 3.54 27.7 2.10 48.0 321-7 700 S 3.69 18.0 -- -- 321-7 2000 -- - 321-8 700 S 3.69 17.5 321-8 2000 -- 321-9 700 S 3.67 17.4 321-9 2000 - -- -- 321-10 700 S 3.67 17.0 321-10 2000 - -- -- 321-11 700 S 3.71 17.0 -- -- 321-11 2000 2P 3.54 27.2 2.10 65.0 3.46 321-12 700 S 3.63 16.8 -- -- 321-12 2000 S 3.53 26.4 2.094 56.0 321-13 700 S 3.66 17.0 -- 321-13 2000 2P 3.49 33.2 2.09 61.0 3.42 321-16A 2000 3P 3.50 30.8 2.10 57.0 3.43 3.36 321-16B 2000 S 3.50 28.8 2.10 44.0 321-16C 700 S 3.63 15.2 -- -- 321-17 700 S 3.60 18.7 - 321-17B 2000 S 3.49 28.8 2.10 44.0 321-18A 2000 3P 3.50 29.8 2.10 49.0 3.43 3.37 321-18B 700 S 3.63 15.2 -- -- 321-19A 2000 2P 3.54 25.0 2.09 46.0 3.426 321-19A 700 S 3.63 17.1 - 321-19B 2000 NVS 3.43 39.0 2.10 53.8 321-20A 700 S 3.63 17.5 321-20A 2000 3P 3.52 28.0 2.10 61.0 3.42 3.36 321-20B 2000 3P 3.53 37.0 2.10 46.0 3.426 3.37 321-21A 700 S 3.63 18,0

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 321-21A 2000 NVS 3.43 41.6 2.10 51.0 321-21B 700 S 3.64 18.4 321-21B 2000 S 3.52 27.0 2.10 57.0 321-22A 2000 2P 3.52 27.6 2.10 53.0 3.43 321-22B 700 S 3.70 16.1 321-23 2000 S 3.49 33.0 2.10 54.0 321-23A 700 S 3.63 18.4 321-23B 700 S 3.36 16.5 321-23B 2000 3P 3.52 29.6 2.10 51.0 3.43 3.36 321-24 700 S 3.70 15.8 321-24A 700 S 3.63 16.2 321-24B 700 S 3.63 16.5 321-24B 2000 S 3.43 35.4 2.09 57.0 321-25 700 S 3.63 18.4 321-25 2000 NVS 3.47 30.8 2.10 60.8 321-25A 700 S 3.60 21.0 - 321-25A 2000 NVS 3.43 40.2 2.10 60.5 321-26 700 S 3.67 15.0 321-26 2000 S 3.52 27.2 2.094 48.5 321-26A 700 S 3.63 18.1 321-26A 2000 S 3.52 27.2 2.094 54.0 321-27 2000 S 3.52 29.8 2.10 51.0 321-29 700 S 3.63 16.8 321-29 2000 3P 3.49 24.8 2.094 58.0 3.40 3.35 321-30 700 S 3.63 19.6 321-31 2300 3P 3.44 49.0 2.10 60.5 3.41 3.37 321-31A 2300 NVS 3.40 90.0 2.11 58.0 321-31B 2300 3P 3.49 37.0 2.11 69.0 3.43 3.37 321-31C 700 S 3.60 18.8 321-31C 2300 3P 3.49 34.5 2.11 69.0 3.426 3.37 321-31D 700 S 3.63 17.4 321-31D 2300 S 3.47 37.2 2.11 69.0 321-31E 700 S 3.63 17.4 321-31E 2300 NVS 3.426 61.6 2.11 69.0 321-31F 700 S 3.60 18.5 321-31F 2300 S 3.45 44.0 2.10 69.0 321-31G 2300 2P 3.47 35.0 2.10 56.0 3.43 -64

(002) Temp. Peak Sample Designation (~C) ] Type d(002) Lc d(10) La 321-31I 2300 2P 3.49 40.0 2.11 69.0 3.38 321-32 700 S 3.60 18.9 - 321-34 2300 S 3.42 57.5 2.10 78.5 321-34A 2300 S 3.426 51.4 2.10 42.0 321-36A 2300 S 3.47 53.6 2.11 64.5 321-36B 700 S 3.63 18.2 -- -- 321-36C 2300 S 3.43 70.0 2.10 46.0 321-37 2000 S 3.52 30.8 2.10 54.0 321-37A 700 S 3.60 1.1 -- -- 321-37B 2000 3P 3.53 27.2 2.10 54.0 3.44 3.36 321-38B 700 S 3.63 17.7 -- -- 321-39 2000 2P 3.48 34.1 2.10 57.0 3.426 321-39B 700 S 3.63 16.4 - 321-41C 2000 3P 3.49 32.6 2.10 62.5 3.43 3.36 321-42A 700 S 3.63 18.8 321-42A 2000 2P 3.49 35.5 2.10 60.5 3.43 321-42B 700 S 3.63 16.7 -- -- 321-42B 2000 2P 3.50 25.3 2.10 64.4 3.43 321-43B 700 S 3.63 19.3 -- -- 321-43B 2000 2P 3.49 35.0 2.098 59.4 3.42 321-43B, 2000 2P 3.50 36.8 2.11 59.5 3.426 321-43B, 2000 2P 3.50 33.0 2.10 57.0 3.43 321-44A 2000 3P 3.50 30.8 2.10 51.0 3.43 3.36 321-44B 2000 3P 3.50 29.0 2.10 54.0 3.43 3.36 321-45A 2200 S 3.49 33.0 2.10 57.0 321-45B 2200 S 3.47 45.5 2.10 40.5 321-46A 2000 2P 3.49 31.7 2.10 60.4 3.43 321-46B 2000 3P 3.46 30.8 2.10 51.0 3.43 3.36 321-46C 2000 3P 3.47 35.6 2.10 51.0 3.43 3.36 -65

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 321-46D 2000 3P 3.50 31.7 2.10 64.4 3.43 3.36 321-48A 2000 S 3.50 31.8 2.10 57.0 321-48B 2000 S 3.50 33.0 2.10 64.4 321-48C 2000 S 3.50 33.0 2.10 60.4 321-49A 2000 S 3.49 33.0 2.10 60.4 321-49B 2000 NVS 3.426 51.2 2.10 54.0 321-51 2000 NVS 3.43 91.5 2.11 69.0 321-51A 2000 NVS 3.43 107.5 2.11 68.0 321-52 2000 NVS 3.43 91.2 2.11 60.5 322-1A 2000 3P 3.44 26.4 2.085 57.3 3.37 3.33 322-1B 2000 S 3.40 41.5 2.085 -- 322-2B 1600 S 3.50 23.0 2.085 37.3 322-3B 1600 S 3.53 22.0 2.085 61.0 322-9A 2000 S 3.37 105.0 2.10 49.6 322-9B 2000 S 3.38 117.0 2.09 51.0 322-10A 2000 2P 3.43 33.0 2.085 -- 3.38 322-10B 2000 2P 3.50 30.8 2.10 69.0 3.43 322-10C 2000 2P 3.49 33.4 2.085 -- 3.43 322-10D 2000 2P 3.50 28.6 2.10 60.0 3.43 322-11A 1670 S 3.55 22.0 2.085 51.2 322-11B 1670 S 3.49 23.0 2.085 47.0 322-11B 2000 2P 3.47 33.0 2.085 48.5 322-12A 1600 S 3.56 23.0 2.085 40.5 322-12B 1670 S 3.56 22.0 2.10 57.0 322-13B 1670 S 3.53 31.8 2.085 50.2 322-14A 1670 S 3.50 23.0 2.085 -- 322-14B 1670 S 3.56 21.0 2.09 46.0 322-15B 1670 S 3.56 25.0 2.085 48.4 322-16A 1670 S 3.56 23.5 2.085 -- 322-16B 1670 S 3.56 22.0 2.085 44.0 322-17A 1670 S 3.56 22.2 2.085 88.0 322-17B 1670 S 3.56 22.0 2.085 51.4 322-18B 1670 S 3.50 28.8 2.085 61.5 322-19B 1670 S 3.56 20.6 2.085 48.5 322-20 1670 S 3.50 21.4 2.085 30.2 322-21B 1670 S 3.56 17.0 2.085 69.5 322-23A 1300 S 3.56 17.4 2.085 -- 322-25A 1410 S 3.56 18.5 2.085 46.1 322-25B 1410 S 3.56 19.2 2.07 121.0 322-26A 1410 S 3.50 25.6 2.085 51.0 322-26B 1410 S 3.50 19.2 2.085 40.2 -66

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 322-27A 1410 S 3.59 20.0 2.085 57.3 322-27B 1410 S 3.56 19.3 2.085 -- 322-28A 1410 S 3.56 19.4 2.08 40.2 322-28B 1410 S 3.56 17.8 2.085 53.2 322-29 1410 S 3.56 20.1 2.085 40.2 322-29B 1410 S 3.56 21.0 2.085 53.2 322-31A 1410 S 3.56 23.0 2.085 40.4 322-31B 1410 S 3.56 18.8 2.085 54.0 322-32 1350 S 3.56 18.2 2.085 48.5 322-34 1350 S 3.56 19.2 2.085 46.0 322-35 1350 S 3.56 20.6 2.085 54.0 322-36 1543 S 3.56 19.2 2.085 53.0 322-37 1543 S 3.56 23.0 2.085 -- 322-40 1440 S 3.53 23.6 2.085 66.0 322-41 1440 S 3.56 20.4 2.085 61.0 322-42A 1440 S 3.56 21.4 2.085 37.1 322-42B 1440 S 3.56 21.4 2.085 65.0 322-46 1440 S 3.53 19.6 2.08 -- 322-47A 1440 S 3.50 21.5 2.085 74.0 322-47B 1440 S 3.56 20.0 2.085 51.6 322-48A 1600 S 3.49 21.5 2.085 51.0 322-49 1460 S 3.53 24.4 2.10 49.0 322-49 1600 S 3.52 23.0 2.085 322-53A 1460 S 3.56 20.0 2.09 54.2 322-53B 1460 S 3.56 20.0 2.10 -- 322-53C 1460 S 3.56 18.4 2.085 49.0 322-54A 1460 S 3.56 18.7 2.085 48.2 322-58 1500 NVS 3.50 21.0 2.085 53.0 322-58A 1500 S 3.49 21.0 2.085 51.0 322-59 1500 S 3.56 24.4 2.085 53.8 322-61 1500 NVS 3.47 37.0 2.09 60.0 322-62 1500 S 3.47 30.8 2.085 97.0 322-62A 700 S 3.56 18.3 -- -- 322-63A 1500 S 3.46 35.6 2.10 72.5 322-63 1500 NVS 3.42 31.6 2.10 51.0 322-64 1370 S 3.56 18.5 2.085 54.0 322-66 1370 S 3.56 19.8 2.085 46.0 322-67A 1370 S 3.53 23.0 2.085 53.0 322-67B 1370 S 3.56 20.8 2.085 49.0 322-68A 1370 S 3.56 19.5 2.085 48.0 322-68B 1370 S 3.56 19.6 2.09 51.0 322-69 1370 S 3.56 18.5 2.085 54.0 323-1 1370 S 3.60 18.4 2.08 40.5 323-2 1370 S 3.60 18.4 2.07 44.0 323-2A 1370 S 3.60 18.4 2.07 48.0 323-3 1370 S 3.49 23.0 2.07 51.0 323-3A 1370 S 3.56 19.4 2.08 46.0 323-4 1370 S 3.58 18.9 2.07 54.0 323-4A 1370 S 3.58 20.0 2.07 51.0

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 323-5 1000 S 3.63 16.4 2.07 42.0 323-5A 1000 S 3.63 15.4 2.07 46.0 323-6A 1000 S 3.63 16.8 2.07 42.0 323-6 1000 S 3.63 16.0 2.07 51.0 323-7 1000 S 3.63 18.1 2.07 46.0 323-8 1000 S 3.63 18.4 2.07 44.0 323-8A 1000 S 3.63 17.2 2.07 36.0 323-9 1000 S 3.63 15.6 2.07 44.5 323-9A 1000 S 3.63 16.4 2.07 37.0 323-11A 1000 S 3.63 16.2 2.07 35.0 323-11B 1000 S 3.63 17.7 2.07 37.2 323-11C 1000 S 3.63 17.4 2.07 32.0 323-11D 1000 S 3.63 16.4 2.08 37.2 323-11E 1000 S 3.63 16.7 2.07 39.0 323-11F 1000 S 3.63 16.4 2.07 49.0 323-11G 1000 S 3.63 17.7 2.07 46.0 323-12 1000 S 3.63 17.7 2.07 44.0 323-12A 1000 S 3.63 17.7 2.07 37.0 323-13 1000 S 3.63 18.8 2.07 40.5 323-13A 1000 S 3.63 17.0 2.07 51.0 323-14 1000 S 3.62 16.7 2.08 48.5 323-19 1000 S 3.63 17.7 2.07 37.2 323-20 1000 S 3.63 17.1 2.07 40.5 323-20A 1000 S 3.63 16.8 2.07 51.0 323-21 1000 S 3.63 15.6 2.07 42.0 323-22 1000 S 3.63 16.2 2.07 40.5 323-24 1000 S 3.63 19.1 2.07 38.6 323-25 1000 S 3.63 16.2 2.07 39.0 323-25A 1000 S 3.63 16.0 2.07 39.0 323-27 1000 S 3.63 15.5 2.07 42.0 -68

TABLE 2 Sizes of the Structural Features Observed in Bright and Dark Field Electron Micrographs Compared to Crystallite Sizes Obtained from X-ray Analysis Granu- Dark Field (002) Platelet latiop* Dia. A** X-ray (i) Peak Sample # Dia. A Dia. A (002) (100) Lc La Type 311-19(2000) 150-500 30-40 20-40 311-19(750)X 150-350 20-30 - -- 14 19 S 312-31(2000) 200-500 20-45 20-45 -- 27.6 56 S 312-31(2000) 150 35 30 >100 28 56 S 317-24(2000) 250 42 60t -- 24 45 NVS 317-29(2000) >250 60 30-70t -- 65-75 -- NVS 317-33(2000) 250-500 35 - -- 92 49 S 317-45(2000) >500 30 -- 25 60 3P 317-48(2000)X 250 55 -- - 34 59 3P 317-49(2000)x 250-500 45 40t - 33 60 3P 318-12(2000) 250-500 60 50 10t 31 59 3P 318-22(2000) >500 40-60 35 -- 65 55 NVS 318-22(700) 250 - -- 15.7 -- S 318-23(2000) 250 50 50 -- 63 73 S 318-23(700) -- - 16 -- S 318-29(2000)x >500 30-40 60 -- 31 63 2P 321-31C(2000)X 250 35 60 80 35 69 3P 321-31D(2300) 250 40 35 80 37 69 S *Diameter corresponds to distances between nearest neighbor. **Diameter of diffracting regions obtained from (002) or (100) diffraction halos. tSome of the crystallites giving rise to halos or spots are very large in size, i.e., up to 500k. XA second structural feature was observed in the bright field micrographs of these samples. This new feature appeared to be long regular cylinders 500k in diameter by about lp long. Regular striations along the length were spaced 45A apart. -^Q-.

TABLE 3 Electron Diffraction Results Compared to X-ray Diffraction Results for d(002) and d(10) Spacings (g) Electron X-ray Diffraction (002) Sample # d(002) d(10) d(002) d(10) Peak Type Graphite 3.35 2.13 3.37 2.12 311-19(2000) 3.56 2.17 3.45 2.09 311-19(750) 3.70 2.19 -- 2.07 S 312-31(2000) 3.54 2.12 3.53 2.16 S 3.57 2.10 3.53t 2.12 S 317-24(2000) 3.50 2.10 3.53t 2.10t NVS 317-29(2000) 3.43 -- 3.35t 2.12 NVS 3.45 317-33(2000) 3.414 2.10 3.35t 2.10 S 317-45(2000) 3.35 2.09 3.50 2.10 3P 3.48 317-48(2000) 3.46 2.10 3.48t 2.12 3P 317-49(2000) 3.48 2.09 3.48t 2.10 3P 318-12(2000) 3.49 2.09 3.47t 2.11 3P 318-22(2000) 3.44 2.10 3.37t 2.07 NVS 318-22(700) 3.70 -- 3.50 2.11 S 3.42t 318-23(2000) 3.43 2.10 3.50t 2.10 S 318-23(700) 3.74 -- - 2.07 S 318-29(2000) 3.45 2.08 3.45 2.12 2P 321-31C(2300) 3.43 2.11 3.56t 2.12 3P 321-31D(2300) 3.47 2.11 3.50* 2.125 S *In this sample no spots were seen on any diffraction halo. tIn addition to Debye-Scherrer rings, a number of sharp diffracting spots were observed on or close to the ring. -70

TABLE 4 THERMODYNAMIC MEASUREMENTS ON GLASSY CARBON SAMPLES HTT HTt HTT AH AS Run # Electrolyte Sample No. (~C) (hr) Atmosphere (cal/gr-mole) (cal/gr-mole-0K) FS-2 Fused Salt 321-10 1600 r1 Nitrogen 180 0.17 FS-5 Fused Salt 321-7 1412 41 Nitrogen 8,909 7.45 FS-9 Fused Salt 321-9 1543 A1 Nitrogen 1,330 1.38 FS-11 Fused Salt 321-7 1600 \1 Nitrogen 752 0.65 ZC-15 Zirconia/calcia UCAR-ZBY -- -- 280 0.20 Oriented Graphite Plates ZC-16 Zirconia/calcia 321-13 1060 1 Vacuum 9,029 8.66 ZC-17 Zirconia/calcia 321-13 1243 1 Vacuum 4,934 4.70 ZC-18 Zirconia/calcia 321-13 1510 1 Vacuum 4,160 4.23 ZC-19 Zirconia/calcia 321-13 1800 1 Vacuum 3,689 4.60 ZC-21 Zirconia/calcia Beckwith 2000 - -- 5,193 10.5 D-82-2 ZC-23 Zirconia/calcia 321-13 2000 1 Nitrogen 7,002 5.1 ZC-24 Zirconia/calcia 321-7 1002 1 Vacuum 2,745 3.12 ZC-25 Zirconia/calcia 321-7 2000 41 Nitrogen 4,530 7.72 ZC-27 Zirconia/calcia Hercules 1795 1 Vacuum 4,510 11.28 H-54

TABLE 5 RG for Various Commercial Samples RG (A) Pinhole Slit Sample....Collimation i mationmationt Reported Dispersity LMSC-2000 32.9 29.0 15.1 Monodisperse LMSC-2600 -- 40.5 -- GC-10 10.8 18.0 7.9 GC-20 10.0 23.0 10.0 V-25 -- 29.5 10.0 V-10-42 -- 34.0 14.8 Beckwith-2000 -- 25.0 -- " TABLE 6 RG for Samples Made at University of Michigan* RG (A) Pinhole Slit Sample Collimation Collimation Dispersity 311-19 (750) -- ** Polydisperse 312-31 (2000) 31.6 26.6 315-46 (2000) -- 23.0 Monodisperse 317-24 (2000) - 21.5 317-39 (2000) -- 25.8 317-45 (2000) 16.4 25.3 317-68 (2000) -- 33.5 317-49 (2000) -- 23.6 318-11 (2000) 20.4 & 44.4 -- Bidisperse 318-14 (2000) -- 35.2 Monodisperse 318-35 (2000) -- 26.5 318-41B (700) 14.5 21.2 318-42 (2000) 31.7 25.7 Polydisperse 318-44 (2000) 23.5 -- Monodisperse 318-45 (700) 21.7 318-45 (2000) 27.3 -- 318-46 (2000) 15.8 318-48 (700) 7.7 318-48 (2000) 19.7 -- *Results using pinhole collimation reported earlier. **Very wide distribution of pores did not permit determination of average pore size. tRG value is average of 2 or 3 runs made under slit collimation. Widths of slits vary in different runs but heights always the same and very much more than widths. -7(

TABLE 7 Surface Area Specific Surface He Density Knudsen Flow Area Sample # Temp.~C (gm/cm3) (m2/gm) (m2/gm) 311-32 2000 1.41 3.0 26.4 317-9 700 1.83 -- 506.0 317-9 2000 1.70 12.5 59.9 317-12 700 1.80 9.1 510.0 317-12 2000 1.72 -- 109.0 318-22 700 1.79 -- 459.0 318-22 2000 1.51 -- 49.6 321-9 700 1.46 -- 541.2 321-9 2000 1.28X* - 12.7 321-13 367 - -257.0 321-13 700 -- - 321-13 1066 1.56X -- 72.4 321-13 1227 1.54X - 56.6 321-13 1504 1.50X - 51.3 321-13 1795 1.44X -- 47.9 321-24B 2000 1.48X - 61.3 321-25A 2000 1.45X - 36.9 323-8 1000 1.51X 323-26A 1038 1.46X 323-50 1000 1.51X - 203.0 *X indicated Xylene -/73

TABLE 8 PHe real1 PHg real2 PHg app. MPD IPV Sample # Temp. C (g/cc) (g/cc) (g/cc) (p) (cc/g) GC No.1 1.47 1.482 1.424.003.0273 302-5 2320 -- 1.509.647 2.97.8828 302-12 2320 -- 1.501.559 3.62 1.1224 305-6 2000 1.94 1.802.636 2.54 1.0151 6.62 Mo 305-12 2000 1.55 1.562.557 4.19 1.1560 305-18 2000 1.77 1.718.606 2.49 1.0678.4 Mo 308P-2 #2 1.586 1.505 1.034.009.3030 308P-3 #3 1.611 1.486 1.077.008.2559 310-1 1000 1.27 1.446.814.023.5411 310-3 1000 -- 1.424.805.020.5454 310-17A 2000 1.50 1.175.639.119.7130 310-18 1000 1.48 1.452.687.039.7666 310-18 2000 1.15 1.366.648.044.8110 310-20 2000 1.09 1.458 1.029.009.2855 310-29 2000 1.89 1.533.944.014.3959 311-21 2000 1.59 1.339.731.038.6221 311-22 2000 1.00.847.484.154.8809 312-19A 730 1.20 1.481.879.629.4626 312-29 728 1.52 1.441 1.038.014.2709 312-31 2000 1.41 1.490.923.025.4118 312-45 2000 1.26 1.302 1.214.005.0540 312-48 2000 1.53 1.392.861.121.4425 312-49 2000 1.34 1.404 1.031.011.2579 315-1 2000 1.50 1.431.962 47.0.3412 317-5 2000 1.42 1.313.873.071.4039 317-18 2000 1.50 1.255.953 39.1.281 318-22 700 1.79 1.426.771.057.5958 318-22 2000 1.51 1.576.937.054.4334 318-45 2000 1.37X 1.20.78.0078.021 321-7 2000 1.54 1.04.76.028.34714 321-9 700 1.46 1.24.98.0073.205 321-9 2000 1.36 1.4 1.2.0057.016 321-13 700 -- 2.00.96.042.49883 321-13 1504 1.50X3 1.09.51.046.48293 321-13 1795 1.44X 1.24.77.044.47032 321-17 2000 1.43 1.17.59 2.15.299 321-18 2000 1.67 1.16.87.175.247 *Glassy Carbon No. 1 - Le Carbone, p. 6927. Real density as determined by He pycnometry 2Real density as determined by Hg 3X indicates Xylene -74

PHe real1 PHg real2 PHg app. MPD IPV Sample # Temp.~C (g/cc) (g/cc) (g/cc) (p) (cc/g) 321-19 2000 1.80 1.56.98.049.379 321-20 2000 1.60 1.63.70.088.345 321-21 2000 1.79 1.30.85.041.377 321-25 2000 -- 2.20 1.14.011.088 321-31 2000 1.41 1.49 1.34.0195.075 322-14A 1300 -- 2.2.826 322-14A 1412 1.74 -- -- 1.7.494 322-14B 1300 -- -- -- 2.3.501 322-14B 1412 - -- -- 1.5.496 322-17A 1300 ---- 4.5.604 322-17A 1412 -- -- 4.4.271 322-17B 1300 -- -- 2.5.382 322-17B 1412 -- - 2.0.534 322-19A 1300 -- — 1.0.461 322-19A 1412 1.9 -- -.08.472 322-19B 1300 ----.65.466 322-19B 1412 -- -.95.468 322-20 1300 -— 1.8.432 322-20 1412 1.57X — 1.5.666 322-21A 1300 1.50X — 18.0.503 322-21A 1412 -- -- -- 3.5.420 322-21B 1412 1.52X - -- 10.0.400 322-21D 1300 -- -- 8.0.780 322-22A 1300 ---- 1.1.308 322-22A 1412 1.48X — 1.2.443 322-22B 1300 -- -- 1.4.457 322-22B 1412 1.49X -- 1.2.440 322-23A 1300 1.55X - -- 1.5.443 322-23A 1412 1.47X -- 1.2.458 322-23B 1300 2.08X --.32.453 322-23B 1412 1.61X - --.35.458 322-24A 1300 1.54X- -- 1.3.395 322-24A 1412 ---- 1.3.563 322-24B 1300 -- -- 1.9.620 322-24B 1412 1.59X -- 1.4.888 322-32 1350 1.60X -- 1.4.571 322-35 1350 1.43X -- -- 6.0.472 322-41 1440 1.59X ---.07.669 322-45 1500 1.72X -- -- 4.2.421 322-46 1500 1.48X 1.4.550 322-47A 1500 1.47X - -- 1.3.652 322-48 1605 1.53X -- 6.0.634 322-49 1400 - -- -- 7.0.841 322-49 1400 -- -- 7.0.607 322-49 1600 1.51X -- -- 7.0.595 322-50 1600 1.52X -- -- 6.0.545 322-50 1400 1.48X — 6.0.679 323-26A 1038 1.46X 1.37.53 1.27.497 -75

TABLE 9 Physical Properties Resis- Sonic Compr. Ult. Preal tivity Hard- Int. Mod. Str. Str. app. (g/cc) Q-cm ness Frict. psi psi psi Sample # Temp.C (g/cc) He Xyl (x10) (DPH) (x103) (x10-6) (x10-3) (x10-3) 310-35 2000 (0.57)* -- 2.07 - - - -- 5.18 1.01 311-34 2000 (0.60) - -- -- - -- -- 7.2 7.04 311-35 2000 0.51.294 -- 1.43 0.35 6.85 1.23 312-13 2000 (1.07) - -- -- -- - - 50.0 4.85 312-14 2000 (1.00) 1.44 - - - - - 36.0 -- 312-16 2000 (0.77) 1.27 1.45 -- -- - - 1.73 2.83 312-27 2000 (1.15) - - - - - - - 7.78 312-29 2000 (1.07) 1.52 - - - - - 39.7 312-32 2000 (0.90) 1.47 -- - -- - -- 29.2 5.13 312-33 2000 -- 1.59 - -- 90 - 312-34 2000 (0.92) 1.38 - -- -- - -- 27.3 1.11 o\ 312-44 2000 -- 1.18 1.22 -- 98 312-45 680 -- - - 135 312-45A 2000 -- 1.26 1.29 -- 176 - 312-46 680 - -- -- - 107 312-46 2000 - -- -- - 105 312-49 2000 (1.10) 1.3 1.45 -- -- -- - - 5.96 315-1 2000 (0.89) 1.49 315-2 2000 0.70 1.52 --.349 - -- 1.27 1.47 0.36 315-3 2000 -- 1.38 1.49 315-4 2000 -- 1.55 315-14 2000 (0.96) 1.6 -- - -- 47.7 4.7 315-17 2000 (0.79) -- 1.45 -- -- - - 29.3 2.51 315-20 2000 (0.84) 1.6 315-20A 2000 0.84 1.6 --.180 -- 0.93 1.48 - 315-20B 2000 0.77 1.60 --.275 -- 1.63 1.37 *Data in parenthesis obtained from unmachined cylinders. All other densities from machined cylinders.

Resis- Sonic Compr. Ult. rea1 tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) Q-cm ness Frict. psi psi psi Sample # Temp.C (g/cc) He Xyl (xl0) (DPH) (x103) (x10-6) (x0l-3) (x1o-3) 315-20C 2000 0.88 1.60 -.203 - 0.54 1.52 315-21B 2000 (0.96) -- 1.37 - - - - - 6.60 315-21C 2000 0.91 1.52 -.147 - 0.26 1.54 46.8 7.13 315-21D 2000 (1.01) -- 1.47 - - - - 27.0 7.62 315-22 2000 (0.90)1.63 1.46 315-24 2000 (1.15) 1.78 315-25A 2000 (0.88) -- 1.43 -- - - -- 24.3 4.61 315-25B 2000 (0.87) 1.58 - - - - - 4.78 315-25C 2000 0.88 1.41 -.317 - 2.38 1.55 35.5 7.38 315-26B 2000 (0.88) -- 1.45 - - - - 30.5 6.63 315-26C 2000 0.80 1.45 -.057 - - 1.20 25.6 4.24 315-26D 2000 0.83 1.45 -.149 - - 1.38 36.6 315-28 2000 (0.96) 1.46 - - - - - 37.3 4.39 315-30 2000 (0.91) 1.49 315-31 2000 (0.85) 1.48 315-31B 2000 0.80 1.46 -.119 - 0.33 1.44 35.1 5.15 315-31C 2000 0.93 1.48 -.237 - 0.47 1.65 315-31D 2000 0.91 1.46 -.229 - 0.42 1.60 36.2 6.6 315-32 2000 (0.99) 1.43 - - - - - 45.0 6.35 315-33 2000 0.78 1.50 -.195 - 1.50 1.26 315-34C 2000 0.60 1.58 -.294 - 0.31 0.87 21.0 2.95 315-34D 2000 0.66 1.57 -.137 - 2.01 1.22 16.4 2.73 315-35B 2000 (0.87) 1.89 1.75 315-37 2000 0.53 1.61 1.48.262 - 0.31 0.61 14.2 2.51 315-38 2000 (0.72) 1.51 315-38A 2000 0.72 1.51 -.237 - - 0.93 2.40 2.97 315-39A 2000 0.96 1.64 1.43.188 - 0.47 1.78 35.9 5.59 315-39B 2000 0.96 1.64 1.43.029 - 1.28 1.76 28.5 4.41 315-40 2000 (0.87) 1.33 1.41 315-41 2000 0.68 1.67 1.41.220 - - - 15.0 315-41A 2000 0.77 1.67 -.038 - 1.18 1.35 18.6 2.0 315-41B 2000 0.79 1.67 -.157 - 0.98 1.28 16.0 2.02 315-42 2000 0.87 1.83 1.47.249 - 0.35 1.65

Resis- Sonic Compr. Ult. Preal tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) Q-cm ness Frict. psi psi psi Sample # Temp.~C (g/cc) He Xyl (xlO) (DPH) (x103) (x10-6 ) ( x0-3) (x 3) 315-43 2000 (1.04) - 1.48 - -- -- - 50.0 315-44 2000 0.76 1.78 1.43.214 -- 0.32 1.43 315-45 2000 (0.88) 1.39 1.49 - -- - 315 —45B 2000 0.76 -- 1.67.039 -- 0.28 5.8 315-46 2000 (1.094) -- 1.51 -- 240 - - 315-46 2000 (1.094) - 1.51 -- 105 -- -- 315-46A 2000 (.899) 1.55 -- - 58 -- - 2.5 2.23 317-1 2000 (1.21) 1.67 1.21 - --- -- 56.5 7.5 317-2 2000 0.71 1.74 1.45.088 -- -- 0.91 23.7 2.97 317-5 2000 (0.78) 1.42 1.31 -- 58 - - 33.1 7.50 317-6 2000 (0.78) 1.88 1.45 317- 7 2000 (0.79) 1.82 1.43 - -- - - 317-8 2000 1.00 1.64 1.44 -- -- - 1.82 40.5 2.29 317-9 2000 (0.93) 1.76 - -- -- -- - 32.3 5.77 317-10 2000 0.79 1.42 --.009 -- 0.75 1.45 43.7 6.00 317-12 2000 (0.89) 1.60 - -- -- -- -- - 5.82 317-13 2000 (0.88) 1.88 1.45 - -- - 317-14 2000 (0.87) 1.49 - -. - -- -- 27.4 4.69 317-15 2000 (0.91) 1.46 - -- -- -- - 33.6 4.09 317-18 2000 0.72 1.50 1.26.088 -- 0.39 0.86 5.1 3.30 317-19 2000 (1.13) 1.68 - - - -- - 28.2 8.75 317-20 2000 (1.05) 1.51 -- -- - 317-23 2000 (0.83) -- 1.46 - - - 7.6 1.90 317-24 2000 0.76 1.57 --.187 - 0.76 1.45 49.1 4.37 317-25 2000 (0.88) 1.69 1.41 - - - - 34.1 2.85 317-26 2000 0.78 1.48 --.195 14 0.66 1.51 4.7 0.92 317-27 2000 -- - -- -- -- - - 37.3 317-28 2000 (0.93) 1.7 1.45 - -- - 317-29 2000 0.74 1.65 1.49.122 -- - 0.86 16.4 2.48 317-30 2000 (0.77) 1.68 1.51 - --- 317-31 2000 (0.70) 1.45 - -- -- 317-32 2000 0.89 1.72 1.43.224 -- - 1.64 44.2 5.05 317-33 2000 (1.02) 1.46 - -- 73 - - 40.2 5.60

Resis- Sonic Compr. Ult. Preal tivity Hard- Int. Mod. Str. Str. app. (g/cc) p-cm ness Frict. psi psi psi Sample # Temp.C (g/cc) He Xyl (x10) (DPH) (xl03) (x10-6) (xl0-3) (x103) 317-34 2000 0.65 1.56 1.50.321 -- -- 2.07 24.0 4.61 317-35 2000 (0.98) 1.40 -- -- -- -- -- - 317-37 2000 0.90 1.34 1.43.225 80 0.31 1.61 40.6 6.90 317-38 2000 0.90 1.34 1.43.268 62 1.27 1.01 37.6 4.20 317-39 2000 0.77 1.27 --.032 49 0.19 1.20 26.7 3.58 317-40 2000 0.85 1.47 --.184 -- -- 1.25 22.8 3.44 317-41 2000 (0.93) -- 1.59 — -- -- 10.0 235 317-41A 2000 (0.90) -- 1.37 -- -7.4 1.91 317-41B 2000 (1.12) 1.48 -- --- --- 27.0 3.90 317-42 2000 0.87 1.45 --.135 53 -- 1.54 39.8 5.30 317-43 2000 (0.90) 1.40 --- - -- 15.0 2.47 317-44 2000 0.84 1.51 --.007 52 1.68 1.35 27.3 2.13 317-45 2000 (0.88) 1.40 -- -- -- -- 32.3 5.2 317-46 2000 0.81 1.48 --.112 71 -- 1.27 34.6 4.95 317-47 2000 (0.97) 1.39 -- -- 49 -- 27.5 5.62 317-48 2000 1.16 1.46 - ----- 1.23 -- 317-49 2000 0.80 1.51 --.34 -- 1.31 0.89 11.1 3.0 318-1 2000 0.79 1.51 --.169 -- -- 0.71 — 2.56 318-2 2000 (0.95) 1.45 - - ---- -- 318-2C 680 0.89 -- -- 907.0 -- 0.80 34.5 4.77 318-3 2000 -- 1.37 1.51 - --- -- -- 318-6A 2000 (1.17) 1.45 -- -- -- -- 318-7 2000 0.78 -- 1.34.165 -- 0.65.82 1.67 318-8 2000 (0.96) 1.49 -- -- 60 — 18.2 5.62 318-8A 2000 (0.97) -- 1.49 -- --— 32.7 -- 318-9 2000 (0.96) 1.50 -- -- 56 -27.4 5.19 318-10 2000 (0.99) 1.48 -- -- -- -- 318-11 2000 0.91 1.58 -- -- 51 -- 1.48 -- 5.09 318-12 2000 (0.98) 1.50 -- -- 61 -- 318-13 2000 (1.03) -- 1.23 -- 71 -- -- -- 318-14 2000 0.77 1.47 --.285 31 0.41 0.41 4.74 0.83 318-15 2000 (0.95) 1.51 --- 40 -- -- - 318-16 2000 0.94 1.48 --.270 47 -- 1.43 28.2 4.02

Resis- Sonic Compr. Ult. Preal tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) Q-cm ness Frict. psi psi psi Sample # Temp.C (g/cc) He Xyl (xlO) (DPH) (x103) (x10-6 ) (x10-3) 318-17 2000 0.74 1.46 --.189 53 0.18 1.18 33.2 4.35 318-18 2000 - 1.48 - — 46- -- 318-18B 2000 -- -- -- -- -- - - - 5.28 318-19 2000 (0.77) 1.41 - -- -- 318-20 2000 -- 1.50 - - 65- -- 318-21 2000 -- 1.37 1.49 -- 56- -- 316-22 2000 0.83 1.45 --.237 44 -- 1.29 29.5 4.37 318-22 700 (0.78) 1.48 - -- 39- -- 318-23 2000 (0.91) 1.49 -- - 54 -- 318-24 2000 0.97 1.29 1.52 -- 61 -- 1.49 318-24C 2000 0.92 1.29 1.53 - -- -- - 25.0 4.47 318-26 2000 (0.98) 1.59 - -- 70- -- 318-27 2000 (0.87) 1.38 318-28 2000 0.84 1.45 -.177 - - 1.33 318-29 2000 0.63 1.45 --.194 26 -- - 0.23 0.73 318-30 2000 1.08 1.49 - - 60 -- 1.52 21.9 5.82 318-31 2000 0.55 1.31 1.36.216 21 2.41 0.135 1.6 0.19 318-32 2000 (0.84) 1.57 - -- 53 - -- 19.7 318-33 2000 0.80 -- 1.53.101 57 0.73 1.37 32.2 4.75 318-34 2000 1.07 1.45 -- -- -- -- - 28.7 4.85 318-35 2000 0.88 1.43 --.118 - -- 1.48 26.4* 4.57 318-36 2000 1.02 1.41 --.107 67 -- 1.35 18.6* 3.34 318-37 2000 0.92 1.48 --.112 -- - 2.17 25.7* 3.90 318-38 2000 -- 1.52 - -- -- 318-39 2000 1.23 1.57 --.085 - -- 2.99 34.9* 7.95 318-41 2000 (1.05) 1.44 - --- - 318-43 2000 (1.08) -- 1.42 -- 106 -- 318-44 2000 (1.09) -- 1.46 -- 103 318-45 2000 1.27 -- 1.37.070 - -- 3.1 318-46 2000 1.02 -- 1.46.41 56 -- 2.34 42.3* 7.35 318-48 2000 1.08 1.43 -- -- -- - -- 3.5 8.27 *Head speed.05 in/min., all others.02 in/min.

Resis- Sonic Compr. Ult. Preal1 tivity Hard- Int. Mod. Str. Str. app. (g/cc) Q-cm ness Frict. psi psi psi Sample #Temp.~C (g/cc) He Xyl (xlO) (DPH) (x0l3) (x10-6) (x10-3) (x13) 318-50 2000- - - - - - -- - 5.73 318-51 2000 (0.88) 1.43 - - - - 0.83 17.3 1.44 318-52 2000 1.01 1.41 --.130 -- 1.66 17.7 2.54 318-53 2000 (0.87) 1.42 - - - - - 4.73 1.60 318-56 2000 (0.85) 1.34 1.43 318-58 2000 0.98 - 1.51.237 - - 0.10 - 6.02 318-59 2000 0.99 1.38 1.38 - -- - 2.15 31.7 4.20 318-60 2000 0.95 1.71 1.42.150 54 - 1.78 36.2* 7.63 318-61 2000 1.01 1.75 1.38.403 - - 1.47 22.6* 3.96 318-62 2000 0.90 1.39 - - 69 - - 41.4 6.98 321-1B 2000- - -- - - - 4.36.87 321-3 2000 0.98 1.57 -.340 78 -- - 40.0* 7.18 321-5 2000 (0.99) 1.52 321-6 2000 1.09 1.60 -.31 81 - 2.33 41.7* 8.27 321-7 2000 (0.91) 1.54 321-8 2000 0.90 1.46 -.546 105 - 1.48 38.9* 7.00 321-9 2000 1.17 1.36 1.28 - 120 - - 54.2 9.75 321-10 2000 1.26 1.34 -.100 99 - 2.99 54.9* 10.85 -321-11 2000 0.95 1.43 -.114 95 - 1.54 40.5 5.16 321-11C 2000 -- -- - - 132 - - 37.0 6.08 321-12 2000 0.97 1.32 -.121 - - 1.22 14.9 2.52 321-13 2000 0.95 1.48 1.50.115 131 - 1.67 36.2 6.04 321-15 2000 (0.96) 1.56 - - - - - 34.5 5.98 321-16A 2000 (0.85) 1.84 - - - 0.21 1.55 24.3 4.52 321-16B 2000 (0.93) 1.75 1.39 321-17B 2000 (0.94) 1.41 - - - 0.22 1.81 36.7 5.26 321-18A 2000 (0.95) 1.67 1.42 321-18B 2000 (0.64) -- 1.49 - - 0.2 1.73 39.6 5.67 321-19A 2000 (0.87) 1.68 1.42 - 115 0.15 1.83 31.5 6.04 321-19B 2000 (0.83) 1.80 1.46 - 87 0.11 1.49 31.4 5.76 321-20A 2000 (0.99) 1.72 1.41 *Head speed.05 in/min., all others.02 in/min.

Resis- Sonic Compr. Ult. Preal tivity Hard- Int. Mod. Str. Str. app. (g/cc) Q-cm ness Frict. psi psi psi Sample # Temp.~C (g/cc) He Xyl (xl0) (DPH) (x103) (x10-6) (x10-3) (x10l3) 321-20B 2000 (0.70) 1.50 - -- -- - -- 34.8 6.21 321-21A 2000 0.94 1.74 1.45.2 - -- 1.65 45.5 6.35 321-21B 2000 1.00 -- 1.47.2 - -- 1.93 46.4 6.16 321-22A 2000 0.94 1.79 1.44.28 - -- 1.44 31.9 6.14 321-22B 2000 (0.98) -- 1.54 - - -- - 34.8 4.58 321-22C 2000 0.93 - 1.50.17 - -- 1.43 36.1 4.35 321-22D4 2000 0.92 -- 1.47.19 - -- 1.42 33.7 5.15 321-23 2000 1.04 1.74 --.12 - -- 2.05 58.6 7.28 321-23A 2000 0.96 -- 1.53.27 -- - 1.64 40.9 6.36 321-23B 2000 0.97 1.77 1.44.18 -- - 1.69 42.7 5.98 321-24 2000 1.02 -- 1.60.19 - -- 1.95 47.8 6.39 321-24A 2000 0.95 -- 1.46.14 -- - 1.05 49.1 7.04 321-24B 2000 1.07 -- 1.48.15 - -- 2.22 45.1 6.76 321-25A 2000 0.70 -- 1.45.13 - - 0.68 27.9 5.14 321-26 2000 (0.50) 1.43 1.56 - - - - 26.4 0.77, 321-26A 2000 (0.45) 1.54 - 321-27 2000 0.86 1.52 --.11 - -- 0.62 9.7 1.34 321-29 2000 0.96 1.64 1.42.18 - -- 1.59 40.0 5.94 321-31 2300 (0.81) 1.41 - - 321-31A 2300 (0.97) 1.40 - 321-31B 2300 (0.91) 1.56 - - 321-31C 2300 (0.88) 1.41 321-31D 2300 -- -- 1.53 - -- -- -- 33.3 4.08 321-31F 2300 0.75 -- 1.68.23 - -- 0.70 13.6 2.23 321-31G 2300 1.03 1.66 --.18 - - - 22.2 3.53 321-31I 2300 (1.02) 1.48 - 321-31J 2000 0.91 -- 1.48.16 - -- 1.15 22.6 3.99 321-31P 2000 0.89 -- 1.25.24 - -- 1.16 25.0 3.60 321-31Q 2000 0.98 -- 1.53.17 - -- 1.64 40.5 6.23 321-31R 2000 0.87 -- 1.48.18 - -- 0.85 12.2 1.85 321-31S 2000 0.96 -- 1.39.17 - -- 1.53 36.9 5.58 321-32A 2000 0.94 1.36 1.50.18 -- - 0.91 35.5 3.78 321-32B 2000 0.93 1.30 1.52.20 - -- 0.92 36.9 5.76

Resis- Sonic Compr. Ult. real tivity Hard- Int. Mod. Str. Str. app. (g/cc) Q-cm ness Frict. psi psi psi Sample # Temp.C (g/cc) He Xyl (x10) (DPH) (xl03) (x106) (x10-3) (x103) 321-32C 2000 0.92 1.25 1.50.21 - - 0.93 41.4 6.11 321-32D 2000 0.92 -- 1.47.25 - - 1.49 321-32D1 2000 0.84 -- 1.47.29 - - 0.2 321-32E 2000 0.94 1.33 -.24 - - 1.56 41.9 5.89 321-32F 2000 (0.96) -- 1.54 - - -.91 33.3 4.28 321-32G 2000 0.95 -- -.22 - - 1.56 31.8 4.53 321-33A 2000 0.94 1.41 -.16 -- -- -- 39.8 5.96 321-33B 2000 0.89 -- 1.47.33 - - 1.49 53.6 6.69 321-34 2300 (0.95) 1.6 321-34A 2300 0.96 1.59 -.27 - - 1.49 31.3 7.55 321-34B 2300 0.94 1.59.18 - -2.94 33.3 2.92 321-34D 2300 0.95 -- 1.49 - - - 1.46 321-34E 2300 0.95 1.21 --.38 - - 0.92 40.9 5.43 321-36A 2300 (1.11) 1.80 1.44 - - - - - 2.46 co 321-36B 2300 1.07 1.66 1.35.29 - - 1.15 50.4 7.23 321-36C 2300 (1.11) 1.43 321-37 2300 (1.07) 1.41 321-37B 2300.66 1.50 -.24 -- - 0.42 5.53 1.09 321-37D, 2300- -- - - - - - 2.51 0.45 321-37E 2300 0.79 -- 1.76.44 - - 0.94 1.39 0.36 321-37F 2300 0.65 -- 1.56 - - - 0.08 1.05 0.22 321-37Q 2300 0.71 -- 1.62.31 - - 0.2 1.67 0.40 321-39 2300 0.84 1.60 -.23 - - 0.72 6.80 1.31 321-40 2300 (0.60) 1.42 -.30 - - - 0.50.06 321-41B 2300 (0.77) 1.51 321-42A 2000 0.77 -- 1.44.29 - - 0.35 2.05 0.57 321-42B 2000 0.65 1.48 -.28 -- - 0.20 1.14 0.42 321-43A 2200 0.73 1.55 --.36 - - 0.60 1.31 0.37 321-43B 2200 0.61 1.44 -.46 - - 0.10 0.73 0.22 321-44A 2200 (0.96) 1.81 1.46 321-44B 2200 (0.98) 1.56 321-45A 2200 (1.17) 1.78 1.42 321-45B 2200 (1.04) 1.84 1.50

Resis- Sonic Compr. Ult. real tivity Hard- Int. Mod. Str. Str. app. (g/cc) Q-cm ness Frict. psi psi psi Sample # Temp.~C (g/cc) He Xyl (xlO) (DPH) (x103) (x10-6) (x10-3) (x10-3) 321-46A 2200 (0.83) 1.40 321-46B 2200 0.82 1.43 --.26 -- - 0.16 2.04 0.49 321-46C 2200 (0.87) 1.60 321-47A 1600 (1.13) 2.07 1.48 321-47B 1600 (1.18) 1.67 -- -- -- 321-47C 1600 (0.91) 1.84 1.45 321-48A 1600 (0.79) 1.40 - - 321-48B 1600 0.83 1.43 --.24 - -- 0.34 2.65 0.60 321-48C 2000 (0.78) 1.58 -- -- - 321-49A 1600 (0.91) 1.51 321-49B 1600 (0.80) 1.44 321-49C 1600 (0.91) 1.51 321-50 1600 (1.00) 1.69 -- - 321-50B 1600 1.02 1.43 --.15 -- - 1.5 28.2 4.52 co 321-50C 1600 (1.03) 1.45 - - -, 321-51 2350 (0.99) 1.50 - -- - -- 0.73 9.1 1.36 321-51A 2350 0.96 1.53 --.21 - 321-52 2000 -- 1.3 1.52 321-53 2000 (1.12) 2.07 1.47 - 322-1A 1600 0.82 - 1.59.24 - -- 0.27 4.00 0.78 322-1B 1600 0.83 1.98 --.39 - - 0.26 322-2A 1600 (0.87) 2.02 1.59 322-3A 1600 0.71 -- 1.59.18 - -- 0.73 6.80 0.69 322-3B 1600 (0.78) 2.0 1.52 -- -- 322-5 2000 (0.86) 1.55 - 322-6 2000 (0.86) 1.41 - 322-10C 2100 (0.84) 1.8 322-11A 1670 0.74 -- 1.49.207 - -- 0.25 322-11B 1670 0.72 1.9 --.26 - -- 0.24 0.791 0.17 322-12A 1600 0.55 -- 1.43.28 -- - 0.24 2.23 0.24 322-12B 1600 0.73 -- 1.50.23 - -- 0.35 2.04 0.24 322-13A 1670 0.78 -- 1.45.17 -- -- 0.59 4.06 322-14A 1670 (0.76) 1.74 -

Resis- Sonic Compr. Ult. rea1 tivity Hard- Int. Mod. Str. Str. app. (g/cc) Q-cm ness Frict. psi psipsi Sample #Temp.CC (g/cc) He Xyl (xl0) (DPH) (x103) (x10-6) (x10-3) (x103) 322-15B 1670 0.79 -- 1.48.19 -- -- 0.57 6.82 322-16A 1670 (0.81) 1.89 322-16B 1670 0.78 - 1.54.22 - -0.35 3.970.82 322-17B 1670 0.71 1.48.37 -- 0.2 — 0.37 322-18A 1670 1.07 -- 1.49.09 -- -- 2.17 37.36.29 322-19A 1670 (0.85) 1.98 322-19B 1670 0.79 -- 1.55.28 - -0.33 4.160.41 322-20 1400 0.78 - 1.57.17 - - -0.77 8.97 1.43 322-21 1400 0.74 -- 1.45.22 - -0.53 3.340.74 322-22A 1400 (0.88) -- 1.48 - -- -- -- 4.11.19 322-22B 1400 (0.89) -- 1.49 -- -- -- -- 5.21.19 322-23A 1400 (0.84) -- 1.47 322-23B 1300 (0.83) -- 1.61 - --- 4.07 322-24A 1300 (0.87) -- 1.51 - -- -- 1.28 322-24B 1400 (0.82) - 1.59 -- -- -- 1.28 322-25A 1410 0.82 - 1.48.11 -- -- 1.56 23.173.24 322-25A 1670 0.88 - 1.64.13 - -1.48 19.682.17 322-26 1400 0.98 - -.11 - -2.04 27.153.6 322-27A 1400 0.83 - 1.42.08 - - -1.58 24.942.63 322-28A 1400 (0.93) -- 1.44.10 - -- 18.43.16 322-29A 1400 0.66 - 1.46.19 -- -- 0.68 10.621.63 322-30 1410 0.85 1.64 1.42.18 -- — 0.79 2.680.773 322-31B 1410 0.69 - 1.58.34 -- -- 0.24 1.850.363 322-32 1350 0.74 -- 1.60.24 -- -- 0.36 3.060.465 322-33 1350 0.71 -- 1.62.22 -- -- 0.60 2.775 1.32 322-34 1350 0.75 -- 1.34.13 -- — 1.07 13.433.85 322-35 1350 0.77 -- 1.43.22 - -0.68 11.81.33 322-36 1543 0.88 - 1.45.10 - -1.29 23.03.74 322-37 1543 0.78 - 1.44.20 - -0.47 3.697 1.178 322-38 1543 0.73 -- 1.68.17 -- -- 0.93 11.16 2.47 322-39 1440 0.59 1.55.18 - - -0.72 10.12.94 322-40 1440 0.79 -- 1.59.11 -- 1.14 13.95 3.45 322-41 1440 0.73 - 1.59.17 -- -- 0.84 9.832.597

Resis- Sonic Compr. Ult. Preal tivity Hard- Int. Mod. Str. Str. app. (g/cc) Q-cm ness Frict. psi psi psi Sample # Temp.C (g/cc) He Xyl (xlO) (DPH) (x103) (x10-6) (x10-3) (x10-3) 322-42A3 1440 0.72 -- --.14 -- - 0.88 10.77 2.97 322-42A4 1440 0.64 -- --.23 -- - 0.68 13.9 1.00 322-42B1 1440 0.66 -- 1.44.20 -- - 0.69 9.89 1.96 322-42B2 1440 0.75 -- 1.46.18 -- - 0.87 13.19 2.22 322-42B3 1440 0.73 -- 1.46.27 -- - 0.89 19.4 3.11 322-42B4 1440 0.66 -- 1.51.17 -- - 0.70 12.2 1.07 322-42B5 1440 0.68 --.19 -- - 0.76 322-42B6 1440 0.75 -- 1.49.19 - -- 0.97 16.85 1.26 322-45 1440 0.82 -- 1.72.20 -- - 0.68 6.76 2.04 322-48 1605 0.68 -- 1.48.29 -- - 0.43 2.16 0.992 322-49A 1605 0.79 -- 1.46.15 - - 0.79 -- -- 322-50 1600 0.73 - 1.52.15 -- - 0.56 322-51 1460 (0.78) -- 1.56 322-56 1500 (1.00) -- 1.53 - -- - 322-56A 1500 (0.96) -- 1.33 7 322-57 1500 (1.06) -- 1.63 -- 322-57A 1500 (1.03) -- 1.62 322-61 1500 0.74 -- 1.46.189 - - 0.4 322-62 1500 0.96 -- 1.49.095 - -- 1.21 322-63 1500 1.00 -- 1.56.074 - - 1.69 - 322-63A 1500 1.19 -- 1.49.057 - -- 2.47 322-64 1370 0.98 -- 1.60.076 -- - 1.92 322-64A 1370 (1.10) -- 1.51 - 322-64B 1370 0.93 -- 1.61.085 - -- 1.89 322-65 1370 (1.28) -- 1.43 - --- 322-66 1370 (1.09) - 1.37 - -- - 322-67 1350 0.85 -- 1.64.099 -- - 1.32 322-67A 1370 (0.84) -- 1.52 - 322-67B 1370 0.82 -- 1.41.101 -- - 1.33 322-68 1370 0.74 -- 1.52.180 -- - 0.53 322-68A 1370 (0.79) -- 1.25.150 - 322-68B 1370 (0.77) -- 1.48 - - 322-69 1370 0.69 -- 1.50.189 - -- 0.42

Resis- Sonic Compr. Ult. real tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) Q-cm ness Frict. psi psi psi Sample # Temp.~C (g/cc) He Xyl (xl1) (DPH) (x103) (x10-6) (xlO-3) (x103) 322-69A 1370 0.72 - 1.47.198 - - 0.42 322-70 1370 0.69 -- 1.44.224 - - 0.38 -- -- 323-1 1370 (1.01) -- 1.46 - -- - 323-2 1370 0.78 -- 1.45.112 -- - 1.15 323-2A 1370 0.80 - 1.44.111 - - 1.30 323-3 1370 (0.98) - 1.51- --- 323-3A 1370 1.13 - 1.53.061 - - 2.48 -- -- 323-4 1370 0.78 - 1.47.176 - -- 0.55 323-4A 1370 0.78 -- 1.47.179 - -- 0.55 co

TABLE 10 Physical Properties Correlated with Density Pral PMreal Preal l' Es/Pa /r CYUTS/P E jreal] aCsrreal3 aU1(TJ P app. cs/P app. UTS/Pp s app. cs( j UTS p app. app - a p, He Sample # in(xl0-6) in(xl0-3) in(xl0-3) psi(xl0-6) psi(xlO-3) psi(xl03) — cm(xlO) 310-35 - 252.4 49.2 - 18.8 3.67 311-34 -- 333.3 325.9 -- -- 311-35 19.2 37.2 66.9 312-13 -- 1298.0 125.9 312-14 -- 1000.0 -- - 51.8* 312-16 - 62.2 102.1 - 3.26 5.33 312-27 --- 188.0 312-29 - 1030.6 -- - 56.4* 312-32 - 901.2 158.3 - 47.7* 8.38* 312-34 -- 824.2 33.5 -- 40.9* 1.09* 312-49 -- 150.5 - - 7.86 315-2 50.3 58.5 14.3 2.76* 3.2* 0.78*.016* 315-14 -1235.5 136.0 - 71.2* 1.04* 315-17 -1030.0 88.3 -- -- -- 315-20A 48.8 -- -- 2.82* 315-20B 49.3 -- 2.85* - -.013* 315-20C 48.1 -- - 2.76* - -.009* 315-21B -- -- 191.0 -- - 10.45 315-21C 45.8 1428.6 217.6 2.51* 78.2* 11.9* 009* 315-21D -- 743.0 209.5 -- 40.6 11.47 315-25A - 767.0 145.5 - 38.9 7.39 315-25B -- -- 152.6 -- -- 7.75 315-25C 48.8 1120.5 232.9 2.41* 56.9* 11.8*.020* 315-26B -- 962.8 209.3 -- 50.3 10.92 315-26C 41.7 888.9 147.2 2.18* 46.4* 7.7*.003* 315-26D 46.2 1224.9 -- 2.34* 63.9* -.009* 315-28 -- 1079.3 127.0 -- 56.7* 6.68* 315-31B 50.0 1218.8 178.8 2.63* 63.4* 9.4* 007* 315-31C 49.3 -- -- 2.63* -- --.015* 315-31D 48.8 1105.0 201.5 2.56* 58.1* 10.6*.014* 315-32 -- 1262.6 178.2 - 65.0* 9.2* *Calculated with helium (otherwise with xylene).

Es/P app~ s/p s /p E aP rp o rap,,,l re s app. cs/ app. UTS/Papp. E a j cs a UTS app. ap. a. PHe Sample # in(x10-6) in(x10-3) in(xl03) psi(xl0-6) psi(x10-3) psi(x10-3) Q-cm(x10) 315-33 44.9 -- 2.42* - -.010* 315-34C 40.3 972.2 136.6 2.29* 55.3* 7.7*.011 315-34D 51.5 690.2 114.9 2.91* 39.0* 6.5*.006* 315-37 31.9 744.2 131.6 1.70 39.7 7.01.009 315-38A 35.9 925.9 114.6 1.95* 50.3* 6.2*.011* 315-39A -51.5 1038.8 161.7 2.65 53.5 8.33.013 315-39B 51.0 824.7 127.6 2.62 42.5 6.57.002 315-41 -- 612.8 -- - 31.1 --.001 315-41A 48.7 671.0 72.2 2.93* 40.3* 4.3*.002* 315-41B 45.9 563.0 69.9 2.69 33.8* 4.3*.007* 315-42 52.7 -- 2.79 --.015 315-43 -- 1335.5- -- 71.1- 315-44 52.1 -- -- 2.69 --.011 315-45B 211.9 -- -- 12.74 --.002 315-46A -- 2.78 2.48 4.4* 3.9* 317-1 -- 1297.1 172.2 -- 56.1 7.5 317-2 35.6 922.0 116.2 1.85 48.4 6.07.009 317-5 -- 1175.0 266.0 -- 55.6 12.6 317-8 50.4 1120.9 63.4 2.62 57.6 3.30 317-9 -- 964.8 172.3 -- 61.1* 10.9* -- 317-10 50.9 1536.6 210.9 2.61* 78.5* 10.8*.001* 317-12 -- -- 181.6 -- -- 10.5* 317-14 -- 874.8 149.7 - 46.9* 8.03* -- 317-15 -- 1025.6 124.8 -- 53.9* 6.6* -- 317-18 33.0 126.0 104.0 1.51 8.93 5.78.005 317-19 -- 693.2 215.1 -- 41.9* 13.0* -- 317-23 -- 254.0 63.4 -- 13.4 3.34 317-24 52.9 1794.6 159.7 2.99* 101.4* 9.0*.009* 317-25 -- 1076.4 89.9 -- 54.6 4.57 317-26 53.7 167.4 32.8 2.86* 8.9* 1.7*.010 317-29 32.3 615.0 92.8 1.73 33.0 4.99.006 317-32 51.3 1380.0 113.0 2.63 71.0 8.11.014 317-33 -- 1092.0 152.0 -- 57.5* 8.0*

E /P ar /Papp. [UTS/P E -1 ( real] [ real/ He app. app. app. He Sample # in(x10-6) in(x10-3) in(xl0-3) psi(xi0-6) psi(xl0-3) psi(x10-3) Q-cm(xlO) 317-34 88.4 1025.6 197.0 4.78 55.4 10.6.014 317-37 49.8 1049.0 212.0 2.56 64.5 10.9.014 317-38 31.1 1156.0 129.0 1.60 59.7 6.67.017 317-39 43.3 963.0 129.0 1.98* 44.0* 5.9*.002* 317-40 40.7 742.0 1120 2.16* 39.4* 5.95*.011 317-41 -- 298.0 70.0 -- 17.1 4.0 -- 317-41A -- 228.0 58.8 -- 11.3 2.9 -- 317-41B -- 668.0 96.5 -- 35.7* 5.15* -- 317-42 49.1 1266.0 169.0 2.63* 66.3* 8.8*.008* 317-43 -- 462.0 76.0 -- 23.4* 3.84* -- 317-44 44.6 903.0 70.4 2.43* 4.91* 3.83*.0004* 317-45 -- 1017.0 164.0 -- 51.4* 8.3* 317-46 43.5 1183.0 215.0 2.32* 63.2* 9.7*.006*, 317-47 -- 785.0 160.0 -- 39.3* 8.05* o 317-48 29.9 -- - 1.57* -- 317-49 30.8 385.4 104.2 1.67* 20.9* 5.7*.018* 318-1 24.8 -- 89.8 1.35* -- 4.9*.009* 318-2C 25.0 1076.8 148.9 -- -- 318-7 23.2 29.2 28.0 1.12 1.41 2.87 318-8 -- 526.6 162.6 -- 28.2* 8.7* -- 318-8A -- 936.4 ---- 50.23 -- 318-9 -- 792.8 150.2 -- 42.8* 8.1* 318-11 45.3 -- 155.0 2.58* -- 8.8* -- 318-14 14.6 170.9 29.9.76* 9.0* 1.6*.015 318-16 42.3 831.0 118.0 2.26* 44.4* 2.3*.017* 318-17 44.2 1246.2 163.0 2.66* 65.5* 8.51*.019* 318-22 43.2 987.0 146.0 2.25* 51.5* 7.63*.014* 318-24 42.5 -- -- 2.35 - -- 318-24C -- 752.0 134.0 -- 33.6 6.01 318-28 43.9 -- -- 2.30* — -.010 318-29 -- 10.1 32.2 --.5* 1.7*.008* 318-30 39.2 563.3 149.62 2.10* 30.2* 8.03* -- 318-31 6.8 80.3 9.6 0.33 3.96 0.47.009

Es/Pa pp CJ. f[PPreal [Preal P real Pa E/Papp. Cs/Papp. UTS/Papp. E PaPJ cs P I UTS [app P te cOPs P. P (app. ( app. app. He Sample # in(xl0-6) in(xl0-3) in(xl0-3) psi(x10-6) psi(x10-3) psi(xl0-3) Q-cm(xlO) 318-32 -- 650.0 -- -- 36.5* - - 318-33 46.9 1118.1 164.9 2.62 61.6 9.1.053 318-34 -- 742.0 125.0 -- 38.9* 6.57* - 318-35 46.9 831.0 144.0 2.41* 42.9* 7.4*.070 318-36 36.6 505.0 90.6 1.87* 25.7* 4.62*.008* 318-37 65.7 773.0 117.0 3.50* 41.3* 6.3* 007* 318-39 67.3 785.0 179.0 3.82* 44.5* 10.1*.007* 318-45 67.6- -- 3.34 -- -.006 318-46 62.7 1149.0 200.0 3.35 60.5 10.5.029 318-48 -- 89.7 212.0 -- 4.63* 10.95* 318-51 26.0 546.0 45.3 4.23* 28.2* 2.3* - 318-52 46.2 486.8 69.9 2.35* 24.7* 3.55*.093* 318-53 -- 151.0 51.1 -- 7.9* 2.7* - 318-58 2.8 -- 165.0.15 -- 9.3.154 318-59 60.1 886.0 117.0 3.00 44.2 5.9 - 318-60 52.0 1055.0 222.0 2.7 54.1 11.4.010 318-61 40.4 620.0 109.0 2.00 30.9 5.4.029 318-62 -- 1195.0 201.0 -- 60.2* 10.1* - 321-3 -- 1130.0 203.0 -- 64.1* 11.5*.021* 312-6 59.5 1061.0 210.0 3.43* 61.3* 12.1*.021* 321-8 45.6 1197.0 215.0 2.39* 63.1* 11.4*.034* 321-9 -- 1283.0 231.0 -- 59.3 10.7 - 321-10 66.0. 1207.0 238.0 3.18* 58.4* 11.5*.009* 321-11 44.9 1184.0 151.0 2.36* 60.9* 7.77*.076 321-12 35.0 427.0 72.0 1.67* 20.3* 3.4*.089* 321-13 48.7 1032.0 176.0 2.64 57.2 9.54.007 321-15 - 994.00 173.0 -- 56.1* 9.7* 321-16A 50.7 792.0 148.0 3.36* 52.6* 9.8* 321-17B 53.5 1089.0 155.0 2.71* 55.1 7.9* - 321-18B 80.1 1726.0 246.0 4.02 92.2 13.2 321-19A 58.4 1006.0 193.0 2.99 51.4 9.9 321-19B 49.9 1055.0 192.0 2.62 55.2 10.1 321-20B -- 1381.0 246.4 -- 74.6* 13.3*

E rea real rea E /I, CT /P aT /P E a el T ra s app. Cs app. aUS pp. ap Cs ( appS app. He Sample #in(xl0-6) in(xl03) in(xl0~3) psi(xl1-6) psi(x0-3) psi(x0o-3) -cm(xlO) 321-21A 48.8 1344.6 187.6 2.54 70.2 9.8.013 321-21B 53.6 1288.9 171.1 2.83 68.2 9.1.014 321-22A 42.6 943.0 181.0 2.21 48.9 9.4.018 321-22B -- 986.4 129.8 -- 54.7 7.19 321-22C 42.6 1074.4 129.5 2.31 58.2 7.02.011 321-22D4 42.7 1013.9 154.9 2.27 53.8 8.23.012 321-23 54.8 1565.0 194.0 3,4* 98.0* 12.2*.008* 321-23A 47.5 1183.4 184.0 2.665.2 10.1.017 321-23B 48.4 1222.8 171.0 2.51 63.4 8.88.012 321-24 52.9 1297.1 173.0 3.06 74.9 10.0.012 321-24A 30.6 1430.5 205.1 1.6 75.5 10.8.009 321-24B 57.6 1170.8 175.5 3.1 62.4 9.4.011 321-25A 26.9 1103.0 213.5 1.41 58.2 11.2.006 321-26 -- 1466.7 42.8 -- 82.4 2.4 321-27 20.0 313.3 43.3 1.2* 17.1* 2.4*.006* 321-29 46.0 1157.0 172.0 2.81 59.2 8.79.012 321-31F 26.0 503.8 82.6 1.6 30.5 5.0.052 321-31G -- 599.0 95.2 -- 36.0* 5.7*.011* 321-31J 34.9 687.0 121.0 1.87 36.8 6.5.010 321-31P 36.1 777.0 111.9 1.6335.1 5.1.017 321-31Q 46.3 1143.8 175.9 2.56 63.2 9.73.011 321-31R 27.0 388.0 58.9 1.45 20.8 3.15.011 321-31S 44.1 1063.9 160.9 2.22 53.4 8.08.012 321-32A 26.9 1049.0 111.7 1.45 56.6 6.03.011 321-32B 27.4 1098.2 171.4 1.50 60.3 9.41.012 321-32C 27.98 1245.5 183.8 1.52 67.5 9.96.013 321-32D 44.8 -- — 2.38 -- --.016 321-32D1 6.59 -- -- 0.35 --—.017 321-32E 45.9 1233.7 173.4 2.21* 59.28* 8.33*.017* 321-32F 26.3 963.5 123.8 1.4653.4 6.87 321-32G 45.45 926.5 131.98 -- -- - 321-33A - 1171.9 175.5 -- 59,7* 8.94*.011* 321-33B 46.3 1666.9 208.0 2.46 88.53 11.05.02

E /P CY /P CY /P E Preal rel Preal o..... s/app. csPapp. UTS app. s [PaJ cs(ap UTS pe app. app. app He Sample # in(xl0-6) in(xl0- ini(xl0-3) psi(x10-6) psi(xl0-3) psi(x10-3) 3 -cm(xlO) 321-34A 42.96 90-2.4 217.7 2.47* 51.8* 12.5*.016* 321-34B 86.56 980.5 85.98 4.97 56.3 4.94.011 321-34D 42.54 -- 2.29 -- -- -- 321-34E 26.8 1191.6 158.2 1.17* 52.1* 6.92*.0298* 321-36A - -- 61.3- 3. 19 321-36B 29.7 130'3.'7 187.0 1.45 63.6 9.12.023 321-37B 17.6 231.9 45.7 0.955* 12.57* 2.48*.0106* 321-37E 32.9 48.7 12.6 2.09 3.1.802.0198 321-37F 3.4 44.7 9.37.192 2.52.528 -- 321-37Q 7.8 65.1 15.6.46 3.8.9.014 321-39 23.7 224.1 43.2 1.37* 13.0* 2.5*.012* 321-40 -- 23.0 2.8 -- 1.18*.14*.013* 321-42A 12.6 73.9 20.6.65 3.83 1.07.012 321-42B 8.5 48.7 17.9 4.6* 2.6*.96*.012* 321-43A 22.7 49.7 14.0 1.3* 2.8*.79*.017* 321-43B 4.5 33.1 9.1.24* 17*.47*.019* 321-46B 5.4 69.1 16.6.28* 3. 6*.85*.015* 321-48B 11.4 88.7 20.0.6* 4.6* 1.0*.014* 321-50B 40.8 769.9 123.0 2.1* 395* 6.3*.011* 321-51 20.5 255.0 38.2 1.1 13.8* 2.1* -- 321-51A -- ---- --.013* 322-1A 9.11 135.0 26.2.52 7.76 1.5.012 322-1B 8.67 -- -.62* --.016* 322-3A 28.5 265.1 269 1.63 15.2 1.55.008 322-11A 9.4 --.50 --.010 322-llB 9.23 30.4 6.5.63* 2.09* 45*.010* 322-12A 12.1 112.2 12.1.62 5.80.62.011 322-12B 13.3 77.3 9.1.72 4.2.49.011 322-13A 20.9 144.0 -- 1.1 7.55 --.009 322-15B 19.9 238.9 -- 1.07 12.8 --.010 322-16B 12.4 140.9 29.1.69 7.84 1.62.011 322-17B 7.8 -- 14.4.42 --.77.018 322-18A 56.1 964.8 162.7 3.02 51.9 8.76.006

P o _ fPreal" f real _ Preal' Ial E /p Us /P cr/P E ea PC s/app. s app. UTS app. UTSPapp. (Pap) cs [eaUTS [app. app. app. app.He Sample #in(x10-6) in(xl0-3) in(xl0-3) psi(xl0-6) psi(x10-3) psi10-cm(xl) 322-19B 11.56 145.75 14.4.65 8.16.804.014 322-20 27.3 317.6 50.7 1.55 18.0 2.88.008 322-21 19.8 124.9 27.7 1.04 6.54 1.45.011 322-22A -- 129.0 37.4 -- 6.9 2.0 322-22B -- 161.7 37.0 -- 8.71 1.99 322-23B -- -- 135.7 -- -- 7.895 322-24A -- -- 40.7 -- -- 2.22 322-24B -- -43.2 -- - 2.48 322-25A 52.7 782.0 109.4 2.82 41.8 5.85.006 322-25A 46.6 619.0 68.25 2.76 36.7 4.04.007 322-26 57.6 766.8 101.7 -- -- -- 322-27A 52.7 831.7 87.7 2.7 42.7 4.5.005 322-28A -- 547.6 94.0 -- 28.5 4.89.006 322-29A 28.5 445.4 68.36 1.5 23.5 3.6.009 322-30 25.7 87.3 27.17 1.32 4.48 1.29.011 322-31B 9.63 74.2 14.56.55 4.24.831.015 322-32 13.5 114.5 17.4.78 6.62 1.005.011 322-33 23.4 108.2 51.46 1.37 6.33 3.01.010 322-34 39.5 495.6 142.1 1.91 24.0 6.88.007 322-35 24.4 424.2 47.8 1.26 21.9 2.47.012 322-36 40.6 723.4 117.6 2.13 37.9 6.16.006 322-37 16.7 131.2 41.8.87 6.83 2.175.011 322-38 35.37 423.1 93.65 2.14 25.7 5.68.007 322-39 33.8 473.8 137.9 1.89 26.53 7.72.007 322-40 39.9 488.74 120.9 2.29 28.1 6.94.005 322-41 31.8 372.7 98.46 1.83 21.4 5.66.008 322-42A3 33.8 414.0 114.2 -- -- -- 322-42A4 29.4 601.1 43.25 -- -- -- 322-42B1 28.9 414.7 82.2 1.5 21.6 4.28.009 322-42B2 32.1 486.8 81.9 1.69 25.7 4.32.009 322-42B3 33.7 735.5 117.9 1.78 38.8 6.22.0135 322-42B4 29.36 511.6 44.9 1.6 27.9 2.45.007 322-42B5 30.9 -- -- -- -- -

~ /P /P C /P E reall realreal /app. c s app ~ UT]S app. Cs p UTS i| 1 app. app. app., Sample # in(xl0O6) in(xl0"3) in(xl0~3) psi(xl0~6) psi(xl-3) psi(x10-3) Q-cm(xlO) 322-42B6 35.8 621.8 46.5 1.93 33.5 2.5.010 322-45 22.95 228.2 68.86 1.43 14.2 4.28.010 322-48 17.5 87.9 40.4.94 4.7 2.16.013 322-49A 27.7 -- -- 1.46 -- -008 322-50 21.2 - -1.17 -- --.007 322-61 14.96 - - -.79 - —.010 322-62 34.9 -- 1.88 --.006 322-63 46.8 -- — 2.64 -- —.005 322-63A 57.45 - -3.1 —.005 322-64 54.23 - — 3.13 —.005 322-64B 56.25 — 3.27 —.005 322-67 43.0 — 2.55 —.005 322-67B 44.9 - — 2.29 —.006 322-68 19.8 - - -1.09 -- —.009 322-68A -- --- -- -.009 322-69 16.8- --.9 —.009 322-69A 16.1 - —.86 — 010 322-70 15.2 —.79 —.011 323-2 40.8 -- 2.14 —.006 323-2A 45.0 — 2.34 —.006 323-3A 60.7 - -3.36 —.005 323-4 19.5 — 1.04 —.0093 323-4A 19.5 — 1.04 - —.0095

TABLE 11 Comparison of Ultimate Strength Determined by Direct Tension vs. Disc Rupture Sample # Direct Tension Disc Rupture 317-38 3780 psi 5100 psi 318-59 4600 psi 4153 psi 321-16B 5306 psi 4705 psi 321-36A 4081 psi* 2462 psi 321-50B 3780 psi 5228 psi 322-23B 3163 psi 4050 psi 322-24A 1367 psi 1279 psi 322-24B 1122 psi 1279 psi *Broke in Grip TABLE 12 Comparison of Sonic Modulus and Mechanical Modulus HTT Sample # Temp.~C Mechanical Modulus Sonic Modulus 317-8 2000 1.27 x 106 1.82 x 106 317-26 2000 0.38 x 106 0.31 x 106 317-42 2000 1.4 x 106 1.5 x 106 317-46 2000 1.59 x 106 1.27 x 106 318-17 2000 1.16 x 106 1.18 x 106 318-52 2000 2.0 x 106 1.69 x 106 321-12 2000 1.01 x 106 1.22 x 106

TABLE 13 Sonic Modulus vs. Pyrolysis Temperature psi(xl0-6) Sample # 7000C 800~C 900~C 1000~C 1577~C 1800~C 20000C 318-59 #1L 1.02 -- -- 2.16 1.95 1.77 1.46 318-59 #2L 1.06 -- -- 2.07 2.10 1.82 1.76 318-60L.93 -- ---- 1.82 1.77 1.70 321-11L.75 -- -- 2.37 1.68 1.72 1.58 321-11CL.73 -- -- 1.75 1.75 1.72 1.66 321-12L.66 -- -- 1.49 2.03 1.23 1.18 321-13 #lL.80 -- -- 1.84 1.77 1.73 1.75 321-13 #2L.82 -- -- 1.84 -- 1.79 1.72 321-13 #3L.88 -- 1.91 -- 1.75 1.72 321-15 #1.81 -- 1.69 1.92 1.91 1.84 1.69 321-15 #2 -- 1.53 -- 1.96 2.01 1.86 1.71 321-15L -- 1.69 -- 2.06 1.875 1.86 1.79 321-16A -- 1.60 -- 1.88 1.87 1.70 1.55 321-16AL -- 1.57 -- 1.97 1.87 1.67 1.58 321-16B -- 1.68 -- 1.87 1.68 1.55 1.48 321-17B.80 -- 1.80 2.12 1.96 1.91 1.81 321-18A -- 1.63 -- 2.2 2.14 2.09 1.98 321-18B #1 -- 1.73 -- 1.48 1.86 1.81 1.73 321-18B #2 -- 1.52 -- 1.97 2.09 1.74 1.73 321-18BL -- 1.56 -- 1.60 1.90 1.83 1.75 321-19A -- 1.53 -- 2.03 1.96 1.89 1.83 321-19B #1.75 -- 3.27 1.58 1.78 1.49 1.49 321-19B #2 -- 1.32 -- 1.69 1.61 1.61 1.55 321-19BL -- 1.40 -- 2.15 1.63 1.64 1.55 -97

TABLE 14 Resistivity vs. Pyrolysis Temperature Q-cm(x10) Sample # 800~C 900~C 1000~C 1577~C 1800~C 2000~C 318-59 #1L -- --.499.102.083.110 318-59 #2L ---.522.099.081.060 318-60L --.523.0108.016.170 321-11L.643.116.120.120 321-11CL -- --.471.098.090.170 321-12L -- --.542.148.120.06 321-13 #1L ----.506.120.170.100 321-13 #2L —.521.106.160.110 321-13 #3L --.490.111.110.110 321-15 #1 --.143.014.0302.015.015 321-15 #2.448 -.029.0319.015.015 321-15L.324 --.110.115.170.110 321-16A.279 --.014.029.015.015 321-16AL.366 --.170.089.120.100 321-16B.445 --.030.0328.017.017 321-17B --.083.080.0357.018.018 321-18A.238 --.047.0333.017.017 321-18B #1.611 --.059.0334.016.016 321-18B #2.302 --.03.0325.016.016 321-18BL.374 --.160.114.110.110 321-19A.317 --.031.0332.017.017 321-19B #1 --.171.017.0368.018.018 321-19B #2.302 --.03.0325.016.016 321-19BL.355 --.150.081.110.110 -98

UMVEMIIY OF MTYMA I3 9015 03126 3281